Preference Aggregation by Voting: Algorithmics and Complexity

Präferenzaggregation durch Wählen: Algorithmik und Komplexität

Pingo Wintersemester 2020/2021

Dozent: Prof. Dr. J. Rothe

Website

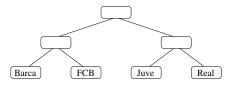
https://pingo.coactum.de/

Pingo

Access Number: 885317

© Titanic Verlag

J. Rothe (HHU Düsseldorf)


Preference Aggregation by Voting

Pingo

Questions

Question 1

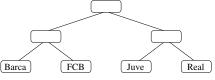
Anna:	Barca	Real	Juve	FCB
Belle:	Juve	Real	FCB	Barca
Chris:	Barca	FCB	Real	Juve
David:	FCB	Real	Barca	Juve
Edgar:	Real	FCB	Barca	Juve

Who wins this regular cup protocol?

A Barca

B FCB

C Juve


D Real

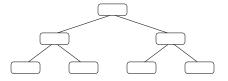
Pingo

Questions

Question 2

Anna:	Barca	Real	Juve	FCB	
Belle:	Juve	Real	FCB	Barca	
Chris:	Barca	FCB	Real	Juve	E
David:	FCB	Real	Barca	Juve	
Edgar:					

How should Edgar vote to help the Bayern win?


A Barca	FCB	Juve	Real
B FCB	Barca	Real	Juve
C Barca	Real	Juve	FCB
D Real	FCB	Barca	Juve

Pingo

Questions

Question 3

Anna:	Barca	Real	Juve	FCB
Belle:	Juve	Real	FCB	Barca
Chris:	Barca	FCB	Real	Juve
David:	FCB	Barca	Real	Juve
Edgar:	Real	FCB	Barca	Juve

Assigning which teams to which leaves makes the Bayern win?

A Barca	FCB	Juve	Real
B FCB	Real	Barca	Juve
C FCB	Juve	Barca	Real
D FCB	Barca	Real	Juve

Anna:	а	b	С	d	
Belle:	b	а	d	с	
Chris:	С	d	а	b	
David:	d	а	b	С	
Edgar:	d	b	С	а	

Who wins this Copeland election?

A a

B b

 $C \ c$

Dd

Anna:	а	b	С	d	
Belle:	b	а	d	с	
Chris:	С	d	а	b	
David:	d	а	b	С	
Edgar:	d	b	С	а	

Who wins this maximin election?

A a

B b

C c

Dd

Anna:	а	b	С	d	
Belle:	b	а	d	с	
Chris:	с	d	а	b	
David:	d	а	b	С	
Edgar:	d	b	с	а	

If Belle votes strategically under maximin to make b win (perhaps nonuniquely), what would be her preference?

Anna:	а	b	С	d
Belle:	b	С	d	а
Chris:	С	d	а	b
David:	d	а	b	С
Edgar:	d	b	С	а

Who wins this manipulated election under Copeland?

- A a
- B b
- Сc
- Dd

For an NP algorithm to accept its input, it is required that ...

- A ... all paths of the computation tree are accepting
- B ... at least half of the paths in the computation tree are accepting
- C ... at most one of the paths in the computation tree are accepting
- D ... at least one of the paths in the computation tree are accepting