
On the Power of Unambiguity in Alternating Machines∗

Holger Spakowski †

Institut für Informatik

Heinrich-Heine-Universität Düsseldorf

40225 Düsseldorf, Germany

spakowsk@cs.uni-duesseldorf.de

Rahul Tripathi ‡

Department of Computer Science and Engineering

University of South Florida

Tampa, FL 33620, USA

tripathi@cse.usf.edu

March 10, 2006

Abstract

Unambiguity in alternating Turing machines has received considerable attention
in the context of analyzing globally-unique games by Aida et al. [ACRW04] and
in the design of efficient protocols involving globally-unique games by Crâsmaru et
al. [CGRS04]. This paper explores the power of unambiguity in alternating Turing
machines in the following settings:

1. We show that unambiguity based hierarchies—AUPH, UPH, and UPH—are
infinite in some relativized world. For each k ≥ 2, we construct another
relativized world where the unambiguity based hierarchies collapse so that they
have exactly k distinct levels and their k’th levels coincide with PSPACE. These
results shed light on the relativized power of the unambiguity based hierarchies,
and parallel the results known for the case of the polynomial hierarchy.

2. For every k ≥ 1, we define the bounded-level unambiguous alternating solution
class UAS(k) as the class of all sets L for which there exists a polynomial-
time alternating Turing machine N , which need not be unambiguous on every
input, with at most k alternations such that x ∈ L if and only if x is accepted
unambiguously by N . We construct a relativized world where, for all k ≥ 1,
UP≤k ⊂ UP≤k+1 and UAS(k) ⊂ UAS(k + 1).

∗A preliminary version of this paper appeared in Proceedings of the 15th International Symposium on
Fundamentals of Computation Theory (2005) [ST05].

†Supported in part by the DFG under grants RO 1202/9-1 and RO 1202/9-3.
‡Supported in part by NSF grant CCF-0426761. Work done in part while affiliated with the Department

of Computer Science at the University of Rochester, Rochester, NY 14627, USA.

1

Manuscript
Click here to download Manuscript: final-uap.tex

3. Finally, we show that robustly k-level unambiguous alternating polynomial-time
Turing machines, i.e. polynomial-time alternating Turing machines that for every
oracle have k alternating levels and are unambiguous, accept languages that are
computable in PΣp

k⊕A, for every oracle A. This generalizes a result of Hartmanis
and Hemachandra [HH90].

Keywords: structural complexity, unambiguous computation, alternation,
relativization.

1 Introduction

Chandra, Kozen, and Stockmeyer [CKS81] introduced the notion of alternation
as a generalization of nondeterminism: Alternation allows switching of existential
and universal quantifiers, whereas nondeterminism allows only existential quantifiers
throughout the computation. Alternation has proved to be a central notion in
complexity theory. For instance, the polynomial hierarchy has a characterization in
terms of bounded-level alternation [Sto76,CKS81], the complexity class PSPACE can
be characterized in terms of polynomial length-bounded alternation [CKS81], and many
important classes have characterizations based on variants of alternation (see Chapter
19 of [Pap94]).

Unambiguity in nondeterministic computation is related to issues such as worst-
case cryptography and the closure properties of #P (the class of functions that count
the number of accepting paths of NP machines). The complexity class UP captures
the notion of unambiguity in nondeterministic polynomial-time Turing machines. It is
known that worst-case one-to-one one-way functions exist if and only if P 	= UP [Ko85,
GS88] and that UP equals probabilistic polynomial-time if and only if #P is closed under
every polynomial-time computable operation [OH93]. Factoring, a natural problem
with cryptographic applications, belongs to UP ∩ coUP and is not known to belong to
a subclass of UP ∩ coUP nontrivially.

This paper studies the power of unambiguity in alternating computations.
Niedermeier and Rossmanith [NR98] gave the following definition of unambiguity
in alternating Turing machines: An alternating Turing machine is unambiguous
if every accepting existential configuration has exactly one move to an accepting
configuration and every rejecting universal configuration has exactly one move to
a rejecting configuration. They introduced a natural analog UAP (unambiguous
alternating polynomial-time) of UP for alternating Turing machines. Lange and
Rossmanith [LR94] proposed three different approaches to define a hierarchy for
unambiguous computations: The alternating unambiguous polynomial hierarchy
AUPH, the unambiguous polynomial hierarchy UPH, and the promise unambiguous
polynomial hierarchy UPH. Though it is known that Few ⊆ UAP ⊆ SPP [LR94,NR98]
and AUPH ⊆ UPH ⊆ UPH ⊆ UAP [LR94,CGRS04], a number of questions—such as,
whether UAP is contained in the polynomial hierarchy, whether the unambiguity based
hierarchies intertwine, whether these hierarchies are infinite, or whether some hierarchy
is contained in a fixed level of the other hierarchy—related to these hierarchies have
remained open [LR94]. Relatedly, Hemaspaandra and Rothe [HR97] showed that the
existence of a sparse Turing complete set for UP has consequences on the structure of
unambiguity based hierarchies. They proved that if UP has sparse Turing complete
sets, then for each k ≥ 3, the k’th level UΣp

k of the unambiguous polynomial hierarchy

2

(UPH) is contained in the (k−1)’st level UΣp
k−1 of the promise unambiguous polynomial

hierarchy.

Recently, Aida et al. [ACRW04] introduced “uniqueness” properties for two-player
games of perfect information such as Checker, Chess, and Go. A two-person perfect
information game has global uniqueness property if every winning position of player 1
has a unique move to win and every mis-step by player 1 is punishable by a unique
winning reply by player 2 throughout the course of the game. Aida et al. [ACRW04]
showed that the class of languages that reduce to globally-unique games, i.e. games
with global uniqueness property, is the same as the class UAP. In another recent
paper, Crâsmaru et al. [CGRS04] designed a protocol by which a series of globally-
unique games can be combined into a single globally-unique game, even under the
condition that the result of the new game is a non-monotone function of the results of
the individual games that are unknown to the players. In complexity theoretic terms,
they showed that the class UAP is self-low, i.e. UAPUAP = UAP. They also observed
that the graph isomorphism problem, whose membership in SPP was shown by Arvind
and Kurur [AK02], in fact belongs to the subclass UAP of SPP.

In this paper, we investigate the power of unambiguity based alternating
computation in three different settings. First, we study the relativized power of the
unambiguity based hierarchies and the class UAP. We construct a relativized world
in which the unambiguity based hierarchies—AUPH, UPH, and UPH—are infinite.
We construct another relativized world where UAP is not contained in the polynomial
hierarchy. This latter oracle result strengthens a result (relative to an oracle, UAP
differs from the second level of UPH) of Crâsmaru et al. [CGRS04]. For each k ≥ 2,
we construct a relativized world where the unambiguity based hierarchies and the
polynomial hierarchy have exactly k distinct levels and their k’th levels collapse to
PSPACE. Our results show that proving that any of the unambiguity based hierarchies
is finite or that UAP is contained in the polynomial hierarchy, or that any of the
unambiguity based hierarchies have at least k distinct levels, for any k ≥ 3 (the case
for k = 2 is trivial), is impossible by relativizable proof techniques. We mention
that the structure of relativized hierarchies of classes has been investigated extensively
in complexity theory (see, for instance [Yao85,H̊as87,CGH+89,Ko89,Ko91]) and our
investigation is a work in this direction.

Second, for every k ≥ 1, we define the bounded-level unambiguous alternating
solution class UAS(k) as the class of all sets L for which there exists a polynomial-time
alternating Turing machine N , which need not be unambiguous on every input, with at
most k alternations such that x ∈ L if and only if x is accepted unambiguously by N . A
variant of this class (denoted by UAS in this paper), where the number of alternations
is allowed to be unbounded, was studied by Wagner [Wag92] as the class ∇P of all sets
that can be accepted by polynomial-time alternating Turing machines using partially
defined AND and OR functions.1 Beigel [Bei89] defined the class UP≤k(n) as the class
of sets in NP that are accepted by nondeterministic polynomial-time Turing machines
with at most k(n) accepting paths on each input of length n. Beigel [Bei89] constructed
an oracle A such that PA ⊂ UPA ⊂ UPA

≤k(n) ⊂ UPA
≤k(n)+1 ⊂ FewPA ⊂ NPA, for every

polynomial k(n) ≥ 2. We show that there is a relativized world B such that, for all

1The partial counterparts AND∗ and OR∗ differ from boolean functions AND and OR, respectively,
as follows: AND∗ is undefined for input (0, 0) and OR∗ is undefined for input (1, 1). Thus, these partially
defined boolean functions are the unambiguous counterparts of boolean AND and OR functions, respectively.

3

k ≥ 1, UPB
≤k ⊂ UPB

≤k+1, UAS(k)
B ⊂ UAS(k + 1)B, and relative to B, the second level

of UPH is not contained in any level of AUPH.

Finally, we investigate the power of polynomial-time alternating Turing machines
that preserve the bounded-level unambiguity property for every oracle. We show that
a polynomial-time alternating Turing machine, which for every oracle has k alternating
levels and is unambiguous, requires only weak oracle access in every relativized world.
That is, for every oracle A, the language of such a machine can be computed in PΣp

k⊕A.
This is a generalization of a result of Hartmanis and Hemachandra [HH90], which
states that if a nondeterministic polynomial-time Turing machine is robustly categorical
(i.e. for no oracle and for no input, the machine has more than one accepting path),
then for every oracle A, the machine accepts a language in PNP⊕A.

2 Preliminaries

2.1 Notations

Let N and N+ denote the set of nonnegative integers and positive integers, respectively.
Our alphabet Σ is {0, 1}. For any deterministic or nondeterministic, or alternating
Turing machine N , A ⊆ Σ∗, and x ∈ Σ∗, we use a shorthand NA(x) for “the
computation of N with oracle A on input x.” The word NPTM stands for
“nondeterministic polynomial-time Turing machine.” Let 〈·, · · · , ·〉 denote a standard,
fixed, easily computable, invertible, one-to-one, multiarity pairing function.

For every integer m ∈ N and variable y, let (∃my) be a shorthand for “(∃y ∈ Σ∗ :
|y| ≤ m)” and (∀my) be a shorthand for “(∀y ∈ Σ∗ : |y| ≤ m).” For every polynomial
p(.) and for every predicate R(x, y, z) of variables x, y, z, we use (∃p!y)(∀p!z)R(x, y, z)
to indicate that there exists a unique value y1 for the y variable with |y1| ≤ p(|x|),
such that for all values z1 for the z variable with |z1| ≤ p(|x|), R(x, y1, z1) is true, and
for all values y2 	= y1 for the y variable with |y2| ≤ p(|x|), there exists a unique value
z(y2) for the z variable with |z(y2)| ≤ p(|x|) such that ¬R(x, y2, z(y2)) is true. We use
(∀p!y)(∃p!z)¬R(x, y, z) to indicate that for all values y1 for the y variable with |y1| ≤
p(|x|), there exists a unique value z(y1) for the z variable with |z(y1)| ≤ p(|x|) such that
¬R(x, y1, z(y1)) is true, and for all values z2 	= z(y1), R(x, y1, z2) is true. In the same
way, we interpret expressions, such as (∃p!y1)(∀p!y2)(∃p!y3) . . . R(x, y1, y2, y3, . . .) and
(∀p!y1)(∃p!y2)(∀p!y3) . . .¬R(x, y1, y2, y3, . . .), with bounded number of unambiguous
alternations.

2.2 Alternating Computation

We assume that a computation path of an oracle alternating Turing machine (or, ATM
in short) N encodes a complete valid computation of N relative to some oracle, i.e. is a
sequence of configurations including query strings and answers from the oracle. A node
of an ATM N is defined by a configuration of N together with a valid computation path
leading to this configuration. Hence, two nodes ν1 and ν2 of an oracle ATM are equal
if and only if the configuration sequences, oracles queries, and oracles answers are the
same for the computation paths leading to ν1 and ν2. For any node ν of an oracle ATM
N , let QN(ν) denote the set of queries along the path from the root to ν in N (·), i.e. N
with some oracle A.

4

We recursively assign levels in an ATM N as follows: (a) the root of N is at level
1, (b) if a node v is assigned a level i and if v is an existential node, then the first
nonexistential (i.e. universal or leaf) node w reachable along some path from v to a leaf
node of N is assigned level i+1, (c) if a node v is assigned a level i and if v is a universal
node, then the first nonuniversal (i.e. existential or leaf) node w reachable along some
path from v to a leaf node of N is assigned level i + 1, and (d) for all other nodes of
N , the concept of levels is insignificant to this work and so the levels are undefined.
Without loss of generality, we assume that every leaf node of an ATM is at the same
level. We term the nonleaf nodes for which levels are defined as the salient nodes of an
ATM. If ϑ is a leaf node or a salient node, then we use level(ϑ) to denote the level of ϑ
in the ATM. For any k ∈ N, a k-level ATM is one for which, on any input, the maximum
level assigned to a salient node is at most k. For the sake of generality, we can assume
that a deterministic Turing machine is an ATM with no root and a nondeterministic
Turing machine is an ATM with a single salient node, which is also the root of the
ATM. Thus a deterministic Turing machine is a 0-level ATM and a nondeterministic
Turing machine is a 1-level ATM.

Unless otherwise specified, the root of any ATM is assumed to be an existential
node. We say that NA(x) is unambiguous if every accepting existential node in NA(x)
has exactly one move to an accepting node and every rejecting universal node in NA(x)
has exactly one move to a rejecting node. For every ATM N , A ⊆ Σ∗, and x ∈ Σ∗,
we say that NA(x) accepts (rejects) with unambiguity if NA(x) accepts (respectively,
rejects) and NA(x) is unambiguous. If NA(x) is unambiguous for every x ∈ Σ∗, then
we say that NA, i.e. N with oracle A, (or, simply N , if A = ∅) is unambiguous. An
ATM N is called robustly unambiguous if NA(x) is unambiguous for every x ∈ Σ∗ and
every oracle A.

2.3 Unambiguity in Alternating Computation

The complexity class UP captures the notion of unambiguity in nondeterministic
polynomial-time computations. However, this notion of unambiguity becomes less
clear when we focus our attention on alternating polynomial-time computations. In
fact, Niedermeier and Rossmanith [NR98] observed that there might be three different
approaches to define unambiguity based hierarchies, which are as follows.

Definition 2.1 (Unambiguity Based Hierarchies [LR94,NR98]) 1. The
alternating unambiguous polynomial hierarchy AUPH =df

⋃
k≥0 AUΣ

p
k, where

AUΣp
0 =df P and for every k ≥ 1, AUΣp

k is the class of all sets L ⊆ Σ∗ for which
there exist a polynomial p(.) and a polynomial-time computable predicate R such
that, for all x ∈ Σ∗,

x ∈ L =⇒ (∃p!y1)(∀p!y2) . . . (Q
p!yk)R(x, y1, y2, . . . , yk), and

x /∈ L =⇒ (∀p!y1)(∃p!y2) . . . (Q
p
!yk)¬R(x, y1, y2, . . . , yk),

where Q = ∃ and Q = ∀ if k is odd, and Q = ∀ and Q = ∃ if k is even. For each
k ≥ 0, the class AUΠp

k =df coAUΣp
k.

2. The unambiguous polynomial hierarchy is UPH =df

⋃
k≥0 UΣ

p
k, where UΣp

0 =df P

and for every k ≥ 1, UΣp
k =df UPUΣp

k−1 . For each k ≥ 0, the class UΠp
k =df

coUΣp
k.

5

3. The promise unambiguous polynomial hierarchy is UPH =df

⋃
k≥0 UΣp

k, where

UΣp
0 =df P, UΣp

1 =df UP, and for every k ≥ 2, UΣp
k is the class of all sets L ∈ Σp

k

such that for some oracle NPTMs N1, N2, . . ., Nk, L = L(N
L(N ··

·L(Nk)

2)
1), and

for every x ∈ Σ∗ and for every 1 ≤ i ≤ k − 1, N
L(N ··

·L(Nk)

2)
1 (x) has at most

one accepting path and if Ni asks a query w to its oracle L(N ···
L(Nk)

i+1) during the

computation of N ···
L(Nk)

1 (x), then N ···
L(Nk)

i+1 (w) has at most one accepting path.
For each k ≥ 0, the class UΠp

k =df coUΣp
k.

Niedermeier and Rossmanith [NR98] introduced the complexity class UAP as a
natural analog of UP for alternating polynomial-time computations. UAP is known
to lie in between the classes Few and SPP, i.e., Few ⊆ UAP ⊆ SPP [LR94,
NR98], and is known to contain a natural computational problem, namely the Graph
Isomorphism problem [CGRS04]. Crâsmaru et al. [CGRS04] showed that UAP is self-
low, i.e. UAPUAP = UAP, and thus UAP is closed under all boolean operations and
under polynomial-time Turing reducibility.

Definition 2.2 ([NR98]) UAP is the class of sets accepted by unambiguous ATMs in
polynomial time.

The following theorem summarizes the known relationships among unambiguity based
hierarchies, the class UAP, and other complexity classes.

Theorem 2.3 1. For all k ≥ 0, AUΣp
k ⊆ UΣp

k ⊆ UΣ
p
k ⊆ Σp

k [LR94].

2. For all k ≥ 1, UP≤k ⊆ AUΣp
k ⊆ UΣp

k ⊆ UΣ
p
k ⊆ UAP ([LR94] + [CGRS04]).

3. Few ⊆ UAP ⊆ SPP ([LR94] + [NR98]).

The relativized versions of all these classes are defined in a standard way. The following
facts follow easily from the definitions of the levels AUΣp

k and AUΠp
k of the AUPH

hierarchy.

Fact 2.4 1. AUΣp
k = AUΠp

k =⇒ AUPH = AUΣp
k.

2. AUΣp
k = AUΣp

k−1 =⇒ AUPH = AUΣp
k−1.

3. AUΣp
k ⊆ Πp

k =⇒ AUΣp
k+1 ⊆ Σp

k.

Similar relations can be shown for the levels of UPH and UPH (see also [HR97,NR98]).

3 Relativized Separations and Collapses of

Unambiguity Based Hierarchies

In this section, we apply random restrictions of circuits for constructing oracles that
separate or collapse the levels of unambiguity based hierarchies. Sheu and Long [SL96]
constructed an oracle A relative to which UP contains a language that is not in any level
of the low hierarchy in NP. Formally, Sheu and Long [SL96] showed that there is an

oracle A such that for all k ≥ 1, Σp,UPA

k � Σp,A
k . In their proof, they introduced special

6

kinds of random restrictions that were motivated by, but different from, the restrictions
used by H̊astad [H̊as87]. Using the random restrictions of Sheu and Long [SL96], we
construct a relativized world A in which the unambiguity based hierarchies—AUPH,
UPH, and UPH—are infinite. This extends the separation of relativized polynomial
hierarchy [Yao85,H̊as87] to the separations of relativized unambiguity based hierarchies.
We use the same restrictions to construct an oracle A relative to which UAP is not
contained in the polynomial hierarchy. Our separation results imply that proving that
any of the unambiguity based hierarchies extends up to a finite level or proving that
UAP is contained in the polynomial hierarchy is beyond the limits of relativizable proof
techniques.

Finally, we apply random restrictions of Sheu and Long [SL96] to extend a result of
Ko [Ko89]. Ko [Ko89] proved that for each k ≥ 1, the relativized polynomial hierarchy
collapses so that there are exactly k distinct levels in the hierarchy. We prove that
for each k ≥ 2, there is a relativized world where the unambiguity based hierarchies,
AUPH, UPH, and UPH, and the polynomial hierarchy collapse so that each has exactly
k distinct levels.2

3.1 Background and Notations

We now introduce certain notions that are prevalent in the theory of circuit lower
bounds. A circuit is a directed acyclic graph where nonleaf nodes are associated with
gates (ANDs/ORs) and leaf nodes are associated with variables and their complements,
and boolean constants 0 and 1. In this paper, we will consider only circuits whose
underlying graphs are trees. Thus all circuits referred to in the paper are meant to
be rooted trees. We represent the variables of a circuit by vz , for some z ∈ Σ∗. The
dual of a circuit C is obtained from C by replacing OR gates with ANDs, AND gates
with ORs, variables xi with xi, variables xj with xj , and boolean constants, 0 and
1, with their complements, 1 and 0, respectively. A restriction ρ of a circuit C is a
mapping from the variables of C to {0, 1, ⋆}. We say that a restriction ρ of a circuit C
is an assignment if ρ assigns 0 or 1 to all the variables in C. Given a circuit C and a
restriction ρ, C⌈ρ denotes the circuit obtained from C by substituting each variable x
with ρ(x) if ρ(x) 	= ⋆. A restriction ρ completely determines a circuit C, or in other
words, C⌈ρ is completely determined, if C⌈ρ computes a constant function ∈ {0, 1}; in
this case, we use the notation C⌈ρ to also denote the constant value computed by C
on applying ρ (which sense is being used will be clear from the context). For every
A ⊆ Σ∗, the restriction ρA on the variables vz of a circuit C is ρA(vz) = 1 if z ∈ A, and
ρA(vz) = 0 if z 	∈ A. The composition of two restrictions ρ1 and ρ2, denoted by ρ1ρ2, is
defined as follows: For every x ∈ Σ∗, ρ1ρ2(x) = ρ2(ρ1(x)). Thus if ρ1(x) ∈ {0, 1}, then
ρ1ρ2(x) = ρ1(x) and if ρ1(x) = ⋆, then ρ1ρ2(x) = ρ2(x). A restriction ρ′ extends ρ if
the following holds:

1. domain of ρ ⊆ domain of ρ′, and

2. for all variables v in the domain of ρ,

ρ(v) = 0⇐⇒ ρ′(v) = 0, and ρ(v) = 1⇐⇒ ρ′(v) = 1.

2This result—there is a relativized world where the unambiguity based hierarchies, AUPH, UPH, and
UPH, and the polynomial hierarchy collapse so that each has exactly k distinct levels—holds for k = 1 as
well, since UPPSPACE = coNPPSPACE = PSPACE.

7

Furst, Saxe, and Sipser [FSS84] first showed the relationship between certain particular
constant depth circuits, which were similar to those in Definition 3.1, and the relativized
polynomial hierarchy. Since their work, variants of these constant depth circuits have
been used in constructing relativized worlds involving Σp

k and Πp
k classes. Below we

define one such variant of constant depth circuits, namely Σk(m)-circuits and Πk(m)-
circuits, used for constructing relativized worlds involving Σp

k and Πp
k classes.

Definition 3.1 ([FSS84]; see also [Ko91,SL94]) For every m ≥ 1 and k ≥ 1, a
Σk(m)-circuit is a depth k + 1 circuit with alternating OR and AND gates such that

1. the top gate, i.e., the gate at level 1, is an OR gate,

2. the total number of gates at levels 1 to k − 1 is bounded by 2m,

3. the fanins of gates at level k are unbounded.

4. the fanins of gates at level k + 1 are ≤ m.

A Πk(m)-circuit is the dual circuit of a Σk(m)-circuit.

For every k ≥ 1, we say that σ(.; .) is a Σ
P,(.)
k -predicate if there exist a predicate

R(A;x, y1, . . . , yk) over a set variable A and string variables x, y1, y2, . . . , yk, and a
polynomial q(·) such that the following hold: (i) R(A;x, y1, y2, . . . , yk) is computable in
polynomial time by a deterministic oracle Turing machine that uses A as the oracle and
〈x, y1, . . . , yk〉 as the input and (ii) for every set A and string x, σ(A;x) is true if and

only if (∃q(|x|)y1)(∀q(|x|)y2) . . . (Q
q(|x|)
k yk)R(A;x, y1, y2, . . . , yk) is true, where Qk = ∃ if

k is odd and Qk = ∀ if k is even. We say that σ(.; .) is a Π
P,(.)
k -predicate, where k ≥ 1,

if ¬σ is a Σ
P,(.)
k -predicate.

The following proposition states the relationship between Σ
P,(.)
k -predicates (Π

P,(.)
k -

predicates) and Σk(m)-circuits (respectively, Πk(m)-circuits).

Proposition 3.2 ([FSS84]; see also [Ko91,SL94]) Let k ≥ 1. For every Σ
P,(.)
k -

predicate (Π
P,(.)
k -predicate) σ, there is a polynomial q(.) such that, for all x ∈ Σ∗, there is

a Σk(q(|x|))-circuit (respectively, Πk(q(|x|))-circuit) Cσ,x with the following properties:

1. For every A ⊆ Σ∗, Cσ,x⌈ρA= 1 if and only if σ(A;x) is true, and

2. if vz represents a variable in Cσ,x, then |z| ≤ q(|x|).

For every h ≥ 1, we define a family of circuits Fh
k . Ko [Ko91] defined a Ch

k circuit to be
a depth k circuit in Fh

k with an OR gate at the top and with fanins of gates at level k

exactly equal to
√
h, and used these circuits to show that the relativized low and high

hierarchies within NP are infinite. In [Ko89], Ko used a slightly different definition of
Ch
k circuits to show that for every integer k ≥ 1, the relativized polynomial hierarchy

collapses so that it has exactly k levels. Sipser [Sip83] and H̊astad [H̊as87] earlier defined
some other variants of these circuits.

We find it convenient to use the family of circuits Fh
k , instead of Ch

k circuits, in our
proofs for the following technical reasons: (i) We do not restrict ourselves to only those
circuits which have an OR gate at the top or which have depth exactly k in the family
Fh
k of circuits (as is required in the proof of Lemma 3.19), and (ii) we no longer need

to convert any circuit, obtained by applying a restriction, so that its bottom fanins are
exactly the square root of its fanins at other levels.

8

Fh
k circuits are described as follows.

Family Fh
k of circuits, where h ≥ 1: A circuit C of depth ℓ, where 1 ≤ ℓ ≤ k, is in

Fh
k if and only if the following holds:

1. C has alternating OR and AND gates,

2. the fanins of gates at levels 1 to ℓ− 1 are exactly h,

3. the fanins of gates at level ℓ are ≥
√
h,

4. every leaf of C is a unique positive variable, i.e., C has no negated variables and
no constants as inputs, and no variable of C occurs more than once.

Let B = {Bi}ri=1, where Bi’s are disjoint sets that cover the variables of C, and let q be
a real number between 0 and 1. Sheu and Long [SL96] defined two probability spaces
of restrictions, R̂+

q,B and R̂−
q,B, and a probabilistic function g′ that maps a restriction to

a random restriction. A random restriction ρ ∈ R̂+
q,B (ρ ∈ R̂−

q,B) is defined as follows:
For each 1 ≤ i ≤ r and for each variable x ∈ Bi, let ρ(x) = ⋆ with probability q and let
ρ(x) = 1 (respectively, ρ(x) = 0) with probability 1−q. We now define the probabilistic
function g′(ρ) for ρ ∈ R̂+

q,B. For each 1 ≤ i ≤ r, let si = ⋆ with probability q and let
si = 0 with probability 1− q. Let Vi ⊆ Bi be the set of variables x such that ρ(x) = ⋆.
g′(ρ) selects the variable v with the highest index in Vi, assigns value si to v, and assigns
value 1 to all other variables in Vi. For ρ ∈ R̂−

q,B, g
′(ρ) is defined in an analogous way

by replacing 0 with 1 and 1 with 0 in the definition.
The switching lemma [H̊as87] in its basic form says that if a random restriction

chosen from an appropriately defined probability space is applied to an AND of ORs
(OR of ANDs) with small bottom fanins, then with high probability the resulting circuit
is equivalent to an OR of ANDs (respectively, AND of ORs) with small bottom fanin.
In this paper, we need the switching lemma given by Sheu and Long [SL96], which is
an adaptation of H̊astad’s switching lemma [H̊as87, Lemma 6.3] for Sheu and Long’s
random restrictions defined above.

Lemma 3.3 (Switching Lemma [SL96]) Let C be a circuit consisting of an AND of
ORs with bottom fanin ≤ t. Let B = {Bi}ri=1 be disjoint sets that cover the variables of

C, and let q be a real number between 0 and 1. Then for a random restriction ρ ∈ R̂+
q,B,

Prob[C⌈ρg′(ρ)is not equivalent to an OR of ANDs with bottom fanin ≤ s] ≤ αs, where
α < 6qt and the probability is over the random choices done in defining ρ and g′(ρ).
The above probability holds also when R̂+

q,B is replaced by R̂−
q,B, or when C is an OR of

ANDs and is being converted to an AND of ORs.

The application of this switching lemma is subsumed in the proof of Lemma 3.4. We do
not require applying the switching lemma in this paper because Lemma 3.4 is sufficient
for our purposes. However, we do require the particular random restrictions given by
Sheu and Long [SL96], which are also used in the statement of Lemma 3.4.

Lemma 3.4 ([SL96]) Let ℓ, t ∈ N+. Let Cπ be an arbitrary Σℓ+1(t)-circuit (Πℓ+1(t)-
circuit). Let q ≤ 1

12·t and let B = {Bi}ri=1 be an arbitrary partition of the variables of

Cπ. Then for a random restriction ρ, where ρ ∈ R̂+
q,B or ρ ∈ R̂−

q,B, the following holds:

Prob
[
Cπ⌈ρg′(ρ) is equivalent to a Σℓ(t)-circuit (respectively, Πℓ(t)-circuit)

]
≥ 2

3
,

where the probability is over the random choices done in defining ρ and g′(ρ).

9

We call a circuit C constfree-positive if every leaf node of C is associated with a unique
positive variable (i.e., C has no negated variables and no constants as inputs, and
no variable of C occurs more than once). Sheu and Long [SL96] defined a notion
called U-condition for restrictions of Ch

k . The same notion can be translated for any
constfree-positive circuit C as follows. Let G1, G2, . . ., Gr denote the bottom gates of
a constfree-positive circuit C. A restriction ρ is said to satisfy the U-condition for C
if the following holds: For every 1 ≤ i ≤ r, ρ assigns at most one variable of Gi to ⋆
or 1 if the bottom gates are ORs and ρ assigns at most one variable of Gi to ⋆ or 0 if
the bottom gates are ANDs. We generalize the notion of U-condition to define a global
uniqueness condition (GU-condition) for restrictions of any constfree-positive circuit C.

Definition 3.5 We say that a restriction ρ satisfies the GU-condition for a constfree-
positive circuit C if the computation of C⌈ρ has the following characteristics:

1. If an OR gate Gi of C⌈ρ has value 1, then there is exactly one input to Gi that
has value 1 and all other inputs to Gi have value 0,

2. if an AND gate Gi of C⌈ρ has value 0, then there is exactly one input to Gi that
has value 0 and all other inputs to Gi have value 1, and

3. if the output of any gate Gi of C⌈ρ is not completely determined, then no condition
is imposed on inputs to Gi.

Thus in particular, a restriction ρ that maps all the variables of a constfree-positive
circuit C to ⋆ satisfies the GU-condition for the circuit since property (3) of Definition 3.5
is satisfied.

Let C be a constfree-positive circuit and let ρ be a restriction that satisfies the GU-
condition for C. If C⌈ρ is not completely determined, then we define the max-subcircuit
C′ of C⌈ρ to be the following circuit.

• C′ is equivalent to C⌈ρ, i.e. C′ and C⌈ρ compute the same boolean function.

• C′ is obtained by simplifying C⌈ρ as follows: (i) First all constants are removed
from C⌈ρ, (ii) next if a gate is completely determined, then the entire subtree
rooted at that gate is removed from C⌈ρ, and (iii) finally if all the leftover bottom
gates of C⌈ρ have fanins 1, then each leftover bottom gate of C⌈ρ is replaced by
its child node.

We mention that if C⌈ρ is completely determined, then the max-subcircuit of C⌈ρ is
undefined. (Since we will use the term max-subcircuit only when C⌈ρ is not completely
determined, this does not cause any problems.)

Figure 1 shows a circuit C⌈ρ, which is not completely determined, and its max-
subcircuit.

3.2 Main Observations

Let C be a constfree-positive circuit with bottom gates G1, G2, . . ., Gr. Suppose we
choose B = {Bi}ri=1 such that Bi is the set of variables in the bottom gate Gi of
the circuit C and choose a real number q between 0 and 1. Then the composition
ρg′(ρ), where ρ ∈ R̂+

q,B if the bottom gates are ANDs and ρ ∈ R̂−
q,B if the bottom

gates are ORs, and the function g′ is as defined previously, satisfies the U-condition
for C. This observation was crucial in the proof by Sheu and Long [SL96] of the
existence of a relativized world where UP is not in any level of the low hierarchy in NP.

10

Figure 1: (a) A circuit C⌈ρ and (b) its max-subcircuit.

Our main observations, used in constructing relativized worlds separating or collapsing
unambiguity based hierarchies, are summarized in Propositions 3.6, 3.7, and 3.8. (Since
these propositions are easy to verify, we have omitted their proofs.)

Proposition 3.6 Let ρ be a restriction that satisfies the U-condition for a constfree-
positive circuit C of depth ≥ 2. Let the circuit C⌈ρ be such that no gate at the second
from last level of C⌈ρ is completely determined. Then ρ satisfies the GU-condition for
C and the max-subcircuit of C⌈ρ is of depth one less than that of C.

Proposition 3.7 Let ρ be a restriction of a constfree-positive circuit C such that ρ
satisfies the GU-condition for C and ρ does not completely determine C. Then there
exist restrictions ρ0 and ρ1 such that both ρ0 and ρ1 satisfy the GU-condition for the
max-subcircuit of C⌈ρ, and moreover C⌈ρρ0= 0 and C⌈ρρ1= 1.

Proposition 3.8 Let ρ1 be a restriction of a constfree-positive circuit C such that ρ1

satisfies the GU-condition for C and ρ1 does not completely determine C. If ρ2 is a
restriction that satisfies the GU-condition for the max-subcircuit of C⌈ρ1 , then ρ1ρ2

satisfies the GU-condition for C.

Sheu and Long [SL96] proved that applying a random restriction ρg′(ρ) satisfying the
U-condition for the circuit Ch

k+1 transforms the circuit to one containing a subcircuit

computing the function computed by a Ch
k circuit with high probability. Lemma 3.9

generalizes this result of Sheu and Long [SL96] by showing that a similar transformation
is possible, not just for a single but, for an exponential (in h) number of circuits in
the family Fh

k+1 with high probability if a random restriction ρg′(ρ) satisfying the
U-conditions for the circuits is applied. Moreover with high probability, the random

11

restriction ρg′(ρ) satisfies the GU-condition for all the involved circuits, a property that
is crucial for the feasibility of our oracle constructions.

The proof of Lemma 3.9 is similar to that of Lemma 6.8 of H̊astad [H̊as87] and
Lemma A.2 of Ko [Ko89]. Ko’s [Ko89] Lemma A.2 is basically a strengthening of
Lemma 6.8 of H̊astad [H̊as87]. Lemma 3.9 differs from Lemma A.2 of Ko [Ko89] in two
main respects: (i) Ko used random restrictions by H̊astad [H̊as87], whereas we require
random restrictions by Sheu and Long [SL96], which are slightly different from that by
H̊astad [H̊as87], and (ii) our lemma additionally guarantees that a random restriction
satisfies the GU-condition for all the involved circuits with high probability.

Lemma 3.9 Let k ≥ 2, m < 2h
1/8

, and h > h0(k,m), for some constant h0(k,m)
depending only on k and m. Let C0, C1, . . ., Cm be circuits in Fh

k+1 such that each
Ci has depth ≥ 2, the bottom gates of Cis are of the same type, and the variables of
Cis are pairwise disjoint. Let G1, G2, . . ., Gr denote the bottom gates of Cis. Let
q = h−1/3 and let B = {Bj}rj=1, where Bj is the set of variables of Gj. Then for a

random restriction ρ, where ρ ∈ R̂+
q,B if the bottom gates Gjs are ANDs and ρ ∈ R̂−

q,B
if the bottom gates Gjs are ORs, the following holds with probability ≥ 2/3: For every
0 ≤ i ≤ m, ρg′(ρ) satisfies the GU-condition for Ci, the max-subcircuit of Ci⌈ρg′(ρ) is

in Fh
k , and the max-subcircuit has depth one less than that of Ci. Here the probability

is over the random choices made in defining ρ and g′(ρ).

Proof of Lemma 3.9. We assume that the bottom gates of Ci’s are ORs; a similar
proof can be given when the bottom gates of Ci’s are ANDs. Let E1 be the event that
each bottom OR gate Gj⌈ρg′(ρ) of the circuits Ci⌈ρg′(ρ) takes the value sj ∈ {⋆, 1} (the
value assigned to the block Bj by ρ). We first show that Pr[E1] ≥ 5/6 for all sufficiently
large h.

To this end, let Gj⌈ρg′(ρ) be a bottom OR gate. Note that Gj⌈ρg′(ρ) does not
take the value sj if and only if each variable in Gj is assigned 0 by ρ. Thus the

probability that Gj⌈ρg′(ρ) does not take the value sj is bounded by (1− q)
√
h ≤ e−q·

√
h.

Since there are m + 1 circuits Ci each containing at most hk bottom OR gates, the
probability that at least one of the bottom OR gates Gj⌈ρg′(ρ) does not take the value

sj is ≤ (m + 1) · hk · e−q·
√
h ≤ 1/6, for all h ≥ h1(k,m), where h1(k,m) is a constant

depending only on k and m. It follows that Pr[E1] ≥ 5/6 if h ≥ h1(k,m).

Next we define E2 to be the event that every AND gate at the second from last level
of every Ci⌈ρg′(ρ) has at least

√
h children nodes Gj⌈ρg′(ρ) of OR gates having value

sj = ⋆. We show that Pr[E2] ≥ 5/6 for all sufficiently large h.

To this end, let ps denote the probability that an AND gate at the second from last
level of Ci⌈ρg′(ρ) has exactly s children nodes Gj⌈ρg′(ρ) of OR gates having value sj = ⋆.
Then

ps =

(
h

s

)
· qs · (1− q)h−s,

since each OR gate Gj⌈ρg′(ρ) takes value sj = ⋆ independently with probability q. Thus

the probability that an AND gate at the second from last level of Ci⌈ρg′(ρ) has <
√
h

12

children nodes Gj⌈ρg′(ρ) of ORs having value sj = ⋆ is

=

√
h−1∑

s=0

ps

=

√
h−1∑

s=0

(
h

s

)
· qs · (1− q)h−s.

It can be easily verified that, for all sufficiently large h and for every 1 ≤ s ≤
√
2h− 1,

ps

ps−1
≥ 2. Therefore,

√
h−1∑

s=0

ps ≤ p√h−1 ×
(∞∑

s=0

2−s
)
≤ 2 · p√h−1.

Also, p√h−1 ≤ 2−(
√

2h−
√
h) · p√2h−1 ≤ 2−

√
h/3, since p√2h−1 ≤ 1. It follows that the

probability that there is an AND gate at the second from last level of some Ci⌈ρg′(ρ) with
<
√
h children nodes Gj⌈ρg′(ρ) of OR gates having value sj = ⋆ is ≤ 2

2
√

h/3
·hk−1 ·(m+1)

≤ 1
6 , for all h ≥ h2(k,m), where h2(k,m) is a constant depending only on k and m.

Thus Pr[E2] ≥ 5/6 if h ≥ h2(k,m).
By the observation stated in the beginning of Section 3.2, ρg′(ρ) satisfies the U-

condition for every Ci. Also, observe that if events E1 and E2 simultaneously occur,
then none of the AND gates at the second from last level of everyCi⌈ρg′(ρ) are completely
determined. The lemma now follows from Proposition 3.6 and the fact that Pr[E1∧E2] ≥
2/3 if h ≥ max{h1(k,m), h2(k,m)}. (Lemma 3.9)

3.3 Relativized Unambiguity Based Hierarchies Being Infinite

Theorem 3.10 proves that there is a relativized world where each level AUΣp
k of AUPH is

not included in the corresponding Πp
k level of PH. On the other hand, each level AUΣp

k of
AUPH is clearly contained in the Σp

k level of PH (see Theorem 2.3). Thus Theorem 3.10
shows a finer relationship between levels of the unambiguity based hierarchies and the
polynomial hierarchy in a relativized setting.

Theorem 3.10 (∃A)(∀k ≥ 1)[AUΣp,A
k � Πp,A

k].

Proof Our proof is inspired from that of Theorem 4.2 (relative to some oracle D, for
all k ≥ 1, Σp,UPD

k � Σp,D
k) by Sheu and Long [SL96]. For every k ≥ 1, we define a test

language Lk(B) as follows: Lk(B) ⊆ 0∗ such that, for every n ∈ N+,

0n ∈ Lk(B) =⇒ (∃n!y1)(∀n!y2) . . . (Q
n!yk)

[
0k1y1y2 . . . yk ∈ B

]
, and

0n 	∈ Lk(B) =⇒ (∀n!y1)(∃n!y2) . . . (Q
n
!yk)

[
0k1y1y2 . . . yk 	∈ B

]
,

where Q = ∃ and Q = ∀ if k is odd, and Q = ∀ and Q = ∃ if k is even. We say that
a set B ⊆ Σ∗ satisfies Valid(B;n, k), where n, k ∈ N+, if the membership of 0n in the
test language Lk(B) is well-defined. Clearly this test language Lk(B) is defined only
for particular sets B, which satisfy Valid(B;n, k) for all n ∈ N+. We will construct an

13

oracle A such that Lk(A) would be defined for all k ≥ 1. This will also imply, by the

definition of the test language Lk(B), that for all k ≥ 1, Lk(A) ∈ AUΣp,A
k .

Choose a minimal cardinality set O ⊆ Σ∗ such that for every k ≥ 1, Lk(O) = 0∗.

For every k ≥ 1, let πk,1, πk,2, . . . be an enumeration of Π
P,(.)
k -predicates. In stage

〈k, i〉, we diagonalize against πk,i and change O at a certain length. Finally at the end
of every stage, we set A := O. We now define the stages involved in the construction
of the oracle.

Stage 〈k, i〉: Choose a very large integer n so that the construction in this stage
does not spoil the constructions in previous stages. Also, n must be large enough to
meet the requirements in the proof of Claim 1. Set O := O −Σk·(n+1)+1. Choose a set
B ⊆ 0k1Σk·n such that the following requirement is satisfied:

Valid(B;n, k) is true and (0n ∈ Lk(B)⇐⇒ ¬πk,i(O ∪B; 0n)) is true. (3.a)

In Claim 1, we show that there is always a set B ⊆ 0k1Σk·n satisfying Statement (3.a).
Let O := O ∪B and move to the next stage.
End of Stage

Clearly, the existence of a set B satisfying Statement (3.a) suffices to successfully finish
stage 〈k, i〉. Next, we prove that there is always such a set B.

Claim 1 In every stage 〈k, i〉, there is a set B ⊆ 0k1Σk·n satisfying Statement (3.a).

Proof of Claim 1. We introduce a circuit C(n, k) that encodes our test language in
the following sense: For every B ⊆ 0k1Σk·n such that ρB satisfies the GU-condition for
C(n, k), it holds that

C(n, k)⌈ρB = 1 =⇒ (∃n!y1)(∀n!y2) . . . (Q
n!yk)[0

k1y1y2 . . . yk ∈ B],

and (3.b)

C(n, k)⌈ρB = 0 =⇒ (∀n!y1)(∃n!y2) . . . (Q
n
!yk)[0

k1y1y2 . . . yk 	∈ B].

Statement (3.b) in turn implies, by the definition of our test language Lk(B), that for
every B ⊆ 0k1Σk·n such that ρB satisfies the GU-condition for C(n, k) it holds that

C(n, k)⌈ρB = 1 =⇒ 0n ∈ Lk(B),

and (3.c)

C(n, k)⌈ρB = 0 =⇒ 0n 	∈ Lk(B).

The circuit C(n, k) is defined as follows:

• The depth of C(n, k) is k,

• the top gate of C(n, k) is an OR gate,

• the fanins of all the gates at levels 1 to k are exactly 2n,

• the variables of C(n, k) are exactly those in {vz | z ∈ 0k1Σk·n}, and
• the variables vz occur in positive form in exactly one leaf of C(n, k) in the

lexicographic ordering of z.

14

Let Cπk,i
be the Πk(pi(n))-circuit corresponding to πk,i((·); 0n), for some polynomial

pi(·). By Statement (3.c), the proof of this claim is completed by showing that there is
always a set B ⊆ 0k1Σk·n such that

ρB satisfies the GU-condition for C(n, k) and C(n, k)⌈ρB 	= Cπk,i
⌈ρO∪B . (3.d)

We define a restriction ρ̂O on Cπk,i
as follows: For every variable vz in Cπk,i

, if

z ∈ O then let ρ̂O(vz) = 1, if z 	∈ O ∪ 0k1Σk·n then let ρ̂O(vz) = 0, and if z ∈ 0k1Σk·n

then let ρ̂O(vz) = ⋆. Let Cπk,i(O) =df Cπk,i
⌈ρ̂O . Thus the only variables vz appearing

in Cπk,i(O) are the ones for which z ∈ 0k1Σk·n.

To get a contradiction, suppose that no set B ⊆ 0k1Σk·n satisfying Statement (3.d)
exists. Then the following holds: For every B ⊆ 0k1Σk·n,

if ρB satisfies the GU-condition for C(n, k), then C(n, k)⌈ρB= Cπk,i(O)⌈ρB . (3.e)

Since C(n, k) ∈ F2n

k is a depth k circuit with an OR gate at the top,
Cπk,i(O) is a Πk(pi(n))-circuit, and pi(n) ≤ 1

12 · 2n/3 for large n, we get a
contradiction with Statement (3.e) and Lemma 3.11. This completes the proofs of
Claim 1 and Theorem 3.10. (Claim 1 and Theorem 3.10)

Lemma 3.11 Let k ≥ 1 be an arbitrary integer. Let C0 ∈ Fh
k be of depth k with an OR

gate at the top. Let Cπ be any Πk(
1
12 ·h1/3)-circuit. If h is sufficiently large (depending

only on k), then there exists an assignment ρ of C0 such that

1. ρ satisfies the GU-condition for C0, and

2. C0⌈ρ 	= Cπ⌈ρ.

Proof of Lemma 3.11. The proof is similar to that of Theorem 4.1 by Sheu and Long
[SL96]. We prove the lemma by induction on k. For the base case k = 1, let C0 be an
arbitrary OR gate with ≥

√
h variables. Let Cπ be an arbitrary Π1(

1
12 · h1/3)-circuit.

Note that Cπ is an AND of ORs with bottom fanin ≤ 1
12 · h1/3. We show that there is

an assignment ρ of C0 such that ρ satisfies the GU-condition for C0 and C0⌈ρ 	= Cπ⌈ρ.
Consider the following cases.

Case Cπ⌈ρ∅
= 0: Then there is an OR gate Gi in Cπ such that Gi⌈ρ∅= 0. Since

1
12 · h1/3 <

√
h, there is a variable vz in C0 that is not in Gi. Then ρ{z} satisfies

the GU-condition for C0, C0⌈ρ{z}= 1, and Cπ⌈ρ{z}= 0.

Case Cπ⌈ρ∅
= 1: Then ρ∅ satisfies the GU-condition for C0, C0⌈ρ∅= 0, and Cπ⌈ρ∅= 1.

We now assume that the lemma is correct for k = ℓ. Let C0 be an arbitrary depth ℓ+1
circuit in Fh

ℓ+1 with an OR gate at the top and let Cπ be an arbitrary Πℓ+1(
1
12 · h1/3)-

circuit. Lemmas 3.9 and 3.4 imply that there is a restriction ρg′(ρ) such that (i) ρg′(ρ)
satisfies the GU-condition for C0, (ii) the max-subcircuit C′

0 of C0⌈ρg′(ρ) is a depth

ℓ subcircuit in Fh
ℓ with an OR gate at the top, and (iii) Cπ⌈ρg′(ρ) is equivalent to a

Πℓ(
1
12 · h1/3)-circuit.

By the induction hypothesis, there is an assignment ̟ such that ̟ satisfies the GU-
condition for C′

0 and C′
0⌈̟ 	= Cπ⌈ρg′(ρ)̟. Since the max-subcircuit C′

0 and the circuit
C0⌈ρg′(ρ) compute the same function, it follows that C0⌈ρg′(ρ)̟ 	= Cπ⌈ρg′(ρ)̟.

15

It remains to show that ρg′(ρ)̟ satisfies the GU-condition for C0. To this end, note
that the restriction ρg′(ρ) satisfies the GU-condition for C0 and ̟ satisfies the GU-
condition for the max-subcircuit of C0⌈ρg′(ρ). Apply Proposition 3.8. (Lemma 3.11)

The following corollaries are an easy consequence of Theorem 3.10.

Corollary 3.12 ([CGRS04]) There is an oracle A such that UPUPA
� PNPA

.

Corollary 3.13 There is an oracle A relative to which the alternating unambiguous
polynomial hierarchy AUPH, the unambiguous polynomial hierarchy UPH, the promise
unambiguous polynomial hierarchy UPH, and the polynomial hierarchy PH are infinite.

We mention that Niedermeier and Rossmanith [NR98] cited an unpublished work by
Rossmanith for the relativized separation of AUΣp

k from UΣp
k, for each k ≥ 2. However,

this result does not seem to imply ours in any obvious way.
Note that Theorem 3.10 does not imply relativized separation of UAP from PH

in any obvious way. We achieve this separation, using the proof techniques of
Theorem 3.10, in Theorem 3.14.

Theorem 3.14 (∃A)[UAPA � PHA].

Proof The proof is almost the same as that of Theorem 3.10. We construct an oracle
A and a test language L(A) ∈ UAPA such that, for every k ≥ 1, L(A) 	∈ Πp,A

k .
Clearly, this suffices to prove the theorem. We define our test language L(B) as follows:
L(B) ⊆ 0∗ such that for every n ∈ N+,

0n ∈ L(B) =⇒ (∃n!y1)(∀n!y2) . . . (Q
n!yn)[y1y2 . . . yn ∈ B], and

0n 	∈ L(B) =⇒ (∀n!y1)(∃n!y2) . . . (Q
n
!yn)[y1y2 . . . yn 	∈ B],

where Q = ∃ and Q = ∀ if n is odd, and Q = ∀ and Q = ∃ if n is even. We say
that a set B ⊆ Σ∗ satisfies Valid(B;n) if the membership of 0n in the test language
L(B) is well-defined. Clearly L(B) is defined only for particular sets B, which satisfy
Valid(B;n) for all n ∈ N+. Our oracle A will be constructed in a way that L(A) would
be defined. This will also imply that L(A) ∈ UAPA.

Choose a minimal cardinality set O ⊆ Σ∗ such that L(O) = 0∗. For every k ≥ 1, let

πk,1, πk,2, . . . denote an enumeration of Π
P,(.)
k -predicates. In stage 〈k, i〉, we diagonalize

against πk,i and change O at a certain length. Finally at the end of every stage, we set
A := O.

Stage 〈k, i〉: Choose a very large integer n so that the construction in this stage
does not affect the constructions in previous stages and the requirements in the proof
of Claim 2 are met. Set O := O − Σn2

. Choose a set B ⊆ Σn2

such that the following
requirement is satisfied:

Valid(B;n) is true and (0n ∈ L(B)⇐⇒ ¬πk,i(O ∪B; 0n)) is true. (3.f)

Claim 2 shows that there is always a set B ⊆ Σn2

satisfying Statement (3.f). Let
O := O ∪B and move to the next stage.
End of Stage

Claim 2 In every stage 〈k, i〉, there is a set B ⊆ Σn2

satisfying Statement (3.f).

16

Proof of Claim 2. Assume to the contrary that in some stage 〈k, i〉, no set B ⊆ Σn2

satisfies Statement (3.f). Let C(n) denote the following circuit: The depth of C(n) is
n, the top gate of C(n) is an OR gate, the fanins of all the gates at levels 1 to n are 2n,

the variables of C(n) are exactly those in {vz | z ∈ Σn2}, and the variables vz occur in
positive form in exactly one leaf of C(n) in the lexicographic ordering of z. Thus Cn is a
depth n circuit in F2n

n . Let Cπk,i
be the Πk(pi(n))-circuit corresponding to πk,i((.); 0

n).
Next, we define a restriction ρ̂O as follows: For every variable vz of Cπk,i

, if z ∈ O
then ρ̂O(vz) = 1, if z 	∈ O ∪ Σn2

then ρ̂O(vz) = 0, and if z ∈ Σn2

then ρ̂O(vz) = ⋆.
Let Cπk,i(O) =df Cπk,i

⌈ρ̂O . The following statement follows from our assumptions: For

every B ⊆ Σn2

,

if ρB satisfies the GU-condition for C(n), then C(n)⌈ρB= Cπk,i(O)⌈ρB . (3.g)

Since C(n) ∈ F2n

n is a depth n circuit with an OR gate at the top, Cπk,i(O) is

a Πk(pi(n))-circuit, and pi(n) ≤ 1
12 · 2n/3 for all large n, we get a contradiction

with Statement (3.g) and Lemma 3.15. This completes the proofs of Claim 2 and
Theorem 3.14. (Claim 2 and Theorem 3.14)

Lemma 3.15 Let k ≥ 1 be an arbitrary integer. Then the following is true for all
n ≥ k: Let C0 ∈ Fh

n be of depth n with an OR gate at the top. Let Cπ be any
Πk(

1
12 · h1/3)-circuit. If h is sufficiently large (depending only on k), then there exists

an assignment ρ of C0 such that

1. ρ satisfies the GU-condition for C0, and

2. C0⌈ρ 	= Cπ⌈ρ.

Proof of Lemma 3.15. Let C0 be an arbitrary depth n circuit in Fh
n with an OR

gate at the top and let Cπ be an arbitrary Πk(
1
12 · h1/3)-circuit. Take an arbitrary

depth k subcircuit C′
0 ∈ Fh

k of C0. Apply Lemma 3.11 to C′
0 and Cπ and get the

assignment ρ′ of C′
0. It is easy to see that ρ′ can be completed to an assignment ρ of

C0 such that C0⌈ρ= C′
0⌈ρ′ and morover ρ satisfies the GU-condition for C0. Thus ρ

satisfies the conditions of the lemma. (Lemma 3.15)

Crâsmaru et al. [CGRS04] showed that there is an oracle relative to which UAP 	=
UΣp

2. Corollary 3.16 shows that in some relativized world, UAP is much more powerful
than the promise unambiguous polynomial hierarchy UPH. Thus, Corollary 3.16 is a
strengthening of their result.

Corollary 3.16 There is an oracle relative to which UPH ⊂ UAP.

Corollary 3.17 ([CGRS04]) There is an oracle relative to which UAP 	= UΣp
2.

3.4 Relativized Unambiguity Based Hierarchies Being Finite

We next prove in Theorem 3.18 that for each k ≥ 2, there is a relativized world where
the unambiguity based hierarchies and the polynomial hierarchy have exactly k distinct
levels and all higher levels collapse to their k’th levels. Earlier Ko [Ko89] proved a similar
result for the relativized polynomial hierarchy: For each k ≥ 1, there exists an oracle A
such that the polynomial hierarchy has k distinct levels and the hierarchy collapses at

17

the k’th level. Thus Theorem 3.18 may be viewed as a strengthening of Ko’s result from
the polynomial hierarchy case to the case of unambiguity based hierarchies. The proof
utilizes random restrictions of Sheu and Long [SL96] and some ideas of Ko [Ko89].

Theorem 3.18 (∀k ≥ 1)(∃A)[AUΣp,A
k � Πp,A

k , but PHA = AUΣp,A
k+1].

Proof Our oracle construction is inspired from Ko [Ko89], where he proved that for
all k ≥ 1, there is an oracle relative to which the polynomial hierarchy extends only to
k levels. Fix a k ≥ 1. We will construct an oracle A such that

AUΣp,A
k � Πp,A

k , and AUΣp,A
k+1 = Πp,A

k+1.

Clearly, this suffices to prove the theorem. We define our test language L(B) as follows:
L(B) ⊆ 0∗ such that for every n ∈ N+,

0n ∈ L(B) =⇒ (∃n!y1)(∀n!y2) . . . (Q
n!yk)[1

2ny1y2 . . . yk ∈ B], and

0n 	∈ L(B) =⇒ (∀n!y1)(∃n!y2) . . . (Q
n
!yk)[1

2ny1y2 . . . yk 	∈ B],

where Q = ∃ and Q = ∀ if k is odd, and Q = ∀ and Q = ∃ if k is even. We will
construct A in a way that L(A) would be defined, and thus L(A) would be in AUΣp,A

k .

Let π1, π2, . . . be an enumeration of all Π
P,(.)
k -predicates.

Let Sk+1(A) be a polynomial-time many-one complete set for Σp,A
k+1 with the property

that the membership of any string x in Sk+1(A) depends only on the set {y ∈ A | |y| <
|x|}. Ko [Ko89] proved that for any ℓ ≥ 1 and for each set A, Σp,A

ℓ has such a complete
set Sℓ(A).

3

We construct the oracle A in stages. At every stage s ∈ N, we maintain a set A(s)
of strings that must be included and a set A′(s) of strings that must be forbidden in
the oracle A. The sets A(s) and A′(s) will always be disjoint, though not necessarily be
complementary. The set A(s), for s ≥ 1, will be constructed by adding some, possibly
none, strings either to A(s−1) or to A(s−1)−Σs. Likewise, we construct the set A′(s),
for s ≥ 1, by adding some, possibly none, strings either to A′(s−1) or to A′(s−1)−Σs.
We will ensure that at every stage s, no string of length < s is included in A(s) or
A′(s). Thus the memberships in the oracle A of strings of length < s will be fixed by
the end of stage s − 1. This will be useful in arguing that the construction in stage
s does not interfere with constructions in previous stages. Finally at the end of every
stage, we will define A as follows: A := lims→∞A(s).

In stage s = (k + 2) · n, we will try to satisfy the following requirement R1,i, where
i is the least integer such that R1,i is not yet satisfied.

R1,i: There exists ni ∈ N+ such that

(0ni ∈ L(A) ⇐⇒ ¬πi(A; 0ni)) is true.

3To give an idea about the polynomial-time many-one complete sets Sℓ(A) for Σ
p,A
ℓ , we give an inductive

definition of Sℓ(A) as given by Ko [Ko89]. S1(A) is the set {〈i, z, 1j〉 | the i’th nondeterministic oracle Turing
machine Ni accepts z in j moves with the oracle A}. It is easy to show that S1(A) is polynomial-time many-
one complete for Σp,A

1 and has the desired property—the membership of any string x in S1(A) depends only
on the set {y ∈ A | |y| < |x|}. For ℓ > 1, let Sℓ(A) =df S1(Sℓ−1(A)). It can be shown by induction that for
any ℓ ≥ 1, Sℓ(A) is polynomial-time many-one complete for Σ

p,A
ℓ and Sℓ(A) has the desired property.

18

In stage s = (k + 2) · n+ 1, we will satisfy the following requirement.

R2,n: For all strings u of length n,

u 	∈ Sk+1(A) =⇒ (∃n!y1)(∀n!y2) . . . (Q
n!yk+1)[0uy1y2 . . . yk+1 ∈ A], and

u ∈ Sk+1(A) =⇒ (∀n!y1)(∃n!y2) . . . (Q
n
!yk+1)[0uy1y2 . . . yk+1 	∈ A],

where Q = ∃ and Q = ∀ if k is even, and Q = ∀ and Q = ∃ if k is odd. As
mentioned earlier, we will construct A in a way that L(A) would be in AUΣp,A

k . The

requirement
∧
iR1,i ensures that L(A) 	∈ Πp,A

k . The requirement
∧
nR2,n ensures that

the complement of the set Sk+1(A) is in AUΣp,A
k+1. Since Sk+1(A) is a polynomial-

time many-one complete set for Σp,A
k , this would imply that Πp,A

k = AUΣp,A
k+1. It is

now clear that if a set A satisfies
∧
iR1,i and

∧
nR2,n, and if L(A) ∈ AUΣp,A

k , then

AUΣp,A
k � Πp,A

k , and AUΣp,A
k+1 = Πp,A

k+1.
We maintain a set T of indices of currently unsatisfied requirements R1,i. Thus if

i ∈ T at some stage of oracle construction, then it implies that the requirement R1,i is
not yet satisfied. If a requirement R1,i is satisfied at some stage s, then we delete the
index i of the requirement R1,i from T . In every stage s, we also maintain an integer
ℓ(s) that upper bounds the length of any string stored in A(s′) or A′(s′), for any s′ ≤ s.
The role of the integer ℓ(s) is to avoid potential conflicts between requirements R1,i and
R1,j , for some i 	= j. Thus if s > ℓ(s − 1) for some stage s, then we may be assured
that the construction in stage s will not affect the construction in previous stages.

Initially, choose a minimal cardinality set A(0) ⊆ ⋃
n∈N+ 12nΣk·n such that

L(A(0)) = 0∗. Set A′(0) :=
⋃
n∈N+ 12nΣk·n − A(0), ℓ(0) := 1, and T := N+. We

define stages s ≥ 1 as follows.

Stage s �∈ {(k+2) · n, (k+ 2) · n+ 1}, for any n ∈ N+: Then move to the next
stage with A(s) := A(s− 1), A′(s) := A′(s− 1), and ℓ(s) := ℓ(s− 1).
End of Stage s

Stage s = (k+2)·n: If s ≤ ℓ(s−1) or if n is too small to meet the requirements in the
proof of Claim 3, then move to the next stage with A(s) := A(s−1), A′(s) := A′(s−1),
and ℓ(s) := ℓ(s− 1).

Otherwise, if s > ℓ(s − 1) and if n is large enough to meet the requirements in
the proof of Claim 3, then do the following. Set A(s) := A(s − 1) − Σs and A′(s) :=
A′(s− 1)− Σs. Let i be the minimum index in T and let C′

πi
be the Πk(pi(n))-circuit

corresponding to πi((·); 0n), for some polynomial pi(·). Let Cπi be the circuit C′
πi

with
the following restrictions:

1. Variables vz such that |z| < s = (k + 2) · n are replaced by constants χA(s−1)(z),

2. variables vz such that s < |z| ≤ pi(n) and z ∈ 12mΣk·m, for some m ∈ N+, are
replaced by constants χA(s−1)(z),

3. variables vz such that s ≤ |z| ≤ pi(n), z 	∈ 12nΣk·n ∪ (
⋃
m 0Σ(k+2)·m) and z is not

of the form as in (2) above, are replaced by 0.

Restriction 1 makes sense because the memberships in A of strings of length < s will
already be fixed by the end of stage s− 1. Restrictions 2 and 3 make sense because (i)
the variables vz of C′

πi
satisfy |z| ≤ pi(n), (ii) strings in 12nΣk·n and those relevant to

19

the satisfaction of requirements R2,m, where m ≥ n, are the only interesting ones for
the construction at stage s, and (iii) strings z corresponding to the remaining variables
of C′

πi
must confirm to the requirement that L(A) is defined.

Thus the only variables vz appearing in Cπi are the ones for which s ≤ |z| ≤ pi(n)
and z ∈ 12nΣk·n ∪ (

⋃
m 0Σ(k+2)·m). Also for every B ⊆ {z ∈ Σ∗ | vz is a variable of

Cπi}, it holds that

(Cπi⌈ρB= 1 ⇐⇒ πi((A(s− 1)− Σs) ∪B; 0n)) is true. (3.h)

We must be careful in assigning boolean values to the variables vz of Cπi , i.e. in assigning
memberships in A of strings z, to satisfy the requirement R1,i because any arbitrary
assignment to the variables of Cπi that satisfy R1,i may conflict with the requirements
R2,m, form ≥ n. We actually need a partial assignment that guarantees the satisfaction
of R1,i and leaves leeway for the other variables so that any requirement R2,m, where
m ≥ n, may eventually be satisfied in some future stage s′ > s. We show the existence
of such a partial solution in Claim 3, which requires using Lemma 3.19.

We define circuits Cu for all strings u for which a potential conflict between the
assignment of variables of Cπi and the satisfaction of the requirement R2,|u| cannot be
ignored. These circuits Cu are defined so that the following statement is satisfied: For
every B ⊆ Σ∗ such that ρB satisfies the GU-condition for Cu, it holds that

Cu⌈ρB = 1 =⇒ (∃|u|!y1)(∀|u|!y2) . . . (Q
|u|!yk+1)[0uy1y2 . . . yk+1 ∈ B],

and (3.i)

Cu⌈ρB = 0 =⇒ (∀|u|!y1)(∃|u|!y2) . . . (Q
|u|
!yk+1)[0uy1y2 . . . yk+1 	∈ B].

With the above goals in mind we define the circuits Cu, for every u ∈ Σ∗ such that
s ≤ (k + 2) · |u|+ 1 ≤ pi(n), as follows:

• The depth of Cu is k + 1,

• the top gate of Cu is an OR gate,

• The fanins of all the gates at levels 1 to k + 1 are 2|u|, and

• the variables of Cu are exactly those in {vz | z ∈ 0uΣ(k+1)·|u|}.
• the variables vz occur in positive form in exactly one leaf of Cu in the lexicographic

ordering of z.

Next we introduce a circuit C(n, k) that encodes our test language in the following
sense: For every B ⊆ Σ∗ such that ρB satisfies the GU-condition for C(n, k), it holds
that

C(n, k)⌈ρB = 1 =⇒ (∃n!y1)(∀n!y2) . . . (Q
n!yk)[1

2ny1y2 . . . yk ∈ B],

and (3.j)

C(n, k)⌈ρB = 0 =⇒ (∀n!y1)(∃n!y2) . . . (Q
n
!yk)[1

2ny1y2 . . . yk 	∈ B].

By the definition of our test language L(B), Statement (3.j) implies that for every
B ⊆ Σ∗ such that ρB satisfies the GU-condition for C(n, k), it holds that

C(n, k)⌈ρB = 1 =⇒ 0n ∈ L(B)

and (3.k)

C(n, k)⌈ρB = 0 =⇒ 0n 	∈ L(B).

20

The circuit C(n, k) is defined similarly to circuits Cu except that the depth of C(n, k)
is k, the fanins of all the gates at levels 1 to k are 2n, and the variables of C(n, k) are
exactly those in {vz | z ∈ 12nΣk·n}. It is easy to verify that C(n, k) ∈ F2n

k+1 and for all

the just defined circuits Cu holds that Cu ∈ F2|u|
k+1.

The following claim is crucial for this stage.

Claim 3 There exists a restriction ρ such that

1. ρ completely determines C(n, k),

2. ρ satisfies the GU-condition for C(n, k) and for every Cu such that s ≤ (k + 2) ·
|u|+ 1 ≤ pi(n),

3. for any restriction ρ′ extending ρ such that ρ′ completely determines Cπi and ρ′

satisfies the GU-condition for every Cu, where s ≤ (k+2) · |u|+1 ≤ pi(n), it holds
that C(n, k)⌈ρ′ 	= Cπi⌈ρ′ , and

4. ρ does not completely determine Cu, for every u such that s ≤ (k + 2) · |u|+ 1 ≤
pi(n).

Assuming the truth of the claim, set A(s) := A(s) ∪ {z | ρ(z) = 1},
A′(s) := A′(s) ∪ {z | ρ(z) = 0}, ℓ(s) := max{s, pi(n)}, and T := T − {i}.
Move to the next stage.
End of Stage s = (k + 2) · n

Stage s = (k + 2) · n + 1: For every u ∈ Σn, we first determine the membership
of u in Sk+1(A(s − 1)). (We will show that for any u ∈ Σn, u ∈ Sk+1(A(s − 1)) ⇐⇒
u ∈ Sk+1(A). Thus it makes sense to determine the membership of every u ∈ Σn in
Sk+1(A(s− 1)).) The following claim is crucial for this stage.

Claim 4 For every u ∈ Σn, there exists a set B(u) ⊆ {z ∈ 0uΣ(k+1)·|u| | z 	∈ A(s −
1) ∪A′(s− 1)} such that

u 	∈ Sk+1(A(s− 1)) =⇒
(∃|u|!y1)(∀|u|!y2) . . . (Q

|u|!yk+1)[0uy1y2 . . . yk+1 ∈ A(s− 1) ∪B(u)], and

u ∈ Sk+1(A(s− 1)) =⇒
(∀|u|!y1)(∃|u|!y2) . . . (Q

|u|
!yk+1)[0uy1y2 . . . yk+1 	∈ A(s− 1) ∪B(u)],

where Q = ∃ and Q = ∀ if k is even, and Q = ∀ and Q = ∃ if k is odd.

Assuming the truth of the claim, setA(s) := A(s−1)∪(⋃u∈Σn B(u)), A′(s) := A′(s−1),
and ℓ(s) := max{s, ℓ(s− 1)}. Move to the next stage.
End of Stage s = (k + 2) · n+ 1

Observe that at no stage s′, we include any string of length < s′ in A(s′) or in A′(s′).
The reason is as follows: In stage s′ of the form (k+2) ·m, the only strings z we include
in A(s′) or in A′(s′) are the ones for which s′ ≤ |z| ≤ p(m) for some polynomial p(·);
in stage s′ of the form (k + 2) ·m+ 1 we add strings z of length |z| = s′ in A(s′); and
if s′ is not of the form (k + 2) ·m or (k + 2) ·m+ 1, then we do not include any string
in A(s′) or in A′(s′).

21

We show that for every i ∈ N+, the requirement R1,i is eventually satisfied. The
requirement R1,i will be considered in stage s = (k + 2) · n + 1, for some sufficiently
large n. Assuming the truth of Claim 3, we assign strings to A(s) and to A′(s) at
the end of stage s. This assignment of strings to A(s) and to A′(s) does not conflict
with assignments made in any stage s′ < s because s is greater than ℓ(s− 1), an upper
bound on the maximum length string stored in A(s′) or in A′(s′), for any s′ ≤ s − 1.
Furthermore, this assignment of strings to A(s) and to A′(s) is never overridden in any
later stage because ℓ(s) = max{s, pi(n)} and in no stage s′ of the form (k + 2) ·m+ 1,
we assign strings in A(s′ − 1) ∪ A′(s′ − 1) to A(s′) or to A′(s′).

By the end of stage s′ = pi(n), all strings z, such that vz is a variable in Cπi , would
have been assigned to A(s′) or to A(s′). This also implies that the memberships in A
of all such strings would be fixed by the end of stage s′. Thus when we replace each
variable vz of C(n, k) and Cπi by ρA(vz), then the following hold: These circuits become
completely determined, and ρA satisfies the GU-condition for C(n, k). Moreover,
assuming the truth of Claim 4 and by the manner sets B(u) are defined in Claim 4, ρA
also satisfies the GU-condition for every Cu, where s ≤ (k + 2) · |u| + 1 ≤ pi(n).
Thus property (3) of Claim 3 implies that C(n, k)⌈ρA 	= Cπi⌈ρA . It follows from
Statement (3.k) and Statement (3.h) that

(0n ∈ L(A)⇐⇒ ¬πi(A; 0n)) is true.

This completes the proof that R1,i is eventually satisfied.
We now show that for all n ∈ N+, R2,n is satisfied. The requirement R2,n is

considered in stage s = (k + 2) · n + 1. Recall the aforementioned property of Sk+1

because of which for any u ∈ Σn, the membership of u in Sk+1(A(s− 1)) depends only
on the set {z ∈ A(s − 1) | |z| < |u|}. Since we never add any string of length < s′ to
A(s′) or to A′(s′) in any stage s′, it follows that the membership of any string u ∈ Σn in
Sk+1(A(s− 1)) is preserved in Sk+1(A(s′)), for any s′ ≥ s− 1. Thus for every u ∈ Σn,

u ∈ Sk+1(A(s− 1))⇐⇒ u ∈ Sk+1(A). (3.l)

Let us first assume that Claim 4 is true. From Claim 4, it follows that for every
u ∈ Σn, we can find a set B(u) ⊆ 0uΣ(k+1)·|u| satisfying the claim. At the end of stage s,
we include strings in

⋃
u∈Σn B(u) to A(s). This assignment of strings to A(s) does not

conflict with assignments made in any stage s′ < s because no string z ∈ ⋃
u∈Σn B(u)

belongs to A(s−1)∪A′(s−1). Furthermore, this assignment of strings to A(s) is never
overridden because strings in

⋃
u∈Σn B(u) are of length s and at no later stage s′ > s

we assign a string a length < s′ to A(s′) or to A′(s′). It then follows from Claim 4 and
Statement (3.l) that for any u ∈ Σn,

u 	∈ Sk+1(A) =⇒ (∃|u|!y1)(∀|u|!y2) . . . (Q
|u|!yk+1)[0uy1y2 . . . yk+1 ∈ A], and

u ∈ Sk+1(A) =⇒ (∀|u|!y1)(∃|u|!y2) . . . (Q
|u|
!yk+1)[0uy1y2 . . . yk+1 	∈ A],

where Q = ∃ and Q = ∀ if k is even, and Q = ∀ and Q = ∃ if k is odd. This completes
the proof that R2,n is satisfied.

It only remains to prove Claim 3 and Claim 4. We first show that Claim 4 is true,
assuming the truth of Claim 3. After proving Claim 4, we give a proof for Claim 3.

Proof of Claim 4. Assume that Claim 3 is true. Fix a u ∈ Σn. If no string in
0uΣ(k+1)·|u| has been assigned to A(s − 1) or to A′(s − 1), then we obviously have a

22

set B(u) satisfying the claim by Proposition 3.7. Otherwise, some string in 0uΣ(k+1)·|u|

has previously been assigned to A(s − 1) or to A′(s − 1). This assignment must have
been made in at most one stage s′ = (k + 2) ·m, for some m ≤ n, by the manner ℓ(s′)
is defined. In that stage, we would have chosen a restriction ρ satisfying Claim 3 to set
A(s′) and A′(s′). By the properties (2) and (4) of ρ (see Claim 3), ρ satisfies the GU-
condition for Cu and ρ does not completely determine Cu. It follows by Proposition 3.7
that there exist restrictions ρ′ and ρ′′ on the variables of Cu⌈ρ such that (a) both ρ′

and ρ′′ satisfy the GU-condition for the max-subcircuit of Cu⌈ρ, and (b) Cu⌈ρρ′= 0
and Cu⌈ρρ′′= 1. Define B0(u) := {z ∈ 0uΣ(k+1)·|u| | ρ(vz) = ∗ and ρ′(vz) = 1} and
B1(u) := {z ∈ 0uΣ(k+1)·|u| | ρ(vz) = ∗ and ρ′′(vz) = 1}. Then both B0(u) and B1(u)
are disjoint from A(s− 1) ∪ A′(s− 1), and the following hold by Proposition 3.8:

(∃|u|!y1)(∀|u|!y2) . . . (Q
|u|!yk+1)[0uy1y2 . . . yk+1 ∈ A(s− 1) ∪B1(u)], and

(∀|u|!y1)(∃|u|!y2) . . . (Q
|u|
!yk+1)[0uy1y2 . . . yk+1 	∈ A(s− 1) ∪B0(u)],

where Q = ∃ and Q = ∀ if k is even, and Q = ∀ and Q = ∃ if k is odd. We can now
choose B(u) as either B1(u) or B0(u) depending on whether u 	∈ Sk+1(A(s − 1)) or
u ∈ Sk+1(A(s− 1)). Thus Claim 4 is proved. (Claim 4)

Proof of Claim 3. Notice that C(n, k) is in F2n

k+1, whereas for every u ∈ Σ∗

such that s ≤ (k + 2) · |u| + 1 ≤ pi(n), the circuit Cu is in F2|u|
k+1. So first choose a

deterministic restriction ρ′ on the variables of Cu’s such that for all Cu’s, it holds that
Cu⌈ρ′∈ F2n

k+1. Such a restriction can be guaranteed to exist by using Proposition 3.7.

Since pi(n) < 1
12 · 2n/3 and the number of circuits Cu’s is ≤ 2pi(n) < 22n/8

, for all
sufficiently large n, we can obtain a restriction ρ satisfying the conditions of Lemma 3.19.
The restriction ρ′ρ thus satisfies the conditions of Claim 3. (Claim 3)

Lemma 3.19 Let k ≥ 1, m < 2h
1/8

, and h > h0(k,m), for some constant h0(k,m)
depending only on k and m. Let C0, C1, . . . , Cm be m + 1 circuits in Fh

k+1 such that
C0 is of depth k, C1, . . . , Cm are of depth k + 1, the top gates of C0, C1, . . ., Cm are
all ORs, and the variables of C0, C1, . . ., Cm are pairwise disjoint. Let Cπ be any
Πk(

1
12 · h1/3)-circuit with the same variables as those of C0, C1, . . ., Cm. Then there

exists a restriction ρ on the variables of Cis, where 0 ≤ 1 ≤ m, such that

1. ρ completely determines C0.

2. ρ satisfies the GU-condition for C0, C1, . . ., Cm.

3. for any restriction ρ′ extending ρ such that ρ′ completely determines Cπ and ρ′

satisfies the GU-condition for C1, C2, . . ., Cm, it holds that C0⌈ρ′ 	= Cπ⌈ρ′ .
4. ρ does not completely determine C1, C2, . . ., Cm.

Proof of Lemma 3.19. We prove the lemma by induction on k. For the base case,
i.e. when k = 1, C0 is an OR gate with ≥

√
h variables, and C1, C2, . . ., Cm are ORs

of ANDs with top fanins h and bottom fanins ≥
√
h. The circuit Cπ is a Π1(

1
12 · h1/3)-

circuit. We consider the following cases.

Case-I: There is a restriction ρ such that

(a) ρ(vz) = 0 for all variables vz of C0,

(b) ρ satisfies the GU-condition for each Ci, where 1 ≤ i ≤ m, and

23

(c) Cπ⌈ρ= 0.

Then there is an OR gate G in Cπ such that G⌈ρ= 0. Since 1
12 · h1/3 <

√
h, there is a

variable vz0 in C0 but not in G. Define a restriction ρ̂ as follows:

• ρ̂(vz) = 0 for all variables vz 	= vz0 of C0,

• ρ̂(vz0) = 1,

• ρ̂(vz) = ρ(vz) if vz is a variable of G, and

• ρ̂(vz) = ⋆ if vz is not a variable of C0 and of G.

It easily follows that ρ̂ completely determines C0 and Cπ, and C0⌈ρ̂ 	= Cπ⌈ρ̂. Since ρ̂
assigns exactly one variable of C0 to 1 and assigns 0 to the remaining variables of C0,
ρ̂ satisfies the GU-condition for C0. Also, since ρ satisfies the GU-condition for each
Ci, where 1 ≤ i ≤ m, and since the variables of C0 are disjoint from those of C1, C2,
. . ., Cm, it follows that ρ̂ satisfies the GU-condition for each Ci, where 1 ≤ i ≤ m.
Moreover for each Ci, where 1 ≤ i ≤ m, since the bottom and top fanins of Ci are
≥
√
h > 1

12 · h1/3, every AND gate of Ci has at least one variable not occurring in G
and there is an AND gate Gi of Ci such that no variables of Gi occur in G. ρ̂ assigns
all these variables, i.e. variables of Ci not occurring in G, to ⋆. It is now clear that ρ̂
does not completely determine Ci, for all 1 ≤ i ≤ m. Thus ρ̂ satisfies the conditions of
Lemma 3.19.

Case-II: For all restrictions ρ such that

(a) ρ(vz) = 0 for all variables vz of C0,

(b) ρ satisfies the GU-condition for each Ci, where 1 ≤ i ≤ m, and

(c) ρ completely determines Cπ,

it holds that Cπ⌈ρ= 1.

Define a restriction ρ̂ as follows:

• ρ̂(vz) = 0 for all variables vz of C0, and

• ρ̂(vz) = ⋆ if vz is not a variable of C0.

It easily follows that C0⌈ρ̂= 0, ρ̂ does not completely determine C1, C2, . . ., Cm, and ρ̂
satisfies the GU-condition for C0, C1, . . ., Cm. Also by our assumption in this case, for
all restrictions ρ′ extending ρ̂ such that (i) ρ′ satisfies the GU-condition for C1, C2, . . .,
Cm, and (ii) ρ′ completely determines Cπ, it holds that Cπ⌈ρ′= 1 	= 0 = C0⌈ρ′ . Thus ρ̂
satisfies the conditions of Lemma 3.19.

Induction Hypothesis: Assume that the lemma is true for k − 1, for some k ≥ 2.

Induction Step: Let C0, C1, . . ., Cm be arbitrary circuits in Fh
k+1 such that C0 has

depth k, C1, C2, . . ., Cm have depth k + 1, the top gates of C0, C1, . . ., Cm are all
ORs, and the variables of C0, C1, . . ., Cm are pairwise disjoint. Let Cπ be an arbitrary
Πk(

1
12 · h1/3)-circuit with the same variables as those of C0, C1, . . ., Cm.

We prove the induction step for even k; the proof for odd k is symmetric. Since k
is even, the bottom gates of C0 are ANDs, and the bottom gates of C1, C2, . . ., Cm are

24

ORs. Because of a technical reason4 in applying the switching lemma (see Lemma 3.3),
we need to make these bottom gates all of the same type. Therefore, we transform
circuit C0 into a circuit C′

0 as follows: First obtain the dual of C0, and then replace
each variable xj of the dual by a new variable yj of C′

0. We change the variables of Cπ

accordingly. That is, we replace every occurrence of xj in Cπ by yj and replace every
occurrence of xj in Cπ by yj , for each variable xj of C0. Thus the variables of C′

0 are
disjoint from those of C1, C2, . . ., Cm, and the variables of Cπ are the same as those of
C′

0, C1, . . ., Cm.

Lemma 3.4 and Lemma 3.9 imply that there is a restriction ρg′(ρ) with the following
properties: (a) ρg′(ρ) satisfies the GU-condition for C′

0 and for every Ci, where 1 ≤ i ≤
m, (b) Cπ⌈ρg′(ρ) is equivalent to a Πk−1(

1
12 ·h1/3)-circuit Dπ, (c) the max-subcircuit D′

0

of C′
0⌈ρg′(ρ) is in Fh

k , and (d) for every 1 ≤ i ≤ m, the max-subcircuit Di of Ci⌈ρg′(ρ) is
in Fh

k . Also note that (a) D′
0 has depth k − 1, (b) D1, D2, . . ., Dm have depth k, (c)

D′
0 contains a subset of the variables of C′

0, and (d) for every 1 ≤ i ≤ m, Di contains a
subset of the variables of Ci. Next we transform D′

0 into a circuit D0 ∈ Fh
k of the same

depth, where the variables of D0 form a subset of the variables of C0, as follows: First
obtain the dual of D′

0, and then replace each variable yj of the dual by the variable xj
of C0. The variables of Dπ are changed accordingly. It now follows by the induction
hypothesis that there is a restriction ̟ on Dπ such that

1. ̟ completely determines D0,

2. ̟ satisfies the GU-condition for D0, D1, . . ., Dm,

3. for any restriction ̟′ extending ̟ such that ̟′ completely determines Dπ and
̟′ satisfies the GU-condition for D1, D2, . . ., Dm, it holds that D0⌈̟′ 	= Dπ⌈̟′ .

4. ̟ does not completely determine D1, D2, . . ., Dm.

Define a restriction ρ′ as follows: ρ′ is the same as ρg′(ρ) on the variables of C1, C2,
. . ., Cm, but for every variable xj of C0,

ρ′(xj) =

{
1− ρg′(ρ)(yj) if ρg′(ρ)(yj) ∈ {0, 1}, and
⋆ if ρg′(ρ)(yj) = ⋆,

where yj is the variable of C′
0 corresponding to the variable xj of C0. Note that ρ′

satisfies the GU-condition for each Ci, where 0 ≤ i ≤ m. Also, note that each Di is the
max-subcircuit of Ci⌈ρ′ . Therefore by Proposition 3.8, ρ′̟ satisfies the GU-condition
for each Ci. It is easy to verify that ρ′̟ also satisfies the remaining conditions of
Lemma 3.19. This completes the proof of Lemma 3.19. (Lemma 3.19)

4The technical reason for making the bottom gates of the involved circuits all of the same type is explained
as follows. As observed in the beginning of Section 3.2, a restriction ρg′(ρ) satisfies the U-condition for a
circuit C if ρ ∈ R̂+

q,B when the bottom gates are ANDs, or if ρ ∈ R̂−
q,B when the bottom gates are ORs. (Here

q is a real number between 0 and 1, and B = {Bi}
r
i=1 is such that Bi is the set of variables of the i’th bottom

gate of the circuit C.) A random restriction ρ has relevance with the switching lemma (Lemma 3.3) when
ρ is either from the probability space R̂+

q,B or from the probability space R̂+
q,B. Thus in order for a random

restriction ρ to satisfy the U-condition for a collection of circuits with pairwise disjoint sets of variables and
to have relevance with the switching lemma, we require that either all the bottom gates are ANDs (so that
ρ can be chosen from R̂+

q,B) or all the bottom gates are ORs (so that ρ can be chosen from R̂−
q,B).

25

The following corollary follows easily from Theorem 3.18, Theorem 2.3 and Fact 2.4.

Corollary 3.20 For all k ≥ 2, there is a relativized world where

1. AUPH collapses so that it has exactly k levels.

2. UPH collapses so that it has exactly k levels.

3. UPH collapses so that it has exactly k levels.

4. PH collapses so that it has exactly k levels.

5. each level AUΣp
ℓ of AUPH is not contained in the corresponding level Πp

ℓ of PH,
for 1 ≤ ℓ ≤ k − 1.

6. PH = AUPH = UPH = UPH = AUΣp
k.

We strengthen Theorem 3.18 by showing in Theorem 3.21 that for each k ≥ 2, there is a
relativized world where the first k levels of the unambiguity based hierarchies separate
and their k’th levels collapse not just to PH, but to PSPACE.

Theorem 3.21 (∀k ≥ 1)(∃A)[AUΣp,A
k � Πp,A

k , but PSPACEA = AUΣp,A
k+1].

Proof The proof is essentially the same as that of Theorem 3.18. Ko [Ko89] proved
that for each oracle A, the set Q(A) =df {〈i, z, 1j〉 | the i’th deterministic oracle Turing

machineMi with oracle A accepts z using at most j cells} is complete for PSPACEA and
has the following desired property: The membership of a string x in Q(A) depends only
on the set {y ∈ A | |y| < |x|}. It is easy to see that using the set Q(A) in place of the set
Sk+1(A) in the proof of Theorem 3.18 suffices to prove the theorem. (Theorem 3.21)

4 Complexity of Unambiguous Alternating Solution

Wagner studied the class∇P, denoted by UAS in this paper, of all sets that are accepted
by polynomial-time alternating Turing machines with partially defined AND and OR
functions. UAS is a natural class with complete sets and is related to UAP in the same
way as US [BG82] is related to UP. We define a variant of UAS, denoted by UAS(k),
where the number of alternations allowed is bounded by some constant k ≥ 1, instead
of the unbounded number of alternations in the definition of UAS. (Thus UAS(1) is
the same as the unique solution class US.)

Definition 4.1 ([Wag92]) The class UAS, denoted by ∇P in [Wag92], is the class of
all sets L ⊆ Σ∗ for which there exist polynomials p(.) and q(.), and a polynomial-time
computable predicate R such that, for all x ∈ Σ∗,

x ∈ L ⇐⇒ (∃p! y1)(∀p! y2) . . . (Q
p! yq)R(x, y1, y2, . . . , yq),

where Q = ∃ if q(|x|) is odd and Q = ∀ if q(|x|) is even.

The class UAS(k), for every k ≥ 1, consists of all sets for which strings in the set are
accepted unambiguously by some polynomial-time alternating Turing machine N with
at most k alternations, while strings not in the set either are rejected by N or are
accepted with ambiguity by N . A formal definition is as follows.

26

Definition 4.2 The class UAS(k), for k ≥ 1, is the class of all sets L ⊆ Σ∗ for which
there exist a polynomial p(.) and a polynomial-time computable predicate R such that,
for all x ∈ Σ∗,

x ∈ L ⇐⇒ (∃p!y1)(∀p!y2) . . . (Q
p!yk)R(x, y1, y2, . . . , yk),

where Q = ∃ if k is odd and Q = ∀ if k is even.

The following results either are well-established or follow easily from the definitions of
concerned complexity classes.

Theorem 4.3 1. US ⊆ UAS ⊆ C=P and UAS ⊆ ∀⊕P [Wag92].

2. For every k ≥ 1, UP ⊆ US ⊆ UAS(k) ⊆ UAS(k + 1) ⊆ UAS.

3. For every k ≥ 1, AUΣp
k ⊆ UAS(k) ⊆ PΣp

k .

We can define a variant of the class UAS(k), denoted by UAS∀(k), to be the class of
all sets L accepted by some (not necessarily on every input unambiguous) polynomial-
time alternating Turing machine N in which the number of alternations is bounded
by some constant k ≥ 1, the root is a universal node, and x ∈ L if and only if x is
accepted unambiguously by N . Note that because a UAS(k) machine is not promised
to be unambiguous when the input does not belong to the set accepted by the machine,
coUAS(k) is possibly not the same as UAS∀(k). For instance, it is easy to show that
UP≤k (and in fact NP) is contained in coUS (= coUAS(1)). On the other hand, we
show in Theorem 4.5 a relativized world where UP≤k is not even contained in UAS∀(k).
Since UAS(k) ⊆ UAS∀(k + 1) in every relativized world, we obtain as a corollary (see
Corollary 4.6) an oracle A with UPA

≤k+1 	⊆ UAS(k)A.

Theorem 4.5 implies that relative to an oracle A, for all k ≥ 1, UPA
≤k+1 is not

contained in UAS(k)A. Thus relative to the same oracle, bounded ambiguity classes
UP≤k and bounded-level unambiguous alternating solution classes UAS(k) form infinite
hierarchies. Theorem 4.5 also implies that there is a relativized world where for all k ≥ 1,
UP≤k+1 is not contained in AUΣp

k. In contrast, Lange and Rossmanith [LR94] proved
that FewP ⊆ UΣp

2 in every relativized world. It follows that relative to the oracle of

Theorem 4.5, for all k ≥ 1, UΣp,A
2 � AUΣp,A

k .
In the proofs of this section, we utilize the notions of Σk- and Πk-machines, which

we define as follow. The Σk- and Πk-machines are oracle ATMs having at most k levels
for any oracle. A Σk-machine has an existential root node if the number of levels in the
machine is at least one. Similarly, a Πk-machine has a universal root node if it has at
least one level. If no input is specified for an ATM N with oracle A, then we assume
that NA starts with some arbitrary intial configuration. Let ν be any node in N (·).
Depending on the oracle B, ν may or may not appear in NB; if ν appears in NB, then
ν may either accept in NB or reject in NB.

The proof of Theorem 4.5 uses Lemma 4.4. Informally, Lemma 4.4 shows limitations
of bounded-level oracle ATMs that preserve unambiguity with small extensions of
oracles.

Lemma 4.4 Let O, U ⊆ Σ∗ with O ∩ U = ∅, and k,m ∈ N. Let N be an arbitrary
Πk-machine (Σk-machine) with some fixed initial configuration, satisfying the following
properties:

1. On each path, N makes no more than m queries.

27

2. For every A ⊆ U with ||A|| ≤ k, NO∪A retains unambiguity.

3. NO rejects (respectively, accepts).

Let
C = {α ∈ U |NO∪{α} accepts (respectively, rejects)}.

Then ||C|| ≤ 8k ·m.

Proof We prove this lemma by induction over k. Let N be a Π0-machine satisfying
the conditions of the lemma. Machine N is a deterministic Turing machine that queries
no more than m strings, and NO rejects. Hence, NO∪{α} accepts for no more than
m strings α ∈ U . Therefore, ||C|| ≤ m. Thus, the lemma holds for k = 0. Next, let
N be a Π1-machine satisfying the conditions of the lemma. We may assume that N
has exactly one level, which has a universal node at the root. Because NO rejects with
unambiguity, there is a unique leaf node t in N (·) that rejects in NO. On the path to
t, N queries no more than m strings. Hence, node t rejects also in NO∪{α} for all but
m strings α ∈ U . Therefore, ||C|| ≤ m, and so the lemma holds for k = 1. The cases of
Σ0- and Σ1-machines are treated analogously.

We now assume that Lemma 4.4 is correct for all k = 0, 1, 2, . . . , ℓ− 1, where ℓ ≥ 2.
Let N be a Πℓ-machine satisfying the conditions of the lemma. To get a contradiction,
assume that ||C|| > 8ℓ ·m. We know that NO rejects with unambiguity. Hence, there
is a unique existential salient node t on the second level of N (·) that rejects in NO. Let
C′ := C −QN (t). (Recall from Section 2.2 that QN(t) denotes the set of queries along
the path from the root to the node t in N (·).) We have ||C′|| > (8ℓ − 1)m. For every
α ∈ C′, t accepts in NO∪{α} by the definition of the set C. For every α ∈ C′, denote by
s(α) the unique node on the third level of N (·) reachable from t in NO∪{α} such that
s(α) accepts in NO∪{α}.

Define an equivalence relation ρ on C′ as follows: For all α1, α2 ∈ C′,

α1ρα2 ⇐⇒ s(α1) = s(α2).

Let [α] = {α′ ∈ C′ | α′ρα}. We consider two cases:

Case 1: There is an equivalence class of ρ of size ≥ ||C′||/2. Let [α] be such
an equivalence class. Clearly, ||[α]|| ≥ (8ℓ − 1) · m/2. The node s(α) appears
in NO∪{β} for every β ∈ [α]. Hence, node s(α) also appears in NO (because
||[α]|| ≥ (8ℓ−1) ·m/2 > m and no more than m strings are queried on each path).
However, s(α) rejects in NO because t rejects in NO.

Let N̂ be the Πℓ−2-machine that starts with node s(α). We know that N̂O rejects.

On the other hand, N̂O∪{β} accepts for every β ∈ [α]. Apply Lemma 4.4 to N̂
and get ||[α]|| ≤ 8ℓ−2 ·m. A contradiction.

Case 2: The size of every equivalence class of ρ is ≤ ||C′||/2. It is easy to see
that there exists J ⊆ C′ such that

||C′||/4 ≤ ||
⋃

α∈J
[α]|| ≤ ||C′||/2.

Let
C1 =

⋃

α∈J
[α] and C2 = C′ − C1.

28

For each α1 ∈ C1, let N1 be the Πℓ−2-machine that starts with node s(α1). Note

that N
O∪{α1}
1 accepts. Let

conflicting(α1) = {β2 ∈ C2 |NO∪{α1,β2}
1 rejects or β2 ∈ QN(s(α1))}.

Clearly, N1 is a fortiori also a Σℓ−1-machine. With N1 for N , O∪{α1} for O, and
C2 for U , the conditions of Lemma 4.4 are satisfied. Hence, ||conflicting(α1)|| ≤
8ℓ−1 ·m + ||QN (s(α1))|| ≤ (8ℓ−1 + 1) ·m. Analogously, for each α2 ∈ C2, let N2

be the Πℓ−2-machine that starts with node s(α2). Let

conflicting(α2) = {β1 ∈ C1 |NO∪{α2,β1}
2 rejects or β1 ∈ QN(s(α2))}.

Here, we also obtain ||conflicting(α2)|| ≤ (8ℓ−1 + 1) ·m.

Claim 5 We can choose α1 ∈ C1 and α2 ∈ C2 such that α1 /∈ conflicting(α2) and
α2 /∈ conflicting(α1).

Let us assume that the claim is true. Take two such strings α1 and α2. Then

both N
O∪{α1,α2}
1 (starting with s(α1)) and N

O∪{α2,α1}
2 (starting with s(α2))

are accepting. Node s(α1) appears in NO∪{α1}. String α2 is not queried on
the path from the root to s(α1) in NO∪{α1}. Hence s(α1) appears also in
NO∪{α1,α2}. Analogously, node s(α2) appears in NO∪{α1,α2}. Hence, s(α1) and
s(α2) accept in NO∪{α1,α2}. Since nodes s(α1) and s(α2) are different nodes
on the third level of N (·) reachable from t in NO∪{α1,α2}, we conclude that
NO∪{α1,α2} loses unambiguity. A contradiction. This completes the proof of
Lemma 4.4. (Lemma 4.4)

Proof of Claim 5 We have

||C1|| ≥ ||C′||/4 > (8ℓ − 1) ·m/4

and

||C2|| ≥ ||C′||/2 ≥ (8ℓ − 1) ·m/2.

On the other hand for every α1 ∈ C1,

||conflicting(α1)|| ≤ (8ℓ−1 + 1) ·m,

and for every α2 ∈ C2,

||conflicting(α2)|| ≤ (8ℓ−1 + 1) ·m.

A simple counting argument shows that there is pair (α1, α2) ∈ C1 × C2 such that
α2 /∈ conflicting(α1) and α1 /∈ conflicting(α2). (Claim 5)

We now prove Theorem 4.5.

Theorem 4.5 (∃A)(∀k ≥ 1)[UPA
≤k � UAS∀(k)A].

29

Proof For every k ∈ N+, we define our test language Lk(B) as follows:

Lk(B) = {0k10n |B ∩ 0k1Σn 	= ∅}.
We will construct an oracle A such that A ⊆ 0{0}∗1{0, 1}∗ and for every k, n ∈ N+,
||A ∩ 0k1Σn|| ≤ k. This will guarantee that, for every k ∈ N+, Lk(A) is in UPA

≤k.
For every k ∈ N+, let Nk,1, Nk,2, Nk,3, . . . be an enumeration of polynomial-time
bounded Πk-machines such that, for every i ∈ N+, the computation time of Nk,i is
pi(n) =df n

i + i. Let A := ∅. In stage 〈k, i〉, we diagonalize against Nk,i and change A
at certain length.

Stage 〈k, i〉: Choose n large enough such that (a) no string of length n or more
is queried by machines considered in previous stages and (b) 2n > 3 · 8k · pi(n). We
consider two cases.

Case 1: NA∪S
k,i (0n) retains unambiguity for every S ⊆ 0k1Σn with ||S|| ≤ k.

Case 1.a: NA
k,i(0

n) accepts. Move to the next stage.

Case 1.b: NA
k,i(0

n) rejects. Apply Lemma 4.4 with N := Nk,i(0
n), O := A,

U := 0k1Σn, and m := pi(n). We get ||C|| ≤ 8k · pi(n) < 2n. Hence there is

an α ∈ 0k1Σn such that N
A∪{α}
k,i (0n) rejects. Set A := A ∪ {α} and move to

the next stage.

Case 2: NA∪S
k,i (0n) loses unambiguity for some S ⊆ 0k1Σn with ||S|| ≤ k.

Case 2.a: NA∪S
k,i (0n) loses unambiguity for some S ⊆ 0k1Σn with 1 ≤

||S|| ≤ k. Set A := A∪ S and move to the next stage.

Case 2.b: NA
k,i(0

n) loses unambiguity, but NA∪S
k,i (0n) retains

unambiguity for every S ⊆ 0k1Σn with 1 ≤ ||S|| ≤ k. Then
there appears a node t in NA

k,i(0
n) such that one of the following is true:

(1) t is an existential node that leads to two nodes t1 and t2 at the next level
that are accepting in NA

k,i(0
n) with unambiguity.

(2) t is a universal node that leads to two nodes t1 and t2 at the next level
that are rejecting in NA

k,i(0
n) with unambiguity.

Without loss of generality, assume that (1) is true. Let N1 and N2 be the
Πk′ -machines that start with node t1 and t2, respectively. Note that k′ < k,
and NA∪S

1 and NA∪S
2 retain unambiguity for every S ⊆ 0k1Σn− (QNk,i

(t1)∪
QNk,i

(t2)) with ||S|| ≤ k. A fortiori, N1 and N2 are also Σk′′ -machines for
some k′′ ≤ k. Applying Lemma 4.4, we obtain

||{α ∈ S |NA∪{α}
j rejects}|| ≤ 8k · pi(n)

for j ∈ {1, 2}. Hence there are no more than 3 · 8k · pi(n) < 2n strings
α ∈ 0k1Σn such that anyone of (i), (ii), and (iii) holds, where (i) t1 or

t2 do not appear in N
A∪{α}
k,i (0n), (ii) N

A∪{α}
1 rejects, and (iii) N

A∪{α}
2

rejects. Therefore, there exists an α ∈ 0k1Σn such that both t1 and t2 appear

in N
A∪{α}
k,i (0n), and, moreover, both N

A∪{α}
1 and N

A∪{α}
2 accept. Hence

N
A∪{α}
k,i (0n) loses unambiguity at node t. Set A := A∪ {α} and move to the

next stage.

30

This completes the proof of Theorem 4.5. (Theorem 4.5)

Corollary 4.6 (∃A)(∀k ≥ 1)[UPA
≤k+1 � UAS(k)A].

Corollary 4.7 There is an oracle A such that, for every k ≥ 1, UPA
≤k ⊂ UPA

≤k+1,

AUΣp,A
k ⊂ AUΣp,A

k+1, UAS(k)
A ⊂ UAS(k + 1)A, and UΣp,A

2 � AUΣp,A
k .

5 Power of Robustly Unambiguous Alternating

Machines

Hartmanis and Hemachandra [HH90] showed that robustly categorical nondeterministic
polynomial-time Turing machines (i.e. NPTMs that for no oracle and no input have more
than one accepting path) accept simple languages in the sense that, for every oracle A,
the languages accepted by such machines are in PNP⊕A. Thus if P = NP, then robustly
categorical NPTMs cannot separate PA from NPA, for any oracle A. Theorem 5.1
generalizes this result of Hartmanis and Hemachandra [HH90] and shows that, for every
oracle A, robustly k-level unambiguous polynomial-time alternating Turing machines
accept languages that are in PΣp

k⊕A. That is, we show that if a polynomial-time ATM N
preserves k-level alternation unambiguously in every oracle world, then for each oracle
A, it holds that L(NA) ∈ PΣp

k⊕A. Thus similar to the case of robustly categorical
NPTMs, if P = NP, then robustly k-level unambiguous polynomial-time alternating
Turing machines cannot separate PA from Σp,A

k , and consequently cannot separate PA

from NPA.

Theorem 5.1 For every k ∈ N+, the following holds:

(∀A)[NA is a k-level unambiguous polynomial-time ATM] =⇒ (∀A)[L(NA) ∈ PΣp
k⊕A].

Proof The proof is by induction on k. The base case, k = 1, holds by [HH90,
Theorem 2.1], i.e. (∀A)[NA is a categorical NPTM] =⇒ (∀A)[L(NA) ∈ PNP⊕A].

Our induction hypothesis is the following: For every j ≤ k − 1, it holds that

(∀A)[NA is a j-level unambiguous polynomial-time ATM] =⇒ (∀A)[L(NA) ∈ PΣp
j⊕A].

Let A be an oracle and let N be a robustly k-level unambiguous polynomial-time ATM.
We define an oracle NPTM N̂ with access to oracle Σp

k−1 ⊕A as follows. On any input

x, N̂Σp
k−1⊕A guesses an existential computation path from the root (i.e. the level one

node) to a universal node ϑ at level two in the computation tree of NA(x). Upon

reaching the node ϑ on this guessed path, N̂Σp
k−1

⊕A simulates the computation subtree
of NA(x) rooted at the node ϑ. Since the computation subtree of NA(x) rooted at the
node ϑ is robustly (k − 1)-level unambiguous, by induction hypothesis this simulation

can be done in PΣp
k−1⊕A. Since this works for every A, and since N is robustly k-level

unambiguous polynomial-time ATM, the following are true:

(a) For every A, L(N̂Σp
k−1⊕A) = L(NA).

(b) For every A, N̂Σp
k−1⊕A is categorical.

31

We now show that L(N̂Σp
k−1⊕A) ∈ PΣp

k⊕A. The proof of this part is similar to the proof
by Hartmanis and Hemachandra [HH90, Theorem 2.1]. Here, we give a sketch of the

proof for the sake of completeness. Let p(·) be the running-time of N̂ with any oracle.
We define a deterministic polynomial-time computable procedure MΣp

k⊕A accepting
L(N̂Σp

k−1
⊕A).

On input x, MΣp
k⊕A(x) does the following:

1. Initialize database S := ∅.
2. Repeat the following for p(|x|) iterations:

Find an accepting path ρ in the computation tree of
N̂Σp

k−1⊕⋆(x) consistent with S. (This step can be done in PΣp
k

since ||S|| is of polynomial size.) If no such ρ exists, then halt
and reject. Otherwise, i.e. if ρ exists, then query A about the
membership of strings queried along ρ and update S with this
information. If the answers of the queries along ρ are consistent
with A, then halt and accept.

3. Accept if there is an accepting path in the computation tree of
N̂Σp

k−1⊕⋆(x) consistent with S that queries only strings in S, and reject
if no such path exists.

By the definition of M , MΣp
k⊕A is computable in polynomial time. We now show that

MΣp
k⊕A accepts L(N̂Σp

k−1⊕A).

It is easy to see that it is sufficient to show that x ∈ L(N̂Σp
k−1⊕A) implies that

MΣp
k
⊕A(x) accepts. Suppose that N̂Σp

k−1⊕A(x) accepts. Let T be the set of strings

queried to A along the unique accepting computation ρT of N̂Σp
k−1⊕A(x). If MΣp

k⊕A(x)
accepts in some iteration of step 2, then we are done. So assume that MΣp

k⊕A(x) does
not accept in any of the p(|x|) iterations of step 2. This also implies that MΣp

k⊕A(x)
does not reject in any iteration of step 2, since the accepting path ρT has not been
considered so far. Let Si be the set of strings queried to A in the i’th iteration of step
2 and let ρSi be the path found in that iteration. Note that ρSi and ρT are different.
The crucial observation is:

There must be a query qi in Si ∩ T that is answered in a conflicting way in
ρSi and ρT .

This can be seen as follows. If there is no such string qj , then there will be an oracle
O that is consistent with the way the strings queried along ρSi and ρT are answered.

Then relative to Σp
k−1⊕O, N̂(x) will have at least two accepting paths, which will give

a contradiction with our assumption that (∀A)[N̂Σp
k−1⊕A is categorical].

This query qi must be different from qj , for any 1 ≤ j < i, because the database
S in the ith iteration of step 2 is consistent with A in the membership of any string
queried in previous iterations. Thus in each iteration of step 2, the membership in A
of a new query from T is found. So, after p(|x|) iterations of step 2, the membership of
all the strings queried along ρT is known. It follows that MΣp

k⊕A(x) will accept on the
execution of step 3.

Corollary 5.2 For all k ∈ N+, if P = NP and (∀A)[NA is a k-level unambiguous
polynomial-time ATM], then (∀A)[L(NA) ∈ PA].

32

Crescenzi and Silvestri [CS98] showed that languages accepted by robustly
complementary and categorical oracle NPTMs are in P(UP∪coUP)⊕A . In fact, their proof
actually shows that the languages of such machines are computable in P(UP∩coUP)⊕A.
Theorem 5.3 is a generalization of this result of Crescenzi and Silvestri [CS98] for
robustly bounded-level unambiguous polynomial-time alternating Turing machines.

Theorem 5.3 For all ki, kj ∈ N+, the following holds: If for all oracles A, NA
i and

NA
j are, respectively, ki-level and kj-level unambiguous polynomial-time ATMs and

L(NA
i) = L(NA

j), then for all oracles A, L(NA
i) ∈ P(UP

Σ
p
k−1∩coUP

Σ
p
k−1)⊕A, where

k = max{ki, kj}.

Proof Let A be an oracle and let Ni, Nj be ATMs as in the statement of the theorem.

Define oracle NPTMs N̂i and N̂j corresponding to Ni and Nj, respectively, in the

manner N̂ is defined from ATM N in Theorem 5.1. Let k =df max{ki, kj}. Thus, the
following hold for ℓ ∈ {i, j}:

(a) For every A, L(N̂Σp
k−1⊕A

ℓ) = L(NA
ℓ).

(b) For every A, N̂Σp
k−1⊕A

ℓ is categorical.

(c) For every A, L(N̂Σp
k−1⊕A

i) = L(N̂
Σp

k−1⊕A
j).

It remains to show that L(N̂
Σp

k−1⊕A
i) ∈ P(UP

Σ
p
k−1∩coUP

Σ
p
k−1)⊕A. The proof of this part

is omitted as it is identical to the proof by Crescenzi and Silvestri [CS98, Theorem 8]
(if N0 and N1 are two robustly complementary and categorical oracle NPTMs, then for
all oracles A, L(NA

0) ∈ P(UP∩coUP)⊕A) and [HH90, Theorem 2.1].

6 Open Questions

We now mention some open questions and directions for further research. Theorem 3.10
implies that there is a relativized world where the unambiguity based hierarchies are
infinite. On the other hand, Theorem 3.18 implies that for each k ≥ 2, there is a
relativized world where these hierarchies have exactly k distinct levels and all their
higher levels collapse to their k’th levels. In spite of these results, a number of questions
related to the relativized structure of unambiguity based hierarchies remain open. For
instance, is there a relativized world where AUPH is finite, but UPH and UPH are
infinite? Is there a relativized world where the polynomial hierarchy is infinite, but
AUPH and UPH collapse?

Hemaspaandra and Rothe [HR97] showed that if UP has sparse Turing-complete sets,
then for every k ≥ 3, UΣp

k ⊆ UΣ
p
k−1. Are there other complexity-theoretic assumptions

that can help in concluding about the structure of unambiguity based hierarchies?
Fortnow [For99] showed that PH ⊂ SPP relative to a random oracle. Theorem 3.14

shows that there is a relativized world where UAP � PH. Can we extend the oracle
separation of UAP from PH to a random oracle separation?

Aida et al. [ACRW04] and Crâsmaru et al. [CGRS04] discussed whether UAP equals
SPP. In fact, Crâsmaru et al. [CGRS04] pointed out their difficulty in building an oracle
A such that UAPA 	= SPPA. Can the ideas involved in oracle constructions in this paper
be used to attack this problem?

33

Finally, is it the case that similar to robustly bounded-level unambiguous
polynomial-time ATMs, robustly unbounded-level unambiguous polynomial-time ATMs
require weak oracle access in every relativized world?

Acknowledgment We thank Lane Hemaspaandra and Jörg Rothe for their helpful
advice, guidance, and support.

References

[ACRW04] S. Aida, M. Crâsmaru, K. Regan, and O. Watanabe. Games with uniqueness
properties. Theory of Computing Systems, 37(1):29–47, 2004.

[AK02] V. Arvind and P. Kurur. Graph isomorphism is in SPP. In Proceedings
of the 43rd IEEE Symposium on Foundations of Computer Science, pages
743–750, Los Alamitos, November 2002. IEEE Computer Society.

[Bei89] R. Beigel. On the relativized power of additional accepting paths. In
Proceedings of the 4th Structure in Complexity Theory Conference, pages
216–224. IEEE Computer Society Press, June 1989.

[BG82] A. Blass and Y. Gurevich. On the unique satisfiability problem. Information
and Control, 55(1–3):80–88, 1982.

[CGH+89] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson,
K. Wagner, and G. Wechsung. The boolean hierarchy II: Applications.
SIAM Journal on Computing, 18(1):95–111, 1989.

[CGRS04] M. Crâsmaru, C. Glaßer, K. Regan, and S. Sengupta. A protocol for
serializing unique strategies. In Proceedings of the 29th International
Symposium on Mathematical Foundations of Computer Science. Springer-
Verlag Lecture Notes in Computer Science #3153, August 2004.

[CKS81] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of ACM,
26(1), 1981.

[CS98] P. Crescenzi and R. Silvestri. Sperner’s lemma and robust machines.
Computational Complexity, 7:163–173, 1998.

[For99] L. Fortnow. Relativized worlds with an infinite hierarchy. Information
Processing Letters, 69(6):309–313, 1999.

[FSS84] M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17:13–27, 1984.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key
cryptosystems. SIAM Journal on Computing, 17(2):309–335, 1988.

[H̊as87] J. H̊astad. Computational Limitations of Small-Depth Circuits. MIT Press,
1987.

[HH90] J. Hartmanis and L. Hemachandra. Robust machines accept easy sets.
Theoretical Computer Science, 74(2):217–225, 1990.

[HR97] L. Hemaspaandra and J. Rothe. Unambiguous computation: Boolean
hierarchies and sparse Turing-complete sets. SIAM Journal on Computing,
26(3):634–653, 1997.

34

[Ko85] K. Ko. On some natural complete operators. Theoretical Computer Science,
37(1):1–30, 1985.

[Ko89] K. Ko. Relativized polynomial time hierarchies having exactly K levels.
SIAM Journal on Computing, 18(2):392–408, 1989.

[Ko91] K. Ko. Separating the low and high hierarchies by oracles. Information and
Computation, 90(2):156–177, 1991.

[LR94] K.-J. Lange and P. Rossmanith. Unambiguous polynomial hierarchies and
exponential size. In Proceedings of the 9th Structure in Complexity Theory
Conference, pages 106–115. IEEE Computer Society Press, June/July 1994.

[NR98] R. Niedermeier and P. Rossmanith. Unambiguous computations and locally
definable acceptance types. Theoretical Computer Science, 194(1–2):137–
161, 1998.

[OH93] M. Ogiwara and L. Hemachandra. A complexity theory for feasible closure
properties. Journal of Computer and System Sciences, 46(3):295–325, 1993.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Sip83] M. Sipser. Borel sets and circuit complexity. In Proceedings of the 15th
ACM Symposium on Theory of Computing, pages 61–69. ACM Press, 1983.

[SL94] M. Sheu and T. Long. The extended low hierarchy is an infinite hierarchy.
SIAM Journal on Computing, 23(3):488–509, 1994.

[SL96] M. Sheu and T. Long. UP and the low and high hierarchies: A relativized
separation. Mathematical Systems Theory, 29(5):423–449, 1996.

[ST05] H. Spakowski and R. Tripathi. On the power of unambiguity in
alternating machines. In Proceedings of the 15th International Symposium
on Fundamentals of Computation Theory, pages 125–136. Springer-Verlag
Lecture Notes in Computer Science #3623, August 2005.

[Sto76] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3:1–22, 1976.

[Wag92] K. Wagner. Alternating machines using partially defined “AND” and
“OR”. Technical Report 39, Institut für Informatik, Universität Würzburg,
January 1992.

[Yao85] A. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings
of the 26th IEEE Symposium on Foundations of Computer Science, pages
1–10, 1985.

35

