
Manipulation Basic Definitions

Manipulation: Strategic Voting

Example

Consider the Borda election with candidates a, b, and c and the following

votes:

Sincere Strategic

Votes Votes

points : 2 1 0 2 1 0

5 votes : a b c a b c

5 votes : b a c ⇒ b c a

1 vote : c a b c a b

Borda Borda

winner a winner b
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Manipulation Basic Definitions

Variants of the Manipulation Problem

Definition (Constructive Coalitional Manipulation)

Let E be some voting system.

Name: E-Constructive Coalitional Manipulation

(E-CCM).

Given: A set C of candidates,

a list V of nonmanipulative voters over C ,

a list S of manipulative voters (whose votes over C are

still unspecified) with V ∩ S = ∅, and

a distinguished candidate c ∈ C .

Question: Is there a way to set the preferences of the voters in S such

that, under election system E , c is a winner of election

(C ,V ∪ S)?
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Manipulation Basic Definitions

Variants of the Manipulation Problem

Remark: Variants:

E-Destructive Coalitional Manipulation (E-DCM) is the

same with “c is not a winner of (C ,V ∪ S).”

If ‖S‖ = 1, we obtain the single-manipulator problems:

E-Constructive Manipulation (E-CM) and

E-Destructive Manipulation (E-DM).

Voters can also be weighted (see next slide).

These problems can also be defined in the “unique-winner” model.
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Manipulation Basic Definitions

Variants of the Manipulation Problem

Definition (Constructive Coalitional Weighted Manipulation)

Let E be some voting system.

Name: E-Constructive (Destructive) Coalitional

Weighted Manipulation (E-CCWM / E-DCWM).

Given: A set C of candidates,

a list V of nonmanipulative voters over C each having a

nonnegative integer weight,

a list of the weights of the manipulators in S (whose

votes over C are still unspecified) with V ∩ S = ∅, and

a distinguished candidate c ∈ C .

Question: Can the preferences of the voters in S be set such that c is a

E-winner (is not an E-winner) of (C ,V ∪ S)?
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Manipulation Basic Definitions

Some Basic Complexity Classes

Definition

1 FP denotes the class of polynomial-time computable total functions

mapping from Σ∗ to Σ∗.

2 P denotes the class of problems that can be decided in polynomial

time (i.e., via a deterministic polynomial-time Turing machine).

3 NP denotes the class of problems that can be accepted in polynomial

time (i.e., via a nondeterministic polynomial-time Turing machine).
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Manipulation Basic Definitions

NP in Ancient Times

Maennlein?

janein nein nein nein nein nein nein nein

Wie heißt das

Kaspar?
Melchior?

Balthasar?
Rippenbiest?

Hammelswade?
Schnuerbein?

Kunz?
Heinz?

Rumpelstilzchen?

Figure: Nondeterministic Guessing and Deterministic Checking
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Manipulation Basic Definitions

NP Today

Is x ∧ y ∧ z satisfiable?

x = 0 x = 1

y = 0 y = 1 y = 0 y = 1

z = 0z = 0z = 0z = 0 z = 1 z = 1 z = 1 z = 1

no no no no no no no yes

Figure: Nondeterministic Guessing and Deterministic Checking
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Manipulation Basic Definitions

Some Basic Complexity Classes

Remark:

Intuitively, FP and P, respectively, capture feasibility/efficiency of

computing functions and solving decision problems.

A ∈ NP if and only if there exist a set B ∈ P and a polynomial p

such that for each x ∈ Σ∗,

x ∈ A ⇐⇒ (∃w) [|w | ≤ p(|x |) and (x ,w ) ∈ B ].

That is, NP is the class of problems whose YES instances can be

easily checked.

Central open question of TCS: P =? NP

Examples of problems in NP: SAT, Traveling Salesperson

Problem, Vertex Cover, Clique, Hamilton Circuit, . . .
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Manipulation Basic Definitions

Pol-Time Many-One Reducibility and Completeness

Definition

Let Σ be an alphabet and A,B ⊆ Σ∗. Let C be any complexity class.

1 Define the polynomial-time many-one reducibility, denoted by ≤p
m, as

follows: A≤p
m B if there is a function f ∈ FP such that

(∀x ∈ Σ∗) [x ∈ A ⇐⇒ f (x) ∈ B ].

2 A set B is ≤p
m-hard for C (or C-hard) if A≤p

m B for each A ∈ C.

3 A set B is ≤p
m-complete for C (or C-complete) if

1 B is ≤p

m
-hard for C (lower bound) and

2 B ∈ C (upper bound).

4 C is closed under the ≤p
m-reducibility (≤p

m-closed, for short) if

(A≤p
m B and B ∈ C) =⇒ A ∈ C.
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Manipulation Basic Definitions

Properties of ≤p
m

1 A≤p
m B implies A≤p

m B, yet in general it is not true that A≤p
m A.

2 ≤p
m is a reflexive and transitive, yet not antisymmetric relation.

3 P and NP are ≤p
m-closed.

That is, upper bounds are inherited downward with respect to ≤p
m.

4 If A≤p
m B and A is ≤p

m-hard for some complexity class C, then B is

≤p
m-hard for C.

That is, lower bounds are inherited upward with respect to ≤p
m.

5 Let C and D be any complexity classes. If C is ≤p
m-closed and B is

≤p
m-complete for D, then D ⊆ C ⇐⇒ B ∈ C.

In particular, if B is NP-complete, then

P = NP ⇐⇒ B ∈ P.
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Manipulation Constructive Manipulation

Plurality and Regular Cup Are Easy to Manipulate

Theorem (Conitzer, Sandholm, and Lang (2007))

Plurality-CCWM and Regular-Cup-CCWM are in P (for any number of

candidates, in both the unique-winner and nonunique-winner model).

Proof Sketch:

1 For plurality, the manipulators simply check if the distinguished

candidate c wins when they all rank c first.

If so, they have found a successful strategy.

If not, no strategy can make c win.

2 For the regular cup protocol, let the assignment of candidates to the

leaves of the binary balanced tree be given.
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Manipulation Constructive Manipulation

Plurality and Regular Cup Are Easy to Manipulate

Every inner vertex represents a

subelection T :

A B

Only the order of the candidates

in A and B is relevant for the

outcome of the subelection.

Goal: Determine the potential

winners of each subelection.

Proposition: A candidate p can win a subelection T ⇐⇒

1 p can win the subelection in one of the two children of T ’s root and

2 p can defeat any potential winner, say h, in the subelection of the

other child of T ’s root by pairwise comparison.
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Manipulation Constructive Manipulation

Plurality and Regular Cup Are Easy to Manipulate

Proof of Proposition: (⇒) is obvious.

(⇐) Assume that, using the manipu-

lators’ votes, (1) and (2) are true:

Let ~A be a manipulator’s order of the

candidates in A that makes p win and

~B be this manipulator’s order of the

candidates in B that makes h win.

A B

hp

This manipulator then votes ~A~B over A ∪ B , the others accordingly. Then

p and h are in this subelection’s final round, which p wins. ❑ Proposition

From this proposition, we can design a recursive algorithm running in time

O(m3n), where m is the number of candidates and n the number of

voters. ❑
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Manipulation Constructive Manipulation

Copeland with three Candidates Is Easy to Manipulate

Copeland voting: For each c , d ∈ C , c 6= d ,

let N(c , d) be the number of voters who prefer c to d ,

let Z (c , d) = 1 if N(c , d) > N(d , c) and

Z (c , d) = 1/2 if N(c , d) = N(d , c).

The Copeland score of c is CScore(c) =
∑

d 6=c Z (c , d).

Whoever has the maximum Copeland score wins.

Theorem (Conitzer, Sandholm, and Lang (2007))

Copeland-CCWM for three candidates is in P (in the unique-winner

model only).

Proof: We show that: If Copeland with three candidates has a successful

CCWM strategy, then it has a successful CCWM strategy where all

manipulators vote identically.
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Manipulation Constructive Manipulation

Copeland with three Candidates Is Easy to Manipulate

Let C = {a, b, c}, with distinguished candidate c .

Further, we are given

the preferences and weights of the honest voters in V and

the weights (but not the preferences) of the manipulators in S .

Let w : V ∪ S → N be the weight function.

Let K =
∑

s∈S w(s) be the total weight of the manipulators.

For a sublist U ⊆ V ∪ S and any two candidates x , y ∈ C , we define

NU(x , y) =
∑

u∈U : x>uy

w(u) and

DU(x , y) = NU(x , y) − NU (y , x).
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Manipulation Constructive Manipulation

Copeland with three Candidates Is Easy to Manipulate

NU(x , y) is the sum of the weights of those voters in U that prefer x

to y .

The difference DU(x , y) is positive if the total weight of x ’s

supporters is greater than that of y ’s supporters,

DU(x , y) is negative if y ’s supporters outweigh x ’s supporters (since

DU(x , y) = −DU(y , x)), and

DU(x , y) = 0 if both groups balance each other out.

Now consider the following four cases.
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Manipulation Constructive Manipulation

Copeland with three Candidates Is Easy to Manipulate

Case 1: K > DV (a, c) and K > DV (b, c).

In this case, if all manipulators in S cast the vote c > a > b, c is the

one and only winner of (C ,V ∪ S).

Case 2: K > DV (a, c) and K = DV (b, c).

It may be assumed, without loss of generality, that all manipulators

put their favorite candidate c on top of their votes.

However, who of them votes c > a > b and who votes c > b > a?

Since c is on top of every vote from S , we have from the case

assumption that

DV∪S(c , a) = K −DV (a, c) > 0, (1)

DV∪S(c , b) = K −DV (b, c) = 0. (2)
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Manipulation Constructive Manipulation

Copeland with three Candidates Is Easy to Manipulate

Due to (1), c gets one point from the pairwise comparison with a in

(C ,V ∪ S), and a gets no points from this comparison.

Due to (2), the pairwise comparison between b and c in (C ,V ∪ S)

ends up with a tie, so both get half a point.

Without the last pairwise comparison, a versus b,

c already has one and a half points in (C ,V ∪ S),

b half a point, and

a has no point at all.

In order to make c a unique winner in (C ,V ∪ S), b must not get a

whole point from the comparison with a, i.e., it must hold that

DV∪S(a, b) ≥ 0.
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Manipulation Constructive Manipulation

Copeland with three Candidates Is Easy to Manipulate

This, however, is true exactly if

K ≥ DV (b, a).

Also in this case, all manipulators cast the vote c > a > b, seeking to

ensure that DV∪S(a, b) ≥ 0.

If this is not enough to make c a unique winner—namely, because

K < DV (b, a),

then there exists no successful manipulation in this case.
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Manipulation Constructive Manipulation

Copeland with three Candidates Is Easy to Manipulate

Case 3: K = DV (a, c) and K > DV (b, c).

This case can be handled analogously to Case 2, with the roles of a

and b reversed.

Case 4: K < DV (a, c) or K < DV (b, c) or

(K ≤ DV (a, c) and K ≤ DV (b, c)).

In this case, the Copeland score of c in (C ,V ∪ S) cannot be greater

than 1, regardless of how the manipulators vote.

Thus, they are doomed to fail:

c cannot be made a unique winner. ❑

J. Rothe (HHU Düsseldorf) Preference Aggregation by Voting 20 / 90



Manipulation Constructive Manipulation

Maximin Voting

Maximin voting (a.k.a. the Simpson or Simpson-Kramer rule):

For each c , d ∈ C , c 6= d , let again N(c , d) be the number of voters who

prefer c to d .

The maximin score of c is

MScore(c) = min
d 6=c

N(c , d).

Whoever has the maximum MScore wins.

That is, the maximin winners are those candidates whose worst pairwise

comparison with other candidates is best.

Maximin voting satisfies the Condorcet criterion.
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Manipulation Constructive Manipulation

Determining Maximin Winners

Example

Consider the election (C ,V ) with C = {a, b, c , d} and V :

v1 : a b c d

v2 : b a d c

v3 : c d a b

v4 : d a b c

v5 : d b c a

a

bd

c

3:2

4:1

3:2

3:2

3:2

3:2

=⇒ d is the

Condorcet winner.

a b c d MScore

a × 3 3 2 2

b 2 × 4 2 2

c 2 1 × 2 1

d 3 3 3 × 3 ← max

=⇒ d is the

maximin winner.
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Manipulation Constructive Manipulation

Determining Maximin Winners

Example

Consider the election (C ,V ) with C = {a, b, c , d} and V :

v1 : a b c d

v2 : b a d c

v3 : c d a b

v4 : d a b c

v5 : b d c a

a

bd

c

3:2

4:1

3:2

3:2

3:2

3:2

=⇒ there is no

Condorcet winner.

a b c d MScore

a × 3 3 2 2 ← max

b 2 × 4 3 2 ← max

c 2 1 × 2 1

d 3 2 3 × 2 ← max

=⇒ a, b, d are the

maximin winners.
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Manipulation Constructive Manipulation

Maximin with three Candidates Is Easy to Manipulate

Theorem (Conitzer, Sandholm, and Lang (2007))

Maximin-CCWM for three candidates is in P

(in both the unique-winner and nonunique-winner model).

Proof: We show that: If maximin with three candidates has a successful

CCWM strategy, then it has a successful CCWM strategy where all

manipulators vote identically.

Let C = {a, b, c}, with distinguished candidate c .

Further, we are given

the preferences and weights of the honest voters in V and

the weights (but not the preferences) of the manipulators in S .
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Manipulation Constructive Manipulation

Maximin with three Candidates Is Easy to Manipulate

Let w : V ∪ S → N be the weight function.

Let W =
∑

v∈V∪S w(v) be the total weight of all voters.

For any two candidates x , y ∈ C , recall that

N(x , y) =
∑

v∈V∪S : x>y

w(v).

It may be assumed, without loss of generality, that all manipulators put

their favorite candidate c on top of their votes.

Suppose the manipulators s ∈ S can make c win by individually voting

either c a b or c b a.

We show: Then c also wins if all manipulators s ∈ S simultaneously vote

either c a b or c b a.
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Manipulation Constructive Manipulation

Maximin with three Candidates Is Easy to Manipulate

Case 1: N(a, b) < N(a, c) and N(b, a) < N(b, c).

In this case, since N(a, b) ≥ N(b, a) and N(b, a) ≥ N(a, b),

one of a and b (say a) has weight at least W/2 against the other

(i.e., N(a, b) ≥ N(b, a)).

Hence, MScore(a) ≥ W/2 (because N(a, c) > N(a, b)).

Since N(a, c) > N(a, b), c ’s weight against a is less than W/2.

Thus MScore(c) < W/2 ≤ MScore(a).

It follows that c does not win, a contradiction.

So this case cannot occur.
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Manipulation Constructive Manipulation

Maximin with three Candidates Is Easy to Manipulate

Case 2: N(a, b) ≥ N(a, c) or N(b, a) ≥ N(b, c).

Without loss of generality, assume N(a, b) ≥ N(a, c) (the other case

is analogous).

Thus c is a’s strongest rival.

Then all manipulators s ∈ S can simultaneously vote c a b. This

modifies neither MScore(a)

nor MScore(c);

it can only decrease MScore(b) (but cannot increase it). ❑
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Manipulation Constructive Manipulation

Upper bounds are inherited downward w.r.t. ≤p
m

Corollary

All more restrictive variants of the manipulation problem are in P for:

plurality (for any number of candidates),

regular cup (for any number of candidates),

Copeland (for at most three candidates), and

maximin (for at most three candidates).
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Manipulation Constructive Manipulation

STV-CM is NP-complete

Single Transferable Vote (STV) for m candidates proceeds in m − 1

rounds. In each round:

A candidate with lowest plurality score is eliminated (using some

tie-breaking rule if needed) and

all votes for this candidate transfer to the next remaining candidate in

this vote’s order.

The last remaining candidate wins.

Theorem (Bartholdi and Orlin (1991))

STV-Constructive Manipulation is NP-complete.
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Manipulation Constructive Manipulation

STV-CM is NP-complete: Reduction from X3C

Proof: Membership in NP is clear.

To prove NP-hardness of STV-Constructive Manipulation, we

reduce from the following NP-complete problem:

Name: Exact Cover by Three-Sets (X3C).

Given: A set B = {b1, b2, . . . , b3m}, m ≥ 1, and

a collection S = {S1,S2, . . . ,Sn} of subsets Si ⊆ B with

‖Si‖ = 3 for each i , 1 ≤ i ≤ n.

Question: Is there a subcollection S ′ ⊆ S such that each element of B

occurs in exactly one set in S ′?

In other words, does there exist an index set

I ⊆ {1, 2, . . . , n} with ‖I‖ = m such that
⋃

i∈I

Si = B?
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Manipulation Constructive Manipulation

STV-CM is NP-complete: The Candidates

Given an instance (B ,S) of X3C with

B = {b1, b2, . . . , b3m}

S = {S1,S2, . . . ,Sn}

where m ≥ 1, Si ⊆ B with ‖Si‖ = 3 for each i , 1 ≤ i ≤ n, construct an

election (C ,V ∪ {s}) with manipulator s and 5n + 3(m + 1) candidates:

1 “possible winners”: c and w ;

2 “first losers”: a1, a2, . . . , an and a1, a2, . . . , an;

3 “w -bloc”: b0, b1, . . . , b3m;

4 “second line”: d1, d2, . . . , dn and d1, d2, . . . , dn;

5 “garbage collectors”: g1, g2, . . . , gn.
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Manipulation Constructive Manipulation

STV-CM is NP-complete: The Properties

Property 1: a1, a2, . . . , an and a1, a2, . . . , an are among the first 3n

candidates to be eliminated.

Property 2: Let I = {i
∣

∣ ai is eliminated prior to ai}. Then

c can be made win (C ,V ∪ {s}) ⇐⇒ I is a 3-cover.

Property 3: 1 For any I ⊆ {1, 2, . . . , n}, there is a preference for s

such that

ai is eliminated prior to ai ⇐⇒ i ∈ I .

2 Such a preference for s is constructed as follows:

If i ∈ I then place ai in the ith position of s.

If i 6∈ I then place ai in the ith position of s.
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Manipulation Constructive Manipulation

STV-CM is NP-complete: The Nonmanipulative Voters
(1) 12n votes: c · · ·

(2) 12n − 1 votes: w c · · ·

(3) 10n + 2m votes: b0 w c · · ·

(4) For each i ∈ {1, 2, . . . , 3m}, 12n − 2 votes: bi w c · · ·

(5) For each j ∈ {1, 2, . . . , n}, 12n votes: gj w c · · ·

(6) For each j ∈ {1, 2, . . . , n}, 6n + 4j − 5 votes: dj d j w c · · ·

and if Sj = {bx , by , bz} then 2 votes: dj bx w c · · ·

2 votes: dj by w c · · ·

2 votes: dj bz w c · · ·

(7) For each j ∈ {1, 2, . . . , n}, 6n + 4j − 1 votes: d j dj w c · · ·

2 votes: d j b0 w c · · ·

(8) For each j ∈ {1, 2, . . . , n}, 6n + 4j − 3 votes: aj gj w c · · ·

1 vote: aj dj gj w c · · ·

2 votes: aj aj gj w c · · ·

(9) For each j ∈ {1, 2, . . . , n}, 6n + 4j − 3 votes: aj gj w c · · ·

1 vote: aj d j gj w c · · ·

2 votes: aj aj gj w c · · ·
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Manipulation Constructive Manipulation

STV-CM is NP-complete: Votes for c and w in (1) and

(2)

Initially, score(c) = 12n and score(w) = 12n − 1.

Since all voters except (1) vote w > c , c can get further votes only

when w is eliminated.

If w gets two more votes, w cannot be eliminated before c .

Hence, manipulator s must ensure that w is eliminated before c .
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Manipulation Constructive Manipulation

STV-CM is NP-complete: w -Bloc (3) and (4)

Initially,

score(b0) = 10n + 2m

score(bi ) = 12n − 2, 1 ≤ i ≤ 3m.

For each voter in (3) and (4), w is directly behind b0 or bi ,

1 ≤ i ≤ 3m.

If b0 or bi , 1 ≤ i ≤ 3m, is eliminated, w gets more than two more

votes and c doesn’t win.

Hence, manipulator s must ensure that score(bi ) ≥ 12n, 0 ≤ i ≤ 3m.

Therefore: “second line” candidates are needed.
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Manipulation Constructive Manipulation

STV-CM is NP-complete: Second Line

Initially, score(dj) = score(d j) = 6n + 4j + 1, 1 ≤ j ≤ n.

If dj is eliminated, then

two votes each go to bx , by , bz , where Sj = {bx , by , bz};

the remaining votes go to d j .

If d j is eliminated, then

two votes go to b0;

the remaining votes go to dj .

If dj is eliminated before d j , then score(d j) > 12n.

If d j is eliminated before dj , then score(dj) > 12n.

Hence, at most one of dj and d j can be eliminated before c or w .
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Manipulation Constructive Manipulation

STV-CM is NP-complete: First Losers

Initially, for 1 ≤ j ≤ n,

score(aj) = score(aj) = 6n + 4j = score(dj)− 1 = score(d j)− 1.

If aj is eliminated, then

one vote goes to dj ,

two votes go to aj , and

the remaining votes go to gj .

If aj is eliminated, then

one vote goes to d j ,

two votes go to aj , and

the remaining votes go to gj .
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Manipulation Constructive Manipulation

STV-CM is NP-complete: Garbage Collectors

Initially, score(gj ) = 12n, 1 ≤ j ≤ n.

Hence, they are safe against being eliminated too early.

Their purpose is, e.g., in (5), to ensure that w doesn’t score.
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Manipulation Constructive Manipulation

STV-CM is NP-complete:

Elimination Sequence Encodes a 3-Cover

Lemma (Bartholdi and Orlin (1991))

1 Exactly one of dj and d j will be among the first 3n candidates to be

eliminated.

2 Candidate c will win if and only if

J = {j
∣

∣ dj is among the first 3n candidates to be eliminated}

is the index set of an exact 3-cover for S.
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Manipulation Constructive Manipulation

STV-CM is NP-complete:

Elimination Sequence Encodes a 3-Cover

Proof:

1 The first 3n candidates to be eliminated belong to the set

{aj , aj , dj , d j

∣

∣ 1 ≤ j ≤ n},

and

if dj is eliminated then score(d j) > 12n,

if d j is eliminated then score(dj) > 12n,

2 (⇐) Let J be the index set of an exact 3-cover, i.e., |J| = m.

Consider the (3n + 1)st round, right after the 3n-th candidate has

been eliminated.
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Manipulation Constructive Manipulation

STV-CM is NP-complete:

Elimination Sequence Encodes a 3-Cover

Let j ∈ J and bi ∈ Sj .

Then dj has been eliminated and bi has received two of dj ’s votes in (6).

⇒ score(bi ) ≥ 12n > score(w).

Since J is the index set of an exact 3-cover, we have

score(bi ) ≥ 12n for each i , 1 ≤ i ≤ 3m.

For j 6∈ J, d j has been eliminated.

Thus n −m candidates d j have transferred two votes to b0.

⇒ score(b0) ≥ 10n + 2m + 2(n −m) = 12n > score(w).
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Manipulation Constructive Manipulation

STV-CM is NP-complete:

Elimination Sequence Encodes a 3-Cover

Thus, in round 3n+1, there remain c , w , all bi , all gj , dj for j 6∈ J, and d j

for j ∈ J. All these candidates except w have a score of at least 12n.

Now, w is eliminated and w ’s 12n− 1 votes from (2) are transferred to c .

Next, the bi , 0 ≤ i ≤ 3m, are eliminated, whose votes from (3), (4), and

(6) are transferred to c .

⇒ score(c) ≥ 24n − 1 + (3m + 1)12n = (m + 1)36n − 1.

Only in (5), (8), and (9), gj receives votes before c . Hence, no gj has

more votes than 12n + 10n + 10n = 32n.

J. Rothe (HHU Düsseldorf) Preference Aggregation by Voting 42 / 90



Manipulation Constructive Manipulation

STV-CM is NP-complete:

Elimination Sequence Encodes a 3-Cover

Only in (6) and (7) and for one voter in (8) and (9) is dj or d j placed

before c . Hence, none of the remaining dj and d j has more votes than

2(10n + 1) + 2 = 20n + 4.

Thus all gj and all the remaining dj and d j will be eliminated before c .

It follows that c alone wins.

(⇒) Suppose that J is not the index set of an exact 3-cover.

Case 1: |J| > m. Then fewer than n−m candidates d j will be eliminated

in the first 3n rounds. Thus score(b0) ≤ 12n − 2 < score(w).

J. Rothe (HHU Düsseldorf) Preference Aggregation by Voting 43 / 90



Manipulation Constructive Manipulation

STV-CM is NP-complete:

Elimination Sequence Encodes a 3-Cover

Hence, b0 will be eliminated before w and transfers its votes from (3)

to w . Thus w cannot be eliminated before c and so c cannot win.

Case 2: |J| ≥ m. Then there is some uncovered bi , 1 ≤ i ≤ 3m, with

score(bi ) ≤ 12 − 2,

since bi did not receive the two votes from dj in (6).

Hence, bi is eliminated before w and transfers its two votes from (4)

to w . Thus score(w) ≥ 12n + 1 > 12n = score(c).

It follows that w cannot be eliminated before c and so c cannot

win. ❑ Lemma
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Manipulation Constructive Manipulation

STV-CM is NP-complete: The Manipulor’s Preference

Lemma (Bartholdi and Orlin (1991))

Let I ⊆ {1, 2, . . . , n} and consider the strategic preference of manipulator

s in which the i -th candidate is ai if i ∈ I and

ai if i 6∈ I .

Then the order in which the first 3n candidates are eliminated is:

1 The (3i − 2)nd candidate to be eliminated is ai if i ∈ I and

ai if i 6∈ I .

2 The (3i − 1)st candidate to be eliminated is di if i ∈ I and

d i if i 6∈ I .

3 The 3i -th candidate to be eliminated is ai if i ∈ I and

ai if i 6∈ I .
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Manipulation Constructive Manipulation

STV-CM is NP-complete: Recall the Nonmanipulaters
(1) 12n votes: c · · ·

(2) 12n − 1 votes: w c · · ·

(3) 10n + 2m votes: b0 w c · · ·

(4) For each i ∈ {1, 2, . . . , 3m}, 12n − 2 votes: bi w c · · ·

(5) For each j ∈ {1, 2, . . . , n}, 12n votes: gj w c · · ·

(6) For each j ∈ {1, 2, . . . , n}, 6n + 4j − 5 votes: dj d j w c · · ·

and if Sj = {bx , by , bz} then 2 votes: dj bx w c · · ·

2 votes: dj by w c · · ·

2 votes: dj bz w c · · ·

(7) For each j ∈ {1, 2, . . . , n}, 6n + 4j − 1 votes: d j dj w c · · ·

2 votes: d j b0 w c · · ·

(8) For each j ∈ {1, 2, . . . , n}, 6n + 4j − 3 votes: aj gj w c · · ·

1 vote: aj dj gj w c · · ·

2 votes: aj aj gj w c · · ·

(9) For each j ∈ {1, 2, . . . , n}, 6n + 4j − 3 votes: aj gj w c · · ·

1 vote: aj d j gj w c · · ·

2 votes: aj aj gj w c · · ·
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Manipulation Constructive Manipulation

STV-CM is NP-complete: The Manipulor’s Preference

Proof: Induction on i . Assume the first 3i − 3 candidates have been

eliminated, and for each j < i , these are:

aj , aj , and exactly one of dj and d j .

Case 1: i ∈ I . Then ai is the i -th candidate in the preference of

manipulator s, i.e.,

score(ai ) = 6n + 4i + 1.

Since score(ai ) = 6n + 4i , ai is eliminated.

=⇒ score(d i) = 6n + 4i + 2 and

score(ai) = 6n + 4i + 3 as ai ’s votes in (9) are transferred

score(di) = 6n + 4i + 1 as before from voter group (6).
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Manipulation Constructive Manipulation

STV-CM is NP-complete: The Manipulor’s Preference

So di is eliminated now. Hence, di ’s votes in group (6) are transferred

to d i :

score(d i) = 6n + 4i + 2 + 6n + 4i − 5 = 12n + 8i − 3.

Therefore, ai is eliminated next.

Case 2: i 6∈ I . Then ai is the i -th candidate in the preference of

manipulator s, i.e.,

score(ai ) = 6n + 4i + 1.

Since score(ai ) = 6n + 4i , ai is eliminated.

=⇒ score(di ) = 6n + 4i + 2 and

score(ai ) = 6n + 4i + 3 as ai ’s votes in (8) are transferred

score(d i ) = 6n + 4i + 1 as before from voter group (7).
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Manipulation Constructive Manipulation

STV-CM is NP-complete: The Manipulor’s Preference

So d i is eliminated now. Hence, d i ’s votes in group (7) are

transferred to di :

score(di ) = 6n + 4i + 2 + 6n + 4i − 1 = 12n + 8i + 1.

Therefore, ai is eliminated next. ❑ Lemma

From these two lemmas, it follows that

c wins due to manipulator s ⇐⇒ (B ,S) ∈ X3C

This proves the theorem. ❑
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Manipulation Constructive Manipulation

Scoring-Protocols\{Trivial, Plurality}-CCWM

Theorem (Conitzer, Sandholm, and Lang (2007))

Scoring-Protocols\{Trivial, Plurality}-Constructive Coalitional

Weighted Manipulation for three candidates is NP-complete.

Remark:

1 For two candidates, every scoring protocol is easy to manipulate.

2 Plurality is easy to manipulate for any number of candidates, and

trivially, (0, . . . , 0)-CCWM is in P as well.

3 In particular, Veto-CCWM and Borda-CCWM for three candidates

are NP-complete.

4 The above theorem was independently proven by Hemaspaandra &

Hemaspaandra (2007) and Procaccia & Rosenschein (2006).
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Manipulation Constructive Manipulation

Scoring-Protocols\{Trivial, Plurality}-CCWM:

Reduction from Partition

Proof: Membership in NP is clear.

Let α = (α1, α2, α3) be a scoring protocol other than the trivial one or

plurality. Without loss of generality, we may assume that

α1 ≥ α2 ≥ α3 with α3 = 0 and α2 ≥ 2.

Because: If α2 = 0, then α

were either trivial (if α = (0, 0, 0))

or plurality (if α1 ≥ 1, i.e., α = (α1, 0, 0)), both a contradiction.

But α2 ≥ 1 can be scaled to α2 ≥ 2 without any problem.
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Manipulation Constructive Manipulation

Scoring-Protocols\{Trivial, Plurality}-CCWM:

Reduction from Partition

To prove NP-hardness of α-CCWM, we reduce from the following

NP-complete problem:

Name: Partition.

Given: A nonempty sequence (k1, k2, . . . , kn) of positive integers

such that
n

∑

i=1

ki is an even number.

Question: Does there exist a subset A ⊆ {1, 2, . . . , n} such that

∑

i∈A

ki =
∑

i∈{1,2,...,n}\A

ki ?
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Manipulation Constructive Manipulation

Scoring-Protocols\{Trivial, Plurality}-CCWM:

Reduction from Partition

Given an instance (k1, k2, . . . , kn) of Partition with
n

∑

i=1

ki = 2K for

some integer K , construct an election (C ,V ∪ S) with

C = {a, b, p} with distinguished candidate p

and

Vote Weight Preference

V : (2α1 − α2)K − 1 a b p

(2α1 − α2)K − 1 b a p

S : For each i ∈ {1, 2, . . . , n}, (α1 + α2)ki
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Manipulation Constructive Manipulation

Scoring-Protocols\{Trivial, Plurality}-CCWM:

Reduction from Partition

We now show that:

(k1, k2, . . . , kn) ∈ Partition ⇐⇒ p can be made win (C ,V ∪ S).

(⇒) If (k1, k2, . . . , kn) ∈ Partition, then there is a subset

A ⊆ {1, 2, . . . , n} such that

∑

i∈A

ki =
∑

i∈{1,2,...,n}\A

ki = K .

For i ∈ A, let si ∈ S vote: p a b.

For i 6∈ A, let si ∈ S vote: p b a.
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Manipulation Constructive Manipulation

Scoring-Protocols\{Trivial, Plurality}-CCWM:

Reduction from Partition

Then score(C ,V∪S)(p) = 2(α1 + α2)α1K . But for x ∈ {a, b}, we have

score(C ,V∪S)(x) = (α1 + α2)((2α1 − α2)K − 1) + α2K (α1 + α2)

= (α1 + α2)(2α1K − 1)

< (α1 + α2)2α1K

= score(C ,V∪S)(p).

Thus p is the unique winner.
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Manipulation Constructive Manipulation

Scoring-Protocols\{Trivial, Plurality}-CCWM:

Reduction from Partition

(⇐) Assume that p can be made win through the manipulators in S .

By monotonicity of scoring protocols, we can assume that all manipulators

si ∈ S put p in the first position.

Let

X =
∑

si∈S : p a b

ki and Y =
∑

si∈S : p b a

ki

We have X + Y = 2K . It follows that

score(C ,V∪S)(p) = 2(α1 + α2)α1K

score(C ,V∪S)(a) = (α1 + α2)((2α1 − α2)K − 1 + Xα2)

score(C ,V∪S)(b) = (α1 + α2)((2α1 − α2)K − 1 + Yα2)
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Manipulation Constructive Manipulation

Scoring-Protocols\{Trivial, Plurality}-CCWM:

Reduction from Partition

Since p wins in (C ,V ∪ S), we must have:

score(C ,V∪S)(p) ≥ score(C ,V∪S)(a)

2(α1 + α2)α1K ≥ (α1 + α2)((2α1 − α2)K − 1 + Xα2)

2α1K ≥ 2α1K − α2K − 1 + Xα2

α2K + 1 ≥ Xα2

K +
1

α2
≥ X since α2 > 0

K ≥ X since α2 ≥ 2

Analogously, K ≥ Y . Since, 2K = X + Y , it follows that X = Y = K .

Hence, (k1, k2, . . . , kn) ∈ Partition. ❑

Remark: This result can be shown similarly in the unique-winner model.
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Manipulation Constructive Manipulation

Copeland-CCWM for four Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

Copeland-Constructive Coalitional Weighted Manipulation

for four candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of

Copeland-CCWM, we again reduce from Partition.

Given an instance (k1, k2, . . . , kn) of Partition with
n

∑

i=1

ki = 2K for

some integer K , construct an election

(C ,V ∪ S)

with C = {a, b, c , p}, p distinguished, and the following votes in V ∪ S .
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Manipulation Constructive Manipulation

Copeland-CCWM for four Candidates is Hard

Vote Weight Preference

V : 2K + 2 p a b c

2K + 2 c p b a

K + 1 a b c p

K + 1 b a c p

S : For each i ∈ {1, 2, . . . , n}, ki

It remains to show that:

(k1, k2, . . . , kn) ∈ Partition ⇐⇒ p can be made win (C ,V ∪ S).
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Manipulation Constructive Manipulation

Copeland-CCWM for four Candidates is Hard

Pairwise comparisons and scores in (C ,V ):

a b c p CScore

a × 0 2K + 2 −2K − 2 1.5

b – × 2K + 2 −2K − 2 1.5

c – – × 2K + 2 1

p – – – × 2

p

ba

c

??? ???

Restricted to the sincere voters (i.e., to the election (C ,V )), all but one of

the pairwise comparisons are already decided, since the total weight of the

manipulators, 2K , is too low to flip the result of these comparisons.
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Manipulation Constructive Manipulation

Copeland-CCWM for four Candidates is Hard

The only as yet undecided comparison is the one between a and b.

If a or b wins this comparison in (C ,V ∪ S), then this candidate has the

same Copeland score as p.

However, the manipulators want to make p a unique winner, so they want

to prevent that some of a and b outweighs the other.

Therefore, it is possible for them to make their favorite candidate p a

unique winner of (C ,V ∪ S) if and only if the pairwise comparison

between a and b ends up in a tie.

They are tied already in the election (C ,V ) without the manipulators (this

is the 0 entry in the above table).
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Manipulation Constructive Manipulation

Copeland-CCWM for four Candidates is Hard

This tie is preserved in (C ,V ∪ S) exactly if

NS(a, b) =
∑

s∈S : a>sb

w(s) =
∑

s∈S : b>sa

w(s) = NS (b, a),

which in turn is equivalent to the equality
∑

i∈A ki =
∑

i∈{1,2,...,n}rA ki for

some subset A ⊆ {1, 2, . . . , n}, where i ∈ A if and only if the ith

manipulator prefers a to b.

But that just says that (k1, k2, . . . , kn) is a yes-instance of Partition.

Summing up, this shows that the manipulators can make p a unique

winner of (C ,V ∪ S) if and only if (k1, k2, . . . , kn) is in Partition.

It follows that Partition≤p
m Copeland-CCWM, which proves that

Copeland-CCWM is NP-hard. ❑
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Manipulation Constructive Manipulation

Maximin-CCWM for four Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

Maximin-Constructive Coalitional Weighted Manipulation

for four candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of

Maximin-CCWM, we again reduce from Partition.

Given an instance (k1, k2, . . . , kn) of Partition with
n

∑

i=1

ki = 2K for

some integer K , construct an election

(C ,V ∪ S)

with C = {a, b, c , p}, p distinguished, and the following votes in V ∪ S .
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Manipulation Constructive Manipulation

Maximin-CCWM for four Candidates is Hard

Vote Weight Preference

V : 7K − 1 a b c p

7K − 1 b c a p

4K − 1 c a b p

5K p c a b

S : For each i ∈ {1, 2, . . . , n}, 2ki

It remains to show that:

(k1, k2, . . . , kn) ∈ Partition ⇐⇒ p can be made win (C ,V ∪ S).
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Manipulation Constructive Manipulation

Maximin-CCWM for four Candidates is Hard

(⇒) If (k1, k2, . . . , kn) ∈ Partition, then there is a subset

A ⊆ {1, 2, . . . , n} such that
∑

i∈A

ki =
∑

i∈{1,2,...,n}\A

ki = K .

For i ∈ A, let si ∈ S with weight 2ki vote: p a b c .

For i 6∈ A, let si ∈ S with weight 2ki vote: p b c a.

p a b c MScore

p × 9K 9K 9K 9K ← max

a 18K − 3 × 18K − 2 9K − 1 9K − 1

b 18K − 3 9K − 1 × 18K − 2 9K − 1

c 18K − 3 18K − 2 9K − 1 × 9K − 1

=⇒ p is the unique maximin winner of (C ,V ∪ S).
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Manipulation Constructive Manipulation

Maximin-CCWM for four Candidates is Hard

(⇐) Assume p can be made win alone in (C ,V ∪ S) via the votes in S .

Then p is also the unique winner if all si ∈ S put p in the first position.

Hence, the worst pairwise comparison score of p is MScore(p) = 9K .

In (C ,V ), it is already decided who amongst a, b, c is worst off against

whom, independently of the votes in S (having total weight 4K ):

p a b c

p ×
a 18K − 3 × 16K − 2 7K − 1

b 18K − 3 7K − 1 × 14K − 2

c 18K − 3 16K − 2 9K − 1 ×

1 p a b c

2 p a c b

3 p b a c

4 p b c a

5 p c a b

6 p c b a
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Manipulation Constructive Manipulation

Maximin-CCWM for four Candidates is Hard

p a b c

p ×
a 18K − 3 × 16K − 2 7K − 1

b 18K − 3 7K − 1 × 14K − 2

c 18K − 3 16K − 2 9K − 1 ×

1 p a b c

2 p a c b

3 p b a c

4 p b c a

5 p c a b

6 p c b a

Since MScore(C ,V )(c) = 9K − 1 due to b and

MScore(C ,V∪S)(p) = 9K ,

no si ∈ S can place c before b (or else p would not be the unique winner

in (C ,V ∪ S)). Hence, preferences 2, 5, and 6 are excluded for si ∈ S .
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Manipulation Constructive Manipulation

Maximin-CCWM for four Candidates is Hard

p a b c

p ×
a 18K − 3 × 16K − 2 7K − 1

b 18K − 3 7K − 1 × 14K − 2

c 18K − 3 16K − 2 9K − 1 ×

1 p a b c

2 p a c b

3 p b a c

4 p b c a

5 p c a b

6 p c b a

Further, if any si ∈ S puts a right before c , swapping their positions has

no effect other than to decrease a’s final score, so we may also assume this

(preference 3) does not occur.

(Similarly, we can exclude that b is put directly before a: These are the

already excluded preferences 3 and 6.)
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Manipulation Constructive Manipulation

Maximin-CCWM for four Candidates is Hard

p a b c

p ×
a 18K − 3 × 16K − 2 7K − 1

b 18K − 3 7K − 1 × 14K − 2

c 18K − 3 16K − 2 9K − 1 ×

1 p a b c

2 p a c b

3 p b a c

4 p b c a

5 p c a b

6 p c b a

For si ∈ S , the following two preferences remain possible:

1 p a b c with weight ≤ 2K : MScore(C ,V )(a) = 7K − 1 due to c ;

4 p b c a with weight ≤ 2K : MScore(C ,V )(b) = 7K − 1 due to a.

Hence,
∑

si∈S : p a b c

ki =
∑

si∈S : p b c a

ki = K , so

(k1, k2, . . . , kn) ∈ Partition. ❑
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Manipulation Constructive Manipulation

STV-CCWM for three Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

STV-Constructive Coalitional Weighted Manipulation for

three candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of

STV-CCWM, we again reduce from Partition.

Given an instance (k1, k2, . . . , kn) of Partition with
n

∑

i=1

ki = 2K for

some integer K , construct an election

(C ,V ∪ S)

with C = {a, b, p}, p distinguished, and the following votes in V ∪ S .
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Manipulation Constructive Manipulation

STV-CCWM for three Candidates is Hard

Vote Weight Preference

V : 6K − 1 b p a

4K a b p

4K p a b

S : For each i ∈ {1, 2, . . . , n}, 2ki

It remains to show that:

(k1, k2, . . . , kn) ∈ Partition ⇐⇒ p can be made win (C ,V ∪ S).
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Manipulation Constructive Manipulation

STV-CCWM for three Candidates is Hard

(⇒) If (k1, k2, . . . , kn) ∈ Partition, then there is a subset

A ⊆ {1, 2, . . . , n} such that
∑

i∈A

ki =
∑

i∈{1,2,...,n}\A

ki = K .

For i ∈ A, let si ∈ S with weight 2ki vote: a p b.

For i 6∈ A, let si ∈ S with weight 2ki vote: p a b.

Round 1:
p a b

score 6K 6K 6K − 1

=⇒ b is eliminated and

b’s votes are transferred

to p

Round 2:
p a

score 12K − 1 6K

=⇒ p is the only winner

in (C ,V ∪ S)
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Manipulation Constructive Manipulation

STV-CCWM for three Candidates is Hard

(⇐) Suppose p were the only winner in (C ,V ∪ S).

Certainly, p cannot be eliminated in the first round.

But also a cannot be eliminated in the first round; or else a’s votes would

be transferred to b (so score(b) = 10K − 1) and p would not win.

Hence, b must be eliminated in the first round.

Both a and p need weight at least 2K to defeat a in the first round.
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Manipulation Constructive Manipulation

STV-CCWM for three Candidates is Hard

Hence, there is a set A ⊆ {1, 2, . . . , n} such that (for weight function w):

∑

si∈S : p ···
i∈A

w(si ) ≥ 2K and
∑

si∈S : a ···
i 6∈A

w(si) ≥ 2K .

Thus there is a set A ⊆ {1, 2, . . . , n} such that

∑

i∈A

ki =
∑

i 6∈A

ki = K .

It follows that (k1, k2, . . . , kn) ∈ Partition. ❑
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Manipulation Destructive Manipulation

Destructive Manipulation

Definition (Destructive Coalitional Weighted Manipulation)

Let E be some voting system.

Name: E-Destructive Coalitional Weighted

Manipulation (E-DCWM).

Given: A set C of candidates,

a list V of nonmanipulative voters over C each having a

nonnegative integer weight,

a list of the weights of the manipulators in S (whose

votes over C are still unspecified) with V ∩ S = ∅, and

a distinguished candidate c ∈ C .

Question: Can the preferences of the voters in S be set such that c is

not a E-winner of (C ,V ∪ S)?
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When Is Destructive Manipulation Easy?

Theorem (Conitzer, Sandholm, and Lang (2007))

Let E be a voting system such that:

Each candidate gets a numerical score based on the votes, and all

candidates with the highest score win.

The score function is monotonic: If changing a vote v satisfies

{b
∣

∣ v prefers a to b before the change}

⊆ {b
∣

∣ v prefers a to b after the change},

then a’s score does not decrease.

Winner determination in E can be done in polynomial time.

Then E-DCWM is in P.
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When Is Destructive Manipulation Easy?

Proof: Consider the following algorithm for E-DCWM.

Input: (C ,V ,S , d) with C = {c1, . . . , cm−1, d}

1 For each ci ∈ C , ci 6= d , consider the election Ei in which all s ∈ S

vote: ci · · · d , where the candidates from C \ {ci , d} between ci and

d come in arbitrary order (e.g., in lexicographic order).

2 Accept if and only if in some of the elections E1, . . . ,Em−1, d does

not win.

Correctness of the algorithm:

We show:

There are strategic preferences for

the voters in S such that d does

not win in (C ,V ∪ S).

⇐⇒

In some of the elec-

tions E1, . . . ,Em−1,

d does not win.
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When Is Destructive Manipulation Easy?

(⇐) is obvious.

(⇒) Suppose there are preferences for the voters in S such that c1 6= d

wins in (C ,V ∪ S). (Argument for ci 6= c1 is analogous.)

Monotonicity implies:

scoreE1
(c1) ≥ score(C ,V∪S)(c1)

because the set {b
∣

∣ si prefers c1 to b} is maximal for each si ∈ S , and

score(C ,V∪S)(d) ≥ scoreE1
(d)

because the set {b
∣

∣ si prefers d to b} is minimal for each si ∈ S .
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When Is Destructive Manipulation Easy?

Since c1 wins in (C ,V ∪ S) (and d does not), it follows from

score(C ,V∪S)(c1) > score(C ,V∪S)(d)

that

scoreE1
(c1) > scoreE1

(d).

Hence, d does not win in E1. ❑ Correctness

Runtime of the algorithm:

The algorithm runs in polynomial time because it calls the P algorithm for

winner determination (m − 1) times. ❑
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When Is Destructive Manipulation Easy?

Corollary (Conitzer, Sandholm, and Lang (2007))

For any number of candidates, DCWM is in P for

Borda,

veto,

Copeland, and

maximin.
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When Is Destructive Manipulation Easy?

Remark: Destructive manipulation can be harder than constructive

manipulation by at most a factor of m − 1 (where m is the number of

candidates). Indeed, suppose we can solve E-CCWM in P.

Then E-DCWM is in P as follows:

Given an instance (C ,V ,S , d) with C = {c1, . . . , cm−1, d},

decide “(C ,V ,S , ci ) ∈ E-CCWM?” for each i , 1 ≤ i ≤ m − 1, and

accept if at least one answer is “yes” (in the unique-winner model);

otherwise, reject.

Corollary (Conitzer, Sandholm, and Lang (2007))

DCWM is in P for plurality and regular cup for any number of candidates.
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STV-DCWM for three Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

STV-Destructive Coalitional Weighted Manipulation for

three candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of

STV-DCWM, we again reduce from Partition.

Given an instance (k1, k2, . . . , kn) of Partition with
n

∑

i=1

ki = 2K for

some integer K , construct an election

(C ,V ∪ S)

with C = {a, b, d}, d distinguished, and the following votes in V ∪ S .
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STV-DCWM for three Candidates is Hard

Vote Weight Preference

V : 6K a d b

6K b d a

8K − 1 d a b

S : For each i ∈ {1, 2, . . . , n}, 2ki

It remains to show that:

(k1, k2, . . . , kn) ∈ Partition ⇐⇒ d can be made

to not win (C ,V ∪ S).
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Manipulation Destructive Manipulation

STV-DCWM for three Candidates is Hard

Proposition: d does not win ⇐⇒ d is eliminated in the first round.

Proof of Proposition: (⇐) is obvious.

(⇒) We show the contrapositive: Assume d survives the first round.

Then either a or b is eliminated in the first round and transfers 6K votes

to d .

But score(d) = 14K − 1 with a total weight of 24K − 1 means:

d wins. ❑ Proposition

Now we show that:

(k1, k2, . . . , kn) ∈ Partition ⇐⇒ d can be made

to not win (C ,V ∪ S).
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STV-DCWM for three Candidates is Hard

(⇒) If (k1, k2, . . . , kn) ∈ Partition, then there is a subset

A ⊆ {1, 2, . . . , n} such that
∑

i∈A

ki =
∑

i∈{1,2,...,n}\A

ki = K .

For i ∈ A, let si ∈ S with weight 2ki vote: a b d .

For i 6∈ A, let si ∈ S with weight 2ki vote: b a d .

Thus

score(C ,V∪S)(a) = score(C ,V∪S)(b) = 8K

score(C ,V∪S)(d) = 8K − 1

Hence, d is eliminated in the first round and, by our proposition, does not

win.
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STV-DCWM for three Candidates is Hard

(⇐) Suppose d does not win (C ,V ∪ S).

By our proposition, d is eliminated in the first round. Thus

score(C ,V∪S)(a) ≥ 8K − 1 and score(C ,V∪S)(b) ≥ 8K − 1.

Hence,

score(C ,S)(a) ≥ 2K − 1 and score(C ,S)(b) ≥ 2K − 1.

Let

A = {i
∣

∣ si ∈ S has a in the first position},

B = {i
∣

∣ si ∈ S has b in the first position}.
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STV-DCWM for three Candidates is Hard

Hence,

∑

i∈A

ki ≥ K −
1

2
and

∑

i∈B

ki ≥ K −
1

2
.

Since all ki , 1 ≤ i ≤ n, are integers, it follows that

∑

i∈A

ki ≥ K and
∑

i∈B

ki ≥ K .

Since A and B are disjoint, it follows that

∑

i∈A

ki =
∑

i∈B

ki = K ,

so (k1, k2, . . . , kn) ∈ Partition. ❑
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Overview: Results for CCWM

# of Candidates 2 3 ≥ 4

Plurality P P P

Regular Cup P P P

Maximin P P NP-complete

Copeland P NP-complete /P∗ NP-complete

Veto P NP-complete NP-complete

Borda P NP-complete NP-complete

STV P NP-complete NP-complete

Table: Results for Constructive Coalitional Weighted Manipulation.

NP-complete /P∗ for Copeland-CCWM means: “NP-complete” in the

nonunique-winner model and “P” in the unique-winner model.
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Overview: Results for DCWM

# of Candidates 2 ≥ 3

Plurality P P

Regular Cup P P

Maximin P P

Copeland P P

Veto P P

Borda P P

STV P NP-complete

Table: Results for Destructive Coalitional Weighted Manipulation
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Overview: Some More Results for CCWM

CCWM DCWM

Number of candidates

≤ 2 3 ≥ 4 ≤ 2 ≥ 3

Plurality P P P P P

Cup protocol P P P P P

Fallback P P P P P

Simpson P P NP-complete P P

Nanson P P NP-complete P ?

Copeland P NP-complete /P∗

NP-complete P P

Bucklin P NP-complete NP-complete P P

Veto P NP-complete NP-complete P P

Borda P NP-complete NP-complete P P

STV P NP-complete NP-complete P NP-complete
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