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Abstract. We develop techniques to investigate relativized hierarchical unam-
biguous computation. We apply our techniques to push forward some known
constructs involving relativized unambiguity based complexity classes (UP and
Promise-UP) to new constructs involving arbitrary levels of the relativized
unambiguous polynomial hierarchy (UPH). Our techniques are developed on
constraints imposed by hierarchical assembly of unambiguous nondeterminis-
tic polynomial-time Turing machines, and so our techniques differ substantially,
in applicability and in nature, from standard techniques (such as the switching
lemma [Hås87]), which are known to play roles in carrying out similar general-
izations.

Aside from achieving these generalizations, we resolve a question posed
by Cai, Hemachandra, and Vyskoč [CHV93] on an issue related to nonadaptive
Turing access to UP and adaptive smart Turing access to Promise-UP.

1 Introduction

Baker, Gill, and Solovay in their seminal paper [BGS75] introduced the concept of rel-
ativization in complexity theory, and showed that the primitive levels of the polynomial
hierarchy, i.e. P and NP, separate in some relativized world. Baker and Selman [BS79]
made progress in extending this relativized separation—P 6= NP in some relativized
world—to the next levels of the polynomial hierarchy: They proved that there is a rela-
tivized world where Σp

2 6= Πp
2 , and so Σp

2 6= Σp
3 relative to the same world. However,

Baker and Selman [BS79] observed that their proof techniques do not apply in achieving
relativized separations at higher levels of the polynomial hierarchy because of certain
constraints in their counting argument. Thus, it required the development of entirely
different proof techniques for separating all the levels of the relativized polynomial hi-
erarchy. The landmark paper by Furst, Saxe, and Sipser [FSS84] established the close
connection between the relativization of the polynomial hierarchy and lower bounds for
small depth circuits computing certain functions. Techniques for proving such lower
bounds were developed in a series of papers [FSS84,Sip83,Yao85,Hås87], which were
motivated by questions about the relativized structure of the polynomial hierarchy.
Yao [Yao85] finally succeeded in separating the levels of the relativized polynomial
hierarchy by applying these new techniques. Håstad [Hås87] gave the most refined pre-
sentation of these techniques via the switching lemma. Even to date, Håstad’s switching
? Supported in part by the DFG under grants RO 1202/9-1 and RO 1202/9-3.



lemma [Hås87] is used as an indispensable tool to separate relativized hierarchies, com-
posed of classes stacked one on top of another. (See, for instance, [Hås87,Ko89,BU98,ST]
where the switching lemma is used as a strong tool in proving the feasibility of oracle
constructions.) A major contribution of our paper lies in demonstrating that certain
known oracle constructions involving the primitive levels of the unambiguous poly-
nomial hierarchy (UPH) and the promise unambiguous polynomial hierarchy (UPH),
i.e. UP and PPromise-UP

s , respectively, can be extended to oracle constructions that in-
volve arbitrary higher levels of UPH, purely by counting arguments alone. In fact, it
seems implausible to achieve these extensions by well-known techniques from circuit
complexity (e.g., the switching lemma [Hås87] and the polynomial method surveyed
in [Bei93,Reg97]).

The class UP is the unambiguous version of NP. UP has proved to be useful
in studying worst-case one-to-one one-way functions [Ko85,GS88] and some closure
properties of #P [OH93]. Lange and Rossmanith [LR94] generalized the notion of
unambiguity to higher levels of the polynomial hierarchy. They introduced the follow-
ing unambiguity based hierarchies: AUPH, UPH, and UPH. It is known that AUPH
⊆ UPH ⊆ UPH ⊆ UAP [LR94,CGRS04], where UAP (unambiguous alternating
polynomial-time) is the analog of UP for alternating polynomial-time Turing machines.
These hierarchies received renewed interests in some recent papers (see, for instance,
[ACRW04,CGRS04,ST,GT05]). Spakowski and Tripathi [ST], developing on circuit
complexity-theoretic proof techniques of Sheu and Long [SL96], and of Ko [Ko89],
obtained results on the relativized structure of these hierarchies. Spakowski and Tri-
pathi [ST] proved that there is a relativized world where these hierarchies are infinite.
They also proved that for each k ≥ 2, there is a relativized world where these hierar-
chies collapse so that they have exactly k distinct levels and their k’th levels collapse to
PSPACE. The present paper supplements this investigation with a focus on the struc-
ture of the unambiguous polynomial hierarchy.

1.1 Results

We prove a combinatorial lemma (Lemma 11) and demonstrate its usefulness in gener-
alizing known relativization results involving classes such as UP and Promise-UP to
new relativization results that involve arbitrary levels of the unambiguous polynomial
hierarchy (UPH).

In Subsection 4.1, we use Lemma 11 to show that certain inclusion relationships
between bounded ambiguity classes (UPO(1) and FewP) and the levels of the unam-
biguous polynomial hierarchy (UPH) do not relativize. Theorem 13 of this subsection
subsumes an oracle result of Beigel [Bei89] for any constant k ≥ 1 and Theorem 16
generalizes a result of Cai, Hemachandra, and Vyskoč [CHV93] from the case of k = 2
to the case of any arbitrary k ≥ 2; the parameter k is a part of these theorems.

Subsection 4.2 studies the issue of simulating nonadaptive access to UΣp
h, the h’th

level of the unambiguous polynomial hierarchy, by adaptive access to UΣp
h. Theo-

rem 18 of this subsection generalizes a result of Cai, Hemachandra, and Vyskoč [CHV92]
from the case of h = 1 to the case of any arbitrary h ≥ 1; the parameter h is a part of
the theorem. Lemma 11 is used as a key tool in proving Theorem 18.
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We improve upon Theorem 18 of Subsection 4.2 in Subsection 4.3. There are com-
pelling reasons for the transition from Subsection 4.2 to Subsection 4.3, which we elab-
orate in Subsection 4.3. Theorem 20 in that subsection not only resolves a question
posed by Cai, Hemachandra, and Vyskoč [CHV93], but also generalizes one of their
results. In particular, Theorem 20 holds for any total, polynomial-time computable and
polynomially bounded function k(·) and arbitrary h ≥ 1, while a similar result of Cai,
Hemachandra, and Vyskoč [CHV93] holds only for any arbitrary constant k and h = 1;
the parameters k and h are parts of Theorem 20. Lemma 11 is one of the ingredients in
the proof of this theorem.

Subsection 4.4 investigates the complimentary issue of simulating adaptive access
to UΣp

h by nonadaptive access to UΣp
h. Theorem 21 of this subsection generalizes a

result of Cai, Hemachandra, and Vyskoč [CHV93] from the case of h = 1 to the case of
any arbitrary constant h ≥ 1. Again, Lemma 11 is useful in making this generalization
possible.

In Subsection 4.5, we study the notion of one-sided helping introduced by Ko [Ko87].
Theorem 22 of this subsection generalizes and improves one of the results of Cai,
Hemachandra, and Vyskoč [CHV93].

Finally, in Section 5 we consider the possibility of imposing more stringent re-
striction in the statement of Lemma 11. The investigation in this subsection leads to a
generic collapse of UΣp

k to P, for each k ≥ 1, under the assumption P = NP. This
generalizes a result of Blum and Impagliazzo [BI87] from the case of k = 1 to the case
of any arbitrary k ≥ 1.

Due to the space limit, all proofs are omitted. They will appear in the full version of
the paper.

2 Preliminaries

2.1 Notations

Let N+ denote the set of positive integers. Σ denotes the alphabet {0, 1}. For every
oracle NPTM N , oracle A, and string x ∈ Σ∗, we use the shorthand NA(x) for “the
computation tree of N with oracle A on input x.” We fix a standard, polynomial-time
computable and invertible, one-to-one, multiarity pairing function 〈., . . . , .〉 throughout
the paper. Let ◦ denote the composition operator on functions. For any polynomial p(.)
and integer i ≥ 1, let (p◦)i(·) denote p ◦ p ◦ · · · ◦ p(·), i.e. the polynomial obtained by
i compositions of p.

For any complexity class C and for any natural notion of polynomial-time reducibil-
ity r (e.g., r ∈ {m, dtt, tt, k-tt, T, k-T, b}), let Rp

r(C) denote the closure of C under r.
That is, Rp

r(C) =df {L | (∃L′ ∈ C)[L ≤p
r L′]}. We refer the reader to any standard

textbook in complexity theory (e.g. [BC93,HO02,Pap94]) for complexity classes and
reductions not defined in this paper.

We introduce a notion called a Σk(A)-system. This notion is useful for concisely
representing the computation of a stack of oracle NPTMs.
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Definition 1. 1. For any k ∈ N+ and A ⊆ Σ∗, we call a tuple [A; N1, N2, . . . , Nk],
where A is an oracle and N1, N2, . . . , Nk are oracle nondeterministic Turing ma-
chines, a Σk(A)-system. The computation of a Σk(A)-system [A; N1, N2, . . . , Nk]
on input x, denoted by [A; N1, N2, . . . , Nk](x), is defined as follows:

– For k = 1, [A; N1](x) =df NA
1 (x), and

– for k > 1, [A; N1, N2, . . . , Nk](x) =df N
L(N ···

L(NA
k )

2 )
1 (x).

2. The language accepted by a Σk(A)-system, denoted by L[A;N1, N2, . . . , Nk], is
defined inductively as follows:

L[A; N1, N2, . . . , Nk] =df

{
L(NA

1 ) if k = 1, and
L(NL[A;N2,N3,...,Nk]

1 ) if k > 1.

We capture the notion of unambiguity in Σk(A)-systems in the following definition.

Definition 2. 1. We say that a Σk(A)-system [A;N1, N2, . . . , Nk] is unambiguous if
for every 1 ≤ i ≤ k and for every x ∈ Σ∗, [A;Ni, Ni+1, . . . , Nk](x) has at most
one accepting path.

2. For any Σk(A)-system [A; N1, N2, . . . , Nk], we define

Lunambiguous[A; N1, N2, . . . , Nk] =





L[A; N1, N2, . . . , Nk] if [A; N1, N2, . . . , Nk] is
unambiguous,

undefined otherwise.

Roughly speaking, a property of an oracle machine is called robust if the machine re-
tains that property with respect to every oracle. Below we define the property of robust
unambiguity for a Σk(A)-system.

Definition 3. We say that a Σk(A)-system [A; N1, N2, . . . , Nk] is robustly unambigu-
ous if for every set B, the Σk(A⊕B)-system [A⊕B;N1, N2, . . . , Nk] is unambiguous.

2.2 Promise Problems and Smart Reductions

Even, Selman, and Yacobi [ESY84] introduced and studied the notion of promise prob-
lems. Promise problems are generalizations of decision problems in that the set of Yes-
instances and the set of No-instances must partition the set of all instances in a deci-
sion problem, whereas this is not necessarily the case with promise problems. Over the
years, the notion of promise problems has proved to be useful in complexity theory.
(See [Gol05] for a nice survey on some such applications of promise problems.)

Definition 4 (Based on [Gol05]; cf. [ESY84]). A promise problem Π = (Πyes,Πno)
is defined in terms of disjoint sets Πyes, Πno ⊆ Σ∗. The set Πyes is called the set of
Yes-instances, the set Πno is called the set of No-instances, and the set Πyes ∪ Πno is
called the promise set.

Definition 5. A set L polynomial-time smart Turing reduces to a promise problem Π =
(Πyes,Πno), denoted by L ≤p

s,T Π or L ∈ PΠ
s , if there is a deterministic polynomial-

time Turing machine M such that for all x ∈ Σ∗,
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1. x ∈ L ⇐⇒ MΠ(x) accepts, and
2. if MΠ(x) asks a query y to Π , then y ∈ Πyes ∪Πno.

If on all input x ∈ Σ∗, the querying machine M asks at most k queries, for some
constant k ∈ N+, then we say that L polynomial-time smart k-Turing reduces to Π and
write L ≤p

s,k-T Π or L ∈ PΠ[k]
s .

The following definitions are standard.

Definition 6. Let Π be any promise problem. Rp
s,T (Π) is the class of all sets L such

that L ≤p
s,T Π; for all k ∈ N+, Rp

s,k-T (Π) is the class of all sets L such that L ≤p
s,k-T

Π; Rp
s,b(Π) is the class of all sets L for which there exists some k ∈ N+ such that

L ≤p
s,k-T Π .

Definition 7. For any class of promise problems C and any reduction r ∈ {T, k-T, b},
we define Rp

s,r(C) =df

⋃
Π∈C Rp

s,r(Π).

We will study the computational power of smart Turing reductions to a particular class
of promise problems, namely the class Promise-UP, which is defined as follows.

Definition 8. Promise-UP is the class of all promise problems Π = (Πyes,Πno) for
which there exists a nondeterministic polynomial-time Turing machine N such that for
all x ∈ Σ∗, x ∈ Πyes ⇐⇒ #accN (x) = 1, and x ∈ Πno ⇐⇒ #accN (x) = 0.

The class PPromise-UP
s of sets that polynomial-time smart Turing reduce to Promise-UP

is a prominent class that behaves remarkably differently than the related class PUP.
While PPromise-UP

s is known to contain the class FewP and the graph isomorphism
problem [AK02], similar results for the case of PUP are unknown.3

2.3 Unambiguity Based Hierarchies

Niedermeier and Rossmanith [NR98] observed that the notion of unambiguity in NPTMs
can be generalized in three, perhaps distinct, ways to define unambiguity based hierar-
chies.

Definition 9 (Unambiguity Based Hierarchies [LR94,NR98]).

1. The alternating unambiguous polynomial hierarchy AUPH =df

⋃
k≥0 AUΣp

k =⋃
k≥0 AUΠp

k , where AUΣp
0 = AUΠp

0 =df P and for every k ≥ 1, AUΣp
k =

∃! ·AUΠp
k−1 and AUΠp

k =df ∀! ·AUΣp
k−1. 4

3 Arvind and Kurur [AK02] showed that the graph isomorphism problem (GI) belongs to
the class SPP. Crasmaru et al. [CGRS04] observed that the proof of classifying GI into
SPP, as given by Arvind and Kurur [AK02], actually yields a somewhat improved classifi-
cation for GI. Their observation was that the graph isomorphism problem in fact belongs to
Rp

s,T (Promise-UP), a subclass of SPP.
4 For any arbitrary class C, ∃! · C is the class of all sets L for which there exists a polynomial
p(·) and a set L′ ∈ C such that for all x ∈ Σ∗, if x ∈ L then there exists a unique y ∈ Σp(|x|)

such that 〈x, y〉 ∈ L′, and if x 6∈ L then for all y ∈ Σp(|x|), 〈x, y〉 6∈ L′. Likewise, ∀! · C is
the class of all sets L for which there exists a polynomial p(·) and a set L′ ∈ C such that for
all x ∈ Σ∗, if x ∈ L then for all y ∈ Σp(|x|), 〈x, y〉 ∈ L′, and if x 6∈ L then there exists a
unique y ∈ Σp(|x|) such that 〈x, y〉 6∈ L′.
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2. The unambiguous polynomial hierarchy is UPH =df

⋃
k≥0 UΣp

k , where UΣp
0 =df

P and for every k ≥ 1, UΣp
k =df UPUΣp

k−1 . For each k ≥ 0, the class UΠp
k =df

coUΣp
k .

3. The promise unambiguous polynomial hierarchy is UPH =df

⋃
k≥0 UΣp

k , where
UΣp

0 =df P, UΣp
1 =df UP, and for every k ≥ 2, UΣp

k is the class of all sets L ∈

Σp
k such that for some oracle NPTMs N1, N2, . . ., Nk, L = L(NL(N ···

L(Nk)

2 )
1 ),

and for every x ∈ Σ∗ and for every 1 ≤ i ≤ k − 1, N
L(N ···

L(Nk)

2 )
1 (x) has at most

one accepting path and if Ni asks a query w to its oracle L(N ···
L(Nk)

i+1 ) during the

computation of N ···
L(Nk)

1 (x), then N ···
L(Nk)

i+1 (w) has at most one accepting path.
For each k ≥ 0, the class UΠp

k =df coUΣp
k .

The following relationships among these complexity classes and other important classes
are known.

Theorem 10. 1. For all k ≥ 0, AUΣp
k ⊆ UΣp

k ⊆ UΣp
k ⊆ Σp

k [LR94].
2. For all k ≥ 1, UP≤k ⊆ AUΣp

k ⊆ UΣp
k ⊆ UΣp

k ⊆ UAP ⊆ SPP ([LR94]
+ [NR98] + [CGRS04]).

3 Main Lemma

Our main lemma is Lemma 11, which we will use throughout this paper for generaliz-
ing known oracle constructions involving classes such as UP and Promise-UP to new
oracle constructions involving arbitrary levels of the UPH. Roughly, Lemma 11 states
the computational limitations of a Σk(O)-system, for any arbitrary k ≥ 1, under certain
weak conditions.

Lemma 11. Fix a Σk(O)-system [O; N1, N2, . . . , Nk], a string x ∈ Σ∗, and a set
U ⊆ Σ∗ such that O ∩ U = ∅. Let r(.) be a polynomial that bounds the running time
of each of the machines N1, N2, . . . , Nk. Then the following holds:

1. Suppose [O; N1, N2, . . . , Nk](x) accepts and for every A ⊆ U with ||A|| ≤ k,
[O ∪A;N1, N2, . . . , Nk] is unambiguous. Let

C = {α ∈ U | [O ∪ {α};N1, N2, . . . , Nk](x) rejects}.

Then ||C|| ≤ 5k ·∏k
i=1(r◦)i(|x|).

2. Suppose [O; N1, N2, . . . , Nk](x) rejects and for every A ⊆ U with ||A|| ≤ k + 1,
[O ∪A;N1, N2, . . . , Nk] is unambiguous. Let

C = {α ∈ U | [O ∪ {α}; N1, N2, . . . , Nk](x) accepts}.

Then ||C|| ≤ 5k ·∏k
i=1(r◦)i(|x|).
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Any oracle machine can be interpreted as a function mapping a set of strings to an-
other set of strings as follows: A machine N maps any set O to the set L(NO). There-
fore it makes sense to consider the function L : 2Σ∗ → 2Σ∗ defined by a Σk(·)-
system [·; N1, N2, . . . , Nk]. (That is, define L so that for every O ⊆ Σ∗, L(O) =df

L[O;N1, N2, . . . , Nk].) We introduce a convenient notion called “(h, t)-ambiguity” for
(partial) functions such as the ones defined by Σk(·)-systems.

Definition 12. For any h ∈ N+ and polynomial t(·), we call a partial function L :
2Σ∗ → 2Σ∗ (h, t)-ambiguous if for every O, U ⊆ Σ∗ with O ∩ U = ∅, one of the
following is true:

1. For some A ⊆ U with ||A|| ≤ h, L(O ∪A) is undefined, or
2. for every w ∈ Σ∗,

||{α ∈ U | w ∈ L(O ∪ {α}) ⇐⇒ w /∈ L(O)}|| ≤ t(|w|).

The machine N1 in a Σk(O)-system [O; N1, N2, . . . , Nk] has oracle access to the set
L[O;N2, N3, . . . , Nk]. In many of our proofs, we first apply Lemma 11 to prove that
under certain conditions the Σk−1(·)-subsystem [·; N2, N3, . . . , Nk] defines a (k, t)-
ambiguous function L′, where t is some polynomial and for any O ⊆ Σ∗, L′(O) is
defined to be L[O; N2, N3, . . . , Nk]. Then we can assume that the machine N1 has
oracle access to the set L(O), where L can be any arbitrary (k, t)-ambiguous function,
rather than to the set L[O; N2, N3, . . . , Nk]. This works because the (k, t)-ambiguity
of the function L′ defined by the Σk−1(·)-subsystem [·; N2, N3, . . . , Nk] is the only
property of L′ that is needed in the proofs. This approach greatly simplifies our proof
arguments since we will not need to deal with stacks of oracle NPTMs.

4 Applications

4.1 Comparing Bounded Ambiguity Classes with the Levels of UPH

We compare nondeterministic polynomial-time complexity classes (UPO(1) and FewP),
which are based on Turing machines having restrictions on the number of accepting
paths, with levels of the unambiguous polynomial hierarchy (UPH). It is known that
UP≤k ⊆ UΣp

k in all relativized worlds. Theorem 13 shows the optimality of this inclu-
sion with respect to relativizable proof techniques. Beigel [Bei89] constructed an oracle
relative to which UPk(n)+1 6⊆ UPk(n), for every polynomial k(n) ≥ 2. Theorem 13
subsumes this oracle result of Beigel [Bei89] for any constant k.

By a slight modification of the oracle construction in Theorem 13, we can show that
the second level of the promise unambiguous hierarchy UΣp

2 is not contained in the
unambiguous polynomial hierarchy UPH. Results on relativized separations of levels
of some unambiguity based hierarchy from another hierarchy have been investigated
earlier. Rossmanith (see [NR98]) gave a relativized separation of AUΣp

k from UΣp
k ,

for any k ≥ 2. Spakowski and Tripathi [ST] constructed an oracle relative to which
AUΣp

k 6⊆ Πp
k , for any k ≥ 1. Our relativized separation of UΣp

2 from UPH does not
seem to be implied from these previous results in any obvious way.

7



Theorem 13. (∀k ≥ 1)(∃A)[UPA≤k+1 6⊆ UΣp,A
k ].

A straightforward adaptation of the proof technique in Theorem 13 allows to separate
the second level, UΣp

2 , of the promise unambiguous polynomial hierarchy from the
unambiguous polynomial hierarchy, UPH, in some relativized world. We obtain this
relativized separation via Theorem 14, where a subclass, namely FewPA, of UΣp,A

2 is
separated from UPHA.

Theorem 14. (∃A)
[
FewPA * UPHA

]
.

Corollary 15. There is a relativized world where UΣp
2 is not contained in UPH.

Cai, Hemachandra, and Vyskoč [CHV93] proved that smart 2-Turing access to Promise-UP
cannot be subsumed by coNPUP∪NPUP in some relativized world. As a consequence,
they showed that there is a relativized world where smart bounded adaptive reductions
to Promise-UP and smart nonadaptive reductions to Promise-UP are nonequivalent, a
characteristic that stands in contrast with the cases of UP and NP. (Both UP and NP
are known to have equivalence between bounded adaptive reductions and nonadaptive
reductions in all relativized worlds (see [CHV93,Wag90].) We generalize their result
in Theorem 16, where we prove that smart k-Turing access to Promise-UP cannot be
relativizably contained in coNPUΣp,A

k−1 ∪NPUΣp,A
k−1 , for any k ≥ 2.

Theorem 16. (∀k ≥ 2)(∃A)
[
Rp

s,k-T (Promise-UPA) * coNPUΣp,A
k−1 ∪NPUΣp,A

k−1

]
.

4.2 Simulating Nonadaptive Access by Adaptive Access (Non-promise Case)

It is known that adaptive Turing access to NP is exponentially more powerful compared
to nonadaptive Turing access to NP. That is, Rp

(2k−1)-tt(NP) ⊆ Rp
k-T (NP) [Bei91]

and this inclusion relativizes. However, for the case of unambiguous nondeterministic
computation such a relationship between nonadaptive access and adaptive access is
not known. Cai, Hemachandra, and Vyskoč [CHV92] showed that even proving the
superiority of adaptive Turing access over nonadaptive Turing access with one single
query more might be nontrivial for unambiguous nondeterministic computation:

Theorem 17 ([CHV92]). For any total, polynomial-time computable and polynomially
bounded function k(·), there exists an oracle A such that

Rp
(k(n)+1)-tt(UPA) 6⊆ Rp,A

k(n)-T (UPA).

In the next theorem, we generalize this result to the higher levels of the unambiguous
polynomial hierarchy UPH.

Theorem 18. For any total, polynomial-time computable and polynomially bounded
function k(·), and h ∈ N+, there exists an oracle A such that

Rp
(k(n)+1)-dtt(UPA≤h) 6⊆ Rp,A

k(n)-T (UΣp,A
h ),

and hence Rp
(k(n)+1)-dtt(UΣp,A

h ) 6⊆ Rp,A
k(n)-T (UΣp,A

h ).
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4.3 Simulating Nonadaptive Access by Adaptive Access (Promise Case)

Cai, Hemachandra, and Vyskoč [CHV93] proved the following partial improvement of
their Theorem 17.

Theorem 19 ([CHV93]). For any constant k, there exists an oracle A such that

Rp
(k+1)-tt(UPA) 6⊆ Rp,A

s,k-T (Promise-UPA).

Note that we have replaced “UP” by “Promise-UP” on the righthand side of the non-
inclusion relation of Theorem 17. This is a significant improvement for the following
reason. The computational powers of Rp

b (UP) and Rp
s,b(Promise-UP) (the bounded

Turing closure of UP and the bounded smart Turing closure of Promise-UP, respec-
tively) are known to be remarkably different in certain relativized worlds. While it is
easy to show that UP≤k is robustly (i.e., for every oracle) contained in PPromise-UP

s,k-T
for any k ≥ 1, we have shown in Theorem 13 that for no k ≥ 2, UP≤k is robustly
contained in PUP. Therefore, it is not immediately clear whether this improvement is
impossible, i.e. whether Rp

(k+1)-tt(UP) ⊆ Rp
s,k-T (Promise-UP) holds relative to all

oracles.
However, Cai, Hemachandra, and Vyskoč [CHV93] could achieve this improvement

only by paying a heavy price. In their own words:

In our earlier version dealing with UPA, the constant k can be replaced by
any arbitrary polynomial-time computable function f(n) with polynomially
bounded value. It remains open whether the claim of the current strong version
of Theorem 3.1 can be similarly generalized to non-constant access.

We resolve this open question. We show that Theorem 19 holds with constant k replaced
by any total, polynomial-time computable and polynomially bounded function k(·).
This result is subsumed as the special case h = 1 of our main result, Theorem 20, of
this subsection.

Theorem 20. For any total, polynomial-time computable and polynomially bounded
function k(·), and h ∈ N+, there exists an oracle A such that

Rp
(k(n)+1)-dtt(UPA≤h) 6⊆ Rp,A

s,k(n)-T (Promise-UPUΣp,A
h−1),

and hence Rp
(k(n)+1)-dtt(UΣp,A

h ) 6⊆ Rp,A
s,k(n)-T (Promise-UPUΣp,A

h−1).

Theorem 20 is furthermore a generalization of Theorem 19 to higher levels of the un-
ambiguous polynomial hierarchy.

4.4 Simulating Adaptive Access by Nonadaptive Access

Sections 4.2 and 4.3 studied the limitations of simulating nonadaptive queries to UP≤h

by adaptive queries to UΣp
h in relativized settings. This section complements these in-

vestigations. In particular, Theorem 21 of this section shows that in a certain relativized
world, it is impossible to simulate adaptive k-Turing access to UP≤h by nonadaptive
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(2k−2)-tt access to UΣp
h. This also implies optimality of robustly (i.e., for every oracle)

simulating adaptive k-Turing accesses by nonadaptive (2k − 1)-tt accesses to classes
such as UP≤h and UΣp

h, since for any class C, we can trivially, via brute-force method,
simulate adaptive k-Turing reduction to the class by nonadaptive (2k − 1)-tt reduction
to the same class.

Theorem 21 generalizes a result of Cai, Hemachandra, and Vyskoč [CHV93] from
the case of h = 1 to the case of arbitrary constant h ≥ 1.

Theorem 21. For any constants k, h ∈ N+, there exists an oracle A such that

Rp
k-T (UPA≤h) * Rp,A

(2k−2)-tt(NPUΣp,A
h−1),

and hence Rp
k-T (UPA≤h) * Rp,A

(2k−2)-tt(UΣp,A
h ).

4.5 Fault-tolerant Access

Ko [Ko87] introduced the notion of one-sided helping by a set A in the computation of
a set B. A set A is said to provide one-sided help to a set B if there is a deterministic
oracle Turing machine M computing B and a polynomial p(·) such that (a) on any input
x ∈ B, MA(x) accepts in time p(|x|), and (b) for all inputs y and for all oracles C,
MC(y) accepts (though perhaps MC(y) may take a longer time than p(|y|)) if and only
if y ∈ B. Since the machine M , accepting the set B, is capable of answering correctly
on faulty oracles, i.e. oracles C different from the oracle A that provides one-sided help
to B, the oracle access mechanism is termed fault-tolerant (see [CHV93]). Ko [Ko87]
defined P1-help(A) to be the class of all sets B that can be one-sided helped by A.

We generalize and improve the relativized separation of P1-help(UP) from UP by
Cai, Hemachandra, and Vyskoč [CHV93] in Theorem 22.

Theorem 22. For all h ≥ 1, there exists an oracle A such that

P1-help(UPA≤h) * Rp,A
s,b (Promise-UPUΣp,A

h−1).

5 Robust Unambiguity

So far we looked at several applications of Lemma 11 in constructing relativized worlds
involving arbitrary levels of the unambiguous polynomial hierarchy. Lemma 11, in
essence, shows the computational limitations of a Σk(A)-system under certain weak
restrictions. What if we impose a more stringent restriction on a Σk(A)-system? This
question is relevant to our next investigation.

We study the power of robustly unambiguous Σk(A)-system in Theorem 23. (Recall
from Section 2, a Σk(A)-system [A; N1, N2, . . . , Nk] is robustly unambiguous if for
every oracle B, [A ⊕ B;N1, N2, . . . , Nk] is unambiguous.) Theorem 23 illustrates the
following fact: A robustly unambiguous Σk(A)-system is so weak that given any oracle
set B and input x, the hierarchical nondeterministic polynomial-time oracle access to
B in [A⊕B; N1, N2, . . . , Nk](x) can be stripped down and turned into a deterministic
polynomial-time oracle access (to B) without changing the acceptance behavior of the
Σk(A⊕B)-system on input x. As a corollary, we obtain a generic collapse of UΣp

k to
P, for each k ≥ 1, assuming P = NP.
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Theorem 23. For all A ⊆ Σ∗ and k ≥ 1, if the Σk(A)-system [A;N1, N2, . . . , Nk] is
robustly unambiguous, then for every B ⊆ Σ∗,

L[A⊕B; N1, N2, . . . , Nk] ∈ PΣp,A
k ⊕B .

Corollary 24. If P = NP, then relative to a (Cohen) generic G, P = UΣp
k for all

k ≥ 1.

The last corollary generalizes a result of Blum and Impagliazzo: If P = NP, then
relative to a (Cohen) generic G, PG = UPG [BI87]. Fortnow and Yamakami [FY96]
demonstrated that similar collapses relative to any (Cohen) generic G do not occur at
higher levels of the polynomial hierarchy. They proved that for each k ≥ 2, there exists
a tally set in UPΣp,G

k−1,G ∩Πp,G
k but not in PΣp,G

k−1,G. Thus Corollary 24 contrasts with
this generic separation by Fortnow and Yamakami.
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