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Websites
Websites

@ All information for this module can be found in ILIAS.

@ In addition, slides, exercises, and other material can be downloaded

from:

http://ccc.cs.uni-duesseldorf.de/ "rothe/wahlen
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L
About: Algorithmics and Complexity

Herr Janosch, was ist eigentlich schwer?

»Einen Elefanten einen Berg hochzuschieben ist schwer. Auffer wenn man Hilfe von
Wondrak bekommt. Er setzt sich obendrauf und macht sich ganz leicht.«
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About: A Really Hard & Stubborn Problem
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About: Efficiency
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About: Hidden Intractability
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L
About: Algorithmics and Complexity

SIAM J. COMPUT. ®© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 634-653, June 1997 002

UNAMBIGUOUS COMPUTATION: BOOLEAN HIERARCHIES AND
SPARSE TURING-COMPLETE SETS*

LANE A. HEMASPAANDRAT AND JORG ROTHE?

Abstract. It is known that for any class C closed under union and intersection, the Boolean
closure of C, the Boolean hierarchy over C, and the symmetric difference hierarchy over C all are
equal. We prove that these equalities hold for any complexity class closed under intersection; in
particular, they thus hold for unambiguous polynomial time (UP). In contrast to the NP case, we
prove that the Hausdorff hierarchy and the nested difference hierarchy over UP both fail to capture
the Boolean closure of UP in some relativized worlds.

Karp and Lipton proved that if nondeterministic polynomial time has sparse Turing-complete
sets, then the polynomial hierarchy collaps ‘We establish the first consequences from the assump-
tion that unambiguous polynomial time has sparse Turing-complete sets: (a) UP C Lowa, where
Lowg is the second level of the low hierarchy, and (b) each level of the unambiguous polynomial
hierarchy is contained one level lower in the promise unambiguous polynomial hierarchy than is
otherwise known to be the case.

Key words. unambiguous computation, Boolean hierarchy, sparse Turing-complete sets
AMS subject classifications. 68Q15, 68Q10, 03D15

PII. S0097539794261970

1. Introduction. NP and NP-based hierarchies—such as the polynomial hier-

/ the Raolean hierarchv aver NP [Q 10 41]—have nlaved such a
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L
About: Complexity of Voting Problems

Exact Analysis of Dodgson Elections: Lewis Carroll’s
1876 Voting System Is Complete for Parallel Access
to NP

EDITH HEMASPAANDRA

Le Moyne College, Syracuse, New York

LANE A. HEMASPAANDRA
University of Rochester, Rochester, New York
AND

JORG ROTHE

Friedrich-Schiller-Universitit Jena, Jena, Germany
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L
About: Preference Aggregation by Voting
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About: Preference Aggregation by Voting
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Preliminary Remarks Literature

Literature

e J. Rothe (Herausgeber): Economics and Computation: An
Introduction to Algorithmic Game Theory, Computational
Social Choice, and Fair Division. Springer-Verlag, 2015
with a preface by Matt O. Jackson und Yoav Shoham (Stanford)

N
Jorg Rothe . Einfiihrung in
Editor Computational Social Choice

Computation

An Introduction to Algorithmic Game
‘Theory, Computational Social Choice,
and Fair Division
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Literture
Literature: Email from Prof. Michael Wooldridge, Oxford

Dear Joerg,

| just received a copy of “Economics and Computation”.
It looks FANTASTIC! | already started reading some

of it, and | think we will use it on a course

we are giving here next year.

It was tremendously kind of you to think about
sending me a copy — I'm very grateful!

Congratulations, and thanks again!

Mike

Professor Michael Wooldridge mailto:mjw@cs.ox.ac.uk
Department of Computer Science, University of Oxford.

http://www.cs.ox.ac.uk/people/michael.wooldridge/
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Preliminary Remarks Literature

Literature: Topics

¢ Foundations of Social Choice Theory

E|eCtI0n Systems and Thelr Propertles J.Rothe D. Baumeister C.Lindner I. Rothe

Further Voting Paradoxes Einfiihrung in
Computational Social Choice

Impossibility Theorems
e Manipulation
Constructive Manipulation
Destructive Manipulation
e Electoral Control
Immunity, Vulnerability, and Resistance

Control Complexity
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Preliminary Remarks Literature

Literature: Topics

e Control Complexity

CO n d orcet E I eCtIO ns J.Rothe D.Baumeister C.Lindner I.Rothe

Approval Elections Einfilhrung in
Computational Social Choice

Bucklin and Fallback Elections
e Single-Peaked Preferences
Manipulation
Electoral Control
e Bribery
Bribery in Copeland Elections

Microbribery in Copeland Elections
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LT
Literature: Further Suggested Reading

o Handbook of Computational Social Choice, F. Brandt, V.
Conitzer, U. Endriss, J. Lang und A. Procaccia (Herausgeber).
Cambridge University Press, 2015

HANDBOOK of
COMPUTATIONAL
SOCIAL CHOICE
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LT
Literature: Further Suggested Reading

@ A Richer Understanding of the Complexity of Election Systems,
P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra und J. Rothe.
Chapter 14 in Fundamental Problems in Computing: Essays in Honor
of Professor Daniel J. Rosenkrantz, pp. 375-406, S. Ravi und
S. Shukla (Herausgeber). Springer, 2009.

o Computational Aspects of Approval Voting, D. Baumeister,
G. Erdélyi, E. Hemaspaandra, L. Hemaspaandra und J. Rothe.
Chapter 10 in Handbook on Approval Voting, pp. 199-251, R. Sanver
und J. Laslier (Herausgeber). Springer-Verlag, 2010.
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LT
Literature: Further Suggested Reading

@ Voting Procedures, S. Brams und P. Fishburn. Chapter 4 in
Volume 1 of the Handbook of Social Choice and Welfare,
pp. 173-236, K. Arrow, A. Sen und K. Suzumura (Herausgeber).
North-Holland, 2002.

o Chaotic Elections! A Mathematician Looks at Voting, D. Saari.
American Mathematical Society, 2001.

@ Original Papers cited in these books and book chapters.
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IHOMGIMERANCGEIICI  Voting and Computer Science?

Computational Social Choice? Voting? Pirates?

e

e@ LAHT‘ DeR

BETRACHTER
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IHOMGIMERANCGEIICI  Voting and Computer Science?

Computational Social Choice? Voting? Pirates?
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IHOMGIMERANCGEIICI  Voting and Computer Science?

Voting and Computer Science?

o At AAMAS-2017 (AAMAS is the most important multiagent systems
conference), more sessions were held on computational social choice

than on any other topic.

@ The extent to which the growth of computational social choice has
been supported by computational complexity is vividly clear when one
notices that of the 21 papers in those session, fully one third had the
word “complexity” in their titles.

o At AAMAS-2003, the string “social choice” does not even appear in
the ACM Digital Library online table of contents; neither does the
string “election” or any form of “vote,” and only three papers in the

entire conference have the word “complexity” in their titles.
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Preliminary Remarks Voting and Computer Science?

Voting and Computer Science?

Jorg Rothe (Ed.)
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Foundations of Social Choice Theory Elections

Elections

The Captain of Starship Enterprise is to be elected:
Candidates:

Voters:

J. Rothe (HHU Diisseldorf)
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Foundations of Social Choice Theory Elections

Elections

Definition

@ An election (or preference profile) (C, V) is specified by a set
C={c,c,...,cm}
of candidates and a list
V= (vi,va,...,vp)

of votes over C.

@ How the voters' preferences are represented depends on the voting
system used, e.g., by

e a linear order (strict ranking) or

e an approval vector.
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Foundations of Social Choice Theory Elections

Elections

Definition

A linear order (or strict ranking) > on C is a binary relation on C that is
@ total: for any two distinct ¢, d € C, either ¢ > d or d > ¢;
o transitive: for all c,d,e € C, if c > d and d > e then ¢ > ¢;

e asymmetric: for all ¢c,d € C, if ¢ > d then d > ¢ does not hold.

Remark:

@ Asymmetry of > implies irreflexivity of >.

@ We often omit the symbol > in the linear orders and write, e.g.,

b ¢ a e d insteadof b > ¢ > a > e > d

to indicate that this voter (strictly) prefers b to ¢, ¢ to a, a to e, and
e to d. So the leftmost candidate is the most preferred one.
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Foundations of Social Choice Theory Elections

Elections

Remark:

© Occasionally, by dropping asymmetry voters are allowed to be

indifferent between candidates, as in:
b > ¢c = a > e = d

If so, it will be mentioned explicitly.

@ One may distinguish between weighted and unweighted voters.
Default case: unweighted voters (i.e., each voter has weight one).

© Votes may be represented either succinctly or nonsuccinctly.

Default case: nonsuccinct (i.e., one ballot per voter).
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Foundations of Social Choice Theory Elections

Elections

Example

Election (C, V) with C ={a, b,c,d,e} and V = (v, ...

Who should win this election?

%
Vo !
V3
Vg4 .
Vg .
Ve :

vr !

C

o O o

D

Q Q T Q o

0O Q T Q

Q.

7V7):

J. Rothe (HHU Diisseldorf)

Preference Aggregation by Voting

26 /99



Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems

Definition

An election system (or voting system) is a rule determining the winner(s)

of a given election (C, V). That is, it can be described by a mapping
f:{(C,V)|(C,V) is a preference profile} — 2¢,

a so-called social choice correspondence, where 2€ denotes the power set
of C, i.e., the set of all subsets of C.

For a preference profile P = (C, V), f(P) C C is the set of winners of P,
and it is possible that f(P) = ().
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems

Remark:

@ A social choice function is a mapping
f:{(C, V)| (C, V) is a preference profile} — C,

that assigns a single winner to each given preference profile.

@ A social welfare function describes not only how to select a winner or
set of winners by a voting system, but even returns a complete
ranking of the candidates. This is formalized by a mapping

f:{(C,V) ‘ (C, V) is a preference profile} — p(C),
where p(C) is a ranking of (or, preference list over) the candidates

in C.
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems: An Incomplete Taxonomy

o Preference-based Systems:

e Positional scoring protocols (plurality, veto, k-approval, Borda, ...)

e Majority-based voting (simple majority, Bucklin voting, ...)

o Pairwise-comparison-based voting procedures (Condorcet, Black,
Dodgson, Young, Kemeny, Copeland, Llull, ...)

e Point distribution voting procedures (single transferable vote, .. .)

o Nonranked Systems:

Approval voting

o Negative voting

o Plurality voting

e Multistage voting procedures (plurality with runoff, ...)
@ Hybrid Systems:

o Sincere-strategy preference-based approval voting
e Fallback voting
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Election Systems and Their Properties
Election Systems: Plurality, Antiplurality, k-Approval
Definition

@ Plurality-rule elections: The winners are precisely those candidates

who are ranked first by the most voters.

o Antiplurality-rule (a.k.a. veto) elections: The winners are precisely

those candidates who are ranked last by the fewest voters.

@ k-approval: Each voter gives one point to each of the k most
preferred candidates. Whoever scores the most points wins.

In our above example, c is the plurality winner, e is the antiplurality

winner, and both a and b are 3-approval winners.
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Election Systems and Their Properties
Election Systems: Plurality, Antiplurality, k-Approval

vy
Vo !
V3
Vg .
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@ c is the plurality winner, as ¢ has the most (namely, 3) top positions.

@ e is the antiplurality (i.e., veto) winner, as e is never ranked last.

@ Both a and b are 3-approval winners, as they are ranked most often

(5 times) among the first three positions.
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems: Borda Count

Definition

@ Borda Count: With m candidates, each voter gives:

e m — 1 points to the candidate ranked at first position,

e m — 2 points to the candidate ranked at second position,

e 0 points to the candidate ranked at last position.

Whoever scores the most points wins.

In our above example, b is the Borda winner.
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems: Borda Count

points: 4 3 2 1 0
vi: ¢ b a e d
w: a e d c b
v: b a c e d
vs: b d e a c
vs: ¢ b a e d
Ve: ¢ d b e a

vv: e d a b c

Viewed as a social welfare function, the Borda system yields:

ranking

b > ¢ > a > e > d

points

17 > 15 > 14 > 13 > 11
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems: Scoring Protocols

Definition
A scoring protocol for m candidates is specified by a scoring vector,

a=(aq,02,...,an), satisfying

a1 > Q2 2 Q.

Votes are linear orders. Each vote contributes
@ « points to that vote's most preferred candidate,

@ « points to that vote's second most preferred candidate,

@ «y, points to that vote's least preferred candidate.

Whoever scores the most points wins.
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Foundations of Social Choice Theory Election Systems and Their Properties

Election Systems: Scoring Protocols for m Candidates

Voting System Scoring Vector
m—1
. ——
Plurality a=(1,0,...,0)
m—1
i . —N—
Antiplurality (Veto) a=(1,...,1,0)
k m—k

k-Approval ((m — k)-Veto) | « =(1,...,1,0,...,0)
Borda Count a=(m-1,m-2,...,0)
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Election Systems and Their Properties
Simple Majority and Condorcet Voting

Definition
A candidate ¢ wins by (simple) majority if ¢ is ranked first by more than

half of the voters.

In our above example, no candidate wins by simple majority. This obstacle

is avoided by, e.g., Bucklin voting.

Definition
A candidate c is a Condorcet winner if ¢ defeats every other candidate by

a strict majority in pairwise comparisons.
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Foundations of Social Choice Theory Election Systems and Their Properties

Simple Majority and Condorcet Voting

In our above example, there is no Condorcet winner:

Vi
Vo !
V3
Vy
Vg o
V6 !

V7

That is, we have a top-3-cycle among a, b, and c.

C

L

o o

1)

Q Q T Q o

Q o
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Election Systems and Their Properties
Simple Majority and Condorcet Voting

In our above example, there is no Condorcet winner:

b a b c d e
///\\ a|x 2:5 4:3 4:3 4:3
a € X 3:4 4:3 5:2
x 4:3 4:3

d x 2:5

d e e X

That is, we have a top-3-cycle among a, b, and c. This obstacle is avoided
by, e.g., Black, Dodgson, Young, Copeland, and Kemeny voting.
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Foundations of Social Choice Theory Election Systems and Their Properties

The Condorcet Paradox

The Condorcet paradox occurs whenever there exists no Condorcet winner.

Figure: Anna, Belle, and Chris are voting on which game to play
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Foundations of Social Choice Theory Election Systems and Their Properties

The Condorcet Paradox

Figure: The Condorcet paradox
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Election Systems and Their Properties
Majority Criterion & Condorcet Criterion
Definition
A voting system satisfies the

@ majority criterion if it selects the majority winner whenever one exists;

@ Condorcet criterion if it selects the Condorcet winner whenever one
exists.

The Condorcet criterion is violated by many voting systems, e.g., by

a
b a ¢ d
plurality: c 2 d

b
b—c——d
d a b ¢

—> a is the Condorcet winner but does not win under plurality.
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Foundations of Social Choice Theory Election Systems and Their Properties

Majority Criterion & Condorcet Criterion

A simple majority winner always also wins under plurality, so plurality
satisfies the majority criterion.

However, Borda does not satisfy this criterion:

Example

a is the majority winner,
4 3 2 1 0 but under Borda:

a scores 2 - 4 = 8 points,

a b c de b scores 3 -3 =9 points and wins,
a b c d e c scores 4 + 2 -2 = § points,
c b d e a d scores 2+ 2 -1 =4 points, and

e scores 1 point.
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Foundations of Social Choice Theory Election Systems and Their Properties

The Borda Paradox

The Borda paradox occurs whenever a plurality winner is the “Condorcet

loser,” i.e., is defeated by every other candidate in pairwise contests by a

majority of votes.

Example

5 1 0 a is the plurality win-
ner but is defeated by

4x | a b ¢ b and ¢ with 4 : 5 in

3x | b ¢ a pairwise comparison,

so a is the Condorcet
2x | ¢ b a

loser.

In Borda:

b scores 12 points and wins,
a scores 8 points, and

¢ scores 7 points.

Borda’s original example has 21 voters and 3 candidates.
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e e S A
Black Voting

Definition
Black voting:
@ Choose the Condorcet winner if there exists one.

@ Otherwise, choose all Borda winners.

Black's system:
@ satisfies the Condorcet criterion and
@ monotonicity, but

@ it is inconsistent.
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Foundations of Social Choice Theory Election Systems and Their Properties

Monotonicity and Consistency

Definition
@ A voting system is monotonic if the following holds: If
e some candidate w wins an election and
e we then improve the position of w in some of the votes, leaving
everything else the same,
then w still wins in the changed election.

The winner-turns-loser paradox shows failure of monotonicity.

@ A voting system is consistent if the following holds: When the
electorate is divided arbitrarily into two (or more) parts and separate
elections in each part result in the same winners, they also win an
election of the entire electorate.

The multiple-districts paradox shows inconsistency.

J. Rothe (HHU Diisseldorf) Preference Aggregation by Voting 45 /99



Foundations of Social Choice Theory Election Systems and Their Properties

Black Is Inconsistent

Example Let C ={a, b, c}.

e In (C, Vi), ais the Condorcet—and thus
the Black—winner because a defeats both

2 1 0 b and c with 4 : 3.
y 4x | a b ¢ e In (C, V,), there is no Condorcet winner:
1= 3x | b ¢ 2 a defeats b with 5: 2:
b defeats ¢ with 5 : 2;
3xa b c c defeats a with 4 : 3.
Vo=<2x | b ¢ a Under Borda,
2% | ¢ a b a has a score of 3-2+2-1 =8 and wins;

bhasascoreof 2-2+3-1=T7,;
c hasascoreof 2:-2+2-1=6.
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Foundations of Social Choice Theory Election Systems and Their Properties

Black Is Inconsistent

So a is the Black winner in (C, V1) and (C, V2).

However, in (C, V4 U V5),

@ there is no Condorcet winner because the

c contest of a versus ¢ ends in a tie: 7 : 7; and

a @ under Borda,

Example
4x
Vi =
3x
3%
Vo = ¢ 2x
2%

ahasascoreof 7-2+2-1=16;
b hasascoreof 5:2+7-1 =17 and wins;
c hasascoreof 2-24+5.1=0.

Hence, b is the Black winner of (C, V4 U V2).

Therefore, Black is inconsistent.

J. Rothe (HHU Diisseldorf)
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Foundations of Social Choice Theory Election Systems and Their Properties

Monotonicity

Recall the definition of monotonicity:
A voting system is monotonic if the following holds: If
@ some candidate w wins an election and

@ we then improve the position of w in some of the votes, leaving
everything else the same,

then w still wins in the changed election.

The winner-turns-loser paradox shows failure of monotonicity.

For example, changing
abcd into cbad

improves the position of ¢, but it does not leave everything else the same
because it also swaps a and b.
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Election Systems and Their Properties
Examples of (Non-)Monotonic Voting Systems

@ Examples of monotonic voting systems are:
o plurality, Borda, and (more generally) all scoring protocols,
e Condorcet,
e Black, ...

@ Examples of nonmonotonic voting systems are:
o Plurality with Runoff, using a tie-breaking rule if needed:
o Top two candidates wrt. plurality score proceed to runoff (unless one
already has an absolute majority and wins immediately);
@ the winner is whoever is ranked higher by more voters than the other.
e Single Transferable Vote (STV), which proceeds in m — 1 rounds:
@ In each round, a candidate with lowest plurality score is eliminated
(using some tie-breaking rule if needed) and all votes for this candidate
transfer to the next remaining candidate in this vote's order.
@ The last remaining candidate wins.
o Dodgson, (some slides ahead).
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Foundations of Social Choice Theory Election Systems and Their Properties

Examples of Monotonic Voting Systems

© Plurality is monotonic:
e Improving the position of ¢ can only increase c’s plurality score.
e Since everything else stays the same, the plurality score of all other
candidates can only get worse.

The same argument works to show that Borda and (more generally)

all scoring protocols are monotonic because of

a1 20 2 2 an.
@ Condorcet is monotonic: If there exists a Condorcet winner ¢, ¢
remains the Condorcet winner in the election where c¢'s position is

improved and everything else is left the same.

© Black is monotonic: follows immediately from the monotonicity of

Condorcet and Borda.
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Foundations of Social Choice Theory Election Systems and Their Properties

A Stronger Notion of Monotonicity

Definition
A voting system is strongly monotonic if the following holds: If

@ some candidate w wins an election and

@ we then change the votes in such a way that every candidate
originally ranked behind w is still ranked behind w after the change,

then w still wins in the changed election.

For example, plurality is not strongly monotonic:

3x a b c a b
2x b ¢ a = b c
2X ¢ b a b c

a wins b wins
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Election Systems and Their Properties
Plurality with Runoff Is Not Monotonic

Example
2Ix | a b c ) Change the election as follows:
422x | ¢ a b Runoff: aand c, 4 of the 27 voters improve c's
c wins 66 : 27 . .
Ux | b ¢ a position, and we obtain:
J
23x |a b ¢
Runoff: band ¢, Hence, plurality with runoff
46x | ¢ a b . ] .
b wins 47 : 46 is not monotonic.
24x | b ¢ a )

Remark: Plurality with runoff with three candidates is the same as STV,
still we give another example for STV on the next slide.
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Election Systems and Their Properties
STV Is Not Monotonic

Example
R

7x|a b c Eliminate c; transfer Change the election: 2 of
6x | c a b c's votes to a; awins the b ¢ a votes improve a
7x | b ¢ 2 ) 13 : 7 against b to a b ¢, and we obtain:
9x |a b ¢ Eliminate b; transfer .

, . Thus single transferable
6xXx | ¢ a b b's votes to c; ¢ wins . .

1. . vote iIs not monotonic.
5 | b ¢ 2 11 : 9 against a

Remark: Again, this also works as a counterexample for plurality with

runoff, which for three candidates is the same as STV.
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Election Systems and Their Properties
Condorcet Systems: Dodgson, Young, and Copeland

Let (C, V) be a given election where votes are linear orders.

e Dodgson: The Dodgson score of ¢ € C (denoted by DScore(c)) is
the smallest number of sequential swaps needed to make c a
Condorcet winner. Whoever has the smallest Dodgson score wins.

@ Young: The Young score of ¢ € C (denoted by YScore(c)) is the size
of a largest sublist of V for which ¢ is a Condorcet winner. Whoever
has the maximum Young score wins.

e Copeland: For each ¢,d € C, ¢ # d, let N(c, d) be the number of
voters who prefer ¢ to d. Let Z(c,d) =1 if N(c,d) > N(d, c) and
Z(c,d) =1/2if N(c,d) = N(d, c).

The Copeland score of c is CScore(c) =34, Z(c, d).
Whoever has the maximum Copeland score wins.
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Foundations of Social Choice Theory Election Systems and Their Properties

Dodgson Voting Fails Monotonicity

Example (Fishburn (1977))

15 votes :
9 votes :
9 votes :
5 votes :

5 votes :

J. Rothe (HHU Diisseldorf)

Original Votes

Changed Votes

c a d b c a d b
b d ¢ a b d ¢ a
a b d a b d
a ¢ b a ¢ b
b a ¢ a b ¢
Dodgson Dodgson
winner a winner ¢
(3 swaps) (2 swaps)

Preference Aggregation by Voting
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Election Systems and Their Properties
Dodgson Voting Fails Monotonicity

Example (Fishburn (1977))

15 votes :
9 votes :
9 votes :
5 votes :

5 votes :

Original Votes

c

b

a
d
b
c

a

d

o Q 0

Cc

24:F9F a Tw:m
. 23:20 b

b C

a k 39
c 25:18 d 28:15

—> No Condorcet winner. But

becomes the Condorcet winner with

Dodgson
winner a

(3 swaps)

J. Rothe (HHU Diisseldorf)

three swaps: 3x :cadb ~~ acd

— a defeats c with 22 : 21. Because
of deficit 5, no two swaps are enough.

= DScore(a) = 3.
Exercise: DScore of b, ¢, d is > 3.

Preference Aggregation by Voting
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Election Systems and Their Properties
Dodgson Voting Fails Monotonicity

Example (Fishburn (1977))

15 votes :
9 votes :
9 votes :
5 votes :

5 votes :

Changed Votes

c
b

a

a
d
b
c

b

d
c
d
b

Cc

24:N9F a T&w
. 23:20 b

b C

a k 39
c 25:18 d 28:15

= No Condorcet winner. But now

¢ becomes the Condorcet winner with

Dodgson
winner ¢

(2 swaps)

J. Rothe (HHU Diisseldorf)

— ¢ defeats b with 22 : 21. Because
of deficit 3, no single swap is enough.

= DScore(c) = 2.
Exercise: DScore of a, b, d is > 2.

Preference Aggregation by Voting

two swaps: 2x :abcd ~ acbd.
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Determining Young Winners

Example

Consider the election (C, V) with C = {a, b ¢,d} and V:
vi: ¢ b a d ' .
w: a d c b
vs: b a ¢ d

vs: d b a c

@ No Condorcet winner.

@ ais Condorcet winner for (v2), but in (v2, v3) there is a tie with b;

with v; or v4 even worse.
@ b is Condorcet winner for (vi, v3, v4), so YScore(b) = 3.
@ c and d: even worse than a in pairwise comparison.

@ Thus b is the Young winner.
J. Rothe (HHU Diisseldorf) Preference Aggregation by Voting
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Foundations of Social Choice Theory Election Systems and Their Properties

Determining Copeland Winners

Example

Consider the election (C, V) with C = {a, b ¢,d} and V:
vi: ¢ b a d '
w: a d c b
vs: b a ¢ d

vs: d b a c

@ No Condorcet winner.

a b c d | CScore

0o 1 1 2 —> a and b are the
X 12 1/ 2
o x 1)2 1
0 Y2 1 x 1

Copeland winners.

Q 0 oW
o = X

4
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Foundations of Social Choice Theory Election Systems and Their Properties

How Hard is it to Determine Copeland, Dodgson, and

Young Winners?

Fact
Copeland winners can be determined in polynomial time.

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (1997))

The problem of determining Dodgson winners is complete for “parallel

access to NP.” without proof

Theorem (Rothe, Spakowski, and Vogel (2003))
The problem of determining Young winners is complete for “parallel access
to NP.” without proof
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Election Systems and Their Properties
Complexity of Determining Dodgson Winners

Exact Analysis of Dodgson Elections: Lewis Carroll’s
1876 Voting System Is Complete for Parallel Access
to NP

EDITH HEMASPAANDRA

Le Moyne College, Syracuse, New York

LANE A. HEMASPAANDRA
University of Rochester, Rochester, New York
AND

JORG ROTHE

Friedrich-Schiller-Universitit Jena, Jena, Germany
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Foundations of Social Choice Theory Election Systems and Their Properties

An Incomplete Summary

Majority | Condorcet | Consistent | Monotonic

a) Plurality X

f) Dodgson X

g) Young
h) Black X
i) Plurality w. Runoff X
j) STV
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Foundations of Social Choice Theory Election Systems and Their Properties

Homogeneity

Definition
A voting system f is said to be homogeneous if for each preference
profile (C, V) and for all positive integers g, it holds that

f((C, V) = £((C,qV)),

where gV denotes V replicated g times.

Remark:
@ Dodgson’s system is not homogeneous.

@ Fishburn (1977) proposed the following limit device to define a
homogeneous variant of Dodgson elections:

DScore(QqV)(c)

DScore(¢ \(c) = qu_)rr;O 7
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Foundations of Social Choice Theory Election Systems and Their Properties

Dodgson Fails Homogeneity

Example (Fishburn (1977))

Original Profile

Changed Profile

2 votes :
2 votes :
2 votes :
2 votes :
2 votes :
1 vote:

1 vote:

d
b

d
a

a

d

C
C

a
b
b
d

a

a
a
b
c
c
b
b

[} Q Q o

Q.

6 votes :

6 votes :

d
b

6 votes :

6 votes :
6 votes :
3 votes :

od

3 votes

d
a

a

C
C

a
b
b
d

a

a
a
b
c
c
b
b

L Q Q T

Q.

Dodgson winner a

(3 swaps)

J. Rothe (HHU Diisseldorf)

Dodgson winner d

Preference Aggregation by Voting

(6 swaps)
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Election Systems and Their Properties
Dodgson Fails Homogeneity

Example (Fishburn (1977))

Original Profile

2 votes: d
2 votes: b
2 votes :

2 votes: d

2 votes: a
1 vote: a

1 vote: d

C

c
a
b
b
d

a

a

a

b

it

b 8:4

7j
6:6 d 6:6

Q Q o

a

@ No Condorcet winner.
d

@ a becomes a Condorcet winner
¢ with 3 swaps in the first 3 votes
¢ and wins 7 : 5 against c.

Dodgson winner a

(3 swaps)

J. Rothe (HHU Diisseldorf)

@ No two swaps are enough.

@ Thus DScore(a) = 3.
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Election Systems and Their Properties
Dodgson Fails Homogeneity

Example (Fishburn (1977))

Original Profile

2 votes: d
2 votes: b
2 votes :

2 votes: d

2 votes: a
1 vote: a

1 vote: d

C

c
a
b
b
d

a

a

a

b

Dodgson winner a

(3 swaps)

J. Rothe (HHU Diisseldorf)

d
7:5
; J
6:6 6:6
@ DScore(x) > 3 for x € {b, c,d}:
d
e b needs 3 swaps against a and
¢ 1 against d;
c e ¢ needs 3 swaps against b and
1 against d;
o d needs 2 swaps against a,
1 against b, and 1 against c.
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Foundations of Social Choice Theory

Dodgson Fails Homogeneity

Example (Fishburn (1977

Changed Profile

)

6 votes

6 votes :

od

b

6 votes :

6 votes :
6 votes :
3 votes :

od

3 votes

d
a

a

c

c
a
b
b
d

a

a
a
b
c
c
b
b

) Q Q o

Q.

b 24:12

C
18:18 d 18:18

@ 6 swaps make d a Condorcet winner:

4x
4x
1x
1x

Dodgson winner d

(6 swaps)

J. Rothe (HHU Diisseldorf)

Preference Aggregation by Voting

b
b
b
d

24:12ra j24:12

C

o Q0

a

o 0 Q

Election Systems and Their Properties

d
a
a
a

J
J
J

@ So d wins 19 : 17 against each of a, b, c.
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Foundations of Social Choice Theory

Dodgson Fails Homogeneity

Example (Fishburn (1977))

Changed Profile

6 votes :

6 votes :

d
b

6 votes :

6 votes :
6 votes :
3 votes :

3 votes :

d
a

a

d

c

c
a
b
b
d

a

a
a
b
c
c
b
b

Dodgson winner d

(6 swaps)

J. Rothe (HHU Diisseldorf)

2412F

24:12

19:}>\\“-

4x b
4x b
1x b

C

c
d

d
c

Election Systems and Their Properties

j2412
19
19:17

6 swaps make d a Condorcet winner:
a d

a
a

I1x d b ¢ a

So d wins 19 :

No 5 swaps are enough.

Thus DScore(d)

Preference Aggregation by Voting

= 6.

J
J

17 against each of a, b, c.
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Foundations of Social Choice Theory Election Systems and Their Properties

Dodgson Fails Homogeneity

Example (Fishburn (1977))

Changed Profile

2412F

6 votes :

6 votes :

d
b

6 votes :

6 votes :
6 votes :
3 votes :

3 votes :

a

d

c

c
a
b
b
d

a

a

a

b

b
b

Q Q o

Q.

\24 12
b 24:12

k Zy
18:18 18:18

@ DScore(x) > 6 for x € {a, b, c}:

@ a needs 7 swaps against c;

e b needs 7 swaps against a and 1
against d;

e c needs 7 swaps against b and 1

Dodgson winner d

(6 swaps)

J. Rothe (HHU Diisseldorf)

against d;

@ Thus d is the Dodgson winner.

Preference Aggregation by Voting
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Election Systems and Their Properties
Weak Condorcet and Weak Dodgson

Definition
@ Let (C, V) be an election.
A candidate ¢ € C is a weak Condorcet winner if c ties or defeats

every other candidate in pairwise comparison.

o Weak Dodgson:
e The weak Dodgson score of ¢ € C (denoted by DScore(c v)(c)) is the
smallest number of sequential swaps needed to make ¢ a weak
Condorcet winner. (Also, let m?cjv)(c) = limg—oo D&#W)(C)')

o Whoever has the smallest weak Dodgson score wins.

Remark: For an odd number of voters, the notions of Condercet winner
and weak Condercet winner and, consequently, the notions of Dodgson

winner and weak Dodgson winner are identical.
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Election Systems and Their Properties
Weak Dodgson Fails Homogeneity

Example (Fishburn (1977))
Consider the election (C, V) with C = {a1,az,...,a7,c} and V:

dly d2 a3 4d4 C as de ar
dy d1 d2 a3 C a4 as ap
dp dy d1 d2 C a3 a4 as
ds de dy a1 C az» a3 44
d4 ds dp 4dy C ap a2 as
a3 a4 as ag C ay ai az
d» d3 d4 a5 C ade dady ai

@ DScore(c vy(c) =7 and DScore(c vy(ai) =6 for 1 <i < 7.

° DScoreEkCV)(c) = 3.5 and DScore?CV)(a,-) =45 for 1 <i <7, which
implies that ¢ wins in (C, qV/) for large enough g.

J. Rothe (HHU Diisseldorf) Preference Aggregation by Voting 71/99



Election Systems and Their Properties
Weak Dodgson Fails Homogeneity

ai
ar
ae
as
da
as
as

as
ai
arz
ae
as
da
as

as
a
ai
ar
ae
as
dg

dg
as
az
ai
ar
ae
as

O 0o 60 o o o0 0

as
as
as
as
ai
arz
ae

ae
as
dq
as
az
ai
ar

ar
a6
as
ag
as
as
ai

@ Swap c once to the left in each

voter.

@ This makes ¢ a (weak) Condorcet

winner.

@ Since these 7 swaps are necessary
for that, DScore(c v)(c) = 7.

@ a7 defeats ap,a3,a4,cwith6:1,5:2,4:3,4:3, and
is defeated by as, ag, a7 with 3:4,2:5,1:6.

@ 6 swaps make a; a (weak) Condorcet winner (and 5 are not enough):

@ Thus DScore(c vy(a1)

@ a5 dp a7y a1 C az as
@ a3 d4 as adp C ay ax
@ adp az a4 as C ag ay

J. Rothe (HHU Diisseldorf)

g
ar
ai

3 swaps

~> d] ds dp d7 C Az a3 aa

1 swap
~
2 swaps

d3 d4 ds dp C a1 ay az

~>  dp a3 d4 as C a1 ap ay

= 6, and analogously so for as, a3, ay, as, ae, a7.
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Election Systems and Their Properties
Weak Dodgson Fails Homogeneity

ai
ar
ae
as
da
as
as

as
ai
arz
ae
as
da
as

as
a
ai
ar
ae
as
dg

dg
as
az
ai
ar
ae
as

O 0o 60 o o o0 0

as
as
as
as
ai
arz
ae

ae
as
dq
as
az
ai
ar

ar
a6
as
ag
as
as
ai

@ Swap c once to the left in each

voter.

@ This makes ¢ a (weak) Condorcet

winner.

@ Since these 7 swaps are necessary
for that, DScore(c v)(c) = 7.

@ Thus a1, az, as, as, as, ae, a7 are the (weak) Dodgson winners.

o Now consider DScoreEkqv)(c) and DScoresz,V)(a,-):

q ‘ 4 5 6
c: ‘34 6:8 9:12 12:16 15:20 18:24
DScore( 7 _ 14 Z 14 _ 21 21
C‘W ‘ 5=35 F 6 7 =35 5£=42 £ =35

J. Rothe (HHU Diisseldorf)
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Election Systems and Their Properties
Weak Dodgson Fails Homogeneity

ay a» a3 as Cc a5 ag ay @ Then DScoreZFQV)(C) = 3.5.

a7 41 @2 a3 € 44 3 36 g Apalogously, DScorezkcyv)(a,-) =45
zi Z : Zi E Zz Z: zi for 1 < i < 7: On average (per

a, as ag a7 C a, a» a multiplication), a; needs 2.5 swaps
a3 as as ag C a; ai a» against ay, 1.5 swaps against ag,
a a3 a4 as C ag ay ai and 0.5 swaps against as, etc.

@ Thus a1, az, as, as, as, ae, a7 are the (weak) Dodgson winners.

e Now consider DScoreE‘QV)(c) and DSCorechyv)(a,-):

q 2 3 4 5 6

|
c:aj ‘34 6:8 9:12 12:16 15:20 18:24
°]

DScorec 7 _ 14 27 14 _ 21 __ 21 __
Docorec.qn(©) 1=35 Yx4p Y=35 Z=42 2=35
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Foundations of Social Choice Theory Election Systems and Their Properties

Independence of Clones
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Foundations of Social Choice Theory Election Systems and Their Properties

Independence of Clones

Definition
@ Two candidates are clones of each other if they are ranked next to
each other in every individual ranking, i.e., both candidates perform

identically in pairwise comparisons with any other alternative.
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Foundations of Social Choice Theory Election Systems and Their Properties

Independence of Clones

Definition
@ Two candidates are clones of each other if they are ranked next to
each other in every individual ranking, i.e., both candidates perform

identically in pairwise comparisons with any other alternative.

‘,

@ A voting system is independent of clones if a losing candidate cannot

be made a winning candidate by introducing clones.
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Foundations of Social Choice Theory Election Systems and Their Properties

Tideman's Example of Cloning

Example (Tideman (1987))

“When | was 12 years old | was nominated to be treasurer of my
class at school. A girl named Michelle was also nominated. | rel-
ished the prospect of being treasurer, so | made a quick calculation
and nominated Michelle’s best friend, Charlotte. In the ensuing
election

o [/ received 13 votes,

@ Michelle received 12, and

@ Charlotte received 11,

so | became treasurer.”

In other words, Tideman cloned Michelle.
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Election Systems and Their Properties
Cloning in Florida in 2000

In the 2000 US Presidential Election, Ralph Nader (Green Party) split
votes away from Al Gore (Democrats), thus allowing George W. Bush
(Republicans) to win the election.

The final count in Florida was:

Republican 2,912,790 Workers World 1,804
Democratic 2,912,253 Constitution 1,371
Green Party 97,488 Socialist 622
Natural Law 2,281 Socialist Workers 562
Reform 17,484 Write-in 40
Libertarian 16,415
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Foundations of Social Choice Theory Election Systems and Their Properties

Dodgson is Not Independent of Clones

Example (Brandt (2009))

Original Cloning ¢

5 votes : b ¢ a b ¢ (¢

a
4votes: b ¢ a = b ¢ c a

3votes: ¢ a b c ¢ a b
Dodgson Dodgson
winner a winner b
(2 swaps) (3 swaps)
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Election Systems and Their Properties
Dodgson is Not Independent of Clones

Original

5 votes : b ¢

a
4votes: b ¢ a

3votes: ¢ a b

Dodgson
winner a

(2 swaps)

J. Rothe (HHU Diisseldorf)

8:4 a

@ No Condorcet winner.

@ ais make a Condorcet winner by 2

swaps (and 1 swap is not enough):

2x b ¢ a ~ b a c

@ Thus DScore(a) = 2. Similarly,

DScore(b) = 3 and DScore(c) = 4.

@ So ais the Dodgson winner.
Preference Aggregation by Voting
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Election Systems and Their Properties
Dodgson is Not Independent of Clones

Cloning ¢

S5votes: a b ¢ W 12:0

4votes: b ¢ ¢ a

, @ But now a would need 4 swaps to
3votes: ¢ ¢ a

defeat both ¢ and ¢’ and become a

Dodgson Condorcet winner (3 are not enough):

winner b
2x b ¢ ¢ a ~ b a c ¢

(3 swaps) @ Thus DScore(a) = 4, DScore(b) = 3,
DScore(c) = 4, and DScore(c’) = 11.

@ So now b is the Dodgson winner.
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Foundations of Social Choice Theory Election Systems and Their Properties

Dodgson May Choose the Condorcet Loser and Fails the

Reversal Symmetry Criterion

Definition
@ Recall: A candidate c is a Condorcet loser if ¢ is defeated by every

other candidate by a strict majority in pairwise comparisons.

@ A voting systems satisfies the reversal symmetry criterion if it holds

that a unique winner becomes a nonwinner whenever all individual

rankings are reversed.
v
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Foundations of Social Choice Theory Election Systems and Their Properties

Dodgson May Choose the Condorcet Loser and Fails the

Reversal Symmetry Criterion

Example (Brandt (2009))

Dodgson chooses the

Condorcet loser

Dodgson fails the reversal

symmetry criterion

10 votes :
8 votes :
7 votes :

4 votes :

d
b

C

d

a

C

a

C

b
a
b

a

T Q Q 0

10 votes: ¢

8 votes : d
7 votes : d
4 votes: b

b
a
b

a

a

C

a

C

o Q

(9}

Dodgson winner d

(3 swaps)

Dodgson winner d

(no swaps)

J. Rothe (HHU Diisseldorf)
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Foundations of Social Choice Theory Election Systems and Their Properties

Dodgson May Choose the Condorcet Loser

Dodgson chooses the

Condorcet loser

r ‘WDIO
18:11

10 votes: d
8 votes: b
7 votes: ¢

4 votes: d

a

c

a

Cc

b
a
b

a

15:14 15:14

@ d is the Condorcet loser and the
Dodgson winner with DScore(d) = 3:
I1x b ¢c a d ~ b d ¢ a

- Q Q o

Dodgson winner d

(3 swaps)

J. Rothe (HHU Diisseldorf)

Ix ¢ a b d ~ ¢ a d b

@ DScore(a) =5:5x bcad~bacd
@ DScore(b)=7:7xdabc~dbac
@ DScore(c)=4:4x dabc~~dach

Preference Aggregation by Voting
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Foundations of Social Choice Theory Election Systems and Their Properties

Reversal Symmetry Criterion

@ Plurality fails the reversal symmetry criterion:

3votes: a b ¢ d d ¢ b a

2votes: d ¢ b a a b c d

2votes: b ¢ d a a d c b
plurality winner a plurality winner a

@ However, simple majority and Condorcet satisfy the reversal symmetry

criterion.
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Further Voting Paradoxes
The No Show Paradox and the Twin Paradox

Definition
@ The no show paradox occurs whenever a voter is better off not
showing up (as this leads to the election of a candidate this voter
prefers). Or, more formally, adding identical preferences with ¢ ranked
last makes ¢ win.
A voting systems satisfies the participation criterion if the no show

paradox never occurs.

e The twin paradox occurs if whenever a voter is joined by a “twin” (a
voter with identical preferences), this gives less weight to their joint
preferences.

A voting systems satisfies the twins welcome criterion if the twin

paradox never occurs.
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Further Voting Paradoxes
The No Show Paradox

Example (Moulin (1985))

vi: ¢ b a
Successive Elimination (Regular Cup):
Balanced binary tree whose leaves i c b a
are labeled by the candidates. \C) i a b ¢
Each inner node is labeled by the v: a b c
winner of both children, where \ vi: ¢ a b

h i k jority.

eac vottla is taken by ma.Jorlty w: b ¢ a
The candidate at the root wins.

vv: b ¢ a

Here: a against b, next the winner against c.

Ties are broken lexicographically: a > b > c.

4
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Further Voting Paradoxes
The No Show Paradox

Example (Moulin (1985))

Successive Elimination (Regular Cup):

Round 1: b defeats a with 4 : 3. %

Round 2: b defeats ¢ with 4 : 3. \
— b wins.

Here: a against b, next the winner against c.

Ties are broken lexicographically: a > b > c.

J. Rothe (HHU Diisseldorf)

Vi b a
Vo b a
V3 ! b ¢
Vg - b ¢
Vs - a b
V6 c a
V7 c a
J
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Further Voting Paradoxes
The No Show Paradox

Example (Moulin (1985))

Successive Elimination (Regular Cup):

Assume v; doesn’t show up.

Round 1: a defeats b with 3 : 3

and tie-breaking. %

Round 2: ¢ defeats a with 4 : 2. \
— c wins.

Since vy prefers ¢ to b,

v1 better stays home.

Here: a against b, next the winner against c.

Ties are broken lexicographically: a > b > c.

J. Rothe (HHU Diisseldorf) Preference Aggregation by Voting
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Further Voting Paradoxes
The Twin Paradox

Example (Moulin (1985))

Successive Elimination (Regular Cup):
Consider again (C, V) with vy b 2
V={v,...v7}. vy b
As we have seen, c wins. \C) vy b ¢
Is v» glad to see the twin v Vs a b
participate? Ve : c a3
NO! As we have seen, then b wins, vy c a
but v (like vq) prefers ¢ to b.
Here: a against b, next the winner against c.
Ties are broken lexicographically: a > b > c.
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Further Voting Paradoxes
The No Show Paradox and the Twin Paradox

Remark:
@ Voting systems immune to both paradoxes include:

o plurality, Borda, and (more generally) all scoring protocols,

e simple majority.

o Voting systems subject to the no show paradox include:

e plurality with runoff,
@ successive elimination.

Fact
If a voting system is immune to the no show paradox, it is also immune to

the twin paradox.
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Further Voting Paradoxes
The No Show Paradox and the Twin Paradox

Theorem (Moulin (1988))
@ For at most three candidates, there exist voting systems satisfying the
Condorcet and participation criteria.

@ For at least four candidates (and at least 25 voters), no voting system
satisfies the Condorcet and participation criteria.

without proof

J. Rothe (HHU Diisseldorf) Preference Aggregation by Voting 93 /99



Impossiily Theorems
Further Properties of Voting Systems

Definition
A voting system is
@ anonymous if it treats all voters equally: if any two voters trade their

ballots, the outcome remains the same;

@ neutral if it treats all candidates equally: if any two candidates are
swapped in each vote, the outcome changes accordingly;

e onto (satisfies citizens’ sovereignty) if for each candidate there are

some votes that would make that candidate win;

e nondictatorial if there does not exist a dictator (i.e., a voter whose
most preferred candidate always wins);

e resolute (single-valued) if it always selects a single candidate as the

winner.

v
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Impossiily Theorems
Further Properties of Voting Systems

Definition
@ A voting system satisfies the Pareto condition: If ¢ is ranked above d

in all votes then the system ranks ¢ above d;

e A voting system is independent of irrelevant alternatives (Arrow’s I1A)
if the social preferences between any two candidates ¢ and d depend
only on the individual preferences between ¢ and d: If

o the system ranks c above d and

e we then change the votes but not who of ¢ and d is ranked better,

then the system should still rank ¢ above d.

All our systems so far satisfy each of these conditions, except resoluteness
and Arrow's IlA.
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Foundations of Social Choice Theory Impossibility Theorems

Arrow's Impossibility Theorem

Theorem (Arrow (1951))
Suppose there are at least three candidates.
There exists no voting system that simultaneously:

@ satisfies the Pareto condition,
@ is independent of irrelevant alternatives, and

@ nondictatorial.

without proof
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= T S
Muller—Satterthwaite Impossibility Theorem

Theorem (Muller and Satterthwaite (1977))
Suppose there are at least three candidates.

There exists no voting system that simultaneously is:

o resolute,
e onto,
e strongly monotonic, and

@ nondictatorial.

without proof

v
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Foundations of Social Choice Theory Impossibility Theorems

Gibbard—Satterthwaite Impossibility Theorem

Theorem (Gibbard (1973) and Satterthwaite (1975))
Suppose there are at least three candidates.

There exists no voting system that simultaneously is:
o resolute,

@ onto,
@ nondictatorial, and

@ nonmanipulable.

without proof

o

Remark: Intuitively, a voting system is manipulable if some voter can be

better off revealing his or her vote insincerely.
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Summary of Properties of Voting Systems

Foundations of Social Choice Theory

Summary of Properties of Voting Systems
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