Preference Aggregation by Voting: Algorithmics and Complexity

Präferenzaggregation durch Wählen: Algorithmik und Komplexität

Pingo Wintersemester 2020/2021

Dozent: Prof. Dr. J. Rothe

Website

https://pingo.coactum.de/

Pingo

Access Number: 885317

© Titanic Verlag

J. Rothe (HHU Düsseldorf)

Preference Aggregation by Voting

Questions

Question 1

Anna, Belle, Chris:	С	а	b	d
David, Edgar:	а	d	b	С
Felix, George:	b	d	а	С

Is it possible to partition $V = \{Anna, Belle, Chris, David, Edgar, Felix, George\}$ into V_1 and V_2 such that when the plurality winners of (C, V_1) and (C, V_2) run against each other, a is the unique plurality winner?

A Yes, with $V_1 = \{Anna, Belle, David, Edgar\}$ and

 $V_2 = \{Chris, Felix, George\}$

B No

C Yes, with
$$V_1 = \{Anna, Belle, Chris, Felix\}$$
 and

 $V_2 = \{ \text{David, Edgar, George} \}$

D Yes, with $V_1 = \{Anna, Edgar, Felix\}$ and

 $V_2 = \{ Belle, Chris, David, George \}$

J. Rothe (HHU Düsseldorf)

Questions

Question 2

Anna, Belle, Chris:	С	а	b	d
David, Edgar:	а	d	b	С
Felix, George:	b	d	а	С

Is it possible to partition $V = \{$ Anna, Belle, Chris, David, Edgar, Felix, George $\}$ into V_1 and V_2 such that when the veto winners of (C, V_1) and (C, V_2) run against each other, a is the unique veto winner?

A Yes, with $V_1 = \{Anna, Belle, David, Edgar\}$ and

 $V_2 = \{Chris, Felix, George\}$

B No

C Yes, with
$$V_1 = \{Anna, Belle, David, Felix\}$$
 and

 $V_2 = \{ Chris, Edgar, George \}$

D Yes, with $V_1 = \{Anna, Edgar, Felix\}$ and

 $V_2 = \{ Belle, Chris, David, George \}$

Questions

Question 3

Anna, Belle, Chris:	С	а	b	d
David, Edgar:	а	d	b	С
Felix, George:	b	d	а	С

Is it possible to partition $V = \{Anna, Belle, Chris, David, Edgar, Felix, George\}$ into V_1 and V_2 such that when the Condorcet winners of (C, V_1) and (C, V_2) run against each other, b is the Condorcet winner?

A Yes, with $V_1 = \{Anna, Belle, David, Edgar\}$ and

$$I_2 = \{ Chris, Felix, George \}$$

B No

C Yes, with
$$V_1 = \{Anna, Belle, David, Felix\}$$
 and

 $V_2 = \{ Chris, Edgar, George \}$

D Yes, with $V_1 = \{Anna, Edgar, Felix\}$ and

 $V_2 = \{ Belle, Chris, David, George \}$

Questions

Question 4

Anna, Belle, Chris:	С	а	b	d
David, Edgar:	а	d	b	С
Felix, George:	b	d	а	С

Is it possible to partition $V = \{Anna, Belle, Chris, David, Edgar, Felix, George\}$ into V_1 and V_2 such that when the Condorcet winners of (C, V_1) and (C, V_2) run against each other, d is the Condorcet winner?

A Yes, with $V_1 = \{Anna, Belle, David, Edgar\}$ and

 $V_2 = \{Chris, Felix, George\}$

B No

C Yes, with
$$V_1 = \{Anna, Belle, David, Felix\}$$
 and

 $V_2 = \{ Chris, Edgar, George \}$

D Yes, with $V_1 = \{Anna, Edgar, Felix\}$ and

 $V_2 = \{ Belle, Chris, David, George \}$

Question 5

Anna, Belle, Chris:	С	а	b	d
David, Edgar:	а	d	b	С
Felix, George:	b	d	а	С

Is it possible to partition $C = \{a, b, c, d\}$ into C_1 and C_2 such that when the Condorcet winners of (C_1, V) and (C_2, V) run against each other, b is the Condorcet winner?

A Yes, with $C_1 = \{a, b, c\}$ and $C_2 = \{d\}$

B No

- C Yes, with $C_1 = \{a, c\}$ and $C_2 = \{b, d\}$
- D Yes, with $C_1 = \{a, d\}$ and $C_2 = \{b, c\}$

Question 6

For which of the following voting systems can it make a difference whether we use the TE ("ties eliminate") or the TP ("ties promote") rule in control by partition of candidates or voters?

- A Plurality
- B Veto
- C Borda
- D Condorcet

Question 7

Assuming $P \neq NP$, is it true that a control problem must be in P if a voting system has the following property regarding the corresponding control scenario.

- A susceptibility
- B vulnerability
- C resistance
- D immunity