Preference Aggregation by Voting: Algorithmics and Complexity

Präferenzaggregation durch Wählen: Algorithmik und Komplexität

Pingo Wintersemester 2020/2021

Dozent: Prof. Dr. J. Rothe

Website

https://pingo.coactum.de/

Pingo

Access Number: 885317

© Titanic Verlag

J. Rothe (HHU Düsseldorf)

Preference Aggregation by Voting

Pingo

Questions

Question 2

Let $(\{a, b, c, d, e, f\}, \{\{a, c, d\}, \{a, b, e\}, \{a, c, f\}, \{b, e, f\}, \{b, d, f\}\})$ be a given instance of EXACT COVER BY THREE-SETS.

- A It is a yes-instance because of the exact cover $\{\{a, c, f\}, \{b, d, f\}\}$
- B It is a yes-instance because of the exact cover $\{\{a, c, d\}, \{b, e, f\}\}$
- C It is a yes-instance because of the exact cover $\{\{a, b, e\}, \{a, c, f\}, \{b, e, f\}\}$
- D It is a no-instance

J. Rothe (HHU Düsseldorf)

Anna:	а	b	С	d	
Belle:	b	а	d	с	
Chris:	С	d	а	b	
David:	d	а	b	С	
Edgar:	d	b	с	а	

Who wins this STV election under lexicographic tie-breaking (a > b > c > d)?

- B b
- Сc
- Dd

Anna:	а	b	С	d	
Belle:	b	а	d	С	
Chris:	С	b	а	d	
David:	d	а	b	С	
Edgar:	d	b	с	а	

For which two tie-breaking orders does b win this STV election?

A a > c > b > dB c > a > d > bC a > d > b > cD d > c > b > a

Which two of the following reductions are true for each voting system ${\cal E}$ and assuming $P \neq NP?$

- $\textbf{A} \ \mathcal{E}\text{-}\textbf{CM} \ \leq^p_m \ \mathcal{E}\text{-}\textbf{CCM}$
- ${\sf B} \ {\mathcal E}\text{-}{\sf DCM} \ \leq^p_m \ {\mathcal E}\text{-}{\sf DM}$
- ${\color{black}{\mathsf{C}}} \hspace{0.1cm} \mathcal{E}\text{-}{\textnormal{CCWM}} \hspace{0.1cm} \leq^p_m \hspace{0.1cm} \mathcal{E}\text{-}{\textnormal{CCWM}}$
- $\mathsf{D} \ \mathcal{E}\text{-}\mathsf{CCWM} \ \leq^p_m \ \mathcal{E}\text{-}\mathsf{DCWM}$

Anna, Belle, Chris:	С	а	b	d
David, Edgar:	а	d	b	С
Felix, George:	b	d	а	С

Is it possible to partition $C = \{a, b, c, d\}$ into C_1 and C_2 such that when the plurality winners of (C_1, V) and (C_2, V) run against each other, a is the unique plurality winner?

A Yes, with $C_1 = \{a, b, c\}$ and $C_2 = \{d\}$

B No

- C Yes, with $C_1 = \{a, c\}$ and $C_2 = \{b, d\}$
- D Yes, with $C_1 = \{a, d\}$ and $C_2 = \{b, c\}$

Anna, Belle, Chris:	С	а	b	d
David, Edgar:	а	d	b	С
Felix, George:	b	d	а	С

Is it possible to partition $C = \{a, b, c, d\}$ into C_1 and C_2 such that when the veto winners of (C_1, V) and (C_2, V) run against each other, a is the unique veto winner?

A Yes, with $C_1 = \{a, b, c\}$ and $C_2 = \{d\}$

B No

- C Yes, with $C_1 = \{a, c\}$ and $C_2 = \{b, d\}$
- D Yes, with $C_1 = \{a, d\}$ and $C_2 = \{b, c\}$