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Algorithmic Game Theory

Algorithmic game theory is not satisfied with merely an existence

result for an important solution concept such as Nash equilibrium in

mixed strategies.

Rather, one seeks to determine the complexity of finding it.

Unfortunately, for most games we know only algorithms either with an

unknown running time (because it is very difficult to analyze these

cases) or with an exponential running time in the worst case.

Merely for some special cases, it was possible to design efficient

algorithms for computing Nash equilibria.

For example, Nash equilibria in mixed strategies can be computed in

polynomial time for finite, two-player, zero-sum games.
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Constant-Sum and Zero-Sum Games

Definition (constant-sum and zero-sum game)

A noncooperative game in normal form with the set S = S1×S2×·· ·×Sn

of strategy profiles, where player i ’s gain function is gi , is a constant-sum

game if there is a constant c such that for each strategy profile ~s ∈ S ,

n

∑
i=1

gi (~s) = c .

For c = 0, it is called a zero-sum game.

Example

Examples of zero-sum games are:

penalty game,

paper-rock-scissors game.
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Maxmin Strategies and Values

Definition (maxmin strategy and value)

Consider a noncooperative game in normal form for n players with the set

Π = Π1×Π2×·· ·×Πn of mixed-strategy profiles, where player i ’s

expected gain function is Gi .

1 The maxmin strategy of player i is defined as

arg max
πi∈Πi

min
~π−i∈Π−i

Gi(~π−i ,πi ).

2 The maxmin value for player i is defined as

max
πi∈Πi

min
~π−i∈Π−i

Gi(~π−i ,πi ).
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Minmax Strategies and Values: 2 Players

Definition (minmax strategy and value)

Consider a noncooperative game in normal form for 2 players, i and −i ,

with the set Π = Πi ×Π−i of mixed-strategy profiles and expected gain

functions Gi and G−i .

1 The minmax strategy of player i against player −i is defined as

arg min
πi∈Πi

max
π−i∈Π−i

G−i(πi ,π−i).

2 The minmax value for player −i is defined as

min
πi∈Πi

max
π−i∈Π−i

G−i(πi ,π−i ).
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Minmax Strategies and Values: n > 2 Players

Definition (minmax strategy and value)

Consider a noncooperative game in normal form for n > 2 players with the

set Π = Π1×Π2×·· ·×Πn of mixed-strategy profiles, where player i ’s

expected gain function is Gi .

1 The minmax strategy of player i against player j 6= i is defined as i ’s

component of the mixed-strategy profile ~π−j in the expression

arg min
~π−j∈Π−j

max
πj∈Πj

Gj(~π−j ,πj),

where −j denotes the set of players other than j .

2 The minmax value for player j is defined as

min
~π−j∈Π−j

max
πj∈Πj

Gj(~π−j ,πj).
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Maxmin and Minmax Strategy Profiles

Definition (maxmin and minmax strategy profile)

1 A mixed-strategy profile ~π = (π1,π2, . . . ,πn) ∈ Π= Π1×Π2×·· ·×Πn

is said to be a maxmin strategy profile if for each i , 1≤ i ≤ n, πi is a

maxmin strategy of player i .

2 A mixed-strategy profile ~π = (πi ,π−i) for two players is a minmax

strategy profile if πi is a minmax strategy of player i against player −i

and π−i is a minmax strategy of player −i against player i .

Remark

In two-player, zero-sum games in normal form, a player’s maxmin

value is always equal to her minmax value.

In normal-form, zero-sum games with more than two players, a

player’s maxmin value is always at most her minmax value.
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Minimax Theorem by von Neumann (1928)

Theorem (Minimax Theorem)

In every finite, zero-sum game in normal form with two players who have

exptected gain functions G1 and G2, where

A is the set of mixed strategies for player 1 and

B is the set of mixed strategies for player 2,

there exists a value v ∗ such that the following hold:

1 For player 1, there exists a mixed strategy α∗ ∈ A such that

max
α∈A

min
β∈B

G1(α ,β ) = min
β∈B

G1(α
∗,β ) = v ∗.

2 For player 2, there exists a mixed strategy β ∗ ∈ B such that

min
β∈B

max
α∈A

G1(α ,β ) = max
α∈A

G1(α ,β ∗) = v ∗.
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Minimax Theorem by von Neumann (1928): Proof

Proof: Let (α∗,β ∗) ∈ A ×B be a Nash equilibrium in mixed strategies

for our game. (We know that such an equilibrium exists.)

We set v ∗ = G1(α
∗,β ∗) and we claim that

max
α∈A

min
β∈B

G1(α ,β ) ≥ min
β∈B

G1(α
∗,β ) ≥ v ∗. (1)

The first inequality holds because

on the LHS we have the maximum over all possible values of α, and

on the RHS we use one particular value, α∗.

The second inequality holds because (α∗,β ∗) is a Nash equilibrium in

mixed strategies and, thus, β ∗ is a best response for α∗.
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Minimax Theorem by von Neumann (1928): Proof

More concretely, by definition of a best response, for each mixed

strategy β ∈ B we have

G2(α
∗,β )≤ G2(α

∗,β ∗).

Since our game is a zero-sum game, G2(α
∗,β )≤ G2(α

∗,β ∗) implies

G1(α
∗,β )≥ G1(α

∗,β ∗) = v ∗.

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 10 / 54



How Hard Is It to Find a Nash Equilibrium? Nash Equilibria in Zero-Sum Games

Minimax Theorem by von Neumann (1928): Proof

However, by applying similar reasoning, we can also show that

max
α∈A

min
β∈B

G1(α ,β ) ≤ max
α∈A

G1(α ,β ∗) ≤ v ∗. (2)

The first inequality holds because

on the LHS the maximum operator has to find a mixed strategy α that

does well against every possible mixed strategy β , whereas

on the RHS it only has to do well against one fixed strategy, β ∗.

The second inequality holds because α∗ is a best response to β ∗ and,

thus, for every mixed strategy α ∈ A we have that

G1(α ,β ∗)≤ G1(α
∗,β ∗) = v ∗.
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Minimax Theorem by von Neumann (1928): Proof

By combining inequalities (1) and (2), we obtain the first part of the

theorem:

max
α∈A

min
β∈B

G1(α ,β ) = min
β∈B

G1(α
∗,β ) = v ∗.

Analogous reasoning for player 2 (exercise!) gives the second part as

well:

min
β∈B

max
α∈A

G1(α ,β ) = max
α∈A

G1(α ,β ∗) = v ∗. ❑
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Minimax Theorem: Why Is It Important?

Remark

Because in a finite, two-player, zero-sum game in normal form:

Every player’s maxmin value equals her minmax value. By

convention, player 1’s maxmin value is called the value of the game.

For both players, the set of maxmin strategies coincides with the set

of minmax strategies.

Every maxmin (equivalently, minmax) strategy profile is a Nash

equilibrium in mixed strategies.

Conversely, every Nash equilibrium in mixed strategies is a maxmin

(equivalently, minmax) strategy profile.

Thus, all Nash equilibria have the same gain vector (in which player 1

gets the value of the game).
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Computing Nash Equilibria in 2-Player, Zero-Sum Games

We show that Nash equilibria in two-player, zero-sum games in

normal form can be expressed as a linear program (LP).

That linear programs can actually be solved in polynomial time was

shown only near the end of the 1970s by Hačijan (1979), whose

algorithm is based on the ellipsoid method.

His work was a milestone in linear programming, since it had been

unclear before if linear programs are solvable in polynomial time.

Also later developed procedures such as the interior point methods,

which too run in polynomial time, have been inspired by his work.

In practice, the older simplex methods are still in use.
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Computing Nash Equilibria in 2-Player, Zero-Sum Games

Consider a zero-sum game in normal form for two players, 1 and 2,

with the sets

S = S1×S2 of pure-strategy profiles, with gain functions g1 and g2;

Π = Π1×Π2 of mixed-strategy profiles, with expected gain functions

G1 and G2.

Let G ∗
i , i ∈ {1,2}, be the expected gain of player i in a mixed Nash

equilibrium (i.e., G ∗
1 is the value of the game).

Since the game is zero-sum, G ∗
1 =−G ∗

2 .

By the minimax theorem,

G ∗
1 is the same in all mixed Nash equilibria and

G ∗
1 equals the expected gain that player 1 can achieve under a minmax

strategy of player 2.
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Computing Nash Equilibria in 2-Player, Zero-Sum Games

Thus, we can construct a linear program that computes player 2’s

mixed equilibrium strategy:

minimize G ∗
1 (3)

subject to ∑
sk∈S2

g1(sj ,sk) ·π2(sk)≤ G ∗
1 ∀sj ∈ S1 (4)

∑
sk∈S2

π2(sk) = 1 (5)

π2(sk)≥ 0 ∀sk ∈ S2 (6)
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Computing Nash Equilibria in 2-Player, Zero-Sum Games

Reversing the roles of players 1 and 2 in the constraints, we can

construct the dual program of player 2’s LP to obtain a linear

program that computes player 1’s mixed equilibrium strategy.

The objective now is to maximize G ∗
1 :

maximize G ∗
1 (7)

subject to ∑
sj∈S1

g1(sj ,sk) ·π1(sj)≥ G ∗
1 ∀sk ∈ S2 (8)

∑
sj∈S1

π1(sj) = 1 (9)

π1(sj)≥ 0 ∀sj ∈ S1 (10)
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Maxmin/Minmax Strategies in Arbitrary 2-Player Games

The problem of finding a Nash equilibrium in a two-player,

general-sum game cannot be formulated as a linear program because:

the two players’ interests are no longer diametrically opposed;

thus, the problem cannot be stated as an optimization problem:

one player is not seeking to minimize the other player’s gains.

However, using the minimax theorem, we can reduce the problem of

computing maxmin and minmax strategies to the problem of finding a

Nash equilibrium in an appropriate two-player, zero-sum game.

Consider a general-sum game G in normal form for two players, 1

and 2, with the set S = S1×S2 of pure-strategy profiles and with

gain functions g1 and g2.

How can we compute a maxmin strategy for player 1 in G ?
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Maxmin/Minmax Strategies in Arbitrary 2-Player Games

Since player 1’s maxmin strategy depends solely on 1’s gains,

changing player 2’s gains does not affect it.

Define a zero-sum game G ′ in normal form for two players, 1 and 2,

with the same set S = S1×S2 of pure-strategy profiles, and with gain

functions g1 (remaining unchanged) and g ′
2 ≡−g1 (negating g1).

By the minimax theorem, since G ′ is zero-sum, whenever player 1’s

mixed strategy is part of a Nash equilibrium, it is a maxmin strategy

for 1 in G ′.

Consequently, player 1’s maxmin strategy is the same in G and G ′.

Using the LP for computing 1’s Nash equilibrium strategy in G ′, we

obtain 1’s maxmin strategy in G .

An analogous approach works for finding minmax strategies.
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LCP Formulation for 2-Player, General-Sum Games

Although the problem of finding a Nash equilibrium in a two-player,

general-sum game cannot be formulated as a linear program, it can

be formulated as a linear complementary problem (LCP).

First, by introducing slack variables r j1 for 1≤ j ≤ ‖S1‖, we express

the LP (3)–(6) (for player 2 in the zero-sum case) as follows:

minimize G ∗
1 (11)

subject to ∑
sk∈S2

g1(sj ,sk) ·π2(sk)+ r j1 = G ∗
1 ∀sj ∈ S1 (12)

∑
sk∈S2

π2(sk) = 1 (13)

π2(sk)≥ 0 ∀sk ∈ S2 (14)

r j1 ≥ 0 for 1≤ j ≤ ‖S1‖ (15)
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LCP Formulation for 2-Player, General-Sum Games

We do the same for player 1.

Note that in the general-sum case we can no longer find one player’s

equilibrium strategy by considering only the other player’s gains.

We need to discuss both players simultaneously.

Note further that we have no longer an optimization problem, but

rather a constraint satisfaction problem.

We describe only the constraints, not an objective function.
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LCP Formulation for 2-Player, General-Sum Games

The LCP for computing a Nash equilibrium in two-player, general-sum

games then has the form (for player 1 and player 2):

∑
sk∈S2

g1(sj ,sk) ·π2(sk)+ r j1 = G ∗
1 ∀sj ∈ S1 (16)

∑
sj∈S1

g2(sj ,sk) ·π1(sj)+ rk2 = G ∗
2 ∀sk ∈ S2 (17)

∑
sj∈S1

π1(sj) = 1, ∑
sk∈S2

π2(sk) = 1 (18)

π1(sj)≥ 0, π2(sk)≥ 0 ∀sj ∈ S1, ∀sk ∈ S2 (19)

r j1 ≥ 0, rk2 ≥ 0 for 1≤ j ≤ ‖S1‖, 1≤ k ≤ ‖S2‖ (20)

r j1 ·π1(sj) = 0, rk2 ·π2(sk) = 0 ∀sj ∈ S1, ∀sk ∈ S2 (21)
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LCP Formulation for 2-Player, General-Sum Games

Constraint (21) is called the complementary condition and ensures

that G ∗
1 and G ∗

2 cannot take unboundedly large values.

The best-known algorithm to solve this LCP is the Lemke–Howson

Algorithm (which will not be presented here).
Advantages:

Lemke–Howson is guaranteed to find a Nash equilibrium.

Its constructive nature provides an alternative proof of Nash’s theorem.

It can be used to find more than one Nash equilibrium.

Disadvantages:

Lemke–Howson is not guaranteed to find all Nash equilibria.

It is not even possible to decide efficiently whether all Nash equilibria

have been found.

It is provably exponential-time in the worst case.

Since there is no objective function, we don’t know how close we are to

a solution before we actually find one.
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Related Problems for 2-Player, General-Sum Games

The following problems refer to general-sum games G in normal form:

Uniqueness: Given G , does there exist a uniqueNash equilibrium in G ?

Pareto Optimality: Given G , does there exist a Pareto-optimal Nash

equilibrium in G ?

Guaranteed Payoff: Given G and a value k , does there exist a Nash

equilibrium in G such that some player i has expected gain of at

least k?

Guaranteed Social Welfare: Given G and a value k , does there

exist a Nash equilibrium in G such that the sum of all players

expected gains is at least k?
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Related Problems for 2-Player, General-Sum Games

Action Inclusion: Given G and a pure strategy sj ∈ Si for some

player i , does there exist a Nash equilibrium in G such that i plays sj

with positive probability?

Action Exclusion: Given G and a pure strategy sj ∈ Si for some

player i , does there exist a Nash equilibrium in G such that i plays sj

with zero probability?
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Related Problems for 2-Player, General-Sum Games

Theorem

Each of the six problems just defined is NP-hard, even when restricted to

two-player games. without proof

Theorem

Computing all the Nash equilibria in a given two-player, general-sum game

in normal form requires worst-case time that is exponential in the number

of pure strategies of each player. without proof
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Nash Equilibria in General-Sum Normal Form Games

In general-sum normal form games with more than two players, the

problem of finding Nash equilibria can no longer be represented even

as an LCP, but only as a nonlinear complementary problem.

These, however, are hopelessly impractical to solve exactly.

How can we formulate the problem as an input to an algorithm?

1 Approximate the solution via a sequence of linear complementary

problems (SLCP):

Each LCP provides an approximation, and its solution is used to get

the next LCP in the sequence.

This generalizes Newton’s method of approximating local maxima of

quadratic equations.

Although it is not globally convergent, in practice it is often useful.
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Nash Equilibria in General-Sum Normal Form Games

2 Formulate the problem as a minimum of a function:

Starting from a mixed-strategy profile ~π , define:

c ji (~π) = Gi (~π−i ,sj )−Gi(~π) for each sj ∈ Si

d j
i (~π) = max(c ji (~π),0)

Define the following optimization problem with objective function f :

minimize f (~π) = ∑
1≤i≤n

∑
sj∈Si

(

d j
i (~π)

)2
(22)

subject to ∑
sj∈Si

πi (sj ) = 1 1≤ i ≤ n (23)

πi (sj )≥ 0 1≤ i ≤ n, ∀sj ∈ Si (24)

Advantage: Flexibility!
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Nash Equilibria in General-Sum Normal Form Games

3 Enroll the constraints into the objective function, denoted by g(~π),

and apply an unconstrained optimization method:

minimize g(~π) = ∑
1≤i≤n

∑
sj∈Si

(

d j
i (~π)

)2
(25)

+ ∑
1≤i≤n

(

1− ∑
sj∈Si

πi (sj)

)2

(26)

+ ∑
1≤i≤n

∑
sj∈Si

(min(πi (sj),0))
2 (27)

Disadvantage of minimizing f and g : Both optimization problems

have local minima that do not correspond to Nash equilibria.

Global convergence is thus a problem.
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Hardness of Computing Nash Equilibria: Issues

In general-sum normal form games that are not restricted to two

players, Nash equilibria appear to be not efficiently computable.

This conjecture has recently been shown by Daskalakis, Goldberg, and

Papadimitriou (2006).

Unlike the decision problems for discrete structures, we are here

concerned with

a functional search problem

defined over continuous structures.

For example, the gain functions of the players may have irrational

values, which cannot exactly be handled by a computer but can only

be approximated.
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Hardness of Computing Nash Equilibria: Issues

This problem can be sidestepped by searching not for an exact Nash

equilibrium ~π, but for merely an ε-approximation ~πε of ~π: The

expected gain of each player in the strategy profile ~πε is by at most

the factor ε better than her expected gain in the strategy profile ~π.

Such an ε-approximation of a Nash equilibrium ~π thus allows the

players to deviate from their mixed equilibrium strategies so as to

improve their gains, but by no more than the factor ε > 0, which can

be chosen arbitrarily small.

This approach is justified: Computing an ε-approximation of a Nash

equilibrium is no harder than computing this Nash equilibrium itself

(since even an ε-error is allowed): Hardness of ε-approximations of

Nash equilibria transfers to hardness of computing them exactly.
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Hardness of Computing Nash Equilibria: Issues

The next problem: Classical complexity theory is actually not

applicable here, since there always exists a solution of the problem;

the corresponding decision problem thus is trivial to solve.

How can one show the computational hardness of such search

problems that have a solution for all instances?

To illustrate the approach to circumventing this difficulty, consider:

Equal-Subsets

Given: A sequence a1, . . . ,an of positive integers such that ∑n
i=1 ai ≤ 2n−2.

Find: Nonempty, disjoint subsets I ,J of {1, . . . ,n}, such that

∑
i∈I

ai = ∑
j∈J

aj .
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Hardness of Computing Nash Equilibria: Issues

Note that there always exists a solution for Equal-Subsets because
1 there are exactly 2n− 1 nonempty subsets I of {1 . . . ,n}, and

2 for each nonempty subset I of {1, . . . ,n}, the value ∑i∈I ai has one out

of 2n− 2 values (these values come from the set {1,2, . . . ,2n− 2}).

Thus, by the pigeonhole principle, there must be two distinct subsets,

I ′,J ′ ⊂ {1, . . .n}, such that

∑
i∈I ′

ai = ∑
j∈J ′

aj .

If we let I = I ′r (I ′∩ J ′) and J = J ′r (I ′∩ J ′), then we get our two

disjoint sets that have the same sums.

(It must be the case that I and J are nonempty because I ′ and J ′ are

distinct and the numbers a1, . . . ,an are positive.)
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Hardness of Computing Nash Equilibria: Issues

If we would have defined Equal-Subsets as a decision problem

where we ask about the existence of the sets I and J then, of course,

each problem instance would have trivially the answer “yes.”

Still, computing the two sets that witness this “yes” answer intutively

seems to be difficult, as the proof that there always is a “yes” answer

relies on the inherently nonconstructive pigeonhole principle.

The pigeonhole principle says that if we have some m objects (for

Equal-Subsets: the 2n−1 subsets) and each of them has one of

m−1 “features” (for Equal-Subsets: the 2n−2 sums), then there

must be at least two objects that have the same “feature.”

However, the pigeonhole principle gives no hint whatsoever as to how

to find these two objects.
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Four Types of Nonconstructive Proof Steps

Papadimitriou (1994) introduced a new complexity class, PPP, which

stands for “Polynomial Pigeonhole Principle.”

Computing a Nash equilibrium in mixed strategies is, in fact, a

problem in PPP.

However, the class PPAD (“Polynomial Parity Argument for Directed

graphs”) captures the complexity of this problem more precisely.

Intuitively, for such total search problems in PPP or PPAD that are

solvable for each instance:

there must exist a mathematical proof of this fact and

if the problem is not solvable in polynomial time, then there must be a

nonconstructive step in that proof.
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Four Types of Nonconstructive Proof Steps: PPP

For all known total search problems that appear to be not polynomial-time

solvable, Papadimitriou (1994) identifies one of the following four simple

reasons for such a nonconstructive proof step:

1 PPP, for “Polynomial Pigeonhole Principle.”

For each problem in PPP, the nonconstructive proof step can be

described by the following “pigeonhole” argument:

Every function mapping n elements to n−1 elements has a colli-

sion, i.e., f (i) = f (j) for i 6= j .
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Four Types of Nonconstructive Proof Steps: PLS

2 PLS, for “Polynomial Local Search.”

For each problem in PLS, the nonconstructive proof step can be

described by the following argument:

Every directed acyclic graph has a sink, i.e., a vertex without any

outgoing edges.
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Four Types of Nonconstructive Proof Steps: PPA

3 PPA, for “Polynomial Parity Argument for graphs.”

For each problem in PPA, the nonconstructive proof step can be

described by the following parity argument:

If an undirected graph has a vertex of odd degree,

then it has at least one other such vertex.

Here, the degree of a vertex in an undirected graph is the number of

edges incident with this vertex.
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Four Types of Nonconstructive Proof Steps: PPAD

4 PPAD, for “Polynomial Parity Argument for Directed graphs.”

For each problem in PPAD, the nonconstructive proof step can be

described by the following parity argument:

If a directed graph has an unbalanced vertex

(i.e., a vertex with distinct indegree and outdegree),

then it has at least one other such vertex.

Here, the indegree of a vertex in a directed graph is the number of

incoming edges and its outdegree is the number of outgoing edges.
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The Polynomial Pigeonhole Principle

Pigeonhole-Function

Given: A function f , f : {0,1}n → {0,1}n, expressed as an algorithm com-

puting f in time linear in the length of the encoding of the algorithm.

Find: An input x ∈ {0,1}n such that f (x) = 0n, or two distinct inputs

x ,x ′ ∈ {0,1}n such that f (x) = f (x ′).

Observations:

1 The function f can essentially be any polynomial-time computable function

because every reasonable way of encoding it allows to extend the algorithm

for computing f by a polynomial factor.

2 There always is a solution for Pigeonhole-Function: If there is no input

x such that f (x) = 0n then, by the pigeonhole principle, there must be two

distinct inputs, x and x ′, such that f (x) = f (x ′).
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PPP: Polynomial Pigeonhole Principle

Define PPP as the class of all problems that can be reduced to

Pigeonhole-Function using the following notion of reducibility:

Let F ,G : Σ∗ → Σ∗ be two total functions. We say F functionally

(many-one-)reduces in polynomial time to G if there exist polynomial-time

computable functions r and s such that for all x ∈Σ∗,

F (x) = s(G (r(x))).

1 The efficiently computable function r transforms a given instance x of

search problem F into an equivalent instance of search problem G .

2 The efficiently computable function s transforms a solution of this

instance r(x) of search problem G back into an equivalent solution of

the given instance x of search problem F .
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PLS: Polynomial Local Search

PLS is the class of problems reducible to

Local-Optimum

Given: Two functions, f : {0,1}n →{0,1}n and p : {0,1}n →{0, . . . ,2n−1},

expressed as algorithms computing these functions in time linear in

the lengths of their encodings.

Find: An input x such that p(f (x))≥ p(x).

Observations:

1 Since for each argument, function p takes one of finitely many values, there

always exists a solution x such that p(f (x))≥ p(x).

2 Intuitively, Local-Optimum captures the idea of a heuristic local search:

We compute x , f (x), f (f (x)), . . ., until we find an x ′ = f (· · · f (x) · · · ) with

p(f (x ′))≥ p(x ′), so x ′ is a local minimum of p wrt. local search function f .
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PPA: Polynomial Parity Argument for Graphs

Let f be some function that on input x ∈ {0,1}n outputs a set of

zero, one, or two elements from {0,1}n . f defines an undirected

graph U(f ): Each x ∈ {0,1}n is a vertex and there is an edge

connecting the vertices x and x ′ exactly if x ′ ∈ f (x) and x ∈ f (x ′).

Note that each vertex in U(f ) has degree at most two.

PPA is the class of problems reducible to

Odd-Degree-Vertex

Given: A function f : {0,1}n → { /0}∪{0,1}n∪{0,1}2n, represented by an

algorithm computable in time linear in the length of its encoding.

Find: If vertex 0n has odd degree in U(f ), then find another vertex of odd

degree in U(f ).
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PPAD: Polynomial Parity Argument for Directed Graphs

We represent directed graphs with indegrees and outdegrees at most one:

Let s and p be two functions from {0,1}n to {0,1}n .

We define the graph G (s,p) to have vertex set {0,1}n and the

following edges: For each x ,x ′ ∈ {0,1}n , there is a directed edge from

x to x ′ if and only if s(x) = x ′ and p(x ′) = x .

Intuitively,

s is the successor function, i.e., s(x) is the vertex we can move to from

vertex x (provided that p(s(x)) = x),

and p is the predecessor function, i.e., p(x) is the vertex from which we

could reach x (provided that s(p(x)) = x).
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PPAD: Polynomial Parity Argument for Directed Graphs

PPAD is the class of problems reducible to

End-of-the-Line

Given: Two functions, s : {0,1}n → {0,1}n and p : {0,1}n → {0,1}n, rep-

resented by algorithms with linear running times with respect to the

lengths of their encodings.

Find: If in graph G(s,p) vertex 0n has indegree zero, then find a vertex x

with

either the outdegree equal to zero

or the indegree equal to zero (in the latter case, this x must

be different from 0n).
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Relations Among These Complexity Classes

PPA

CLS

PLS

TFNP

PPAD

PPP

Figure: The structure of the subclasses of TFNP

CLS: “continuous local search”

TFNP: “total NP functions”
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Nash-Equilibrium is PPAD-Complete

Nash-Equilibrium

Given: A cooperative game in normal form, discretely represented in terms

of an ε-approximation for an arbitrarily small positive constant ε.

Find: An ε-approximation of a Nash equilibrium in mixed strategies.

A total search problem is said to be PPAD-hard if End-of-the-Line

(and thus any problem of the class PPAD) can be reduced to it, and

it is PPAD-complete if it belongs to PPAD and is PPAD-hard.

Theorem (Daskalakis, Goldberg, and Papadimitriou (2006))

Nash-Equilibrium is PPAD-complete.
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Nash-Equilibrium is PPAD-Complete: Proof Sketch

1 That Nash Equilibrium belongs to PPAD is shown by reducing

Nash-Equilibrium to End-of-the-Line.

2 That Nash-Equilibrium is PPAD-hard is shown by reducing

End-of-the-Line to Nash-Equilibrium.

We will only sketch the proof of the former reduction, which uses:

Lemma (Sperner’s Lemma)

Let Tn =~x0 · · ·~xn be a simplicially subdivided n-simplex and let L be a

proper labeling of the subdivision of Tn. There are an odd number of

subsimplexes that are completely labeled by L in this subdivision of Tn.
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Nash-Equilibrium is PPAD-Complete: Proof Sketch

Recall the idea behind the proof of Sperner’s lemma:

Construct walks over the n-subsimplexes, using the fact that on one of

the faces of the simplex, there must be an n-subsimplex T ′
n such that

1 the face that T ′
n shares with the main simplex is labeled with

0,1, . . . ,n− 1, and

2 the remaining vertex v is labeled either with n (in which case we have

found a completely labeled n-subsimplex), or with a label from set

{0, . . . ,n− 1}.

In the latter case, there is a unique face that includes v and is labeled

with 0, . . . ,n−1.

We cross over this face to the next n-subsimplex and repeat the

process.
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Nash-Equilibrium is PPAD-Complete: Proof Sketch

Sperner’s lemma guarantees that there is a starting n-subsimplex

that, through this process, leads to finding a completely labeled

n-subsimplex.

However, note that the proof of Sperner’s lemma is not constructive!

It says that there is a good starting n-subsimplex that will lead to the

completely labeled n-subsimplex, but some of the promising starting

subsimplexes can, just as well, lead us “through the simplex” and

then “out of it.”
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Nash-Equilibrium is PPAD-Complete: Proof Sketch

These walks correspond to the “indegree/outdegree bounded by one”

graphs necessary for End-of-the-Line.

The subsimplexes correspond to the vertices of the graph.

The only missing piece of the puzzle is finding a good starting point.

Idea: Make the “in and out” walks work for us, instead of against us!

That is, extend the space available to our walks by attaching a

number of additional n-simplexes at the face through which we used

to enter.
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Nash-Equilibrium is PPAD-Complete: Proof Sketch

~x1

2

0 2

102

0 1 1 1

0 1 0 21

~x0

~x2

1 11 0 10

Figure: Reducing Nash-Equilibrium to End-of-the-Line
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Nash-Equilibrium is PPAD-Complete: Proof Sketch

Now, the starting point is simply the outermost added subsimplex.

Following the walk from this point (using exactly the same rules as

before, in the proof of Sperner’s lemma), we will eventually reach the

completely labeled n-subsimplex, possibly winding in and out of the

main simplex several times, but eventually reaching our goal.

This gives the outline of how to use Sperner’s lemma to reduce

Nash-Equilibrium to End-of-the-Line.

We omit the technical details of actually encoding the simplex and

the underlying graph in the format required by End-of-the-Line.
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Further Algorithmic Results on Nash Equilibria

The result of Daskalakis, Goldberg, and Papadimitriou (2006) is a

milestone in algorithmic game theory.

Chen and Deng (2006) showed that Nash-Equilibrium remains

PPAD-complete even if restricted to games with two players.

Many more results of this kind have since been shown, such as:

Conitzer and Sandholm (2006): A technique for reducing normal-form

games to compute a Nash equilibrium.

Elkind, Goldberg, Goldberg, and Wooldridge (2007): Computing good

Nash equilibria in graphical games.

Brandt, Fischer, and Holzer (2011): Equilibria of graphical games with

symmetries.
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