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Preliminary Remarks Websites

Websites

All information for this module can be found in ILIAS.

In addition, slides, exercises, and other material can be downloaded

from:

http://ccc.cs.uni-duesseldorf.de/˜rothe/wahlen
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Preliminary Remarks About

About: Algorithmics and Complexity
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Preliminary Remarks About

About: A Really Hard & Stubborn Problem
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About: Efficiency
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Preliminary Remarks About

About: Algorithmics and Complexity

UNAMBIGUOUS COMPUTATION: BOOLEAN HIERARCHIES AND
SPARSE TURING-COMPLETE SETS∗

LANE A. HEMASPAANDRA† AND JÖRG ROTHE‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 634–653, June 1997 002

Abstract. It is known that for any class C closed under union and intersection, the Boolean
closure of C, the Boolean hierarchy over C, and the symmetric difference hierarchy over C all are
equal. We prove that these equalities hold for any complexity class closed under intersection; in
particular, they thus hold for unambiguous polynomial time (UP). In contrast to the NP case, we
prove that the Hausdorff hierarchy and the nested difference hierarchy over UP both fail to capture
the Boolean closure of UP in some relativized worlds.

Karp and Lipton proved that if nondeterministic polynomial time has sparse Turing-complete
sets, then the polynomial hierarchy collapses. We establish the first consequences from the assump-
tion that unambiguous polynomial time has sparse Turing-complete sets: (a) UP ⊆ Low2, where
Low2 is the second level of the low hierarchy, and (b) each level of the unambiguous polynomial
hierarchy is contained one level lower in the promise unambiguous polynomial hierarchy than is
otherwise known to be the case.

Key words. unambiguous computation, Boolean hierarchy, sparse Turing-complete sets

AMS subject classifications. 68Q15, 68Q10, 03D15

PII. S0097539794261970

1. Introduction. NP and NP-based hierarchies—such as the polynomial hier-
archy [47, 57] and the Boolean hierarchy over NP [9, 10, 41]—have played such a
central role in complexity theory, and have been so thoroughly investigated, that it
would be natural to take them as predictors of the behavior of other classes or hier-
archies. However, over and over during the past decade it has been shown that NP
is a singularly poor predictor of the behavior of other classes (and, to a lesser extent,
that hierarchies built on NP are poor predictors of the behavior of other hierarchies).

As examples regarding hierarchies, we have the following: though the polyno-
mial hierarchy possesses downward separation (that is, if its low levels collapse, then
all its levels collapse) [47, 57], downward separation does not hold “robustly” (i.e.,
in every relativized world) for the exponential time hierarchy [24, 36] or for limited-
nondeterminism hierarchies [32] (see also [4]). As examples regarding UP, we have the
following: NP has ≤pm-complete sets, but UP does not robustly possess ≤pm-complete
sets [22] or even ≤pT -complete sets [31]; NP positively relativizes, in the sense that
it collapses to P if and only if it does so with respect to every tally oracle [45] (see
also [1]), but UP does not robustly positively relativize [29]; NP has “constructive
programming systems,” but UP does not robustly have such systems [52]; NP (ac-
tually, nondeterministic computation) admits time hierarchy theorems [25], but it is
an open question whether unambiguous computation has nontrivial time hierarchy
theorems; NP displays upward separation (that is, NP−P contains sparse sets if and

∗ Received by the editors January 24, 1994; accepted for publication June 7, 1995.
http://www.siam.org/journals/sicomp/26-3/26197.html
† Department of Computer Science, University of Rochester, Rochester, NY 14627 (lane@

cs.rochester.edu). The research of this author was supported in part by NSF grants CCR-8957604,
INT-9116781/JSPS-ENGR-207, CCR-9322513, and INT-9513368/DAAD-315-PRO-of-ab and an
NAS/NRC COBASE grant.
‡ Institut für Informatik, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany (rothe@

informatik.uni-jena.de). The research of this author was supported in part by a grant from the
DAAD and NSF grants CCR-8957604 and INT-9513368/DAAD-315-PRO-of-ab and was done in
part while visiting the University of Rochester.
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Preliminary Remarks About

About: Complexity of Voting Problems

Exact Analysis of Dodgson Elections: Lewis Carroll’s
1876 Voting System Is Complete for Parallel Access
to NP

EDITH HEMASPAANDRA

Le Moyne College, Syracuse, New York

LANE A. HEMASPAANDRA

University of Rochester, Rochester, New York

AND

JÖRG ROTHE

Friedrich-Schiller-Universität Jena, Jena, Germany

Abstract. In 1876, Lewis Carroll proposed a voting system in which the winner is the candidate who
with the fewest changes in voters’ preferences becomes a Condorcet winner—a candidate who beats
all other candidates in pairwise majority-rule elections. Bartholdi, Tovey, and Trick provided a lower
bound—NP-hardness— on the computational complexity of determining the election winner in
Carroll’s system. We provide a stronger lower bound and an upper bound that matches our lower
bound. In particular, determining the winner in Carroll’s system is complete for parallel access to NP,
that is, it is complete for Q2

p, for which it becomes the most natural complete problem known. It

This work was done in part while E. Hemaspaandra and L. A. Hemaspaandra were visiting
Friedrich-Schiller-Universität Jena and the University of Amsterdam, and while J. Rothe was visiting
Le Moyne College and the University of Rochester.
An extended abstract of this paper appeared in Proceedings of the 24th International Colloquium on
Automata, Languages, and Programming.

E. Hemaspaandra was supported in part by grant NSF-INT-9513368/DAAD-315-PRO-fo-ab. L. A.
Hemaspaandra was supported in part by grants NSF-CCR-9322513 and NSF-INT-9513368/DAAD-
315-PRO-fo-ab, and a University of Rochester Bridging Fellowship. J. Rothe was supported in part
by grant NSF-INT-9513368/DAAD-315-PRO-fo-ab and a NATO Postdoctoral Science Fellowship
from the Deutscher Akademischer Austauschdienst (“Gemeinsames Hochschulsonderprogramm III
von Bund und Ländern”).
Address: Edith Hemaspaandra, Department of Mathematics, Le Moyne College, Syracuse, NY 13214,
USA. Email: edith@bamboo.lemoyne.edu; Lane A. Hemaspaandra, Department of Computer Sci-
ence, University of Rochester, Rochester, NY 14627, USA. Email: lane@cs.rochester.edu; Jörg
Rothe, Institut für Informatik, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany. Email:
rothe@informatik.uni-jena.de.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0004-5411/97/1100-0806 $05.00

Journal of the ACM, Vol. 44, No. 6, November 1997, pp. 806 –825.
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Preliminary Remarks Literature

Literature

J. Rothe (Herausgeber): Economics and Computation: An

Introduction to Algorithmic Game Theory, Computational

Social Choice, and Fair Division. Springer-Verlag, 2015

with a preface by Matt O. Jackson und Yoav Shoham (Stanford)

 1

Springer Texts in Business and EconomicsRothe   Ed.

Economics 
and 
Computation

Jörg Rothe
Editor

An Introduction to Algorithmic Game 
Theory, Computational Social Choice, 
and Fair Division

Econom
ics and Com

putation
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computer science: algorithmic game theory, computational social choice, and fair divi-
sion. It thus offers an interdisciplinary treatment of collective decision making from an 
economic and computational perspective. Part I introduces to algorithmic game theory, 
focusing on both noncooperative and cooperative game theory. Part II introduces to 
computational social choice, focusing on both preference aggregation (voting) and 
judgment aggregation. Part III introduces to fair division, focusing on the division of 
both a single divisible resource ("cake-cutting") and multiple indivisible and unshare-
able resources ("multiagent resource allocation"). In all these parts, much weight is 
given to the algorithmic and complexity-theoretic aspects of problems arising in these 
areas, and the interconnections between the three parts are of central interest.
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Preliminary Remarks Literature

Literature: Email from Prof. Michael Wooldridge, Oxford

Dear Joerg,

I just received a copy of “Economics and Computation”.

It looks FANTASTIC! I already started reading some

of it, and I think we will use it on a course

we are giving here next year.

It was tremendously kind of you to think about

sending me a copy – I’m very grateful!

Congratulations, and thanks again!

Mike

–

Professor Michael Wooldridge mailto:mjw@cs.ox.ac.uk

Department of Computer Science, University of Oxford.

http://www.cs.ox.ac.uk/people/michael.wooldridge/
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Preliminary Remarks Literature

Literature: Topics

• Foundations of Social Choice Theory
Buchblock 155 x 235 mm   Abstand 6 mm

MM: van Dijk
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Election Systems and Their Properties

Further Voting Paradoxes
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Preliminary Remarks Literature

Literature: Topics

• Control Complexity
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Preliminary Remarks Literature

Literature: Further Suggested Reading

Handbook of Computational Social Choice, F. Brandt, V.

Conitzer, U. Endriss, J. Lang und A. Procaccia (Herausgeber).

Cambridge University Press, 2015
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Preliminary Remarks Literature

Literature: Further Suggested Reading

A Richer Understanding of the Complexity of Election Systems,

P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra und J. Rothe.

Chapter 14 in Fundamental Problems in Computing: Essays in Honor

of Professor Daniel J. Rosenkrantz, pp. 375–406, S. Ravi und

S. Shukla (Herausgeber). Springer, 2009.

Computational Aspects of Approval Voting, D. Baumeister,

G. Erdélyi, E. Hemaspaandra, L. Hemaspaandra und J. Rothe.

Chapter 10 in Handbook on Approval Voting, pp. 199–251, R. Sanver

und J. Laslier (Herausgeber). Springer-Verlag, 2010.
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Preliminary Remarks Literature

Literature: Further Suggested Reading

Voting Procedures, S. Brams und P. Fishburn. Chapter 4 in

Volume 1 of the Handbook of Social Choice and Welfare,

pp. 173–236, K. Arrow, A. Sen und K. Suzumura (Herausgeber).

North-Holland, 2002.

Chaotic Elections! A Mathematician Looks at Voting, D. Saari.

American Mathematical Society, 2001.

Original Papers cited in these books and book chapters.

· · ·
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Preliminary Remarks Voting and Computer Science?

Computational Social Choice? Voting? Pirates?
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Preliminary Remarks Voting and Computer Science?

Voting and Computer Science?

At AAMAS-2017 (AAMAS is the most important multiagent systems

conference), more sessions were held on computational social choice

than on any other topic.

The extent to which the growth of computational social choice has

been supported by computational complexity is vividly clear when one

notices that of the 21 papers in those session, fully one third had the

word “complexity” in their titles.

At AAMAS-2003, the string “social choice” does not even appear in

the ACM Digital Library online table of contents; neither does the

string “election” or any form of “vote,” and only three papers in the

entire conference have the word “complexity” in their titles.
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Preliminary Remarks Voting and Computer Science?

Voting and Computer Science?
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Foundations of Social Choice Theory Elections

Elections

The Captain of Starship Enterprise is to be elected:

Candidates:

Voters:
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Foundations of Social Choice Theory Elections

Elections

Definition

An election (or preference profile) (C ,V ) is specified by a set

C = {c1, c2, . . . , cm}

of candidates and a list

V = (v1, v2, . . . , vn)

of votes over C .

How the voters’ preferences are represented depends on the voting

system used, e.g., by

a linear order (strict ranking) or

an approval vector.
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Foundations of Social Choice Theory Elections

Elections

Definition

A linear order (or strict ranking) > on C is a binary relation on C that is

total: for any two distinct c , d ∈ C , either c > d or d > c ;

transitive: for all c , d , e ∈ C , if c > d and d > e then c > e;

asymmetric: for all c , d ∈ C , if c > d then d > c does not hold.

Remark:

1 Asymmetry of > implies irreflexivity of >.

2 We often omit the symbol > in the linear orders and write, e.g.,

b c a e d instead of b > c > a > e > d

to indicate that this voter (strictly) prefers b to c , c to a, a to e, and

e to d . So the leftmost candidate is the most preferred one.
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Foundations of Social Choice Theory Elections

Elections

Remark:

3 Occasionally, by dropping asymmetry voters are allowed to be

indifferent between candidates, as in:

b > c = a > e = d

If so, it will be mentioned explicitly.

4 One may distinguish between weighted and unweighted voters.

Default case: unweighted voters (i.e., each voter has weight one).

5 Votes may be represented either succinctly or nonsuccinctly.

Default case: nonsuccinct (i.e., one ballot per voter).
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Foundations of Social Choice Theory Elections

Elections

Example

Election (C ,V ) with C = {a, b, c , d , e} and V = (v1, . . . , v7):

v1 : c b a e d

v2 : a e d c b

v3 : b a c e d

v4 : b d e a c

v5 : c b a e d

v6 : c d b e a

v7 : e d a b c

Who should win this election?
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems

Definition

An election system (or voting system) is a rule determining the winner(s)

of a given election (C ,V ). That is, it can be described by a mapping

f : {(C ,V )
∣∣ (C ,V ) is a preference profile} → 2C ,

a so-called social choice correspondence, where 2C denotes the power set

of C , i.e., the set of all subsets of C .

For a preference profile P = (C ,V ), f (P) ⊆ C is the set of winners of P,

and it is possible that f (P) = ∅.
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems

Remark:

A social choice function is a mapping

f : {(C ,V )
∣∣ (C ,V ) is a preference profile} → C ,

that assigns a single winner to each given preference profile.

A social welfare function describes not only how to select a winner or

set of winners by a voting system, but even returns a complete

ranking of the candidates. This is formalized by a mapping

f : {(C ,V )
∣∣ (C ,V ) is a preference profile} → ρ(C ),

where ρ(C ) is a ranking of (or, preference list over) the candidates

in C .
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems: An Incomplete Taxonomy

Preference-based Systems:

Positional scoring protocols (plurality, veto, k-approval, Borda, . . .)

Majority-based voting (simple majority, Bucklin voting, . . .)

Pairwise-comparison-based voting procedures (Condorcet, Black,

Dodgson, Young, Kemeny, Copeland, Llull, . . .)

Point distribution voting procedures (single transferable vote, . . .)

Nonranked Systems:

Approval voting

Negative voting

Plurality voting

Multistage voting procedures (plurality with runoff, . . .)

Hybrid Systems:

Sincere-strategy preference-based approval voting

Fallback voting
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems: Plurality, Antiplurality, k-Approval

Definition

Plurality-rule elections: The winners are precisely those candidates

who are ranked first by the most voters.

Antiplurality-rule (a.k.a. veto) elections: The winners are precisely

those candidates who are ranked last by the fewest voters.

k-approval: Each voter gives one point to each of the k most

preferred candidates. Whoever scores the most points wins.

In our above example, c is the plurality winner, e is the antiplurality

winner, and both a and b are 3-approval winners.
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems: Plurality, Antiplurality, k-Approval

v1 : c b a e d

v2 : a e d c b

v3 : b a c e d

v4 : b d e a c

v5 : c b a e d

v6 : c d b e a

v7 : e d a b c

c is the plurality winner, as c has the most (namely, 3) top positions.

e is the antiplurality (i.e., veto) winner, as e is never ranked last.

Both a and b are 3-approval winners, as they are ranked most often

(5 times) among the first three positions.
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems: Borda Count

Definition

Borda Count: With m candidates, each voter gives:

m − 1 points to the candidate ranked at first position,

m − 2 points to the candidate ranked at second position,
...

0 points to the candidate ranked at last position.

Whoever scores the most points wins.

In our above example, b is the Borda winner.
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems: Borda Count

points : 4 3 2 1 0

v1 : c b a e d

v2 : a e d c b

v3 : b a c e d

v4 : b d e a c

v5 : c b a e d

v6 : c d b e a

v7 : e d a b c

Viewed as a social welfare function, the Borda system yields:

ranking b > c > a > e > d

points 17 > 15 > 14 > 13 > 11
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems: Scoring Protocols

Definition

A scoring protocol for m candidates is specified by a scoring vector,

α = (α1, α2, . . . , αm), satisfying

α1 ≥ α2 ≥ · · · ≥ αm.

Votes are linear orders. Each vote contributes

α1 points to that vote’s most preferred candidate,

α2 points to that vote’s second most preferred candidate,
...

αm points to that vote’s least preferred candidate.

Whoever scores the most points wins.
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems: Scoring Protocols for m Candidates

Voting System Scoring Vector

Plurality α = (1,

m−1︷ ︸︸ ︷
0, . . . , 0)

Antiplurality (Veto) α = (

m−1︷ ︸︸ ︷
1, . . . , 1, 0)

k-Approval ((m − k)-Veto) α = (

k︷ ︸︸ ︷
1, . . . , 1,

m−k︷ ︸︸ ︷
0, . . . , 0)

Borda Count α = (m − 1,m − 2, . . . , 0)
...

...
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Foundations of Social Choice Theory Election Systems and Their Properties

Simple Majority and Condorcet Voting

Definition

A candidate c wins by (simple) majority if c is ranked first by more than

half of the voters.

In our above example, no candidate wins by simple majority. This obstacle

is avoided by, e.g., Bucklin voting.

Definition

A candidate c is a Condorcet winner if c defeats every other candidate by

a strict majority in pairwise comparisons.
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Foundations of Social Choice Theory Election Systems and Their Properties

Simple Majority and Condorcet Voting

In our above example, there is no Condorcet winner:

v1 : c b a e d

v2 : a e d c b

v3 : b a c e d

v4 : b d e a c

v5 : c b a e d

v6 : c d b e a

v7 : e d a b c

a b c d e

a × 2 : 5 4 : 3 4 : 3 4 : 3

b × 3 : 4 4 : 3 5 : 2

c × 4 : 3 4 : 3

d × 2 : 5

e ×

That is, we have a top-3-cycle among a, b, and c .
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Foundations of Social Choice Theory Election Systems and Their Properties

Simple Majority and Condorcet Voting

In our above example, there is no Condorcet winner:

e

b

c

d

a

a b c d e

a × 2 : 5 4 : 3 4 : 3 4 : 3

b × 3 : 4 4 : 3 5 : 2

c × 4 : 3 4 : 3

d × 2 : 5

e ×

That is, we have a top-3-cycle among a, b, and c . This obstacle is avoided

by, e.g., Black, Dodgson, Young, Copeland, and Kemeny voting.
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The Condorcet Paradox

The Condorcet paradox occurs whenever there exists no Condorcet winner.

A A

A

A

A

A

A

2

2

A A

A

A

A

A

A

2

2

A A

A

A

A

A

A

2

2

Anna

Belle

Chris

Figure: Anna, Belle, and Chris are voting on which game to play
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The Condorcet Paradox

A A

A

A

A

A

A

2

2

Figure: The Condorcet paradox
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Majority Criterion & Condorcet Criterion

Definition

A voting system satisfies the

1 majority criterion if it selects the majority winner whenever one exists;

2 Condorcet criterion if it selects the Condorcet winner whenever one

exists.

The Condorcet criterion is violated by many voting systems, e.g., by

plurality:

b a c d

c a b d

d a b c

a

b c d

=⇒ a is the Condorcet winner but does not win under plurality.
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Majority Criterion & Condorcet Criterion

A simple majority winner always also wins under plurality, so plurality

satisfies the majority criterion.

However, Borda does not satisfy this criterion:

Example

4 3 2 1 0

a b c d e

a b c d e

c b d e a

a is the majority winner,

but under Borda:

a scores 2 · 4 = 8 points,

b scores 3 · 3 = 9 points and wins,

c scores 4 + 2 · 2 = 8 points,

d scores 2 + 2 · 1 = 4 points, and

e scores 1 point.
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The Borda Paradox

The Borda paradox occurs whenever a plurality winner is the “Condorcet

loser,” i.e., is defeated by every other candidate in pairwise contests by a

majority of votes.

Example

2 1 0

4× a b c

3× b c a

2× c b a

a is the plurality win-

ner but is defeated by

b and c with 4 : 5 in

pairwise comparison,

so a is the Condorcet

loser.

In Borda:

b scores 12 points and wins,

a scores 8 points, and

c scores 7 points.

Borda’s original example has 21 voters and 3 candidates.
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Black Voting

Definition

Black voting:

1 Choose the Condorcet winner if there exists one.

2 Otherwise, choose all Borda winners.

Black’s system:

satisfies the Condorcet criterion and

monotonicity, but

it is inconsistent.
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Monotonicity and Consistency

Definition

1 A voting system is monotonic if the following holds: If

some candidate w wins an election and

we then improve the position of w in some of the votes, leaving

everything else the same,

then w still wins in the changed election.

The winner-turns-loser paradox shows failure of monotonicity.

2 A voting system is consistent if the following holds: When the

electorate is divided arbitrarily into two (or more) parts and separate

elections in each part result in the same winners, they also win an

election of the entire electorate.

The multiple-districts paradox shows inconsistency.
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Black Is Inconsistent

Example

2 1 0

V1 =

{
4× a b c

3× b c a

V2 =


3× a b c

2× b c a

2× c a b

Let C = {a, b, c}.

In (C ,V1), a is the Condorcet—and thus

the Black—winner because a defeats both

b and c with 4 : 3.

In (C ,V2), there is no Condorcet winner:

a defeats b with 5 : 2;

b defeats c with 5 : 2;

c defeats a with 4 : 3.

Under Borda,

a has a score of 3 · 2 + 2 · 1 = 8 and wins;

b has a score of 2 · 2 + 3 · 1 = 7;

c has a score of 2 · 2 + 2 · 1 = 6.
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Black Is Inconsistent

Example

2 1 0

V1 =

{
4× a b c

3× b c a

V2 =


3× a b c

2× b c a

2× c a b

So a is the Black winner in (C ,V1) and (C ,V2).

However, in (C ,V1 ∪ V2),

there is no Condorcet winner because the

contest of a versus c ends in a tie: 7 : 7; and

under Borda,

a has a score of 7 · 2 + 2 · 1 = 16;

b has a score of 5 · 2 + 7 · 1 = 17 and wins;

c has a score of 2 · 2 + 5 · 1 = 9.

Hence, b is the Black winner of (C ,V1 ∪ V2).

Therefore, Black is inconsistent.
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Monotonicity

Recall the definition of monotonicity:

A voting system is monotonic if the following holds: If

some candidate w wins an election and

we then improve the position of w in some of the votes, leaving

everything else the same,

then w still wins in the changed election.

The winner-turns-loser paradox shows failure of monotonicity.

For example, changing

a b c d into c b a d

improves the position of c , but it does not leave everything else the same

because it also swaps a and b.
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Examples of (Non-)Monotonic Voting Systems

1 Examples of monotonic voting systems are:

plurality, Borda, and (more generally) all scoring protocols,

Condorcet,

Black, . . .

2 Examples of nonmonotonic voting systems are:
Plurality with Runoff, using a tie-breaking rule if needed:

Top two candidates wrt. plurality score proceed to runoff (unless one

already has an absolute majority and wins immediately);

the winner is whoever is ranked higher by more voters than the other.

Single Transferable Vote (STV), which proceeds in m − 1 rounds:

In each round, a candidate with lowest plurality score is eliminated

(using some tie-breaking rule if needed) and all votes for this candidate

transfer to the next remaining candidate in this vote’s order.

The last remaining candidate wins.

Dodgson, (some slides ahead).
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Examples of Monotonic Voting Systems

1 Plurality is monotonic:

Improving the position of c can only increase c ’s plurality score.

Since everything else stays the same, the plurality score of all other

candidates can only get worse.

The same argument works to show that Borda and (more generally)

all scoring protocols are monotonic because of

α1 ≥ α2 ≥ · · · ≥ αm.
2 Condorcet is monotonic: If there exists a Condorcet winner c , c

remains the Condorcet winner in the election where c ’s position is

improved and everything else is left the same.

3 Black is monotonic: follows immediately from the monotonicity of

Condorcet and Borda.
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A Stronger Notion of Monotonicity

Definition

A voting system is strongly monotonic if the following holds: If

some candidate w wins an election and

we then change the votes in such a way that every candidate

originally ranked behind w is still ranked behind w after the change,

then w still wins in the changed election.

For example, plurality is not strongly monotonic:

3× a b c a b c

2× b c a =⇒ b c a

2× c b a b c a

a wins b wins
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Plurality with Runoff Is Not Monotonic

Example

27× a b c


Runoff: a and c ,

c wins 66 : 27
42× c a b

24× b c a

Change the election as follows:

4 of the 27 voters improve c’s

position, and we obtain:

23× a b c


Runoff: b and c ,

b wins 47 : 46
46× c a b

24× b c a

Hence, plurality with runoff

is not monotonic.

Remark: Plurality with runoff with three candidates is the same as STV;

still we give another example for STV on the next slide.
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STV Is Not Monotonic

Example

7× a b c


Eliminate c ; transfer

c ’s votes to a; a wins

13 : 7 against b

6× c a b

7× b c a

Change the election: 2 of

the b c a votes improve a

to a b c , and we obtain:

9× a b c


Eliminate b; transfer

b’s votes to c ; c wins

11 : 9 against a

6× c a b

5× b c a

Thus single transferable

vote is not monotonic.

Remark: Again, this also works as a counterexample for plurality with

runoff, which for three candidates is the same as STV.
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Condorcet Systems: Dodgson, Young, and Copeland

Let (C ,V ) be a given election where votes are linear orders.

Dodgson: The Dodgson score of c ∈ C (denoted by DScore(c)) is

the smallest number of sequential swaps needed to make c a

Condorcet winner. Whoever has the smallest Dodgson score wins.

Young: The Young score of c ∈ C (denoted by YScore(c)) is the size

of a largest sublist of V for which c is a Condorcet winner. Whoever

has the maximum Young score wins.

Copeland: For each c , d ∈ C , c 6= d , let N(c , d) be the number of

voters who prefer c to d . Let Z (c , d) = 1 if N(c , d) > N(d , c) and

Z (c, d) = 1/2 if N(c , d) = N(d , c).

The Copeland score of c is CScore(c) =
∑

d 6=c Z (c, d).

Whoever has the maximum Copeland score wins.
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Dodgson Voting Fails Monotonicity

Example (Fishburn (1977))

Original Votes Changed Votes

15 votes : c a d b c a d b

9 votes : b d c a b d c a

9 votes : a b d c ⇒ a b d c

5 votes : a c b d a c b d

5 votes : b a c d a b c d

Dodgson Dodgson

winner a winner c

(3 swaps) (2 swaps)
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Dodgson Voting Fails Monotonicity

Example (Fishburn (1977))

Original Votes

15 votes : c a d b

9 votes : b d c a

9 votes : a b d c

5 votes : a c b d

5 votes : b a c d

Dodgson

winner a

(3 swaps)

a

bc

d

29:1424:19

28:1525:18

34:9

23:20

=⇒ No Condorcet winner. But a

becomes the Condorcet winner with

three swaps: 3× : c a d b  a c d b.

=⇒ a defeats c with 22 : 21. Because

of deficit 5, no two swaps are enough.

=⇒ DScore(a) = 3.

Exercise: DScore of b, c, d is > 3.
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Dodgson Voting Fails Monotonicity

Example (Fishburn (1977))

Changed Votes

15 votes : c a d b

9 votes : b d c a

9 votes : a b d c

5 votes : a c b d

5 votes : a b c d

Dodgson

winner c

(2 swaps)

a

bc

d

34:924:19

28:1525:18

34:9

23:20

=⇒ No Condorcet winner. But now

c becomes the Condorcet winner with

two swaps: 2× : a b c d  a c b d .

=⇒ c defeats b with 22 : 21. Because

of deficit 3, no single swap is enough.

=⇒ DScore(c) = 2.

Exercise: DScore of a, b, d is > 2.
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Determining Young Winners

Example

Consider the election (C ,V ) with C = {a, b, c , d} and V :

v1 : c b a d

v2 : a d c b

v3 : b a c d

v4 : d b a c

a

cb

d

3:1

2:2

3:1

2:2

3:1

2:2No Condorcet winner.

a is Condorcet winner for (v2), but in (v2, v3) there is a tie with b;

with v1 or v4 even worse.

b is Condorcet winner for (v1, v3, v4), so YScore(b) = 3.

c and d : even worse than a in pairwise comparison.

Thus b is the Young winner.
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Determining Copeland Winners

Example

Consider the election (C ,V ) with C = {a, b, c , d} and V :

v1 : c b a d

v2 : a d c b

v3 : b a c d

v4 : d b a c

a

cb

d

3:1

2:2

3:1

2:2

3:1

2:2No Condorcet winner.

a b c d CScore

a × 0 1 1 2
b 1 × 1/2 1/2 2
c 0 1/2 × 1/2 1

d 0 1/2 1/2 × 1

=⇒ a and b are the

Copeland winners.
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How Hard is it to Determine Copeland, Dodgson, and

Young Winners?

Fact

Copeland winners can be determined in polynomial time.

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (1997))

The problem of determining Dodgson winners is complete for “parallel

access to NP.” without proof

Theorem (Rothe, Spakowski, and Vogel (2003))

The problem of determining Young winners is complete for “parallel access

to NP.” without proof
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Complexity of Determining Dodgson Winners

Exact Analysis of Dodgson Elections: Lewis Carroll’s
1876 Voting System Is Complete for Parallel Access
to NP

EDITH HEMASPAANDRA

Le Moyne College, Syracuse, New York

LANE A. HEMASPAANDRA

University of Rochester, Rochester, New York

AND

JÖRG ROTHE

Friedrich-Schiller-Universität Jena, Jena, Germany

Abstract. In 1876, Lewis Carroll proposed a voting system in which the winner is the candidate who
with the fewest changes in voters’ preferences becomes a Condorcet winner—a candidate who beats
all other candidates in pairwise majority-rule elections. Bartholdi, Tovey, and Trick provided a lower
bound—NP-hardness— on the computational complexity of determining the election winner in
Carroll’s system. We provide a stronger lower bound and an upper bound that matches our lower
bound. In particular, determining the winner in Carroll’s system is complete for parallel access to NP,
that is, it is complete for Q2

p, for which it becomes the most natural complete problem known. It

This work was done in part while E. Hemaspaandra and L. A. Hemaspaandra were visiting
Friedrich-Schiller-Universität Jena and the University of Amsterdam, and while J. Rothe was visiting
Le Moyne College and the University of Rochester.
An extended abstract of this paper appeared in Proceedings of the 24th International Colloquium on
Automata, Languages, and Programming.

E. Hemaspaandra was supported in part by grant NSF-INT-9513368/DAAD-315-PRO-fo-ab. L. A.
Hemaspaandra was supported in part by grants NSF-CCR-9322513 and NSF-INT-9513368/DAAD-
315-PRO-fo-ab, and a University of Rochester Bridging Fellowship. J. Rothe was supported in part
by grant NSF-INT-9513368/DAAD-315-PRO-fo-ab and a NATO Postdoctoral Science Fellowship
from the Deutscher Akademischer Austauschdienst (“Gemeinsames Hochschulsonderprogramm III
von Bund und Ländern”).
Address: Edith Hemaspaandra, Department of Mathematics, Le Moyne College, Syracuse, NY 13214,
USA. Email: edith@bamboo.lemoyne.edu; Lane A. Hemaspaandra, Department of Computer Sci-
ence, University of Rochester, Rochester, NY 14627, USA. Email: lane@cs.rochester.edu; Jörg
Rothe, Institut für Informatik, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany. Email:
rothe@informatik.uni-jena.de.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0004-5411/97/1100-0806 $05.00

Journal of the ACM, Vol. 44, No. 6, November 1997, pp. 806 –825.

J. Rothe (HHU Düsseldorf) Preference Aggregation by Voting 61 / 99



Foundations of Social Choice Theory Election Systems and Their Properties

An Incomplete Summary

Majority Condorcet Consistent Monotonic

a) Plurality 3 7 3

b) Borda 7 3

c) Veto 3

d) Condorcet 3 3

e) Copeland 3

f) Dodgson 3 7

g) Young 3

h) Black 3 7 3

i) Plurality w. Runoff 7

j) STV 7
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Homogeneity

Definition

A voting system f is said to be homogeneous if for each preference

profile (C ,V ) and for all positive integers q, it holds that

f ((C ,V )) = f ((C , qV )),

where qV denotes V replicated q times.

Remark:

Dodgson’s system is not homogeneous.

Fishburn (1977) proposed the following limit device to define a

homogeneous variant of Dodgson elections:

DScore∗(C ,V )(c) = lim
q→∞

DScore(C ,qV )(c)

q
.
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Dodgson Fails Homogeneity

Example (Fishburn (1977))

Original Profile Changed Profile

2 votes : d c a b 6 votes : d c a b

2 votes : b c a d 6 votes : b c a d

2 votes : c a b d 6 votes : c a b d

2 votes : d b c a ⇒ 6 votes : d b c a

2 votes : a b c d 6 votes : a b c d

1 vote : a d b c 3 votes : a d b c

1 vote : d a b c 3 votes : d a b c

Dodgson winner a Dodgson winner d

(3 swaps) (6 swaps)
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Dodgson Fails Homogeneity

Example (Fishburn (1977))

Original Profile

2 votes : d c a b

2 votes : b c a d

2 votes : c a b d

2 votes : d b c a

2 votes : a b c d

1 vote : a d b c

1 vote : d a b c

Dodgson winner a

(3 swaps)

a

cb

d

8:4

6:6

7:5

8:4

8:4

6:6

No Condorcet winner.

a becomes a Condorcet winner

with 3 swaps in the first 3 votes

and wins 7 : 5 against c.

No two swaps are enough.

Thus DScore(a) = 3.
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Dodgson Fails Homogeneity

Example (Fishburn (1977))

Original Profile

2 votes : d c a b

2 votes : b c a d

2 votes : c a b d

2 votes : d b c a

2 votes : a b c d

1 vote : a d b c

1 vote : d a b c

Dodgson winner a

(3 swaps)

a

cb

d

8:4

6:6

7:5

8:4

8:4

6:6

DScore(x) > 3 for x ∈ {b, c, d}:

b needs 3 swaps against a and

1 against d ;

c needs 3 swaps against b and

1 against d ;

d needs 2 swaps against a,

1 against b, and 1 against c .
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Dodgson Fails Homogeneity

Example (Fishburn (1977))

Changed Profile

6 votes : d c a b

6 votes : b c a d

6 votes : c a b d

6 votes : d b c a

6 votes : a b c d

3 votes : a d b c

3 votes : d a b c

Dodgson winner d

(6 swaps)

a

cb

d

24:12

18:18

21:15

24:12

18:18

24:12

6 swaps make d a Condorcet winner:
4× b c a d �

4× b c d a �

1× b d c a �

1× d b c a

So d wins 19 : 17 against each of a, b, c .
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Dodgson Fails Homogeneity

Example (Fishburn (1977))

Changed Profile

6 votes : d c a b

6 votes : b c a d

6 votes : c a b d

6 votes : d b c a

6 votes : a b c d

3 votes : a d b c

3 votes : d a b c

Dodgson winner d

(6 swaps)

a

cb

d

24:12

19:17

19:17

24:12

19:17

24:12

6 swaps make d a Condorcet winner:
4× b c a d �

4× b c d a �

1× b d c a �

1× d b c a

So d wins 19 : 17 against each of a, b, c .

No 5 swaps are enough.

Thus DScore(d) = 6.
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Dodgson Fails Homogeneity

Example (Fishburn (1977))

Changed Profile

6 votes : d c a b

6 votes : b c a d

6 votes : c a b d

6 votes : d b c a

6 votes : a b c d

3 votes : a d b c

3 votes : d a b c

Dodgson winner d

(6 swaps)

a

cb

d

24:12

18:18

21:15

24:12

18:18

24:12

DScore(x) > 6 for x ∈ {a, b, c}:
a needs 7 swaps against c ;

b needs 7 swaps against a and 1

against d ;

c needs 7 swaps against b and 1

against d ;

Thus d is the Dodgson winner.
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Weak Condorcet and Weak Dodgson

Definition

Let (C ,V ) be an election.

A candidate c ∈ C is a weak Condorcet winner if c ties or defeats

every other candidate in pairwise comparison.

Weak Dodgson:

The weak Dodgson score of c ∈ C (denoted by DScore(C ,V )(c)) is the

smallest number of sequential swaps needed to make c a weak

Condorcet winner. (Also, let DScore
∗
(C ,V )(c) = limq→∞

DScore(C,qV )(c)

q .)

Whoever has the smallest weak Dodgson score wins.

Remark: For an odd number of voters, the notions of Condercet winner

and weak Condercet winner and, consequently, the notions of Dodgson

winner and weak Dodgson winner are identical.
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Weak Dodgson Fails Homogeneity

Example (Fishburn (1977))

Consider the election (C ,V ) with C = {a1, a2, . . . , a7, c} and V :

a1 a2 a3 a4 c a5 a6 a7
a7 a1 a2 a3 c a4 a5 a6
a6 a7 a1 a2 c a3 a4 a5
a5 a6 a7 a1 c a2 a3 a4
a4 a5 a6 a7 c a1 a2 a3
a3 a4 a5 a6 c a7 a1 a2
a2 a3 a4 a5 c a6 a7 a1

DScore(C ,V )(c) = 7 and DScore(C ,V )(ai ) = 6 for 1 ≤ i ≤ 7.

DScore
∗
(C ,V )(c) = 3.5 and DScore

∗
(C ,V )(ai ) = 4.5 for 1 ≤ i ≤ 7, which

implies that c wins in (C , qV ) for large enough q.
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Weak Dodgson Fails Homogeneity

a1 a2 a3 a4 c a5 a6 a7
a7 a1 a2 a3 c a4 a5 a6
a6 a7 a1 a2 c a3 a4 a5
a5 a6 a7 a1 c a2 a3 a4
a4 a5 a6 a7 c a1 a2 a3
a3 a4 a5 a6 c a7 a1 a2
a2 a3 a4 a5 c a6 a7 a1

Swap c once to the left in each

voter.

This makes c a (weak) Condorcet

winner.

Since these 7 swaps are necessary

for that, DScore(C ,V )(c) = 7.

a1 defeats a2, a3, a4, c with 6 : 1, 5 : 2, 4 : 3, 4 : 3, and

is defeated by a5, a6, a7 with 3 : 4, 2 : 5, 1 : 6.

6 swaps make a1 a (weak) Condorcet winner (and 5 are not enough):

a5 a6 a7 a1 c a2 a3 a4
3 swaps
 a1 a5 a6 a7 c a2 a3 a4

a3 a4 a5 a6 c a7 a1 a2
1 swap
 a3 a4 a5 a6 c a1 a7 a2

a2 a3 a4 a5 c a6 a7 a1
2 swaps
 a2 a3 a4 a5 c a1 a6 a7

Thus DScore(C ,V )(a1) = 6, and analogously so for a2, a3, a4, a5, a6, a7.
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Weak Dodgson Fails Homogeneity

a1 a2 a3 a4 c a5 a6 a7
a7 a1 a2 a3 c a4 a5 a6
a6 a7 a1 a2 c a3 a4 a5
a5 a6 a7 a1 c a2 a3 a4
a4 a5 a6 a7 c a1 a2 a3
a3 a4 a5 a6 c a7 a1 a2
a2 a3 a4 a5 c a6 a7 a1

Swap c once to the left in each

voter.

This makes c a (weak) Condorcet

winner.

Since these 7 swaps are necessary

for that, DScore(C ,V )(c) = 7.

Thus a1, a2, a3, a4, a5, a6, a7 are the (weak) Dodgson winners.

Now consider DScore
∗
(C ,V )(c) and DScore

∗
(C ,V )(ai ):

q 1 2 3 4 5 6 . . .

c : ai 3 : 4 6 : 8 9 : 12 12 : 16 15 : 20 18 : 24 · · ·
DScore(C,qV )(c)

q
7
1

7
2 = 3.5 14

3 ≈ 4.6̄ 14
4 = 3.5 21

5 = 4.2 21
6 = 3.5 · · ·
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Weak Dodgson Fails Homogeneity

a1 a2 a3 a4 c a5 a6 a7
a7 a1 a2 a3 c a4 a5 a6
a6 a7 a1 a2 c a3 a4 a5
a5 a6 a7 a1 c a2 a3 a4
a4 a5 a6 a7 c a1 a2 a3
a3 a4 a5 a6 c a7 a1 a2
a2 a3 a4 a5 c a6 a7 a1

Then DScore
∗
(C ,V )(c) = 3.5.

Analogously, DScore
∗
(C ,V )(ai ) = 4.5

for 1 ≤ i ≤ 7: On average (per

multiplication), a1 needs 2.5 swaps

against a7, 1.5 swaps against a6,

and 0.5 swaps against a5, etc.

Thus a1, a2, a3, a4, a5, a6, a7 are the (weak) Dodgson winners.

Now consider DScore
∗
(C ,V )(c) and DScore

∗
(C ,V )(ai ):

q 1 2 3 4 5 6 . . .

c : ai 3 : 4 6 : 8 9 : 12 12 : 16 15 : 20 18 : 24 · · ·
DScore(C,qV )(c)

q
7
1

7
2 = 3.5 14

3 ≈ 4.6̄ 14
4 = 3.5 21

5 = 4.2 21
6 = 3.5 · · ·
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Independence of Clones
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Independence of Clones

Definition

Two candidates are clones of each other if they are ranked next to

each other in every individual ranking, i.e., both candidates perform

identically in pairwise comparisons with any other alternative.
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Foundations of Social Choice Theory Election Systems and Their Properties

Independence of Clones

Definition

Two candidates are clones of each other if they are ranked next to

each other in every individual ranking, i.e., both candidates perform

identically in pairwise comparisons with any other alternative.

A voting system is independent of clones if a losing candidate cannot

be made a winning candidate by introducing clones.
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Tideman’s Example of Cloning

Example (Tideman (1987))

“When I was 12 years old I was nominated to be treasurer of my

class at school. A girl named Michelle was also nominated. I rel-

ished the prospect of being treasurer, so I made a quick calculation

and nominated Michelle’s best friend, Charlotte. In the ensuing

election

I received 13 votes,

Michelle received 12, and

Charlotte received 11,

so I became treasurer.”

In other words, Tideman cloned Michelle.
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Cloning in Florida in 2000

In the 2000 US Presidential Election, Ralph Nader (Green Party) split

votes away from Al Gore (Democrats), thus allowing George W. Bush

(Republicans) to win the election.

The final count in Florida was:

Republican 2,912,790 Workers World 1,804

Democratic 2,912,253 Constitution 1,371

Green Party 97,488 Socialist 622

Natural Law 2,281 Socialist Workers 562

Reform 17,484 Write-in 40

Libertarian 16,415
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Dodgson is Not Independent of Clones

Example (Brandt (2009))

Original Cloning c

5 votes : a b c a b c c ′

4 votes : b c a ⇒ b c c ′ a

3 votes : c a b c c ′ a b

Dodgson Dodgson

winner a winner b

(2 swaps) (3 swaps)
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Dodgson is Not Independent of Clones

Original

5 votes : a b c

4 votes : b c a

3 votes : c a b

Dodgson

winner a

(2 swaps)

a

cb

8:4

9:3

7:5

No Condorcet winner.

a is make a Condorcet winner by 2

swaps (and 1 swap is not enough):

2× b c a  b a c

Thus DScore(a) = 2. Similarly,

DScore(b) = 3 and DScore(c) = 4.

So a is the Dodgson winner.
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Dodgson is Not Independent of Clones

Cloning c

5 votes : a b c c ′

4 votes : b c c ′ a

3 votes : c c ′ a b

Dodgson

winner b

(3 swaps)

a

cb

8:4

9:3

c’

7:5

7:5

9:3

12:0

But now a would need 4 swaps to

defeat both c and c ′ and become a

Condorcet winner (3 are not enough):

2× b c c ′ a  b a c c ′

Thus DScore(a) = 4, DScore(b) = 3,

DScore(c) = 4, and DScore(c ′) = 11.

So now b is the Dodgson winner.
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Dodgson May Choose the Condorcet Loser and Fails the

Reversal Symmetry Criterion

Definition

Recall: A candidate c is a Condorcet loser if c is defeated by every

other candidate by a strict majority in pairwise comparisons.

A voting systems satisfies the reversal symmetry criterion if it holds

that a unique winner becomes a nonwinner whenever all individual

rankings are reversed.
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Dodgson May Choose the Condorcet Loser and Fails the

Reversal Symmetry Criterion

Example (Brandt (2009))

Dodgson chooses the Dodgson fails the reversal

Condorcet loser symmetry criterion

10 votes : d a b c 10 votes : c b a d

8 votes : b c a d 8 votes : d a c b

7 votes : c a b d 7 votes : d b a c

4 votes : d c a b 4 votes : b a c d

Dodgson winner d Dodgson winner d

(3 swaps) (no swaps)
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Foundations of Social Choice Theory Election Systems and Their Properties

Dodgson May Choose the Condorcet Loser

Dodgson chooses the

Condorcet loser

10 votes : d a b c

8 votes : b c a d

7 votes : c a b d

4 votes : d c a b

Dodgson winner d

(3 swaps)

a

cb

d

19:10

15:14

15:14

18:11

21:8

15:14

d is the Condorcet loser and the

Dodgson winner with DScore(d) = 3:

1× b c a d  b d c a

1× c a b d  c a d b

DScore(a) = 5: 5× b c a d  b a c d

DScore(b) = 7: 7× d a b c  d b a c

DScore(c) = 4: 4× d a b c  d a c b
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Reversal Symmetry Criterion

Plurality fails the reversal symmetry criterion:

3 votes : a b c d d c b a

2 votes : d c b a a b c d

2 votes : b c d a a d c b

plurality winner a plurality winner a

However, simple majority and Condorcet satisfy the reversal symmetry

criterion.
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The No Show Paradox and the Twin Paradox

Definition

The no show paradox occurs whenever a voter is better off not

showing up (as this leads to the election of a candidate this voter

prefers). Or, more formally, adding identical preferences with c ranked

last makes c win.

A voting systems satisfies the participation criterion if the no show

paradox never occurs.

The twin paradox occurs if whenever a voter is joined by a “twin” (a

voter with identical preferences), this gives less weight to their joint

preferences.

A voting systems satisfies the twins welcome criterion if the twin

paradox never occurs.
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The No Show Paradox

Example (Moulin (1985))

Successive Elimination (Regular Cup):

Balanced binary tree whose leaves

are labeled by the candidates.

Each inner node is labeled by the

winner of both children, where

each vote is taken by majority.

The candidate at the root wins.

a b

c

v1 : c b a

v2 : c b a

v3 : a b c

v4 : a b c

v5 : c a b

v6 : b c a

v7 : b c a

Here: a against b, next the winner against c.

Ties are broken lexicographically: a > b > c .
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Foundations of Social Choice Theory Further Voting Paradoxes

The No Show Paradox

Example (Moulin (1985))

Successive Elimination (Regular Cup):

Round 1: b defeats a with 4 : 3.

Round 2: b defeats c with 4 : 3.

=⇒ b wins. a b

c

v1 : c b a

v2 : c b a

v3 : a b c

v4 : a b c

v5 : c a b

v6 : b c a

v7 : b c a

Here: a against b, next the winner against c.

Ties are broken lexicographically: a > b > c .
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The No Show Paradox

Example (Moulin (1985))

Successive Elimination (Regular Cup):

Assume v1 doesn’t show up.

Round 1: a defeats b with 3 : 3

and tie-breaking.

Round 2: c defeats a with 4 : 2.

=⇒ c wins.

Since v1 prefers c to b,

v1 better stays home.

a b

c

v2 : c b a

v3 : a b c

v4 : a b c

v5 : c a b

v6 : b c a

v7 : b c a

Here: a against b, next the winner against c.

Ties are broken lexicographically: a > b > c .
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The Twin Paradox

Example (Moulin (1985))

Successive Elimination (Regular Cup):

Consider again (C ,V ) with

V = {v2, . . . v7}.

As we have seen, c wins.

Is v2 glad to see the twin v1

participate?

NO! As we have seen, then b wins,

but v2 (like v1) prefers c to b.

a b

c

v2 : c b a

v3 : a b c

v4 : a b c

v5 : c a b

v6 : b c a

v7 : b c a

Here: a against b, next the winner against c.

Ties are broken lexicographically: a > b > c .
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The No Show Paradox and the Twin Paradox

Remark:

Voting systems immune to both paradoxes include:

plurality, Borda, and (more generally) all scoring protocols,

simple majority.

Voting systems subject to the no show paradox include:

plurality with runoff,

successive elimination.

Fact

If a voting system is immune to the no show paradox, it is also immune to

the twin paradox.
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The No Show Paradox and the Twin Paradox

Theorem (Moulin (1988))

1 For at most three candidates, there exist voting systems satisfying the

Condorcet and participation criteria.

2 For at least four candidates (and at least 25 voters), no voting system

satisfies the Condorcet and participation criteria.

without proof
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Further Properties of Voting Systems

Definition

A voting system is

anonymous if it treats all voters equally: if any two voters trade their

ballots, the outcome remains the same;

neutral if it treats all candidates equally: if any two candidates are

swapped in each vote, the outcome changes accordingly;

onto (satisfies citizens’ sovereignty) if for each candidate there are

some votes that would make that candidate win;

nondictatorial if there does not exist a dictator (i.e., a voter whose

most preferred candidate always wins);

resolute (single-valued) if it always selects a single candidate as the

winner.
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Further Properties of Voting Systems

Definition

A voting system satisfies the Pareto condition: If c is ranked above d

in all votes then the system ranks c above d ;

A voting system is independent of irrelevant alternatives (Arrow’s IIA)

if the social preferences between any two candidates c and d depend

only on the individual preferences between c and d : If

the system ranks c above d and

we then change the votes but not who of c and d is ranked better,

then the system should still rank c above d .

All our systems so far satisfy each of these conditions, except resoluteness

and Arrow’s IIA.
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Arrow’s Impossibility Theorem

Theorem (Arrow (1951))

Suppose there are at least three candidates.

There exists no voting system that simultaneously:

satisfies the Pareto condition,

is independent of irrelevant alternatives, and

nondictatorial.

without proof
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Muller–Satterthwaite Impossibility Theorem

Theorem (Muller and Satterthwaite (1977))

Suppose there are at least three candidates.

There exists no voting system that simultaneously is:

resolute,

onto,

strongly monotonic, and

nondictatorial.

without proof
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Gibbard–Satterthwaite Impossibility Theorem

Theorem (Gibbard (1973) and Satterthwaite (1975))

Suppose there are at least three candidates.

There exists no voting system that simultaneously is:

resolute,

onto,

nondictatorial, and

nonmanipulable.

without proof

Remark: Intuitively, a voting system is manipulable if some voter can be

better off revealing his or her vote insincerely.
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Summary of Properties of Voting Systems
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plurality 3 3 3 3 3 3 7 3 3 7 7 7 3 3

Borda 3 3 3 3 3 7 7 3 3 7 7 7 3 3

Copeland 3 3 3 3 3 3 3 3 3 7 7 7 7 7

Dodgson 3 3 3 3 3 3 3 7 7 7 7 7 7 7

Young 3 3 3 3 3 3 3 3 7 7 7 7 7 7

STV 3 3 3 3 3 3 7 7 3 7 3 7 7 7
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