
Electoral Control Control Scenarios

Constructive Control by Adding Candidates

Definition (Bartholdi, Tovey, and Trick (1992))
Let E be some voting system.

Name: E-CONSTRUCTIVE CONTROL BY ADDING AN UNLIMITED

NUMBER OF CANDIDATES (E-CCAUC).

Given: Disjoint sets C and D of candidates,
a list V of votes over C ∪ D, and
a distinguished candidate p ∈ C.

Question: Is there a subset D′ of D such that p is the unique winner
of the E election (C ∪ D′,V )?
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Electoral Control Control Scenarios

Constructive Control by Adding Candidates

Definition (Hemaspaandra, Hemaspaandra, and Rothe (2007))
Let E be some voting system.

Name: E-CONSTRUCTIVE CONTROL BY ADDING (A LIMITED

NUMBER OF) CANDIDATES (E-CCAC).

Given: Disjoint sets C and D of candidates,
a list V of votes over C ∪ D,
a distinguished candidate p ∈ C, and
a nonnegative integer k .

Question: Is there a subset D′ of D such that ‖D′‖ ≤ k and p is the
unique winner of the E election (C ∪ D′,V )?
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Electoral Control Control Scenarios

Constructive Control by Deleting Candidates

Definition (Bartholdi, Tovey, and Trick (1992))
Let E be some voting system.

Name: E-CONSTRUCTIVE CONTROL BY DELETING CANDIDATES

(E-CCDC).

Given: A set C of candidates,
a list V of votes over C,
a distinguished candidate p ∈ C, and
a nonnegative integer k .

Question: Is it possible to delete up to k candidates from C such
that p is the unique winner of the resulting E election?
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Electoral Control Control Scenarios

Constructive Control by Partition of Candidates

Definition (Bartholdi, Tovey, and Trick (1992) &
Hemaspaandra, Hemaspaandra, and Rothe (2007))

Name: E-CONSTRUCTIVE CONTROL BY PARTITION OF CANDIDATES

(E-CCPC).

Given: An election (C,V ) and a distinguished candidate p ∈ C.

Question: Is it possible to partition C into C1 and C2 such that p is the
unique winner (w.r.t. V ) of the final stage of the two-stage
election in which

the winners of (C1,V ) surviving the tie-handling rule
run against all candidates in C2?

“Ties eliminate” (TE): Only unique winners proceed to final stage.

“Ties promote” (TP): All winners proceed to final stage.
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Electoral Control Control Scenarios

ConstructiveControlbyRun-OffPartitionofCandidates

Definition (Bartholdi, Tovey, and Trick (1992) &
Hemaspaandra, Hemaspaandra, and Rothe (2007))

Name: E-CONSTRUCTIVE CONTROL BY RUN-OFF PARTITION OF

CANDIDATES (E-CCRPC).

Given: An election (C,V ) and a distinguished candidate p ∈ C.

Question: Is it possible to partition C into C1 and C2 such that p is the
unique winner (w.r.t. V ) of the final stage of the two-stage
election in which the run-off is between

the winners of (C1,V ) surviving the tie-handling rule and
the winners of (C2,V ) surviving the tie-handling rule?

“Ties eliminate” (TE): Only unique winners proceed to final stage.

“Ties promote” (TP): All winners proceed to final stage.
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Electoral Control Control Scenarios

Constructive Control by Adding Voters

Definition (Bartholdi, Tovey, and Trick (1992))
Let E be some voting system.

Name: E-CONSTRUCTIVE CONTROL BY ADDING VOTERS

(E-CCAV).

Given: A set C of candidates,
a list V of registered votes over C and an additional
list W of as yet unregistered votes over C,
a distinguished candidate p ∈ C, and
a nonnegative integer k .

Question: Is there a subset W ′ of W such that ‖W ′‖ ≤ k and p is
the unique winner of the E election (C,V ∪W ′)?
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Electoral Control Control Scenarios

Constructive Control by Deleting Voters

Definition (Bartholdi, Tovey, and Trick (1992))
Let E be some voting system.

Name: E-CONSTRUCTIVE CONTROL BY DELETING VOTERS

(E-CCDV).

Given: A set C of candidates,
a list V of votes over C,
a distinguished candidate p ∈ C, and
a nonnegative integer k .

Question: Is it possible to delete up to k voters from V such that p is
the unique winner of the resulting E election?
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Electoral Control Control Scenarios

Control by Partition of Voters: Gerrymandering

c© By Elkanah Tisdale (1771–1835) (often falsely attributed to Gilbert Stuart)
Originally published in the Boston Gazette, March 26, 1812

https://commons.wikimedia.org/w/index.php?curid=1547884
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Electoral Control Control Scenarios

Constructive Control by Partition of Voters

Definition (Bartholdi, Tovey, and Trick (1992) &
Hemaspaandra, Hemaspaandra, and Rothe (2007))

Name: E-CONSTRUCTIVE CONTROL BY PARTITION OF VOTERS

(E-CCPV).

Given: An election (C,V ) and a distinguished candidate p ∈ C.

Question: Is it possible to partition V into V1 and V2 such that p is the
unique winner (with respect to the votes in V ) of the final stage
of the two-stage election in which the run-off is between

the winners of (C,V1) surviving the tie-handling rule and
the winners of (C,V2) surviving the tie-handling rule?

“Ties eliminate” (TE): Only unique winners proceed to final stage.

“Ties promote” (TP): All winners proceed to final stage.
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Electoral Control Control Scenarios

Destructive Control

Remark:

For each constructive control scenario, there is a corresponding
destructive control type where the chair seeks to block the distinguished
candidate’s victory: E-DCAUC, E-DCAC, E-DCDC, E-DCPC-TE,
E-DCPC-TP, E-DCRPC-TE, E-DCRPC-TP, E-DCAV, E-DCDV,
E-DCPV-TE, and E-DCPV-TP.

In E-DCDC it is not allowed to simply delete the distinguished candidate.

⇒ This sums up to a total of 22 control types (and the corresponding
control problems).

While constructive control is due to Bartholdi, Tovey, and Trick (1992),
the study of destructive control was initiated by Hemaspaandra,
Hemaspaandra, and Rothe (2007).
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Electoral Control Control Scenarios

Overview of the Common Control Problems

Table: Overview of candidate control problems for voting system E

Control by Constructive Destructive

Adding candidates E-CCAC E-DCAC

Adding an unlimited number of candidates E-CCAUC E-DCAUC

Deleting candidates E-CCDC E-DCDC

Partition of candidates
E-CCPC-TE E-DCPC-TE1

E-CCPC-TP E-DCPC-TP2

Partition of candidates with run-off
E-CCRPC-TE E-DCRPC-TE1

E-CCRPC-TP E-DCRPC-TP2

1 DCRPC-TE = DCPC-TE in the unique-winner and the nonunique-winner model.
2 DCRPC-TP = DCPC-TP in the nonunique-winner model.
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Electoral Control Control Scenarios

Overview of the Common Control Problems

Table: Overview of the voter control problems for voting system E

Control by Constructive Destructive

Adding voters E-CCAV E-DCAV

Deleting voters E-CCDV E-DCDV

Partition of voters
E-CCPV-TE E-DCPV-TE

E-CCPV-TP E-DCPV-TP
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Electoral Control Immunity, Susceptibility, Vulnerability, and Resistance

Immunity and Susceptibility

Definition (Bartholdi, Tovey, and Trick (1992))
Let CT be a control type.

1 We say a voting system is immune to CT if it is impossible for the
chair to make the given candidate

the unique winner in the constructive case and
not a unique winner in the destructive case,

respectively, via exerting control of type CT.

2 We say a voting system is susceptible to CT if it is not immune
to CT.
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Electoral Control Immunity, Susceptibility, Vulnerability, and Resistance

Resistance and Vulnerability

Definition (Bartholdi, Tovey, and Trick (1992) &
Hemaspaandra, Hemaspaandra, and Rothe (2007))
Let CT be a control type.

A voting system that is susceptible to CT is said to be

1 vulnerable to CT if the control problem corresponding to CT can
be solved in polynomial time, and

2 resistant to CT if the control problem corresponding to CT is
NP-hard.
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Electoral Control Immunity, Susceptibility, Vulnerability, and Resistance

Links Between Susceptibility Cases

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))

1 A voting system is susceptible to constructive control by adding
candidates if and only if it is susceptible to destructive control by deleting
candidates.

2 A voting system is susceptible to constructive control by deleting
candidates if and only if it is susceptible to destructive control by adding
candidates.

3 A voting system is susceptible to constructive control by adding voters if
and only if it is susceptible to destructive control by deleting voters.

4 A voting system is susceptible to constructive control by deleting voters if
and only if it is susceptible to destructive control by adding voters.

J. Rothe (HHU Düsseldorf) Preference Aggregation by Voting 15 / 200



Electoral Control Immunity, Susceptibility, Vulnerability, and Resistance

Links Between Susceptibility Cases
Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))

1 If a voting system is susceptible to constructive control by partition of
voters (in model TE or TP), then it is susceptible to constructive control
by deleting candidates.

2 If a voting system is susceptible to constructive control by partition or
run-off partition of candidates (in model TE or TP), then it is susceptible
to constructive control by deleting candidates.

3 If a voting system is susceptible to constructive control by partition of
voters in model TE, then it is susceptible to constructive control by
deleting voters.

4 If a voting system is susceptible to destructive control by partition or
run-off partition of candidates (in model TE or TP), then it is susceptible
to destructive control by deleting candidates.
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Electoral Control Immunity, Susceptibility, Vulnerability, and Resistance

Links Between Susceptibility Cases

Definition
A voting system is voiced if in any election that has exactly one candidate,
that candidate is always a (and thus, the unique) winner.

Theorem

1 If a voiced voting system is susceptible to destructive control by partition
of voters (in model TE or TP), then it is susceptible to destructive control
by deleting voters.

2 Each voiced voting system is susceptible to constructive control by
deleting candidates.

3 Each voiced voting system is susceptible to destructive control by adding
candidates.
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Electoral Control Immunity, Susceptibility, Vulnerability, and Resistance

Links Between Susceptibility Cases

CCPV−TEDCPC−TE/TP

DCAVCCAV

DCDV CCDV

DCAC

CCDC

DCRPC−TE/TP CCRPC−TE/TP

CCPC−TE/TP

DCDC

CCAC

CCPV−TP

DCPV−TE/TP + voiced

Unique−WARP violated

voiced

Figure: Links between susceptibility results for various control types
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Electoral Control Control Complexity for Plurality and Condorcet

Control Complexity of Plurality and Condorcet Voting

Plurality Condorcet

Control by Constructive Destructive Constructive Destructive

Adding Candidates R(esistant) R I(mmune) V(ulnerable)

Deleting Candidates R R V I

Partition TE: R TE: R V I
of Candidates TP: R TP: R

Run-off Partition TE: R TE: R V I
of Candidates TP: R TP: R

Adding Voters V V R V

Deleting Voters V V R V

Partition TE: V TE: V R V
of Voters TP: R TP: R

Boldface results are due to Hemaspaandra, Hemaspaandra, and Rothe (2007).
Nonboldface results are due to Bartholdi, Tovey, and Trick (1992).
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Electoral Control Control Complexity for Plurality and Condorcet

Some Susceptibility Cases for Plurality

Example (DCPC/DCRPC-TE/TP and DCDC)

Let C = {a,b, c,d} be the candidate set, and let V consist of:

3× c a b d

2× a d b c

2× b d a c

=⇒ c is the unique plurality winner
in (C,V).

Partition C into C1 = {a, c} and C2 = {b,d}.

Then a is the unique plurality winner in (C1,V), so c is dethroned.

Thus plurality is susceptible to DCPC/DCRPC-TE/TP . . .

. . . and, by our link among susceptibility cases, also to DCDC.
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Electoral Control Control Complexity for Plurality and Condorcet

Some Susceptibility Cases for Plurality

Example (CCPV-TP/TE)

Let C = {a,b, c} be the candidate set, and let V consist of:

3× (say, u1,u2,u3) a c b

2× (say, v1, v2) b a c

3× (say, w1,w2,w3) c a b

=⇒ a and c are the
plurality winners in (C,V).

Partition V into V1 = {u1,u2,w1,w2,w3} and V2 = {u3, v1, v2}.

Then c is the unique plurality winner in (C,V1), b is the unique plurality
winner in (C,V2), and c wins the run-off against b.

Thus plurality is susceptible to CCPV-TP/TE.
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Electoral Control Control Complexity for Plurality and Condorcet

Some Susceptibility Cases for Plurality

Example (DCPV-TP/TE)

Let C = {a,b, c} be the candidate set, and let V ′ = V ∪ {v3,w4} be:

3× (say, u1,u2,u3) a c b

3× (say, v1, v2, v3) b a c

4× (say, w1,w2,w3,w4) c a b

=⇒ c is the unique
plurality winner in (C,V ′).

Partition V ′ into V ′1 = {u1,u2,u3,w1,w2} and V ′2 = {v1, v2, v3,w3,w4}.

Then a is the unique plurality winner in (C,V1), b is the unique plurality
winner in (C,V2), and a wins the run-off against b, so c is dethroned.

Thus plurality is susceptible to DCPV-TP/TE.
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Electoral Control Control Complexity for Plurality and Condorcet

Hitting Set

Definition
Name: HITTING SET.

Given: A set B = {b1,b2, . . . ,bm},
a family S = {S1,S2, . . . ,Sn} of subsets Si of B, and
a positive integer k .

Question: Does S have a hitting set of size at most k?
That is, is there a set B′ ⊆ B with ‖B′‖ ≤ k such that for
each i , Si ∩ B′ 6= ∅?
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Electoral Control Control Complexity for Plurality and Condorcet

Hitting Set

Example
Suppose there are

m = 4 students: B = {b1,b2,b3,b4} and

n = 5 courses: S = {S1,S2,S3,S4,S5} with

S1 = {b1,b2} S2 = {b3,b4}

S3 = {b1,b4} S4 = {b2,b3}

S5 = {b2,b4}

B′ = {b2,b4} is a hitting set of size 2.

However, there is no hitting set of size 1 because S1 and S2

(respectively, S3 and S4) are disjoint.
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Electoral Control Control Complexity for Plurality and Condorcet

Destructive Candidate Control in Plurality Voting

Construction: Given a HITTING SET instance (B,S, k), where
B = {b1,b2, . . . ,bm}, S = {S1,S2, . . . ,Sn}, and k ≤ m, construct the
following election:

The candidate set is C = B ∪ {c,w}.
The voter list V is defined as follows:

1 2(m − k) + 2n(k + 1) + 4 voters of the form c w · · · , where “· · · ”
means that the remaining candidates follow in an arbitrary order.

2 2n(k + 1) + 5 voters of the form w c · · · .

3 For each i , 1 ≤ i ≤ n, there are 2(k + 1) voters of the form Si c · · · ,
where “Si ” denotes the elements of Si in some arbitrary order.

4 For each j , 1 ≤ j ≤ m, two voters of the form bj w · · · .
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Electoral Control Control Complexity for Plurality and Condorcet

Destructive Candidate Control in Plurality Voting

Lemma (Hemaspaandra, Hemaspaandra, and Rothe (2007))

If B′ is a hitting set of S of size k, then w is the unique plurality winner
of the election (B′ ∪ {c,w},V).

Proof: If B′ is a hitting set of S of size k , then in the election
(B′ ∪ {c,w},V), we have

score(c) = 2(m − k) + 2n(k + 1) + 4, from voter group (1)

score(w) = 2n(k + 1) + 5 + 2(m − k), from voter groups (2) and (4)

score(bj) ≤ 2n(k + 1) + 2 for each j , from voter groups (3) and (4).

It follows that w is the unique plurality winner of (B′ ∪ {c,w},V). q
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Electoral Control Control Complexity for Plurality and Condorcet

Destructive Candidate Control in Plurality Voting

Lemma (Hemaspaandra, Hemaspaandra, and Rothe (2007))

Let D ⊆ B ∪ {w}. If c is not a unique plurality winner of election
(D ∪ {c},V), then there exists a set B′ ⊆ B such that

1 D = B′ ∪ {w},

2 w is the unique plurality winner of the election (B′ ∪ {c,w},V),
and

3 B′ is a hitting set of S of size less than or equal to k.
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Electoral Control Control Complexity for Plurality and Condorcet

Destructive Candidate Control in Plurality Voting

Proof: Let D ⊆ B ∪ {w} and suppose that c is not a unique plurality
winner of election (D ∪ {c},V).

First note that for all b ∈ D ∩ B, score(b) < score(c) in (D ∪ {c},V).

Since c is not a unique plurality winner of (D ∪ {c},V), it follows that
w ∈ D and score(w) ≥ score(c).

Let B′ ⊆ B be such that D = B′ ∪ {w}.

Then D ∪ {c} = B′ ∪ {c,w}.

Since score(w) is odd and score(c) is even, it follows that w is the
unique plurality winner of (B′ ∪ {c,w},V).

This proves the first two properties stated.
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Electoral Control Control Complexity for Plurality and Condorcet

Destructive Candidate Control in Plurality Voting

To prove the third property, note that in (B′ ∪ {c,w},V), we have

score(w) = 2n(k + 1) + 5 + 2(m − ‖B′‖) and

score(c) = 2(m − k) + 2n(k + 1) + 4 + 2(k + 1)`,

where ` is the number of sets in S that are not hit by B′ (i.e., that have
an empty intersection with B′).

Since score(c) ≤ score(w), it follows that

2(m − k) + 2(k + 1)` ≤ 1 + 2(m − ‖B′‖),

which implies (k + 1)`+ ‖B′‖ − k ≤ 0. So ` = 0.

Thus B′ is a hitting set of S of size at most k . q
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Electoral Control Control Complexity for Plurality and Condorcet

Destructive Candidate Control in Plurality Voting

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))

S has a hitting set of size less than or equal to k if and only if
destructive control by adding candidates can be executed for the
election with qualified candidates {c,w}, spoiler candidates B,
distinguished candidate c, and voter list V .

Proof: (⇒) If S has a hitting set of size less than or equal to k , then
since k ≤ m, S has a hitting set of size k .

By the first lemma, w is the unique plurality winner of (B′ ∪ {c,w},V).

(⇐) follows directly from the second lemma. q
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Electoral Control Control Complexity for Plurality and Condorcet

Destructive Candidate Control in Plurality Voting

Corollary: Plurality voting is resistant to destructive control by adding
candidates, i.e., Plurality-DCAUC and Plurality-DCAC are NP-hard.

Proof: By the previous theorem, our construction on slide 25 shows:

HITTING SET ≤p
m Plurality-DCAUC;

HITTING SET ≤p
m Plurality-DCAC,

which proves the corollary. q
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Electoral Control Control Complexity for Plurality and Condorcet

Destructive Candidate Control in Plurality Voting

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))

S has a hitting set of size at most k if and only if the election with
candidate set C, distinguished candidate c, and voter list V can be
destructively controlled by deleting at most m − k candidates.

Proof: (⇒) Let B′ be a hitting set of S of size k . By the first lemma, c
is not a unique plurality winner of the election (B′ ∪ {c,w},V).

Since B′ ∪ {c,w} = C \ (B \ B′), ‖B‖ = m, and ‖B′‖ = k , the
right-hand side of the equivalence follows.
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Electoral Control Control Complexity for Plurality and Condorcet

Destructive Candidate Control in Plurality Voting

(⇐) Let D ⊆ B ∪ {w} be such that ‖D‖ ≤ m− k , and suppose that c is
not a unique plurality winner of (C \ D,V).

Since c ∈ C \ D, it follows from the second lemma that
(C \ D) \ {c} = B′ ∪ {w},

where B′ is a hitting set of S of size less than or equal to k . q

Corollary: Plurality voting is resistant to destructive control by deleting
candidates. That is, Plurality-DCDC is NP-hard.

Proof: By the previous theorem, our construction on slide 25 shows:

HITTING SET ≤p
m Plurality-DCDC,

which proves the corollary. q
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Electoral Control Control Complexity for Plurality and Condorcet

Destructive Candidate Control in Plurality Voting

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))

S has a hitting set of size at most k if and only if the election with
candidate set C, distinguished candidate c, and voter list V can be
destructively controlled by partition of candidates (with and without
run-off, and for each both in model TE and TP).

Proof: (⇒) Let B′ be a hitting set of S of size k .

Partition C into C1 = B′ ∪ {c,w} and C2 = B \ B′.

By the first lemma, w is the unique plurality winner of (C1,V), and c
thus cannot win the election (C,V).
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Electoral Control Control Complexity for Plurality and Condorcet

Destructive Candidate Control in Plurality Voting

(⇐) Suppose that there exists a partition of candidates such that c is
not a unique plurality winner of the two-stage election corresponding to
that partition.

Then, certainly, there exists a set D ⊆ B ∪ {w} such that c is not a
unique plurality winner of (D ∪ {c},V).

By the second lemma, S has a hitting set of size at most k . q

Corollary: Plurality voting is resistant to destructive control by partition
of candidates (with and without run-off, and for each both in model TE
and TP). That is, Plurality-DCPC-TE, Plurality-DCPC-TP,
Plurality-DCRPC-TE, and Plurality-DCRPC-TP are NP-hard.
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Electoral Control Control Complexity for Plurality and Condorcet

Recall: Control Complexity of Plurality and Condorcet

Plurality Condorcet

Control by Constructive Destructive Constructive Destructive

Adding Candidates R(esistant) R I(mmune) V(ulnerable)

Deleting Candidates R R V I

Partition TE: R TE: R V I
of Candidates TP: R TP: R

Run-off Partition TE: R TE: R V I
of Candidates TP: R TP: R

Adding Voters V V R V

Deleting Voters V V R V

Partition TE: V TE: V R V
of Voters TP: R TP: R

Boldface results are due to Hemaspaandra, Hemaspaandra, and Rothe (2007).
Nonboldface results are due to Bartholdi, Tovey, and Trick (1992).
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Electoral Control Control Complexity for Plurality and Condorcet

Voter Control in Plurality Voting

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))
1 Plurality voting is vulnerable/certifiably-vulnerable to destructive

control both by adding voters and by deleting voters.

“Certifiably-vulnerable” means the chair cannot only decide the
problems Plurality-DCAV and Plurality-DCDV in polynomial time,
but can even produce in polynomial time a “best possible” control
action. Certifiable vulnerability implies vulnerability.
(In particular, the “k” may be dropped from the problem instance.)

2 In model TE, plurality voting is vulnerable/certifiably-vulnerable to
constructive and destructive control by partition of voters.
That is, Plurality-CCPV-TE and Plurality-DCPV-TE is in P.
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Electoral Control Control Complexity for Plurality and Condorcet

Destructive Control by Adding Voters in Plurality
Proof:

1 (a) Plurality voting is certifiably-vulnerable to destructive control by
adding voters: “Smart Greedy”

Given (C, c,V ,W ) as in DCAV (without k ):
If c already is not a unique plurality winner in (C,V), adding no voters
accomplishes our goal, and we are done.
Otherwise, sort all di ∈ C − {c} by decreasing deficit, i.e., letting
diff(di) denote di ’s deficit of first-place votes needed to tie c, we have

diff(d1) ≤ diff(d2) ≤ · · · ≤ diff(d‖C‖−1).

For i = 1, 2, . . . , ‖C‖ − 1, if

‖{w ∈ W
∣∣ w ’s first choice is di}‖ ≥ diff(di),

then add diff(di) of these unregistered voters to ensure that di ties c
(and c thus is not a unique winner) and halt.
If no iteration was successful, output “control impossible” and halt.
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Destructive Control by Deleting Voters in Plurality Voting

(b) Plurality voting is certifiably-vulnerable to destructive control by
deleting voters: “Dumb Greedy”

Given (C, c,V ) as in DCDV (without k ):
If C = {c}, then output “control impossible” and halt;

else if c already is not a unique plurality winner in (C,V), deleting no
voters accomplishes our goal, and we are done.

If every candidate other than c gets zero first-place votes, then output
“control impossible” and halt.

Otherwise, let d be the candidate closest to c in first-place votes, and
let diff(d) denote d ’s deficit of first-place votes needed to tie c.

Deleting diff(d) voters whose first choice is c assures that c is not a
unique winner, and this is the fewest deletions that can achieve that.
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Constructive Control by Partition of Voters (TE) in Plurality Voting

2 Plurality voting is certifiably-vulnerable to constructive control by
partition of voters in model TE: Plurality-CCPV-TE is in P

Let (C, c,V ) be given as in CCPV-TE.

For any partition (V1,V2) of V , let Nominees(C,Vi), i ∈ {1,2},
denote the set of candidates who are nominated by the
subcommittee Vi (with candidates C) for the run-off in model TE.
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Constructive Control by Partition of Voters (TE) in Plurality Voting

Consider the following cases (Cases 3 and 5 need not be disjoint):

Case 1: Nominees(C,V1) = {c} and Nominees(C,V2) = ∅ due to
V2 = ∅.

Case 2: Nominees(C,V1) = {c} and Nominees(C,V2) = {c}.
Case 3: Nominees(C,V1) = {c} and Nominees(C,V2) = ∅ due to

c and d (and possibly additional other candidates) tying,
where c 6= d .

Case 4: Nominees(C,V1) = {c} and Nominees(C,V2) = {d},
c 6= d .

Case 5: Nominees(C,V1) = {c} and Nominees(C,V2) = ∅ due to
d and e (and possibly additional other candidates) tying,
where c 6= d 6= e 6= c.
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Constructive Control by Partition of Voters (TE) in Plurality Voting

Given (C, c,V ) as in CCPV-TE:

If c is the unique plurality winner in (C,V) (thus catching Cases 1,
2, and 3), then output (V , ∅) as a successful partition and halt;

else if ‖C‖ = 2, then output “control impossible” (which in this
context means that making c a unique winner is impossible) and
halt.

Otherwise, first try to make Case 4 hold in the Case 4 Loop;

and then, if that fails, try to make Case 5 hold in the Case 5 Loop.

Otherwise (i.e., if the Case 5 Loop was not successful either),
c cannot win, so we output “control impossible” and halt.
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Constructive Control by Partition of Voters (TE) in Plurality Voting

Case 4 Loop:

For each d ∈ C, d 6= c, such that c beats d in a pairwise plurality
election by the voters in V , do the following:
If it holds that, for each e ∈ C with c 6= e 6= d ,

score(e) ≤ score(c) + score(d)− 2,

then output (V1,V2) as a successful partition and halt, where
V1 consists of

all score(c) voters whose first choice is c and
exactly min(score(e), score(c)− 1) of the voters whose first choice
is e, and

where V2 = V \ V1.

J. Rothe (HHU Düsseldorf) Preference Aggregation by Voting 43 / 200



Electoral Control Control Complexity for Plurality and Condorcet

Constructive Control by Partition of Voters (TE) in Plurality Voting

Explanation of the Case 4 Loop:

V1 has
score(c) votes for c and
min(score(e), score(c)− 1) < score(c) votes for e.

=⇒ c is nominated in (C,V1).

In V2, in the worst case we have

score(e) ≤ score(d)− 1.

=⇒ d is nominated in (C,V2).

And c beats d in the run-off and is the only winner.
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Constructive Control by Partition of Voters (TE) in Plurality Voting

Case 5 Loop:

For each d ∈ C and for each e ∈ C such that ‖{c,d ,e}‖ = 3 and
score(d) ≤ score(e), do the following:
If it holds that, for each f ∈ C \ {c},

score(f ) ≤ score(c) + score(d)− 1,

then output (V1,V2) as a successful partition and halt, where
V1 consists of

all score(c) voters whose first choice is c,
exactly score(e)− score(d) of the voters whose first choice is e, and
for all f ∈ C \ {c, d , e}, exactly min(score(f ), score(c)− 1) of the
voters whose first choice is f , and

where V2 = V \ V1.
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Constructive Control by Partition of Voters (TE) in Plurality Voting
Explanation of the Case 5 Loop:

V1 has
score(c) votes for c,
score(e)− score(d) ≤ score(c)− 1 votes for e (because of
score(f ) ≤ score(c) + score(d)− 1 with f = e), and
min(score(f ), score(c)− 1) < score(c) votes for f .

=⇒ c is nominated in (C,V1).

In V2, there are
score(d) votes for d ,
score(d) votes for e, and
in the worst case ≤ score(d) votes for f (again because of
score(f ) ≤ score(c) + score(d)− 1).

=⇒ Due to TE, no one is nominated in (C,V2).

So, c alone takes part in and wins the run-off. q
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Destructive Control by Partition of Voters (TE) in Plurality Voting

2 Plurality voting is certifiably-vulnerable to destructive control by
partition of voters in model TE: Plurality-DCPV-TE is in P

Let (C, c,V ) be given as in DCPV-TE.

If C = {c}, output “control impossible” and halt, as c must win;

else if c already is not a unique plurality winner, output (V , ∅) as a
successful partition and halt.

Otherwise, check if every voter’s first choice is c or if ‖C‖ = 2, and
if one of these two conditions is true, output “control impossible”
and halt, since c cannot help but win.
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Destructive Control by Partition of Voters (TE) in Plurality Voting

Let d be a candidate who other than c got the most first-place
votes, and let e be a candidate who other than c and d got the
most first-place votes.

We can certainly dethrone c if

score(c) ≤ score(d) + score(e). (1)

Namely, if (1) holds, we output (V1,V2) as a successful partition
and halt, where

V1 consists of
all score(d) voters whose first choice is d and
exactly score(d) voters whose first choice is c (recall that in the
current case we already know that score(c) > score(d)), and

where V2 = V \ V1.
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Destructive Control by Partition of Voters (TE) in Plurality Voting

In (C,V1), there are
score(d) votes for d ,
score(d) votes for c, and
no one has a higher score.

According to TE, no one will be nominated in (C,V1).

In (C,V2), there are
score(c)− score(d) ≤ score(e) votes for c by (1),
score(e) votes for e, and
no one has a higher score.

=⇒ Either e or no one will be nominated in (C,V2).

=⇒ c is dethroned.
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Destructive Control by Partition of Voters (TE) in Plurality Voting

On the other hand, if Equation (1) is not satisfied, we have

score(c) > score(d) + score(e),

so in any partition (V1,V2), c wins in one of (C,V1) or (C,V2).

Thus, it is impossible to make c lose in both subcommittees.

If c is nominated by both subcommittees (in model TE), c trivially
is the unique winner of the final run-off.

So, we now check if it is possible for c to fulfill Property A:
c wins in exactly one subcommittee, and
yet can be made to not be the unique winner of the final run-off.
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Destructive Control by Partition of Voters (TE) in Plurality Voting

For this to happen, it is (given the case we are in) a necessary and
sufficient condition that there exists some candidate d 6= c such that:

d ties or beats c in a pairwise plurality election, and
for each candidate e, c 6= e 6= d , we have that
score(e) < score(c) + score(d)− 2.

Call this Property B. We show Property A ⇐⇒ Property B.

(⇒) That some d 6= c ties or beats c in ({c,d},V ) is clear.

But if score(e) ≥ score(c) + score(d)− 2 for some e, c 6= e 6= d , then
with score(c) > score(d) + score(e) (i.e., (1) does not hold), we have:

score(e) ≥ score(c) + score(d)− 2 > 2 · score(d) + score(e)− 2,

so 1 > score(d), i.e., score(d) = 0. However, such a d cannot be the

unique winner of the other subelection: contradiction!
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Destructive Control by Partition of Voters (TE) in Plurality Voting

(⇐) By Property B, there is some d 6= c that ties or beats c in the
run-off, so c is not the unique winner of the run-off.

We show that there is a partition (V1,V2), V = V1 ∪ V2, such that
c wins in (C,V1) and d wins in (C,V2).

Define V1 to consist of
all score(c) votes for c and
for each e, c 6= e 6= d , min(score(c)− 1, score(e)) votes for e, and

let V2 = V \ V1.

Then c wins in (C,V1).

In (C,V2), it follows from score(e) < score(c) + score(d)− 2 that
score(e) < score(d)− 1, so d wins in (C,V2).

Hence, c wins in exactly one subelection, proving Property A.
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Destructive Control by Partition of Voters (TE) in Plurality Voting

We can in polynomial time brute-force check whether Property B holds
for some candidate d , and if so, output (V1,V2) as a successful
partition and halt, where V1 consists of

all score(c) voters whose first choice is c and,

for each candidate e with c 6= e 6= d , of exactly

min(score(c)− 1, score(e))

voters whose first choice is e,

and where V2 = V \ V1.

Finally, if Property B cannot be satisfied for any d , output “control
impossible” and halt. q
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Voter Control in Plurality Voting

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))
1 Plurality voting is resistant to constructive control by partition of

voters in model TP. That is, Plurality-CCPV-TP is NP-hard.

2 Plurality voting is resistant to destructive control by partition of
voters in model TP. That is, Plurality-DCPV-TP is NP-hard.

Proof: Idea:

We use a restricted version of HITTING SET and

apply the construction from the candidate control cases to it.
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Restricted Hitting Set

Definition
Name: RESTRICTED HITTING SET (RHS).

Given: A set B = {b1,b2, . . . ,bm},
a family S = {S1,S2, . . . ,Sn} of subsets Si of B, and
a positive integer k such that n(k + 1) + 1 ≤ m − k .

Question: Does S have a hitting set of size at most k?
That is, is there a set B′ ⊆ B with ‖B′‖ ≤ k such that for
each i , Si ∩ B′ 6= ∅?

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))
Restricted Hitting Set is NP-complete.

Proof: Exercise. q
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Restricted Hitting Set

Example
The inequality of RESTRICTED HITTING SET:

n(k + 1) + 1 ≤ m − k

is satisfied, for example, by k = 2, m = 12, n = 3.

Positive RHS Instance
B = {b1,b2, . . . ,b12}, k = 2,
and S = {S1,S2,S3} with

S1 = {b1,b2,b3,b4},

S2 = {b4,b5,b6,b7,b8},

S3 = {b9,b10,b11,b12}.

Hitting set: B′ = {b4,b9}.

Negative RHS Instance
B = {b1,b2, . . . ,b12}, k = 2,
and S = {S1,S2,S3} with

S1 = {b1,b2,b3,b4},

S2 = {b5,b6,b7,b8},

S3 = {b9,b10,b11,b12}.

No hitting set.
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Voter Control in Plurality Voting

Construction: Given a HITTING SET instance (B,S, k), where
B = {b1,b2, . . . ,bm}, S = {S1,S2, . . . ,Sn}, and k ≤ m, construct the
following election:

The candidate set is C = B ∪ {c,w}.
The voter list V is defined as follows:

1 2(m − k) + 2n(k + 1) + 4 voters of the form c w · · · , where “· · · ”
means that the remaining candidates follow in an arbitrary order.

2 2n(k + 1) + 5 voters of the form w c · · · .

3 For each i , 1 ≤ i ≤ n, there are 2(k + 1) voters of the form Si c · · · ,
where “Si ” denotes the elements of Si in some arbitrary order.

4 For each j , 1 ≤ j ≤ m, two voters of the form bj w · · · .
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Voter Control in Plurality Voting: Copying Is Stealing!

c© By Nina Paley – http://mimiandeunice.com/2010/07/30/thief/,

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17052490

J. Rothe (HHU Düsseldorf) Preference Aggregation by Voting 58 / 200



Electoral Control Control Complexity for Plurality and Condorcet

Voter Control in Plurality Voting

Lemma
In the election (C,V) from this construction, if n(k + 1) + 1 ≤ m − k
then for every partition of V into V1 and V2, c is a plurality winner of
(C,V1) or of (C,V2).

Proof: For a contradiction, suppose that c is a winner of neither
(C,V1) nor (C,V2).

For each U ⊆ V and for each i ∈ C, let scoreU(i) denote the number of
first-place votes that i has in (C,U).

Let x ∈ B ∪ {w} be a winner of (C,V1), and let y ∈ B ∪ {w} be a
winner of (C,V2).
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Voter Control in Plurality Voting

Then

scoreV1(x) + scoreV2(y) ≥ scoreV (c) + 2. (2)

Since c’s score in (C,V ) is greater than that of any other candidate,
we have x 6= y . It follows that

scoreV1(x) + scoreV2(y) ≤ scoreV (w) + scoreV (bi)

≤ 2n(k + 1) + 5 + 2n(k + 1) + 2

≤ 2n(k + 1) + 5 + 2(m − k)

= scoreV (c) + 1,

which contradicts Equation (2).

Thus, c is a winner of (C,V1) or of (C,V2). q
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Voter Control in Plurality Voting

Lemma
In the election (C,V) from this construction, if n(k + 1) + 1 ≤ m − k
then the following three statements are equivalent:

1 S has a hitting set of size at most k.

2 V can be partitioned such that w is the unique plurality winner in
the TP model.

3 V can be partitioned such that c is not a unique plurality winner in
the TP model.

Both lemmas together imply the theorem. q
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Voter Control in Plurality Voting

Proof: of Lemma.
(1) ⇒ (2): Let B′ be a hitting set of S of size k .

Partition V into V1 and V2, where V1 consists

of one voter of the form w c · · · (group 2) and

for every b ∈ B′ one voter of the form b w · · · (group 4),

and where V2 = V \ V1.

Then the candidates in B′ ∪ {w} are the winners of (C,V1) and move
forward to the run-off in the TP model, and c is the winner of (C,V2).

By the lemma on slide 26, w is the unique plurality winner of the final
election (B′ ∪ {c,w},V).
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Recall the Lemmas from Slides 26 and 27

Lemma (Slide 26: Hemaspaandra, Hemaspaandra, and Rothe (2007))

If B′ is a hitting set of S of size k, then w is the unique plurality winner
of the election (B′ ∪ {c,w},V).

Lemma (Slide 27: Hemaspaandra, Hemaspaandra, and Rothe (2007))

Let D ⊆ B ∪ {w}. If c is not a unique plurality winner of election
(D ∪ {c},V), then there exists a set B′ ⊆ B such that

1 D = B′ ∪ {w},

2 w is the unique plurality winner of the election (B′ ∪ {c,w},V),
and

3 B′ is a hitting set of S of size less than or equal to k.
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Voter Control in Plurality Voting

(2) ⇒ (3): If w is the unique plurality winner for some partition of V in
TP, then c cannot be the unique plurality winner for the same partition.

(3) ⇒ (1): Suppose there is a partition of V such that c is not the
unique plurality winner of the election in the TP model.

By the lemma on slide 59, c is a winner of one of the subelections and
will thus participate in the final run-off.

It follows that c is not the unique winner of a run-off election involving c,
i.e., c is not the unique winner in (D ∪ {c},V), for some D ⊆ B ∪ {w}.

By the lemma on slide 27, S has a hitting set of size at most k . q
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Recall: Control Complexity of Plurality and Condorcet

Plurality Condorcet

Control by Constructive Destructive Constructive Destructive

Adding Candidates R(esistant) R I(mmune) V(ulnerable)

Deleting Candidates R R V I

Partition TE: R TE: R V I
of Candidates TP: R TP: R

Run-off Partition TE: R TE: R V I
of Candidates TP: R TP: R

Adding Voters V V R V

Deleting Voters V V R V

Partition TE: V TE: V R V
of Voters TP: R TP: R

Boldface results are due to Hemaspaandra, Hemaspaandra, and Rothe (2007).
Nonboldface results are due to Bartholdi, Tovey, and Trick (1992).
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Immunity for Condorcet Voting

The unique version of the Weak Axiom of Revealed Preference
(Unique-WARP): A unique winner among a collection of candidates
always remains a unique winner among every subcollection of
candidates that includes him or her.

Theorem (Bartholdi, Tovey, and Trick (1992))
Any voting system that satisfies Unique-WARP is immune to
constructive control by adding candidates.

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))
Any voting system that satisfies Unique-WARP is immune to
destructive control by deleting candidates and (in both TE and TP) to
destructive control by partition and run-off partition of candidates.
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Immunity for Condorcet Voting

Corollary
Condorcet voting is immune to

constructive control by adding candidates,

destructive control by deleting candidates,

destructive control by partition of candidates, and

destructive control by run-off partition of candidates.

Proof: Condorcet voting satisfies Unique-WARP. q
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Susceptibility for Condorcet Voting

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))
Condorcet voting is susceptible to all other types of control.

Proof: Exercise. q
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Destructive Control in Condorcet Voting

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))
Condorcet voting is vulnerable/certifiably-vulnerable to destructive
control by

1 adding candidates,

2 adding voters,

3 deleting voters, and

4 partition of voters.
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Destructive Control in Condorcet Voting: DCAC

Proof:
1 Destructive control by adding candidates:

We are given
a set C of qualified candidates and
a distinguished candidate c ∈ C,
a set D of possible spoiler candidates, and
a list V of voters with preferences over C ∪ D.

If c already is not a Condorcet winner, adding no candidates
accomplishes our goal, and we are done.

Otherwise, if any spoiler candidate ties or beats c, add one such
candidate and halt.

Otherwise, output “control impossible” and halt.
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Destructive Control in Condorcet Voting: DCAV

2 Destructive control by adding voters:
We are given

a set C of candidates and
a distinguished candidate c ∈ C,
a list V of registered voters, and
an additional list W of as yet unregistered voters (both V and W
have preferences over C).

If C = {c}, then output “control impossible” and halt;

else if c already is not a Condorcet winner in the election (C,V),
adding no voters accomplishes our goal, and we are done.
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Destructive Control in Condorcet Voting: DCAV

Otherwise, define surplus(c, i) as the number of registered voters who
prefer c to i minus the number of registered voters who prefer i to c.

For each candidate i 6= c, call i lucky if and only if surplus(c, i) is less
than or equal to the number of unregistered voters who prefer i to c.

Example

Registered voters V

1 voter a c b

2 voters c a b

surplus(c,a) = 2− 1 = 1
surplus(c,b) = 3− 0 = 3

Unregistered voters W

1 voter a b c

1 voter b c a

Thus a is lucky, b is not. Hence,
adding a b c makes a and c tie.
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Destructive Control in Condorcet Voting: DCAV

If there is at least one lucky candidate, then

let d be a lucky candidate such that surplus(c,d) is minimum, and

add surplus(c,d) unregistered voters who prefer d to c.

If there exists no lucky candidate, output “control impossible” and halt.

J. Rothe (HHU Düsseldorf) Preference Aggregation by Voting 73 / 200



Electoral Control Control Complexity for Plurality and Condorcet

Destructive Control in Condorcet Voting: DCDV

3 Destructive control by deleting voters:
We are given

a set C of candidates and
a distinguished candidate c ∈ C,
a list V of voters with preferences over C.

If C = {c}, then output “control impossible” and halt;

else if c already is not a Condorcet winner in the election (C,V),
deleting no voters accomplishes our goal, and we are done.

Otherwise, find a candidate d who comes closest to c
(i.e., relative to whom the surplus of c is minimum), and
delete surplus(c,d) voters from V who prefer c to d .

Now c and d tie, so c is dethroned.
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Destructive Control in Condorcet Voting: DCPV
4 Destructive control by partition of voters:

We are given
a set C of candidates and
a distinguished candidate c ∈ C,
a list V of voters with preferences over C.

Checking the trivial cases: If C = {c}, output “control
impossible” and halt, as c must win.

Otherwise, if c already is not a Condorcet winner, output (V , ∅) as
a successful partition and halt.

Otherwise, if ‖C‖ = 2, output “control impossible” and halt, since
in this case c is the Condorcet winner, so c is preferred by a strict
majority of votes to the other candidate and thus will win at least
one subcommittee and also the run-off.
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Destructive Control in Condorcet Voting: DCPV

Loop: If none of the trivial cases applies, for each a,b ∈ C with
‖{a,b, c}‖ = 3, we test whether we can

make a tie or beat c in (C,V1) and

make b tie or beat c in (C,V2).

For each voter, we will now focus just on the ordering of a, b, and c.
Denote the number of voters

with order c a b or c b a by Wc ,

with order a b c or b a c by Lc ,

with order a c b by Sa, and

with order b c a by Sb.

J. Rothe (HHU Düsseldorf) Preference Aggregation by Voting 76 / 200



Electoral Control Control Complexity for Plurality and Condorcet

Destructive Control in Condorcet Voting: DCPV

If Wc − Lc > Sa + Sb, then this a and b are hopeless, so move on to
consider the next a and b in the loop.

Otherwise, we have

Wc − Lc ≤ Sa + Sb. (3)

Output (V1,V2) as a successful partition and halt, where

V1 contains
all the Sa voters with order a c b, and
also min(Wc ,Sa) voters contributing to Wc , and

where V2 = V \ V1.
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Destructive Control in Condorcet Voting: DCPV

In (C,V1), a ties or beats c, since
a gets Sa votes and
c gets min(Wc ,Sa) votes.

And in (C,V2), b ties or beats c, since
there are Sb + Lc voters who prefer b to c, and
there are Wc −min(Wc ,Sa) voters who prefer c to b.

Thus, to prove that the construction works, we need that

Sb + Lc ≥ Wc −min(Wc ,Sa),

which is equivalent to

Sb +min(Wc ,Sa) ≥ Wc − Lc . (4)
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Destructive Control in Condorcet Voting: DCPV

But

if Sa ≤Wc then min(Wc ,Sa) = Sa, so by Equation (3),

Sb +min(Wc ,Sa) ≥Wc − Lc .

That is, Equation (4) is implied by Equation (3).

If Sa > Wc then min(Wc ,Sa) = Wc , so Equation (4) follows
immediately from the fact that Sb + Lc ≥ 0.

Thus, b indeed ties or beats c in (C,V2). q
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Approval Voting

Definition
In approval voting, votes are represented by approval vectors in
{0,1}‖C‖ (with respect to a fixed order of the candidates in C), where

0 stands for disapproval and

1 stands for approval.

Given an election (C,V ) and a candidate c ∈ C, define

the approval score of c in (C,V ) (denoted by score(C,V )(c)) as the
number of c’s approvals in (C,V ), and

all candidates with a largest approval score are the approval
winners in (C,V ).
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Approval Voting

Remark:

An election may have more than one approval winner.

Approval voting is a voiced voting system.

Approval voting satisfies Unique-WARP. Hence, it is immune to
constructive control by adding candidates,
destructive control by deleting candidates,
and (in both TE and TP) to destructive control by partition and
run-off partition of candidates.

In addition, approval voting is immune to constructive control by
partition and run-off partition of candidates in model TP: Exercise.
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Control Complexity of Approval Voting

Approval

Control by Construct. Destruct.

Adding Candidates I V

Deleting Candidates V I

Partition TE: V TE: I

of Candidates TP: I TP: I

Run-off Partition TE: V TE: I

of Candidates TP: I TP: I

Adding Voters R V

Deleting Voters R V

Partition TE: R TE: V

of Voters TP: R TP: V

All results are due to Hemaspaandra, Hemaspaandra, and Rothe (2007).
J. Rothe (HHU Düsseldorf) Preference Aggregation by Voting 82 / 200



Electoral Control Control Complexity for Approval Voting

Susceptibility in Approval Voting

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))
Approval voting is susceptible to

1 (a) destructive control by partition of voters in models TE and TP,
(b) destructive control by deleting voters, and
(c) constructive control by adding voters.

2 (a) destructive control by adding voters and
(b) constructive control by deleting voters.
(c) constructive control by partition of voters in models TE and TP.

3 (a) destructive control by adding candidates and
(b) constructive control by deleting candidates.
(c) constructive control by partition of candidates and run-off partition

of candidates, both in model TE.
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Susceptibility in Approval Voting

Proof: Let C = {a,b, c}. Votes are strings in {0,1}3, e.g.,

a b c

1 0 1
0 1 1

=⇒
score(a) = 1
score(b) = 1
score(c) = 2

=⇒ c alone wins.

1 (a) There are 10 votes in V :

a b c

v1, v2, v3, v4 0 0 1
v5, v6, v7 1 0 0
v8, v9, v10 0 1 0

c is the unique approval winner
with score(c) = 4. Partition V into
V1 = {v1, v2, v5, v6, v7} and V2 =

V \ V1. Then a wins (C,V1), b
wins (C,V2), and both the run-off.
Susceptibility to DCPV-TE/TP.
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Susceptibility in Approval Voting

CCPV−TEDCPC−TE/TP

DCAVCCAV

DCDV CCDV

DCAC

CCDC

DCRPC−TE/TP CCRPC−TE/TP

CCPC−TE/TP

DCDC

CCAC

CCPV−TP

DCPV−TE/TP + voiced

Unique−WARP violated

voiced

Figure: Links between susceptibility results for various control types

1 (b) follows from 1(a): Susceptibility to DCDV.

(c) is equivalent to 1(b): Susceptibility to CCAV.
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Susceptibility in Approval Voting

2 (a) One registered voter v = 0 0 1, one unregistered voter w = 1 0 0.
Susceptibility to DCAV.

(b) Dito: Susceptibility to CCDV.

(c) There are 8 votes in V :

a b c

v1, v2, v3 1 0 0
v4, v5 0 1 0
v6, v7, v8 0 0 1

a and c win in (C,V ). Partition
V into V1 = {v1, v2, v6, v7, v8} and
V2 = V \V1 = {v3, v4, v5}. Then c
wins (C,V1), b wins (C,V2), and
c the run-off.
Susceptibility to CCPV-TE/TP.
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Susceptibility in Approval Voting

CCPV−TEDCPC−TE/TP

DCAVCCAV

DCDV CCDV

DCAC

CCDC

DCRPC−TE/TP CCRPC−TE/TP

CCPC−TE/TP

DCDC

CCAC

CCPV−TP

DCPV−TE/TP + voiced

Unique−WARP violated

voiced

Figure: Links between susceptibility results for various control types

3 (a) follows from 2(c): Susceptibility to DCAC.

(b) is equivalent to 3(a): Susceptibility to CCDC.
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Susceptibility in Approval Voting

3 (c) There are 2 votes in V :

a b c

v1 1 1 1
v2 1 1 0

In (C,V ), a and b win, c doesn’t.

Partition C into C1 = {a,b} and
C2 = C \ C1 = {c}.

By the TE rule, no one from
(C1,V ) enters the run-off, so c
alone wins.

Susceptibility to CCPC-TE and
CCRPC-TE. q
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Candidate Control in Approval Voting:
CCDC, CCPC-TE, CCRPC-TE, and DCAC

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))
Approval voting is vulnerable/certifiably-vulnerable to

1 constructive control by deleting candidates,

2 constructive control by partition of candidates in model TE,

3 constructive control by run-off partition of candidates in model TE,

4 destructive control by adding candidates.
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Candidate Control in Approval Voting: CCDC

Proof: In the first three cases, we are given

a set C of candidates and

a distinguished candidate c ∈ C,

a list V of voters represented by their approval vectors over C.

1 In the deleting candidates case,
if c already is the unique approval winner in the election (C,V),
deleting no candidates accomplishes our goal, and we are done.

Otherwise, delete every candidate other than c who has at least as
many Yes votes as c has in V and halt.
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Candidate Control in Approval Voting: CCPC-TE

2 In the partition of candidates case,
if c already is the unique approval winner, then output (∅,C) as a
successful partition and halt.

Otherwise, for each candidate a ∈ C, let ya denote the number of
Yes votes cast for a in V , and let

Y = max{ya
∣∣ a ∈ C}.

Now, if there exists exactly one a ∈ C \ {c} such that ya = Y , then
output “control impossible” and halt, since c cannot be made the
unique winner in this case.
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Candidate Control in Approval Voting: CC(R)PC-TE

On the other hand, if there exist at least two distinct candidates in
C \ {c} whose number of Yes votes is Y , then output (C1,C2) with

C1 = C \ {c} and
C2 = {c}

as a successful partition and halt.
This works, since in subelection (C1,V) all candidates are
eliminated according to the TE rule.

3 Note that the same algorithm also works for the run-off partition of
candidates case in model TE.
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Candidate Control in Approval Voting: DCAC

4 In this case, we are given
a set C of qualified candidates and
a distinguished candidate c ∈ C,
a set D of possible spoiler candidates, and
a list V of voters represented by their approval vectors over C ∪ D.

If c already is not a unique approval winner in (C,V), adding no
candidates accomplishes our goal, and we are done.

Otherwise, if there exists a spoiler candidate d who ties or beats c
among the voters in V in Yes votes, add one such spoiler
candidate and halt.

Otherwise, output “control impossible” and halt. q
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Recall: Control Complexity of Approval Voting

Approval

Control by Construct. Destruct.

Adding Candidates I V

Deleting Candidates V I

Partition TE: V TE: I

of Candidates TP: I TP: I

Run-off Partition TE: V TE: I

of Candidates TP: I TP: I

Adding Voters R V

Deleting Voters R V

Partition TE: R TE: V

of Voters TP: R TP: V

All results are due to Hemaspaandra, Hemaspaandra, and Rothe (2007).
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Constructive Voter Control in Approval Voting:
CCAV, CCDV, CCPV-TP, and CCPV-TE

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))
Approval voting is resistant to constructive control by

1 adding voters,

2 deleting voters,

3 partition of voters in model TP, and

4 partition of voters in model TE.
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Constructive Voter Control in Approval Voting

Proof: To prove NP-hardness of these four control problems, we
reduce from the following NP-complete problem:

Name: EXACT COVER BY THREE-SETS (X3C).

Given: A set B = {b1,b2, . . . ,bm}, m = 3k , k ≥ 1, and
a collection S = {S1,S2, . . . ,Sn} of subsets Si ⊆ B
with ‖Si‖ = 3 for each i , 1 ≤ i ≤ n.

Question: Is there a subcollection S ′ ⊆ S such that each element of
B occurs in exactly one set in S ′?
In other words, does there exist an index set
I ⊆ {1,2, . . . ,n} with ‖I‖ = k such that

⋃
i∈I

Si = B?
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Constructive Voter Control in Approval Voting: CCAV

1 Given an instance (B,S) of X3C, where
B = {b1,b2, . . . ,bm}, m = 3k , k > 1,
S = {S1,S2, . . . ,Sn}, and
Si ⊆ B with ‖Si‖ = 3 for each i , 1 ≤ i ≤ n,

construct the following instance of CCAV for approval voting:
The candidate set is C = B ∪ {w}, where w is the distinguished
candidate.

V consists of k − 2 registered voters who each approve of
b1,b2, . . . ,bm and disapprove of w .

W consists of n unregistered voters: For each i , 1 ≤ i ≤ n, there is
one voter in W who approves of w and the three candidates in Si ,
and who disapproves of all other candidates.
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Constructive Voter Control in Approval Voting: CCAV

We claim that S contains an exact cover for B if and only if w can be
made the unique approval winner by adding at most k voters.

(⇒) Simply add the k voters from W that correspond to the exact
cover for B. Then

w has k Yes votes and

every b ∈ B has (k − 2) + 1 = k − 1 Yes votes,

so w is the unique approval winner.
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Constructive Voter Control in Approval Voting: CCAV

(⇐) Suppose that w can be made the unique approval winner by
adding at most k voters.

Then we clearly

need to add exactly k voters and

every b ∈ B can gain at most one Yes vote.

Since each voter in W casts three Yes votes for candidates in B, it
follows that every b ∈ B gains exactly one Yes vote.

Thus, the k added voters correspond to an exact cover for B.
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Constructive Voter Control in Approval Voting: CCDV

2 Let an instance (B,S) of X3C be given, where
B = {b1,b2, . . . ,bm}, m = 3k , k > 0,
S = {S1,S2, . . . ,Sn}, and
Si ⊆ B with ‖Si‖ = 3 for each i , 1 ≤ i ≤ n.

For each j , 1 ≤ j ≤ m, let

`j = ‖{Si ∈ S
∣∣ bj ∈ Si}‖.

Construct the following election: The candidate set is

C = B ∪ {w},

where w is the distinguished candidate.
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Constructive Voter Control in Approval Voting: CCDV

The voter list V consists of the following voters:

For each i , 1 ≤ i ≤ n, there is one voter in V who approves of all
candidates in Si and who disapproves of all other candidates.

There are n voters v1, v2, . . . , vn in V such that, for each i ,
1 ≤ i ≤ n,

vi approves of w , and
vi approves of bj if and only if i ≤ n − `j .

Note that the election (C,V) has the property that all candidates have
n Yes votes.
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Constructive Voter Control in Approval Voting: CCDV

We claim that S contains an exact cover for B if and only if w can be
made the unique approval winner by deleting at most k voters.

(⇒) Simply delete the k voters from V that correspond to an exact
cover for B.

Then every b ∈ B loses one Yes vote, leaving w the unique approval
winner.
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Constructive Voter Control in Approval Voting: CCDV

(⇐) Suppose that w can be made the unique approval winner by
deleting at most k voters.

Without loss of generality, we may assume that none of the deleted
voters approves of w .

So, we assume that only voters corresponding to Si ’s have been
deleted.

For w to have become the unique winner, every b ∈ B must have lost
at least one Yes vote.

It follows that the deleted voters correspond to a cover, and since the
cover has size at most k , this must be an exact cover for B.
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Constructive Voter Control in Approval: CCPV-TP

3 Let an instance (B,S) of X3C be given, where
B = {b1,b2, . . . ,bm}, m = 3k , k > 0,
S = {S1,S2, . . . ,Sn}, and
Si ⊆ B with ‖Si‖ = 3 for each i , 1 ≤ i ≤ n.

Modify the construction from the CCDV proof as follows.

The candidate set is

C = B ∪ {w , x , y},

where w is the distinguished candidate.

This election will have the property that all candidates other than x
have n + k + 2 Yes votes.
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Constructive Voter Control in Approval: CCPV-TP

The voter list V consists of the following voters:

For each i , 1 ≤ i ≤ n, there is one voter in V who approves of y
and of all members of Si and who disapproves of all other
candidates.
There are n voters v1, v2, . . . , vn in V such that, for each i ≤ n,

vi approves of w ,
vi disapproves of x and y , and
vi approves of bj if and only if i ≤ n − `j .

There are k + 1 voters in V who approve of x and disapprove of
all other candidates.

Finally, there are k + 2 voters in V who disapprove of x and
approve of all other candidates.

J. Rothe (HHU Düsseldorf) Preference Aggregation by Voting 105 / 200



Electoral Control Control Complexity for Approval Voting

Constructive Voter Control in Approval: CCPV-TP

We claim that S contains an exact cover for B if and only if w can be
made the unique approval winner by partition of voters in model TP.

(⇒) If S contains an exact cover for B, then

let V2 consist of the k voters corresponding to the sets in the cover
and of all the k + 1 voters who approve of only x , and

let V1 = V \ V2.

Then

w is the unique approval winner of (C,V1),

x is the unique approval winner of (C,V2), and

w wins the run-off against x .
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Constructive Voter Control in Approval: CCPV-TP

(⇐) Suppose that w can be made the unique approval winner by
partition of voters in model TP.

Since w is the unique winner in the run-off, and since every candidate
other than x is tied with w (each having n + k + 2 Yes votes in V ), the
only candidates that can participate in the run-off are w and x .

Since we are in the TP model,

w must be the unique winner of one of the subelections and

x must be the unique winner of the other subelection.

J. Rothe (HHU Düsseldorf) Preference Aggregation by Voting 107 / 200



Electoral Control Control Complexity for Approval Voting

Constructive Voter Control in Approval: CCPV-TP

Let (V1,V2) be a partition of V such that w is the unique winner of
(C,V1) and such that x is the unique winner of (C,V2).

As in the proof of the CCDV case, it follows that the voters
corresponding to Si ’s that are not in V1 (i.e., that are in V2)
correspond to a cover.

Since x is the unique winner of (C,V2) and x has k + 1 Yes votes,
y can have at most k Yes votes in V2.

It follows that there are at most k voters corresponding to Si ’s in V2.

Thus, there are exactly k such voters, and these voters correspond to
an exact cover.
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Constructive Voter Control in Approval: CCPV-TE

4 Let an instance (B,S) of X3C be given, where
B = {b1,b2, . . . ,bm}, m = 3k , k > 0,
S = {S1,S2, . . . ,Sn}, and
Si ⊆ B with ‖Si‖ = 3 for each i , 1 ≤ i ≤ n.

Modify the construction from the CCPV-TP proof as follows.

The candidate set is

C = B ∪ {w , x , y} ∪ {z1, . . . , zn},

where w is the distinguished candidate.

This election will have the property that all candidates other than x
and y have n Yes votes.
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Constructive Voter Control in Approval: CCPV-TE

The voter set V consists of the following voters:

For each i , 1 ≤ i ≤ n, there is one voter in V who approves of y
and of all members of Si and disapproves of all other candidates.

For each i , 1 ≤ i ≤ n, there is one voter in V who approves of y
and zi and who disapproves of all other candidates.

There are n voters v1, v2, . . . , vn in V such that, for each i ≤ n,
vi approves of w ,
vi disapproves of x and y ,
vi approves of bj if and only if i ≤ n − `j , and
vi approves of zj if and only if i 6= n.

There are n + k voters in V who approve of x and who disapprove
of all other candidates.
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Constructive Voter Control in Approval: CCPV-TE

We claim that S contains an exact cover for B if and only if w can be
made the unique approval winner by partition of voters in model TE.

(⇒) If S contains an exact cover for B, then
let V2 consist of

the k voters corresponding to the sets in the cover and
of all the n + k voters who approve of only x and
for each i , 1 ≤ i ≤ n, of the voter who approves of only y and zi .

Let V1 = V \ V2.

Then w is the unique approval winner of (C,V1), and x and y are tied
for first place in (C,V2) with n + k Yes votes each.

Since we are in model TE, no candidates are nominated by (C,V2),
and w wins the run-off (and thus the election) by default.
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Constructive Voter Control in Approval: CCPV-TE

(⇐) Suppose that w can be made the unique approval winner by
partition of voters in model TE.

Since we are in model TE, w must be the unique winner of one of the
subelections.

Let (V1,V2) be a partition of V such that w is the unique winner of
(C,V1).

As in the proof of the CCDV case, it follows that the voters
corresponding to Si ’s that are not in V1 (i.e., that are in V2)
correspond to a cover.
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Constructive Voter Control in Approval: CCPV-TE

Suppose there are more than k voters that correspond to Si ’s in V2.

Note that for each i , 1 ≤ i ≤ n, the voter that approves of only y and zi

must also be in V2 (for if it weren’t, zi would have at least as many Yes
votes in V1 as w). It follows that y has more than n + k Yes votes in V2.

But then y is the unique approval winner in V2, since no other
candidate has more than n + k Yes votes in V .

Since y beats w in the run-off, this contradicts the fact that w wins the
election.

It follows that there are at most k voters corresponding to Si ’s in V2.

Thus, there are exactly k such voters, and these voters correspond to
an exact cover. q
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Destructive Voter Control in Approval Voting:
DCAV, DCDV, DCPV-TP, and DCPV-TE

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))
Approval voting is vulnerable/certifiably-vulnerable to destructive
control by

1 adding voters,

2 deleting voters, and

3 partition of voters in model TP and in model TE,
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Destructive Voter Control in Approval Voting: DCAV

Proof:
1 We are given

a set C of candidates,
a distinguished candidate c ∈ C,
a list V of registered voters, and
a list W of unregistered voters, both represented by their approval
vectors over C.

Checking the trivial cases:
If C = {c}, then output “control impossible” and halt.

Otherwise, if c already is not the unique approval winner in the
election (C,V), adding no voters accomplishes our goal, and we
are done.
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Destructive Voter Control in Approval Voting: DCAV

Otherwise, for each candidate i 6= c, again define surplus(c, i) to be
the number of Yes votes for c in V minus
the number of Yes votes for i in V .

Among all candidates j other than c (if any) such that there exist at
least surplus(c, j) voters in W who vote Yes for j and No for c,

let d be any such j for which surplus(c, j) is minimum, and

add surplus(c,d) unregistered voters who vote Yes for d and No
for c.

If no j satisfying the above conditions exists, then output “control
impossible” and halt.
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Destructive Voter Control in Approval Voting: DCDV

2 We are given
a set C of candidates,
a distinguished candidate c ∈ C, and
a list V of voters, represented by their approval vectors over C.

Checking the trivial cases:
If C = {c}, then output “control impossible” and halt.

Otherwise, if c already is not the unique approval winner in the
election (C,V), deleting no voters accomplishes our goal, and we
are done.
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Destructive Voter Control in Approval Voting: DCDV

Otherwise,

let d be a candidate among C \ {c} for whom surplus(c,d) is
minimum, and

delete surplus(c,d) voters from V who vote Yes for c and No for d
(such voters must exist, as they are what is causing the surplus in
the first place).
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Electoral Control Control Complexity for Approval Voting

Destructive Voter Control in Approval Voting: DCPV

3 We describe two polynomial-time algorithms for these two control
problems, one for TE and one for TP. We are given

a set C of candidates,
a distinguished candidate c ∈ C, and
a list V of voters, represented by their approval vectors over C.

Both algorithms proceed in the following three phases:
1 Checking the trivial cases:

If C = {c}, output “control impossible” and halt, as c must win.

Otherwise, if c already is not the unique winner, output (V , ∅) as a
successful partition and halt.

Otherwise, if ‖C‖ = 2, output “control impossible” and halt, since in
this case c is the unique winner, so c will win in at least one
subcommittee and will also win the run-off.
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Electoral Control Control Complexity for Approval Voting

Destructive Voter Control in Approval Voting: DCPV

2 Loop:
In this phase, if none of the trivial cases applies, we try to find a pair
of candidates, a and b, that allows us to determine a successful
partition of voters.

This phase is described below, separately for TE and TP.

3 Termination:
If in no loop iteration did we find an a and b that allowed us to
output a partition of voters dethroning c, then output “control
impossible” and halt.
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Electoral Control Control Complexity for Approval Voting

Destructive Voter Control in Approval Voting: DCPV

For each voter in V , we focus just on his/her approval of a, b, and c,
represented (in that order) as a vector from {0,1}3.
Denote the number of voters with approval vector

001 by Wc ,

110 by Lc ,

100 by Sa,

010 by Sb,

101 by Sac , and

011 by Sbc .

Voters with approval vectors 000 or 111 need not be considered, since
they do not affect the difference of Yes votes among a, b, and c.
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Electoral Control Control Complexity for Approval Voting

Destructive Voter Control in Approval Voting: DCPV

Loop in model TE:
For each a,b ∈ C with ‖{a,b, c}‖ = 3, we test whether we can

make a tie or beat c in (C,V1) and

make b tie or beat c in (C,V2).

If Wc − Lc > Sa + Sb, then this a and b are hopeless, so move on to
consider the next a and b in the loop.

Otherwise, we have

Wc − Lc ≤ Sa + Sb. (5)
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Electoral Control Control Complexity for Approval Voting

Destructive Voter Control in Approval Voting: DCPV

Output (V1,V2) as a successful partition and halt, where

V1 contains all voters contributing to Sac and Sa, and also
min(Wc ,Sa) voters contributing to Wc , and

V2 = V \ V1.

In (C,V1), a ties or beats c, since a gets
Sa −min(Wc ,Sa) ≥ 0

more Yes votes than c.

And in (C,V2), b ties or beats c, since b receives
Sb + Lc − (Wc −min(Wc ,Sa))

more Yes votes than c.
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Electoral Control Control Complexity for Approval Voting

Destructive Voter Control in Approval Voting: DCPV

So, for the construction to work, we must argue that

Sb + Lc +min(Wc ,Sa)−Wc ≥ 0.

That is, we need

Wc − Lc ≤ min(Wc ,Sa) + Sb. (6)

If Wc < Sa, Equation (6) follows trivially from the fact that 0 ≤ Lc + Sb.

And if Wc ≥ Sa, Equation (6) follows immediately from Equation (5).
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Electoral Control Control Complexity for Approval Voting

Destructive Voter Control in Approval Voting: DCPV

Loop in model TP:
For each a,b ∈ C with ‖{a,b, c}‖ = 3, we test whether we can

make a strictly beat c in (C,V1) and

make b strictly beat c in (C,V2).

If Wc − Lc > Sa + Sb − 2 or Sa = 0 or Sb = 0, then this a and b are
hopeless, so move on to consider the next a and b in the loop.

Otherwise, we have

Wc − Lc ≤ Sa + Sb − 2 (7)

and Sa > 0 and Sb > 0.
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Electoral Control Control Complexity for Approval Voting

Destructive Voter Control in Approval Voting: DCPV

Output (V1,V2) as a successful partition and halt, where

V1 contains all voters contributing to Sac and Sa, and also
min(Wc ,Sa − 1) voters contributing to Wc , and

V2 = V \ V1.

In (C,V1), a (strictly) beats c, since a gets
Sa −min(Wc ,Sa − 1) > 0

more Yes votes than c.

And in (C,V2), b (strictly) beats c, since b has
Sb + Lc − (Wc −min(Wc ,Sa − 1))

more Yes votes than c.
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Destructive Voter Control in Approval Voting: DCPV

So, for the construction to work, we must argue that

Sb + Lc +min(Wc ,Sa − 1)−Wc > 0.

That is, we need

Wc − Lc < min(Wc ,Sa − 1) + Sb. (8)

If Wc ≤ Sa − 1, Equation (8) reduces to 0 < Lc + Sb, which follows
from the fact that in the current case Sb > 0.

And if Wc > Sa − 1, Equation (8) follows immediately from
Equation (7). q
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Electoral Control Resistance to Electoral Control by Hybridization

Resistance to Electoral Control by Hybridization

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2009))
There is a hybridization method that takes candidate-anonymous
voting systems as input and outputs a hybrid voting system such that

1 the hybrid voting system possesses all the resistances to control
possessed by any of its constituents, and

2 the hybrid voting system has an easy winner determination
problem if all its constituents do so. without proof

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2009))
There exists a neutral, anonymous voting system that is resistant to all
standard types of electoral control and whose winners can be
determined in polynomial time. without proof
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Electoral Control Resistance to Electoral Control by Hybridization

Sincere-Strategy Preference-Based Approval Voting
Plurality SP-AV AV

Control by Constr. Destr. Constr. Destr. Constr. Destr.

AUC & AC R R R R I V

DC R R R R V I

PC TE: R TE: R TE: R TE: R TE: V TE: I

TP: R TP: R TP: R TP: R TP: I TP: I

RPC TE: R TE: R TE: R TE: R TE: V TE: I

TP: R TP: R TP: R TP: R TP: I TP: I

AV V V R V R V

DV V V R V R V

PV TE: V TE: V TE: R TE: V TE: R TE: V

TP: R TP: R TP: R TP: R TP: R TP: V

Results for SP-AV are due to Erdélyi, Nowak, and Rothe (2009)
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Electoral Control Resistance to Electoral Control by Hybridization

Sincere-Strategy Preference-Based Approval Voting

Number of Condorcet AV Llull Copeland Plurality SP-AV

resistances 3 4 14 15 16 19

immunities 4 9 0 0 0 0

vulnerabilities 7 9 8 7 6 3

Table: Number of resistances, immunities, and vulnerabilities
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Electoral Control Best Wishes from St. Nicholas

Best Wishes from St. Nicholas
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Electoral Control Control Complexity for Bucklin and Fallback Voting

Bucklin Voting

Definition
The strict majority threshold for a list V of voters is

maj(V ) = b‖V‖/2c+ 1.

Given an election (C,V ) and a candidate c ∈ C, define the level i
score of c in (C,V ) (denoted by scorei

(C,V )(c)) as the number of
votes in V that rank c among their top i positions.

The Bucklin score of c in (C,V ) is the smallest i such that

scorei
(C,V )(c) ≥ maj(V ).

All candidates with a smallest Bucklin score, say k , and a largest
level k score are the Bucklin winners (BV winners) in (C,V ).
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Electoral Control Control Complexity for Bucklin and Fallback Voting

Bucklin Voting

Example (Bucklin Voting)

C = {a,b, c,d} and V = (v1, v2, v3, v4, v5), so maj(V ) = 3

v1 : b c a d

v2 : c d a b

v3 : a d c b

v4 : c a d b

v5 : b d c a

a b c d

score1 1 2 2 0

score2 2 2 3 3

⇒ c and d are level 2 Bucklin winners in (C,V )
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Electoral Control Control Complexity for Bucklin and Fallback Voting

Fallback Voting

Fallback Voting is a hybrid system due to Brams and Sanver (2009)
that combines Bucklin with approval voting.

Definition
Each voter provides both an approval vector and a linear ordering
of all approved candidates.

The subset of candidates approved of by a voter is also called his
or her approval strategy.

Given an election (C,V ) and a candidate c ∈ C, the notions of
level i score of c in (C,V ) and
level k fallback voting winner (level k FV winner) in (C,V )

are defined analogously to the case of Bucklin voting.
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Electoral Control Control Complexity for Bucklin and Fallback Voting

Fallback Voting

If there exists a level k FV winner for some k ≤ ‖C‖, he or she is
called a fallback winner (FV winner) in (C,V ).

If, however, for no k ≤ ‖C‖ a level k FV winner exists, every
candidate with a largest (approval) score is an FV winner in
(C,V ).

Remark: Bucklin voting is the special case of fallback voting where
each voter approves of all candidates. Consequently,

FV inherits NP-hardness lower bounds from BV.

BV inherits polynomial-time upper bounds from FV.
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Electoral Control Control Complexity for Bucklin and Fallback Voting

Fallback Voting

Example (Fallback Voting)

C = {a,b, c,d} and V = (v1, v2, v3, v4, v5), so maj(V ) = 3

v1 : b c | {a,d}

v2 : c | {a,b,d}

v3 : a | {b, c,d}

v4 : | {a,b, c,d}

v5 : | {a,b, c,d}

a b c d

score1 1 1 1 0

score2 1 1 2 0

⇒ c is the unique fallback winner by approval score in (C,V )
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Electoral Control Control Complexity for Bucklin and Fallback Voting

Results for Fallback Voting and Bucklin Voting
FV BV SP-AV

Control by Constr. Destr. Constr. Destr. Constr. Destr.

Adding Candidates (unlim.)
Adding Candidates (lim.)
Deleting Candidates
Partition of Candidates

Run-off Partition
of Candidates
Adding Voters
Deleting Voters
Partition of Voters

[ER10] G. Erdélyi and J. Rothe: Control complexity in fallback voting. In: Proceedings of Computing: the 16th Australasian
Theory Symposium, 32(4): 39–48, 2010.

[EFRS15] G. Erdélyi, M. Fellows, J. Rothe, and L. Schend: Control Complexity in Bucklin and Fallback Voting: A Theoretical
Analysis. Journal of Computer and System Sciences 81(4): 632–660, 2015. (Also in Proc. AAMAS-2011.)

[ENR09] G. Erdélyi, M. Nowak, and J. Rothe: Sincere-strategy preference-based approval voting fully resists constructive control
and broadly resists destructive control. Mathematical Logic Quarterly, 55(4): 425–443, 2009.
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[EFRS15] G. Erdélyi, M. Fellows, J. Rothe, and L. Schend: Control Complexity in Bucklin and Fallback Voting: A Theoretical
Analysis. Journal of Computer and System Sciences 81(4): 632–660, 2015. (Also in Proc. AAMAS-2011.)
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Electoral Control Control Complexity for Bucklin and Fallback Voting

Control Complexity of FV and BV: Summary

FV has 20 resistances to electoral control and is vulnerable to 2
types of electoral control.

BV is fully resistant to both candidate control and constructive
control.

BV behaves almost as good as FV, with 19 (possibly even 20)
resistances and 2 (at most 3) vulnerabilities.

Resistance results for BV strengthen those for FV.

FV has the most known resistances among natural voting systems
with polynomial-time winner determination.
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Electoral Control Control Complexity for Bucklin and Fallback Voting

Bucklin Voting: Control by Partition of Voters

1st stage: (C,V1) (C,V2)

W1 W2

2nd stage: (W1∪W2,V )

Example (Bucklin Voting and CCPV)

C = {a,b, c,d ,e}, V = (v1, . . . , v5), V1 = (v1, v2), V2 = (v3, v4, v5)

(C,V )

(C,V1) (C,V2) (W1 ∪W2,V )

v1 b a c d e

b a c d e b c

v2 b d c a e

b d c a e b c

v3 c a d b e

c a d b e c b

v4 a d c b e

a d c b e c b

v5 c e b a d

c e b a d c b

→ a

W1 = {b} W2 = {c} → c
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v2 b d c a e b d c a e b c
v3 c a d b e c a d b e c b
v4 a d c b e a d c b e c b
v5 c e b a d c e b a d c b

→ a W1 = {b} W2 = {c}

→ c
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Bucklin Voting: Control by Partition of Voters
1st stage: (C,V1) (C,V2)

W1 W2

2nd stage: (W1∪W2,V )

Example (Bucklin Voting and CCPV)

C = {a,b, c,d ,e}, V = (v1, . . . , v5), V1 = (v1, v2), V2 = (v3, v4, v5)

(C,V ) (C,V1) (C,V2) (W1 ∪W2,V )

v1 b a c d e b a c d e b c
v2 b d c a e b d c a e b c
v3 c a d b e c a d b e c b
v4 a d c b e a d c b e c b
v5 c e b a d c e b a d c b

→ a W1 = {b} W2 = {c} → c
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Electoral Control Control Complexity for Bucklin and Fallback Voting

Bucklin: Constructive Control by Partition of Voters

Theorem (Erdélyi, Fellows, Rothe, and Schend (2015))

Bucklin voting is resistant to constructive control by partition of voters
in both tie-handling models, TE and TP.

Corollary (Erdélyi, Fellows, Rothe, and Schend (2015))

Fallback voting is resistant to constructive control by partition of voters
in both tie-handling models, TE and TP.
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Bucklin: Constructive Control by Partition of Voters

Proof: To show NP-hardness we reduce X3C to our control problems.

Let (B,S) be an X3C instance with
B = {b1,b2, . . . ,b3m}, m > 1, and
a collection S = {S1,S2, . . . ,Sn} of subsets Si ⊆ B with ‖Si‖ = 3
for each i , 1 ≤ i ≤ n.

We define the election (C,V ), where w is the distinguished candidate
and

C = B ∪ {c,w , x} ∪ D ∪ E ∪ F ∪G

is the set of candidates with

D = {d1, . . . ,d3nm}, E = {e1, . . . ,e(3m−1)(m+1)},

F = {f1, . . . , f(3m+1)(m−1)}, G = {g1, . . . ,gn(3m−3)}.
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Bucklin: Constructive Control by Partition of Voters

For each j , 1 ≤ j ≤ 3m, define

`j = ‖{Si ∈ S
∣∣ bj ∈ Si}‖,

and for each i ,1 ≤ i ≤ n, define

Bi = {bj ∈ B
∣∣ i ≤ n − `j},

Di = {d(i−1)3m+1, . . . ,d3im−‖Bi‖},

Gi = {g(i−1)(3m−3)+1, . . . ,gi(3m−3)}.
‖Di‖ = 3m − ‖Bi‖

‖Gi‖ = 3m − 3

Also, for each k , 1 ≤ k ≤ m + 1, and for each l , 1 ≤ l ≤ m − 1, define

Ek = {e(3m−1)(k−1)+1, . . . ,e(3m−1)k},

Fl = {f(3m+1)(l−1)+1, . . . , f(3m+1)l}.
‖Ek‖ = 3m − 1

‖Fl‖ = 3m + 1
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Bucklin: Constructive Control by Partition of Voters

Let V consist of the following 2n + 2m voters:

# For each . . . number of ranking of candidates

voters

1 i ∈ {1, . . . , n} 1 c Si Gi (G \Gi) F D E (B \ Si) w x

2 i ∈ {1, . . . , n} 1 Bi Di w G E (D \ Di) F (B \ Bi) c x

3 k ∈ {1, . . . ,m + 1} 1 x c Ek F (E \ Ek ) G D B w

4 l ∈ {1, . . . ,m − 1} 1 Fl c (F \ Fl) G D E B w x

‖V‖ = 2n + 2m =⇒ maj(V ) = n + m + 1.
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Bucklin: Constructive Control by Partition of Voters

Purpose of the padding candidates:

Di , 1 ≤ i ≤ n: ensure that w is always placed at position 3m + 1 in
the second voter group of V .

Ek , 1 ≤ k ≤ m + 1: ensure that no other candidate besides c and
x gains more than one point up to the (3m + 1)st level in the third
voter group of V .

Fl , 1 ≤ l ≤ m − 1: ensure that c does not gain any points up to
level 3m + 1 in the fourth voter group of V .

Gi , 1 ≤ i ≤ n: ensure that no other candidate besides c and those
in Si gains more than one point up to level 3m + 1 in the first voter
group of V .
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Bucklin: Constructive Control by Partition of Voters

c bj w x

score1 n ≤ n 0 m + 1

score2 n + m + 1 ≤ n 0 m + 1

score3m n + m + 1 n 0 m + 1

score3m+1 n + m + 1 n n m + 1

Table: Level i scores in (C,V ) for i ∈ {1,2,3m,3m + 1} and B ∪ {c,w , x}.

In (C,V ), candidate c is the unique level 2 BV winner with a level 2
score of n + m + 1.
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Bucklin: Constructive Control by Partition of Voters

We claim that S has an exact cover S ′ for B if and only if w can be
made the unique BV winner of the resulting election by partition of
voters (regardless of the tie-handling model used).

(⇒) Suppose S has an exact cover S ′ for B.

Partition V as follows. Let V1 consist of:

the m voters of the first group that correspond to the exact cover
(i.e., those m voters of the form

c Si Gi (G −Gi) F D E (B − Si) w x for which Si ∈ S ′)
and
the m + 1 voters of the third group (i.e., all voters of the form

x c Ek F (E − Ek ) G D B w).

Let V2 = V \ V1.
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Bucklin: Constructive Control by Partition of Voters

(C,V1) (C,V2)

c bj x c bj w

score1 m 0 m + 1 n −m ≤ n − 1 0

score2 2m + 1 ≤ 1 m + 1 n −m ≤ n − 1 0

score3m 2m + 1 1 m + 1 n −m n − 1 0

score3m+1 2m + 1 1 m + 1 n −m n − 1 n

Table: Level i scores in (C,V1) and (C,V2) for i ∈ {1,2,3m,3m + 1} and the
candidates in B ∪ {c,w , x}.

‖V1‖ = 2m + 1 =⇒ maj(V1) = m + 1. Hence, x wins in (C,V1).
‖V2‖ = 2n − 1 =⇒ maj(V2) = n. Hence, w wins in (C,V2).
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Bucklin: Constructive Control by Partition of Voters

x w

score1 m + 1 2n + m− 1

score2 2n + 2m 2n + 2m

Table: Level i scores of w and x in the final election ({w , x},V ) for i ∈ {1,2}.

In the run-off, w wins with a strict majority on the first level.

Since both subelections, (C,V1) and (C,V2), have unique BV winners,
candidate w can be made the unique BV winner by partition of voters,
regardless of the tie-handling model used.
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Bucklin: Constructive Control by Partition of Voters

(⇐) Suppose that w can be made the unique BV winner by exerting
control by partition of voters (for concreteness, say in TP).

Let (V1,V2) be such a successful partition. Since w wins the resulting
two-stage election, w has to win at least one of the subelections (say,
w wins (C,V2)).

If candidate c participates in the final round, he or she wins the
election with a strict majority no later than on the second level, no
matter which other candidates move forward to the final election.

That means that in both subelections, (C,V1) and (C,V2), c must not
be a BV winner.
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Bucklin: Constructive Control by Partition of Voters

Only in the second voter group candidate w (who has to be a BV
winner in election (C,V2)) gets points earlier than on the
second-to-last level. So w has to be a level 3m + 1 BV winner in
election (C,V2) via votes from the second voter group in V2.

As c scores already on the first two levels in voter groups 1 and 3, only
x and the candidates in B can prevent c from winning in (C,V1).

However, since voters from the second voter group have to be in V2

(as stated above), in subelection (C,V1) only candidate x can prevent
c from moving forward to the final round.

Since x is always placed behind c in all votes except those votes from
the third voter group, x has to be a level 1 BV winner in election
(C,V1).
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Bucklin: Constructive Control by Partition of Voters

In (C,V2) candidate w gains all the points on exactly the (3m + 1)st
level, whereas the other candidates scoring more than one point up to
this level receive their points on either earlier or later levels, so no
candidate can tie with w on the (3m + 1)st level and w is the unique
level 3m + 1 BV winner in election (C,V2).

As both subelections, (C,V1) and (C,V2), have unique BV winners
other than c, the construction works in model TE as well.

It remains to show that S has an exact cover S ′ for B.

Since w has to win (C,V2) with the votes from the second voter group,
not all voters from the first voter group can be in V2 (otherwise c would
have n points already on the first level).
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Bucklin: Constructive Control by Partition of Voters

On the other hand, there can be at most m voters from the first voter
group in V1 because otherwise x would not be a level 1 BV winner in
election (C,V1).

To ensure that no candidate contained in B has the same score as w ,
namely n points, and gets these points on an earlier level than w in
(C,V2), there have to be exactly m voters from the first group in V1 and
these voters correspond to an exact cover for B.

Without further adaptions, this reduction also covers the
nonunique-winner case. q
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Bucklin: Destructive Control by Partition of Voters

Theorem (Erdélyi, Fellows, Rothe, and Schend (2015))

Bucklin voting is resistant to destructive control by partition of voters in
tie-handling model TE.

Corollary (Erdélyi, Fellows, Rothe, and Schend (2015))

Fallback voting is resistant to destructive control by partition of voters
in tie-handling model TE.
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Dominating Set

Definition
1 A dominating set of an undirected graph G = (B,A) is a subset

D ⊆ B such that for each x ∈ B \ D there exists a vertex y ∈ D
such that {x , y} ∈ A.

2 The size of a dominating set is the number of its vertices.
3 The neighborhood of a vertex bi ∈ B is defined by

N(bi) = {bj ∈ B
∣∣ {bi ,bj} ∈ A};

the closed neighborhood of bi ∈ B is defined by
N[bi ] = N(bi) ∪ {bi};
for a subset S ⊆ B, the neighborhood of S is defined as
N(S) =

⋃
bi∈S N(bi); and

the closed neighborhood of S is defined as N[S] =
⋃

bi∈S N[bi ].
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Dominating Set

Name: DOMINATING SET (DS).

Given: A graph G = (B,A) and a positive integer k ≤ ‖B‖.

Question: Is there a dominating set of size at most k in G?

In other words, the dominating set problem tests, given a graph
G = (B,A) and an integer k , whether there is a subset B′ ⊆ B of size
at most k such that

B = N[B′].
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Dominating Set
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Bucklin: Destructive Control by Partition of Voters

Proof: To show NP-hardness we reduce the NP-complete problem
DOMINATING SET to our control problem.

Let ((B,A), k) be a given instance of DOMINATING SET with
B = {b1,b2, . . . ,bn} and n ≥ 1.

Define the election (C,V ) with candidate set

C = B ∪ D ∪ E ∪ F ∪ H ∪ {c,u, v ,w , x , y}, where

D = {d1,d2, . . . ,d(k−1)(n+4)}, E = {e1,e2, . . . ,e2(k+n)},

F = {f1, f2, . . . , f3n}, and H = {h1,h2, . . . ,hn2}.

Let c be the distinguished candidate.
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Bucklin: Destructive Control by Partition of Voters

V consists of 2k + 2n votes over C, arranged in four groups:
1 For each i ,1 ≤ i ≤ n, there is one voter of the form:

Fi (B \ N[bi ]) Hi y w (N[bi ] ∪ D ∪ E ∪ (F \ Fi) ∪ (H \ Hi)) u v c x ,

where Fi = {f3(i−1)+1, f3(i−1)+2, f3i} and
Hi = {h(i−1)n+1, . . . ,h(i−1)n+‖N[bi ]‖}.

Note that ‖Hi‖ = ‖N[bi ]‖ and ‖Fi‖ = 3, so candidate w is always
placed on the (n + 5)th position.

2 There is one voter of the form:

x w c B u v (D ∪ E ∪ F ∪ H) y .
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Bucklin: Destructive Control by Partition of Voters

3 For each i , 1 ≤ i ≤ k − 1, there is one voter of the form:

x Di (B ∪ (D \ Di) ∪ E ∪ F ∪ H) u v y w c,

where Di = {d(i−1)(n+4)+1, . . . ,di(n+4)}, so ‖Di‖ = n + 4.

4 For each i , 1 ≤ i ≤ k + n, there is one voter of the form:

c Ei x y (B ∪ D ∪ (E \ Ei) ∪ F ∪ H) u v w ,

where Ei = {e2i−1,e2i}, so ‖Ei‖ = 2.
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Bucklin: Destructive Control by Partition of Voters

c w x

score1 k + n 0 k

score2 k + n 1 k

score3 k + n + 1 1 k

Table: Level i scores of c, w , and x in (C,V ) for i ∈ {1,2,3}.

None of the other candidates scores more than one point up to the
third level.

Note that c reaches a strict majority on this level and thus is the unique
level 3 BV winner in this election.
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Bucklin: Destructive Control by Partition of Voters

Lemma

In the election (C,V ) from the above construction, for every partition of
V into V1 and V2, candidate c is a unique BV winner of at least one of
the subelections, (C,V1) and (C,V2).

Proof: of Lemma. For a contradiction, we assume that in both
subelections, (C,V1) and (C,V2), c is not a unique BV winner.

The previous table shows that half of the voters in V place c already
on the first level. Thus,

for i ∈ {1,2}, ‖Vi‖ must be an even number and

score1
(C,Vi )

(c) = ‖Vi‖
2 .
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Bucklin: Destructive Control by Partition of Voters

Due to the voter in the second voter group, candidate c will get a strict
majority on the third level in one of the subelections, say in (C,V1).

So there has to be a candidate beating or tieing with candidate c on
the second or third level in (C,V1). The candidates in B, D, E , F , H
and u, v , w , y do not score more than one point up to the third level.

Thus only candidate x can possibly beat or tie with c on the second or
third level in (C,V1). However, since x does not score more than k
points in total until the fourth level, c is the unique level 3 BV winner in
subelection (C,V1), a contradiction.

Thus c is a unique BV winner of at least one of the subelections. q
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Bucklin: Destructive Control by Partition of Voters

We claim that G = (B,A) has a dominating set B′ of size k if and only
if candidate c can be prevented from being a unique BV winner by
partition of voters in model TE.
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Bucklin: Destructive Control by Partition of Voters

(⇒) Let B′ be a dominating set for G of size k . Partition V into V1 and
V2 as follows. Let V1 consist of the following 2k voters:

The k voters of the first voter group corresponding to the
dominating set, i.e., for those i with bi ∈ B′, we have one voter:

Fi (B \ N[bi ]) Hi y w (N[bi ] ∪ D ∪ E ∪ (F \ Fi) ∪ (H \ Hi)) u v c x ,

the one voter from the second group:

x w c B u v (D ∪ E ∪ F ∪ H) y ,

the entire third voter group, i.e., for each j , 1 ≤ j ≤ k − 1, there is
one voter of the form:

x Dj (B ∪ (D \ Dj) ∪ E ∪ F ∪ H∪) u v y w c.

Let V2 = V \ V1.
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Bucklin: Destructive Control by Partition of Voters

Note that the strict majority threshold in V1 is maj(V1) = k + 1.

c w x y bi ∈ B

scoren+5 1 k + 1 k k ≤ k

Table: Level n + 5 scores of the relevant candidates in (C,V1).

Note that w reaches a strict majority of k + 1 on this level (and no
other candidate reaches a strict majority on this or an earlier level).

Hence, w is the unique level n + 5 BV winner in subelection (C,V1)

and thus participates in the final round.
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Bucklin: Destructive Control by Partition of Voters

From the previous lemma it follows that candidate c is the unique
winner in subelection (C,V2).

So the final-stage election is ({c,w},V ) and we have the following
scores on the first two levels:

score1
({c,w},V )(c) = score1

({c,w},V )(w) = k + n,

score2
({c,w},V )(c) = score2

({c,w},V )(w) = 2k + 2n.

Since none of c and w have a strict majority on the first level, both
candidates are level 2 BV winners in this two-candidate final-stage
election. Hence, c has been prevented from being a unique BV winner
by partition of voters in model TE.
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Bucklin: Destructive Control by Partition of Voters

(⇐) Assume that c can be prevented from being a unique BV winner
by partition of voters in model TE.

From the previous lemma we know that candidate c must participate in
the final-stage election.

Since we are in model TE, at most two candidates participate in the
final run-off.

To prevent c from being a unique BV winner of the final election, there
must be another finalist and this other candidate has to beat or tie
with c.

Since w is the only candidate that can beat or tie with c in a
two-candidate election, w has to move on to the final round to run
against c.
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Bucklin: Destructive Control by Partition of Voters

Let us say that c is the unique winner of subelection (C,V2) and w is
the unique winner of subelection (C,V1).

For w to win subelection (C,V1) alone, V1 has to contain voters from
the first voter group and w can win only on the (n + 5)th level:

In particular, x is placed before w in all voter groups except the
first, so w can win in (C,V1) only via voters from the first voter
group participating in (C,V1).

Moreover, since w is placed in the last or second-to-last position
in all voters from the third and fourth groups, and

since there is only one voter in the second group, w can win only
on the (n + 5)th level (which is w ’s position in the votes from the
first voter group).
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Bucklin: Destructive Control by Partition of Voters

Let I ⊆ {1, . . . ,n} be the set of indices i such that first-group voter

Fi (B \ N[bi ]) Hi y w (N[bi ] ∪ D ∪ E ∪ (F \ Fi) ∪ (H \ Hi)) u v c x

belongs to V1. Let ` = ‖I‖.

Since w is the unique level n + 5 BV winner of subelection (C,V1) but
y is placed before w in every vote in the first group, the one voter from
the second group (which is the only voter who prefers w to y ) must
belong to V1. Thus we know that

scoren+5
(C,V1)

(w) = `+ 1 and scoren+4
(C,V1)

(y) = scoren+5
(C,V1)

(y) = `.
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Bucklin: Destructive Control by Partition of Voters

For the candidates in B, we have

scoren+4
(C,V1)

(bj) = scoren+5
(C,V1)

(bj) = 1 + ‖{bi
∣∣ i ∈ I and bj 6∈ N[bi ]}‖,

since each bj scores one point up to the (n + 4)th level from the voter
in the second group and one point from the first group for every bi with
i ∈ I such that bj 6∈ N[bi ] in graph G.

Again, since w is the unique level n + 5 BV winner of subelection
(C,V1), no bj ∈ B can score a point in each of the ` votes from the first
voter group that belong to V1.

This implies that for each bj ∈ B there has to be at least one bi with
i ∈ I that is adjacent to bj in G. Thus, the set B′ of candidates bi with
i ∈ I corresponds to a dominating set in G.
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Recall that scoren+5
(C,V1)

(w) = `+ 1 and scoren+4
(C,V1)

(y) = `.

Note also that scoren+4
(C,V1)

(bj) ≤ ` for 1 ≤ j ≤ n.

Since w needs a strict majority to be a BV winner in subelection
(C,V1), it must hold that maj(V1) ≤ `+ 1.

Since y and the bj ∈ B have a score of ` already one level earlier than
w , it must hold that maj(V1) = `+ 1, which implies ‖V1‖ = 2` or
‖V1‖ = 2`+ 1.

To ensure this cardinality of V1, other votes have to be added.
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Bucklin: Destructive Control by Partition of Voters

Since y must not gain additional points from these votes up to the
(n + 5)th level, they cannot come from the fourth voter group.

The remaining votes from the third voter group total up to k − 1.

Thus, since w is the unique BV winner in subelection (C,V1), it must
hold that ` ≤ k .

So ‖B′‖ = ` ≤ k and this means that there exists a dominating set of
size at most k . q
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Fallback Voting: Control by Partition of Voters

Theorem (Erdélyi, Fellows, Rothe, and Schend (2015))

Fallback voting is resistant to destructive control by partition of voters
in tie-handling model TP.

Remark: For Bucklin voting the complexity of destructive control by
partition of voters in tie-handling model TP is open.
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Fallback Voting: Control by Partition of Voters

Proof: To show NP-hardness, we reduce ARHS to DCPV-TP.

Name: ANOTHER RESTRICTED HITTING SET (ARHS).

Given: A set B = {b1,b2, . . . ,bm},
a family S = {S1,S2, . . . ,Sn} of nonempty subsets Si

of B such that n > m, and
a positive integer k such that 1 < k < m.

Question: Does S have a hitting set of size at most k?
That is, is there a set B′ ⊆ B with ‖B′‖ ≤ k such that for
each i , Si ∩ B′ 6= ∅?

Lemma (Erdélyi, Piras, and Rothe (2011))
Another Restricted Hitting Set is NP-complete.

Proof: Exercise. q
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Fallback Voting: Control by Partition of Voters

Construction: Let (B,S, k) be a given instance of ARHS, where
B = {b1,b2, . . . ,bm} is a set,
S = {S1,S2, . . . ,Sn} is a collection of nonempty subsets Si ⊆ B
such that n > m, and
k is a positive integer such that 1 < k < m.

Define the election (C,V ), where

C = B ∪ D ∪ E ∪ {c,w}

is the candidate set with

D = {d1, . . . ,d2(m+1)}

E = {e1, . . . ,e2(m−1)}
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Fallback Voting: Control by Partition of Voters

and where V consists of the following 2n(k + 1) + 4m + 2mk voters:

# For each . . . number of voters ranking (approved)

1 i ∈ {1, . . . ,n} k + 1 w Si c

2 j ∈ {1, . . . ,m} 1 c bj w

3 j ∈ {1, . . . ,m} k − 1 bj

4 p ∈ {1, . . . ,m + 1} 1 d2(p−1)+1 d2p w

5 r ∈ {1, . . . ,2(m − 1)} 1 er

6 n(k + 1) + m − k + 1 c

7 mk + k − 1 c w

8 1 w c
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Fallback Voting: Control by Partition of Voters

Level i scores for i ∈ {1,2,m + 2} in (C,V ):

c w

score1 n(k + 1) + 2m + mk n(k + 1) + 1

score2 n(k + 1) + 2m + mk + 1 n(k + 1) + mk + k

scorem+2 2n(k + 1) + 2m + mk + 1 n(k + 1) + 2m + mk + k + 1

bj ∈ B dp ∈ D er ∈ E

score1 k − 1 ≤ 1 1

score2 ≤ k + n(k + 1) 1 1

scorem+2 ≤ k + n(k + 1) 1 1
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Fallback Voting: Control by Partition of Voters

We have
maj(V ) = n(k + 1) + 2m + mk + 1.

In election (C,V ), only c and w reach a strict majority,

w on the third level and

c on the second level.

Thus c is the unique level 2 FV winner of election (C,V ).

Lemma

In the election (C,V ) thus constructed, for every partition of V into V1

and V2, candidate c is an FV winner of (C,V1) or (C,V2).
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Fallback Voting: Control by Partition of Voters

Proof: For a contradiction, suppose that in both subelections, (C,V1)

and (C,V2), candidate c is not an FV winner.

Since score1
(C,V )(c) =

‖V‖
2 , the two subelections must satisfy that both

‖V1‖ and ‖V2‖ are even numbers, and

score1
(C,V1)

(c) =
‖V1‖

2
,

score1
(C,V2)

(c) =
‖V2‖

2
.

Otherwise, c would have a strict majority already on the first level in
one of the subelections and would win that subelection.
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Fallback Voting: Control by Partition of Voters

For each i ∈ {1,2},

c already on the first level has only one point less than the strict
majority threshold maj(Vi) in subelection (C,Vi), and

c will get a strict majority in (C,Vi) no later than on the (m + 2)nd
level.

Thus, for i ∈ {1,2}, there must be candidates whose level m + 2
scores in (C,Vi) are higher than the level m + 2 score of c in (C,Vi).

The previous tables show the level m + 2 scores of all candidates in
(C,V ): Only w and some bj ∈ B have a chance to beat c on that level
in (C,Vi), i ∈ {1,2}.
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Fallback Voting: Control by Partition of Voters

Suppose that c is defeated in both subelections by two distinct
candidates from B (say,

bx defeats c in (C,V1) and

by defeats c in (C,V2)).

Thus the following must hold (for the left-hand sides of the inequalities,
note that each vote occurs in only one of the two subelections; and to
avoid double-counting, we substract the double-counted points):

scorem+2
(C,V1)

(bx) + scorem+2
(C,V2)

(by ) ≥ scorem+2
(C,V )(c) + 2

2n(k + 1) + 2k − n(k + 1) ≥ 2n(k + 1) + mk + 2m + 3

2k ≥ n(k + 1) + mk + 2m + 3.
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Fallback Voting: Control by Partition of Voters

By our basic assumption m > k > 1, this implies the following
contradiction:

0 ≥ n(k + 1) + (m − 2)k + 2m + 3

> n(k + 1) + (k − 2)k + 2k + 3

= n(k + 1) + k2 + 3 > 0.

Thus the only possibility for c to not win any of the two subelections is
that

c is defeated in one subelection, say (C,V1), by a candidate
from B, say bx , and

in the other subelection, (C,V2), by candidate w .
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Fallback Voting: Control by Partition of Voters

Then it must hold that (again avoiding double-counting):

scorem+2
(C,V1)

(bx) + scorem+2
(C,V2)

(w) ≥ scorem+2
(C,V )(c) + 2

2n(k + 1) + 2k + 2m + mk + 1− n(k + 1)− 1 ≥ 2n(k + 1) + mk + 2m + 3

2k ≥ n(k + 1) + 3.

Since n > 1, this cannot hold, so c must be an FV winner in one of the
two subelections. q
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Fallback Voting: Control by Partition of Voters

We claim that S has a hitting set B′ ⊆ B of size k if and only if
c can be prevented from being a unique FV winner by partition of
voters in model TP.

(⇒) Suppose B′ ⊆ B is a hitting set of size k for S.

Partition V into V1 and V2 as follows:

Let V1 consist of those voters of the
second group where bj ∈ B′ and
third group where bj ∈ B′.

Let V2 = V \ V1.
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Fallback Voting: Control by Partition of Voters

Consider the following score table in (C,V1):

c w bj ∈ B′ bj 6∈ B′

score1 k 0 k − 1 0

score2 k 0 k 0

score3 k k k 0

Table: Level i scores in (C,V1) for i ∈ {1,2,3} and candidates in B ∪ {c,w}.

Note that maj(V1) = b k2

2 c+ 1. Hence, no candidate reaches a strict
majority in (C,V1), and candidates c, w , and each bj ∈ B′ win the
election with an approval score of k .
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Fallback Voting: Control by Partition of Voters

Consider the following score tables in (C,V2):

c w

score1 n(k + 1) + 2m − k + mk n(k + 1) + 1

score2 n(k + 1) + 2m − k + mk + 1 n(k + 1) + mk + k

score3 ≥ n(k + 1) + 2m − k + mk + 1 n(k + 1) + mk + 2m + 1

bj 6∈ B′ bj ∈ B′

score1 k − 1 0

score2 ≤ k + n(k + 1) ≤ n(k + 1)

score3 ≤ k + n(k + 1) ≤ n(k + 1)

Table: Level i scores in (C,V2) for i ∈ {1,2,3} and candidates in B ∪ {c,w}.
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Fallback Voting: Control by Partition of Voters

Since in (C,V2) no candidate from B wins, the candidates participating
in the final round are B′ ∪ {c,w}, with scores:

c w bj ∈ B′

score1 n(k + 1) + 2m + mk n(k + 1) + m + 2 k − 1

score2 n(k + 1) + 2m + mk + 1 n(k + 1) + 2m + mk + 1 ≤ k + n(k + 1)

Table: Level i scores in the final-stage election (B′ ∪ {c,w},V ) for i ∈ {1,2}.

Since both c and w are level 2 FV winners, c has been prevented from
being a unique FV winner by partition of voters in model TP.
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Fallback Voting: Control by Partition of Voters

(⇐) Suppose c can be prevented from being a unique FV winner by
partition of voters in model TP. From our lemma it follows that c
participates in the final round.

Since c has a strict majority of approvals, c has to be tied with or lose
against another candidate by a strict majority at some level.

Only candidate w has a strict majority of approvals, so w has to tie or
beat c at some level in the final round.

Because of the low scores of the candidates in D and E we may
assume that only candidates from B are participating in the final round
besides c and w .

Let B′ ⊆ B be the set of candidates who also participate in the final
round.
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Fallback Voting: Control by Partition of Voters

Let ` be the number of sets in S not hit by B′.

As w cannot reach a strict majority of approvals on the first level, we
consider the level 2 scores of c and w :

score2
(B′∪{c,w},V )(c) = n(k + 1) + 2m + mk + 1 + `(k + 1),

score2
(B′∪{c,w},V )(w) = n(k + 1) + 2m + mk + k − ‖B′‖+ 1.

Since c has a strict majority already on the second level, w must tie or
beat c on this level, so the following must hold:
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Fallback Voting: Control by Partition of Voters

score2
(B′∪{c,w},V )(c)− score2

(B′∪{c,w},V )(w) ≤ 0

n(k + 1) + 2m + mk + 1 + `(k + 1)

−n(k + 1)− 2m −mk − k + ‖B′‖ − 1 ≤ 0

‖B′‖ − k + `(k + 1) ≤ 0.

This is possible only if ` = 0 (i.e., all sets in S are hit by B′), which
implies ‖B′‖ ≤ k .

Thus S has a hitting set of size at most k . q
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Complexity of Candidate Control
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Complexity of Candidate Control: Challenge!
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Complexity of Voter Control
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Complexity of Voter Control: Challenge!
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Complexity of Control by Partition in Veto Elections

control type C
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C
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C D C D C D C D C D C D

unique-winner R R R R R R R R V V R R

nonunique-winner R R R R R R R R V V R R

Table: Overview of complexity results for control by partition in veto elections:

Complexity of Control by Partitioning Veto Elections and of Control by Adding Candidates to Plurality Elections, C. Maushagen
and J. Rothe. Annals of Mathematics and Artificial Intelligence 82(4):219–244, 2018.
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Candidate Control in Maximin Elections
C
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Table: Complexity results for candidate control in maximin elections:

Boldface: The Last Voting Rule Is Home: Complexity of Control by Partition of Candidates or Voters in Maximin Elections,
C. Maushagen and J. Rothe. Proc. ECAI’20, IOS Press, pp. 163–170, 2020.

♥ Multimode Control Attacks on Elections, P. Faliszewski and E. Hemaspaandra and L. Hemaspaandra. Journal of Artificial
Intelligence Research 40:305–351, 2011.

♠ Complexity of Control by Partitioning Veto and Maximin Elections and of Control by Adding Candidates to Plurality Elections,
C. Maushagen and J. Rothe. Proc. ECAI’16, IOS Press, pp. 277–285, 2016.
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Voter Control in Maximin Elections
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Table: Overview of complexity results for voter control in maximin elections:

Boldface: The Last Voting Rule Is Home: Complexity of Control by Partition of Candidates or Voters in Maximin Elections,
C. Maushagen and J. Rothe. Proc. ECAI’20, IOS Press, pp. 163–170, 2020.

♥ Multimode Control Attacks on Elections, P. Faliszewski and E. Hemaspaandra and L. Hemaspaandra. Journal of Artificial
Intelligence Research 40:305–351, 2011.
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Constructive Control in Borda Elections
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Table: Complexity results for constructive control in Borda elections:

Boldface: Control Complexity in Borda Elections: Solving All Open Cases of Offline Control and Some Cases of Online Control,
M. Neveling and J. Rothe. Artificial Intelligence 298, 2021

§ Complexity of Control of Borda Count Elections, N. Russel. Master’s Thesis, Rochester Institute of Technology, 2007

$ Cloning in Elections: Finding the Possible Winners, E. Elkind, P. Faliszewski, and A. Slinko. Journal of Artificial Intelligence
Research 42:529–573, 2011

d Elections with Few Voters: Candidate Control Can Be Easy, J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. Proc.
AAAI’15, AAAI Press, pp. 2045–2051, 2015

♠ Dichotomy for Pure Scoring Rules Under Manipulative Electoral Actions, E. Hemaspaandra and H. Schnoor. Proc. ECAI’16,
IOS Press, pp. 1071–1079, 2016.
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Destructive Control in Borda Elections
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Table: Complexity results for constructive control in Borda elections:

Boldface: Control Complexity in Borda Elections: Solving All Open Cases of Offline Control and Some Cases of Online Control,
M. Neveling and J. Rothe. Artificial Intelligence 298, 2021

§ Complexity of Control of Borda Count Elections, N. Russel. Master’s Thesis, Rochester Institute of Technology, 2007

† Controlling Elections by Replacing Candidates or Votes, A. Loreggia, N. Narodytska, F. Rossi, B. Venable, and T. Walsh. Proc.
AAMAS’15, IFAAMAS, pp. 1737–1738, 2015
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Merry Christmas from Santa Claus!
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