Preference Aggregation by Voting: Algorithmics and Complexity

Präferenzaggregation durch Wählen: Algorithmik und Komplexität

Pingo Wintersemester 2020/2021

Dozent: Prof. Dr. J. Rothe

Website

https://pingo.coactum.de/

Pingo

Access Number: 885317

© Titanic Verlag

J. Rothe (HHU Düsseldorf)

Preference Aggregation by Voting

Suppose some voting system \mathcal{E} is immune to some control type \mathfrak{CT} . Let \mathcal{E} - \mathfrak{CT} be the corresponding control problem. Which of the following statements are provably true?

- A \mathcal{E} - \mathfrak{CT} is NP-hard
- B E-CT is NP-complete
- C \mathcal{E} - $\mathfrak{C}\mathfrak{T}$ is in P
- D There is no provable connection between immunity of $\mathcal E$ to \mathfrak{CT} and the complexity of $\mathcal E$ - \mathfrak{CT}

Anna, Belle:	С	а	b	d
Chris:	а	d	b	С
David:	b	d	а	С

Is it possible to partition $C = \{a, b, c, d\}$ into C_1 and C_2 such that when in the TP model the plurality winners of (C_1, V) and (C_2, V) run against each other, c is not the unique plurality winner?

A Yes, with $C_1 = \{a, b, c\}$ and $C_2 = \{d\}$

B No

- C Yes, with $C_1 = \{a, c\}$ and $C_2 = \{b, d\}$
- D Yes, with $C_1 = \{a, d\}$ and $C_2 = \{b, c\}$

Pingo

Question 3

Anna, Belle:	С	а	b	d
Chris:	а	d	b	С
David:	b	d	а	С

Is it possible to partition $C = \{a, b, c, d\}$ into C_1 and C_2 such that when in the TE model the plurality winners of (C_1, V) and (C_2, V) run against each other, c is not the unique plurality winner?

A Yes, with $C_1 = \{a, b, c\}$ and $C_2 = \{d\}$

B No

- C Yes, with $C_1 = \{a, c\}$ and $C_2 = \{b, d\}$
- D Yes, with $C_1 = \{a, d\}$ and $C_2 = \{b, c\}$

Consider an election (C, V). Which of the following statements are true?

- A If *c* is the Condorcet winner of (C, V), then *c* is also the Condorcet winner of each election (C', V) with $C' \subseteq C$ and $c \in C'$
- B Condorcet voting is immune to constructive control by adding candidates
- C If *c* is the plurality winner of (C, V), then *c* is also the plurality winner of each election (C', V) with $C' \subseteq C$ and $c \in C'$
- D Plurality voting is immune to constructive control by adding candidates

Pingo

Question 5

Anna, Belle:	С	а	b	d
Chris:	а	d	b	С
David:	b	d	а	С

Is it possible to partition $V = \{Anna, Belle, Chris, David\}$ into V_1 and V_2 such that when in the TP model the plurality winners of (C, V_1) and (C, V_2) run against each other, c is not the unique plurality winner?

- A Yes, with $V_1 = \{Anna, Belle\}$ and $V_2 = \{Chris, David\}$
- B No
- C Yes, with $V_1 = \{Anna, Belle, Chris\}$ and $V_2 = \{David\}$
- D Yes, with $V_1 = \{Anna\}$ and $V_2 = \{Belle, Chris, David\}$

Pingo

Question 6

Anna, Belle:	С	а	b	d
Chris:	а	d	b	С
David:	b	d	а	С

Is it possible to partition $V = \{Anna, Belle, Chris, David\}$ into V_1 and V_2 such that when in the TE model the plurality winners of (C, V_1) and (C, V_2) run against each other, c is not the unique plurality winner?

- A Yes, with $V_1 = \{Anna, Belle\}$ and $V_2 = \{Chris, David\}$
- B No
- C Yes, with $V_1 = \{Anna, Belle, Chris\}$ and $V_2 = \{David\}$
- D Yes, with $V_1 = \{Anna\}$ and $V_2 = \{Belle, Chris, David\}$

The traffic light rules in Germany.

- A ... where GREEN is ON TOP?
- B ... where GREEN is BLUE?
- C ... where pedestrians have YELLOW?
- D ... with horses for pedestrians?

- A ... where GREEN is ON TOP?
- B ... where GREEN is BLUE?
- C ... where pedestrians have YELLOW?
- D ... with horses for pedestrians?

- A ... where GREEN is ON TOP?
- B ... where GREEN is BLUE?
- C ... where pedestrians have YELLOW?
- D ... with horses for pedestrians?

- A ... where GREEN is ON TOP?
- B ... where GREEN is BLUE?
- C ... where pedestrians have YELLOW?
- D ... with horses for pedestrians?

- A ... where GREEN is ON TOP?
- B ... where GREEN is BLUE?
- C ... where pedestrians have YELLOW?
- D ... with horses for pedestrians?

- A ... where GREEN is ON TOP?
- B ... where GREEN is BLUE?
- C ... where pedestrians have YELLOW?
- D ... with horses for pedestrians?

