
Bribery Bribery Scenarios

The Simplest Form of Bribery

Bribery shares with manipulation the feature that preference lists
are being changed, and with electoral control the feature that there
is an external actor, here the briber, conducting these changes.

There are different possibilities as to what kind of changes the
briber is allowed to conduct in the various bribery scenarios.

We start with the constructive case where, in the simplest variant
of bribery, the briber’s goal is to make a distinguished candidate a
winner of a given election by changing at most k votes.
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Bribery Bribery Scenarios

The Simplest Form of Bribery

Definition (Faliszewski, Hemaspaandra, and Hemaspaandra (2009))
Let E be some voting system.

Name: E-BRIBERY.

Given: An election (C,V ),
a distinguished candidate c ∈ C, and
a nonnegative integer k ≤ ‖V‖.

Question: Is it possible to make c an E winner of the election that
results from changing no more than k votes in V?

How Hard Is Bribery in Elections? P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. Journal of Artificial Intelligence
Research 35:485–532, 2009

Llull and Copeland Voting Computationally Resist Bribery and Constructive Control, P. Faliszewski, E. Hemaspaandra,
L. Hemaspaandra, and J. Rothe. Journal of Artificial Intelligence Research 35:275–341, 2009
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Bribery Bribery Scenarios

The Simplest Form of Bribery

Remark:

If k is sufficiently large (e.g., if k = ‖V‖), the briber will always be
successful, at least for each reasonable voting system that
satisfies citizens’ sovereignty.

“Immunity” as in control scenarios does not apply here.

However, computational barriers—such as NP-hardness of the
BRIBERY problem for certain voting systems—might still be useful
to protect elections against bribery attacks.

The simplest variant of bribery, as defined above, is closely
related to (coalitional, unweighted) manipulation, as in both cases
votes are being modified during the attack.
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Bribery Bribery Scenarios

The Simplest Form of Bribery

Remark:

A difference is that it is not known right from the start which votes
to change: The briber has to thoughtfully pick the “right” votes to
change so as to achieve his goal of making his favorite candidate
a winner.

In that sense, bribery is also somewhat akin to control where the
chair, for example, has to pick the right votes to add or to delete.

A difference between bribery and control, however, is that the
votes can be modified in a bribery, yet not in a control scenario.

“Bribery” suggests settings where the briber dishonestly tampers
with election results, but it can also capture such scenarios as
political campaign management and election fraud detection.
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Bribery Bribery Scenarios

Priced Bribery

In a natural extension of the original bribery problem, we assume that

a certain budget is available to the briber and

each voter is willing to change her vote only in exchange for a
certain price.

Example

Anna, Belle, and Chris have
the following preferences
about what to do together:

Anna

Belle

Chris
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Bribery Bribery Scenarios

Priced Bribery

Example (continued)
The owner of the miniature golf facility, Mr. Slugger, happens to come
by and asks, “By which rule are you going to vote, kids?”

“Today by a quite simple one,” Chris replies, “the plurality rule.”

Mr. Slugger takes him aside. “If you vote for miniature golf,” he
confidentially whispers to him, “I will give you a brand-new golf club!
Whatcha think? How cool is that?”

Chris thinks.
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Bribery Bribery Scenarios

Priced Bribery

Example (continued)
“Two!” he eventually demands. “I want to have two clubs. Otherwise, I
won’t change my vote. And I want to have a golf ball in addition!”

“Are you out of your mind, that’s way too expensive!” Mr. Slugger
responds, disappointed. “That would totally exceed my budget!”

Chris turns around with a shrug and goes back to the girls to start with
them for their bicycle trip, while Mr. Slugger is speculating whether he
may have had more luck with making his offer to Anna.

In the priced bribery problem, every voter specifies not only a vote but
also a price for which he would be willing to change it. Can the briber
make a desired candidate win without exceeding the given budget?
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Bribery Bribery Scenarios

Priced Bribery

However, it is well possible that a voter

might be willing to change her vote in one way for a certain price,

but refuses to change it in another way for the same price.

For example, it might be that in an election with ten candidates, a voter
would agree to swap the candidates in the fifth and sixth positions of
her vote for 10 bucks, but would not agree to put her most despised
candidate on top for the same price.

For such a severe change in her preferences, she perhaps would
demand 100 bucks, and even 150 bucks to actually swap the
candidates in the first and last positions of her vote.
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Bribery Bribery Scenarios

Priced Bribery

Therefore, it would only be reasonable to assume that the price
function of a voter depends on the vote the briber has in mind for this
voter when bribing her.

However, there are m! possible linear rankings for m candidates.

Thus, if we were to represent price functions by specifying a price for
each possible vote, we would get into a hell of a mess algorithmically.

That is why one usually focuses on price functions that can be
represented succinctly.
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Bribery Bribery Scenarios

Priced Bribery

Most common are the following families of price functions:
1 discrete price functions consist of 0-1-valued functions:

Changing a vote costs 1, and
leaving it unchanged costs 0.

2 $discrete price functions consist of two-valued functions:
Changing a vote costs c, where c is a positive integer (and may be
a different integer for each voter), and
leaving it unchanged costs 0.

3 In swap-bribery price functions, for each two adjacent candidates
c,d ∈ C, there is a cost that a voter demands for swapping c and
d in her vote, and the cost of changing this (original) vote into the
vote desired by the briber is the sum of the single costs of swaps
needed to transform the original vote into the briber’s target vote.
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Bribery Bribery Scenarios

Priced Bribery

More formally, for a preference profile (�1, . . . ,�n), we say that the
price functions are

1 discrete if for each πi , 1 ≤ i ≤ n, and for each preference order �,
it holds that πi(�) = 0 if � = �i , and πi(�) = 1 otherwise.

2 $discrete if for each πi , 1 ≤ i ≤ n, there is an integer ci such that
for each preference order �, it holds that πi(�) = 0 if � = �i , and
πi(�) = ci otherwise. (Each voter can have a different value ci .)

3 swap-bribery price functions if for each πi , 1 ≤ i ≤ n, and for each
two candidates x , y ∈ C, there is a value c{x ,y}

i such that for each
preference order �, πi(�) is the sum of the values c{x ,y}

i such that
� ranks x and y in the opposite order than �i does.
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Bribery Bribery Scenarios

Priced Bribery

Definition (Faliszewski, Hemaspaandra, and Hemaspaandra (2009))
Let E be some voting system.

Name: E-$BRIBERY.

Given: An election (C,V ) with V = (�1, . . . ,�n),
a distinguished candidate c ∈ C, and
a budget B ∈ N, and
a collection of price functions Π = (π1, . . . , πn), where
πi(�) is the cost of convincing the i th voter to cast
vote � over C (we require πi(�i) = 0), 1 ≤ i ≤ n.

Question: Does there exist a preference profile V ′ = (�′
1, . . . ,�′

n)

such that (i) c is an E winner of election (C,V ′), and
(ii)
∑n

i=1 πi(�′
i) ≤ B?
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Bribery Bribery Scenarios

Priced Bribery

Example (bribery in a Borda election)

points: 5 4 3 2 1 0

voter 1: a c b f e d

voter 2: b a f c e d

voter 3: c d b a f e

voter 4: e d b f c a

voter 5: e d c b f a

Borda
winner: b with score 16

Suppose that each voter has the same
unit price, and that the goal is to en-
sure the victory of f through bribery.

score(b) = 16 and score(f ) = 9.

Bribe voter 3 to cast vote f d a c e b.

Then b, e, and f have score 13 each,
and a, c, and d have score 12 each.

This means that there is a successful
bribery with cost one.
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Bribery Bribery Scenarios

Priced Bribery

Example (priced bribery in a Borda election)

points: 5 4 3 2 1 0

voter 1: a c b f e d

voter 2: b a f c e d

voter 3: c d b a f e

voter 4: e d b f c a

voter 5: e d c b f a

Borda
winner: b with score 16

On the other hand,

if voters 1 and 5 had cost one and

the remaining voters had cost
three each,

then it would be better to bribe voters
1 and 5 to shift f to the top positions in
their votes.
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Bribery Bribery Scenarios

Bribery, Priced Bribery, and Swap Bribery

P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra, How Hard Is Bribery
in Elections? Journal of Artificial Intelligence Research 35:485–532, 2009

P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe, Llull and
Copeland Voting Computationally Resist Bribery and Constructive Control.
Journal of Artificial Intelligence Research 35:275–341, 2009

focused largely on
BRIBERY based on discrete price functions and
$BRIBERY based on $discrete price functions.

SWAP-BRIBERY based on swap-bribery price functions is due to
P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe, Llull and
Copeland Voting Computationally Resist Bribery and Constructive Control.
Journal of Artificial Intelligence Research 35:275–341, 2009

and was later carefully studied by
E. Elkind, P. Faliszewski, and A. Slinko, Swap Bribery. Proc. 2nd International
Symposium on Algorithmic Game Theory, pp. 299–310, 2009
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Bribery Bribery Scenarios

Further Variants of Bribery

In the same way but for weighted elections, we can define
WEIGHTED-BRIBERY,
WEIGHTED-$BRIBERY, and
WEIGHTED-SWAP-BRIBERY.

SHIFT-BRIBERY is the special form of SWAP-BRIBERY where only
the distinguished candidate may be swapped.

In NEGATIVE-BRIBERY, the briber (wishing to be inconspicuous
and unsuspicious) is not allowed to make the distinguished
candidate a bribed voter’s top choice.

All these constructive variants of bribery also have destructive
analogues.
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Bribery Bribery Scenarios

Swap Bribery

Example (swap bribery in a Borda election)

points: 5 4 3 2 1 0

voter 1: a c b f e d

voter 2: b a f c e d

voter 3: c d b a f e

voter 4: e d b f c a

voter 5: e d c b f a

Borda
winner: b with score 16

Suppose we want to ensure victory of
candidate d through swap bribery.

Each swap has unit cost.

b c d e a f

score 16 15 12 12 11 9

Bribe voter 1 to swap b with f , then
with e, finally with d to get: a c f e d b.
Then b loses three points and d , e,
and f gain one point each:

b c d e a f

score 13 15 13 13 11 10
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Bribery Bribery Scenarios

Swap Bribery

Example (swap bribery in a Borda election)

points: 5 4 3 2 1 0

voter 1: a c f e d b

voter 2: b a f c e d

voter 3: c d b a f e

voter 4: e d b f c a

voter 5: e d c b f a

Borda
winner: b with score 16

But c still has 15 points:
b c d e a f

score 13 15 13 13 11 10

So, next bribe voter 3 to swap c and d
to get d c b a f e (so c and d win):

b c d e a f

score 13 14 14 13 11 10

This is a successful swap bribery of
cost four (and, indeed, the cheapest
successful swap bribery for d here).
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Bribery Bribery for Plurality

Bribery for Plurality

Theorem

For plurality voting it holds that:

1 BRIBERY, WEIGHTED-BRIBERY, and $BRIBERY are each in P, but
WEIGHTED-$BRIBERY is NP-complete, and

2 SWAP-BRIBERY is in P.

Proof Sketch. It is easy to see that plurality-BRIBERY can be solved
by (repeating in a loop) the following greedy algorithm:

If the preferred candidate is not a winner already,
then pick one of the current winners and bribe one of
her voters to vote for the preferred candidate.
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Bribery Bribery for Plurality

Weighted Bribery for Plurality

Unfortunately, such greedy approaches do not work for
plurality-WEIGHTED-BRIBERY. For example, consider an algorithm that
works in iterations and in each iteration bribes the heaviest voter
among those that vote for one of the current winners.

Counterexample:
Let (C,V ) be an election where C = {p,a,b, c} and where we have

9 weight-1 voters voting for a,

a single weight-5 voter voting for b, and

a single weight-5 voter voting for c.

Clearly, it suffices to bribe the two weight-5 voters, but the heuristic
would bribe five voters with weight 1 each.
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Bribery Bribery for Plurality

Weighted Bribery for Plurality

On the other hand, bribing the heaviest voter first does not always
work either.

Counterexample: C = {p,a,b} with

p receiving no votes at first,

a receiving three weight-2 votes and one weight-1 vote, and

b receiving two weight-3 votes.

To make p a winner, it suffices to bribe one weight-2 vote and one
weight-3 vote, but the heuristic bribes three votes.

Nonetheless, a combination of these two heuristics does yield a
polynomial-time algorithm for plurality-WEIGHTED-BRIBERY.
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Bribery Bribery for Plurality

Weighted Bribery for Plurality

Let us consider some weighted plurality election and let us say that
somehow we know that after an optimal bribery, our preferred
candidate p has at least T points.

Naturally, all the other candidates have to end up with at most T points
(and at least one of them will get exactly T points).

Thus, for each candidate a that has more than T points, we should
keep bribing its heaviest voters until its score decreases to at most T .

This corresponds to running the “bribe the current winner’s heaviest
voter” heuristic.
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Bribery Bribery for Plurality

Weighted Bribery for Plurality

If, after bringing each candidate to at most T points, the preferred
candidate still does not have T points, we bribe the globally heaviest
voters to vote for the preferred candidate.

We do so until the preferred candidate reaches at least T points (this
corresponds to running the “bribe the heaviest voter” heuristic).

If we chose the value of T correctly, by this point we would have found
an optimal bribery strategy.

But how do we choose T ?

If the weights were encoded in unary, we could try all possible values,
but doing so for binary-encoded weights would give an
exponential-time algorithm.
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Bribery Bribery for Plurality

Weighted Bribery for Plurality

Fortunately, we can make the following observation:

For each candidate a, we bribe a’s voters in the order of their
nonincreasing weights.

Thus, after executing the above-described strategy for some
optimal value T , a’s score is in the set

{a’s original score,
a’s score without its heaviest voter,
a’s score without its two heaviest voters, . . .}.

Hence, it suffices to consider values T of this form only (for each
candidate) and to pick one that leads to a cheapest bribery.
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Bribery Bribery for Plurality

Priced Bribery and Swap Bribery for Plurality

Easy exercise: Adapt this algorithm to the case of plurality-$BRIBERY.

On the other hand, solving plurality-SWAP-BRIBERY requires a
somewhat different approach.

The reason is that under SWAP-BRIBERY it might not always be
optimal to push our preferred candidate to the top of the votes, but
sometimes it may be cheaper and more effective to replace some
high-scoring candidates with other, low-scoring ones.

To account for such strategies, Elkind et al. (2009) compute, for each
vote v , the lowest cost of replacing v ’s current top-candidate with each
other one, and then run a flow-based algorithm (due to Faliszewski,
2008) to find the bribing strategy. We omit the details here.
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Bribery Bribery for Plurality

Weighted and Priced Bribery for Plurality

For plurality-WEIGHTED-$BRIBERY, it is easy to see that the problem is
in NP and so we only show NP-hardness.

We give a reduction from the PARTITION problem to
plurality-WEIGHTED-$BRIBERY.

Recall that in the PARTITION problem

the input consists of a sequence of positive integers that sum up
to some value S, and

we ask if it is possible to partition this sequence into two
subsequences that both sum up to S/2 (naturally, for that S needs
to be even).
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Bribery Bribery for Plurality

Weighted and Priced Bribery for Plurality

Let (s1, . . . , sn) be the input sequence and let S =
∑n

i=1 si . We form

an election (C,V ), with
C = {p,d} and
with V containing n voters voting for d ;
for each i , 1 ≤ i ≤ n, the i th voter has weight si and her price
function is “it costs si to change the vote.”

The budget B is S/2.

In effect, any bribery of cost at most B can give p a score of at
most S/2.

The only such briberies that would ensure that p is among the winners
must give p score exactly S/2, by solving the original PARTITION

instance. q
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Bribery Overview of Complexity of Bribery

Overview of Complexity of Bribery

Remark: This result is particularly useful because its proof easily
adapts to most other typical voting rules, showing that
WEIGHTED-$BRIBERY is NP-complete for them as well.

However, in-depth study of f -BRIBERY has shown that the problem is
NP-complete for most natural voting rules f .

We survey these results in table on the next slide.

Naturally, the hardness results for BRIBERY immediately transfer to
$BRIBERY and WEIGHTED-BRIBERY.

Theorem
For each voting rule E , E-BRIBERY reduces to E-$BRIBERY and to
E-WEIGHTED-BRIBERY. without proof
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Bribery Overview of Complexity of Bribery

Overview of Complexity of Bribery

Table: The complexity of E-BRIBERY for various voting rules.

E E-BRIBERY reference

plurality P Faliszewski et al. (2009a)
veto P Faliszewski et al. (2009a)
2-approval P Lin (2012)
k -veto, k ∈ {2,3} P Lin (2012)
k -approval, k ≥ 3 NP-complete Lin (2012)
k -veto, k ≥ 4 NP-complete Lin (2012)
Borda NP-complete Brelsford et al. (2008)
STV NP-complete Xia (2012)
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Bribery Overview of Complexity of Bribery

Overview of Complexity of Bribery

Table: The complexity of E-BRIBERY for various voting rules.

E E-BRIBERY reference

Bucklin NP-complete Faliszewski et al. (2015)
fallback NP-complete Faliszewski et al. (2015)
maximin NP-complete Faliszewski et al. (2011)
Copeland NP-complete Faliszewski et al. (2009b)
Schulze NP-complete Parkes and Xia (2012)
ranked pairs NP-complete Xia (2012)

approval NP-complete Faliszewski et al. (2009a)
range voting NP-complete follows from the approval result
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Bribery Bribery and Manipulation

Relations between Bribery and Manipulation

Let E be a voting rule. Recall that in E-CCM (for “constructive,
coalitional manipulation”), we are given (a) an election (C,V ), (b) a
preferred alternative p ∈ C, and (c) a collection V ′ of voters with
unspecified preference orders.

We ask if it is possible to ensure that p is an E winner of election
(C,V ∪ V ′) by setting the preference orders of the voters in V ′.

E-CCWM is defined analogously for weighted elections, with given
manipulators’ weights.

Theorem
For each voting rule E , E-CCM reduces to E-$BRIBERY, and
E-CCWM reduces to E-WEIGHTED-$BRIBERY. without proof
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Bribery Possible and Necessary Winner

The Possible and Necessary Winner Problem

Konczak and Lang (2005) defined:

In an election with partial
preferences, a possible winner
is a candidate that has the
possibility to win in some total
extension of the partial
preferences.

A necessary winner is a
candidate that wins in every
total extension of the given
partial preferences.

Example:
Anna, Belle, and Chris have
the following trip preferences:

Chris

Anna

Belle
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Bribery Possible and Necessary Winner

The Possible and Necessary Winner Problem

Definition (Konczak and Lang (2005))
Name: E-POSSIBLE-WINNER.

Given: An election (C,V ), where the votes in V are
represented as partial orders over C, and
a distinguished candidate c ∈ C.

Question: Is c a possible E winner of (C,V ), i.e., is it possible to
fully extend every partial vote in V such that c is an E
winner of the resulting election?

E-NECESSARY-WINNER is defined analogously by asking whether c is
a necessary E winner of (C,V ).
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Bribery Possible and Necessary Winner

Possible Winner for Condorcet Voting

Theorem (Konczak and Lang (2005))

POSSIBLE-WINNER is in P for Condorcet voting.

Proof: For a profile T of linear orders over the set of candidates C and
for any two candidates x , y ∈ C, let DT (x , y) denote

the number of votes in T that prefer x to y minus

the number of votes in T that prefer y to x .

For a profile R of partial orders over C and for any two candidates
x , y ∈ C, let Dmax

R (x , y) denote the maximal value of DT (x , y), taken
over all total extensions T of the partial votes in R.
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Bribery Possible and Necessary Winner

Possible Winner for Condorcet Voting

The proof will have two parts:
1 We will first show that for a profile of partial orders

R = (R1, . . . ,Rn) and any two candidates x , y ∈ C, we have

Dmax
R (x , y) = ‖{i

∣∣ not(y >Ri x)}‖ − ‖{i
∣∣ y >Ri x}‖. (1)

This means that Dmax
R (x , y) equals

the number of votes from R not preferring y to x (either because x
is preferred to y or because they are incomparable in such a vote)
minus the number of votes that prefer y to x .

2 In the second part of the proof, we will show that

x ∈ C is a possible Condorcet winner for R

⇐⇒ Dmax
R (x , y) > 0 for all y 6= x .
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Bribery Possible and Necessary Winner

Possible Winner for Condorcet Voting

Together with the first part, this shows that whether a candidate is a
possible Condorcet winner can be decided in polynomial time.

1 We start by proving (1). If y >Ri x then it obviously holds that
y >Ti x for every total extension Ti of Ri . Hence,

‖{i
∣∣ y >Ti x}‖ ≥ ‖{i

∣∣ y >Ri x}‖. (2)

Furthermore, since Ti is an extension of Ri , x >Ti y implies
not(y >Ri x). Thus

‖{i
∣∣ x >Ti y}‖ ≤ ‖{i

∣∣ not(y >Ri x)}‖. (3)
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Bribery Possible and Necessary Winner

Possible Winner for Condorcet Voting

Combining (2) and (3) yields

‖{i
∣∣x >Ti y}‖−‖{i

∣∣y >Ti x}‖ ≤ ‖{i
∣∣ not(y >Ri x)}‖−‖{i

∣∣ y >Ri x}‖.
(4)

Since this holds for all total extensions Ti of Ri , we get

Dmax
R (x , y) ≤ ‖{i

∣∣ not(y >Ri x)}‖ − ‖{i
∣∣ y >Ri x}‖.

For the converse inequality, consider a profile Rx = (Rx
1 , . . . ,R

x
n ) of

linear orders that are the best possible total extensions of the profile
R = (R1, . . . ,Rn) with respect to candidate x , i.e., whenever the
relation between x and some z ∈ C, z 6= x , is undetermined in R it
holds that z will be placed behind x in Rx .
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Bribery Possible and Necessary Winner

Possible Winner for Condorcet Voting

Then

DRx (x , y) = ‖{i
∣∣ x >Rx

i
y}‖ − ‖{i

∣∣ y >Rx
i

x}‖

= ‖{i
∣∣ not(y >Rx

i
x)}‖ − ‖{i

∣∣ y >Rx
i

x}‖

= ‖{i
∣∣ not(y >Ri x)}‖ − ‖{i

∣∣ y >Ri x}‖.

Hence, we have that

Dmax
R (x , y) ≥ ‖{i

∣∣ not(y >Ri x)}‖ − ‖{i
∣∣ y >Ri x}‖.

This completes the proof of (1).
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Bribery Possible and Necessary Winner

Possible Winner for Condorcet Voting

2 The second part of the proof is to show that a candidate x is a
possible Condorcet winner for R if and only if for each y 6= x ,

Dmax
R (x , y) > 0.

(⇐) Assume that Dmax
R (x , y) > 0 for each y 6= x .

For a contradiction, suppose that x is not a possible Condorcet
winner.

Then, for all total extensions T = (T1, . . . ,Tn) of R = (R1, . . . ,Rn),
there is a candidate y such that ‖{i

∣∣ x >Ti y}‖ ≤ ‖{i
∣∣ y >Ti x}‖.
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Possible Winner for Condorcet Voting

This also holds for the best possible extension Rx , so DRx (x , y) ≤ 0,
and hence Dmax

R (x , y) ≤ 0.

But this is a contradiction to the assumption that Dmax
R (x , y) > 0 for

each y 6= x .

(⇒) Assume that x is a possible Condorcet winner for R.

Then there exists a total extension T = (T1, . . . ,Tn) of R such that for
each candidate y 6= x , it holds that

‖{i
∣∣ x >Ti y}‖ > ‖{i

∣∣ y >Ti x}‖.

Hence we have DT (x , y) > 0, and thus Dmax
R (x , y) > 0. q
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Possible Winner for Pure Scoring Rules

Definition
A scoring protocol is said to be pure if for each m ≥ 2, the scoring
vector for m candidates results from the scoring vector for m − 1
candidates by inserting an additional score value αi at any position i so
that the condition α1 ≥ α2 ≥ · · · ≥ αm is still satisfied.

Theorem (Betzler and Dorn (2010); Baumeister and Rothe (2012))
POSSIBLE-WINNER is in P for plurality and veto (and the trivial rule with
an all-zero scoring vector), and is NP-complete for all other pure
scoring rules. without proof
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Complexity of Possible and Necessary Winner

POSSIBLE-WINNER NECESSARY-WINNER

Condorcet P P
Plurality P P
Veto P P
Borda NP-complete P
Simpson NP-complete P
Bucklin (simplified) NP-complete P
Cup protocol NP-complete coNP-complete
Copeland NP-complete coNP-complete
STV NP-complete coNP-complete
Ranked pairs NP-complete coNP-complete
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Swap Bribery, Shift Bribery, and Possible Winner

Theorem (Elkind et al. (2009))
For each rule E , E-POSSIBLE-WINNER reduces to E-SWAP-BRIBERY.

Proof Idea:

Make the already linearly ordered pairs of candidates so costly
that swapping them would exceed the briber’s budget,

but a swap between any two candidates that are not yet linearly
ordered (in the given partially ordered preference profile) is
available for free.

Theorem (Elkind et al. (2009))
There is a polynomial-time 2-approximation algorithm for the cost of a
cheapest shift bribery under Borda voting. without proof
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