
Theoretical Informatics and Applications Will be set by the publisher
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RECOGNIZING WHEN HEURISTICS CAN

APPROXIMATE MINIMUM VERTEX COVERS IS

COMPLETE FOR PARALLEL ACCESS TO NP ∗

Edith Hemaspaandra1, Jörg Rothe2 and Holger

Spakowski2

Abstract. For both the edge deletion heuristic and the maximum-

degree greedy heuristic, we study the problem of recognizing those

graphs for which that heuristic can approximate the size of a minimum

vertex cover within a constant factor of r, where r is a fixed rational

number. Our main results are that these problems are complete for

the class of problems solvable via parallel access to NP. To achieve

these main results, we also show that the restriction of the vertex cover

problem to those graphs for which either of these heuristics can find an

optimal solution remains NP-hard.
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1. Introduction

The minimum vertex cover problem is the problem of finding in a given graph a
smallest possible set of vertices that covers at least one vertex of each edge. The
decision version of the minimum vertex cover problem, VC, is one of the standard
NP-complete problems [GJ79]. To cope with the intractability that appears to be
inherent to this problem, various heuristics for finding minimum vertex covers have
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been proposed. Two of the most prominent such heuristics are the edge deletion

heuristic and the maximum-degree greedy heuristic, see, e.g., [PS82,Pap94]. These
algorithms run in linear time and, depending on the structure of the given input
graph, may find a minimum vertex cover, or may provide a good approximation
of the optimal solution.

It is common to evaluate heuristics for optimization problems by analyzing
their worst-case ratio for approximating the optimal solution. In this regard, the
two heuristics considered behave quite differently: the edge deletion heuristic al-
ways approximates the size of a minimum vertex cover within a factor of 2 and
thus achieves the best approximation ratio known, whereas the maximum-degree
greedy heuristic, in the worst case, can have an approximation ratio as bad as
logarithmic in the input size. The latter result follows from the early analysis of
the approximation behavior of the greedy algorithm for the minimum set cover
problem that was done by Johnson [Joh74], Lovász [Lov75], and Chvátal [Chv79]
(who studied the weighted version of minimum set cover). Note that the ver-
tex cover problem is the special case of the set cover problem, restricted so that
each element occurs in exactly two sets. More recently, building on the work of
Lund and Yannakakis [LY94], Feige [Fei98] showed that, unless NP has slightly
superpolynomial-time algorithms, the set cover problem cannot be approximated
within (1 − ε) lnn, where ε > 0 and ln denotes the natural logarithm.

In this paper, we study the problem of recognizing those input graphs for which
either of the two heuristics can approximate the size of a minimum vertex cover
within a constant factor of r, where r ≥ 1 is a fixed rational number. Let SED

r and
SMDG

r , respectively, denote this recognition problem for the edge deletion heuristic
and for the maximum-degree greedy heuristic. Our main results are:

• For each rational number r with 1 ≤ r < 2, SED
r is PNP

‖ -complete (see

Theorem 3.2).

• For each rational number r ≥ 1, SMDG
r is PNP

‖ -complete (see Theorems 4.3

and 4.4).

Here, PNP
‖ denotes the class of problems that can be decided in polynomial

time by parallel (i.e., truth-table) access to NP. Papadimitriou and Zachos [PZ83]

introduced this class under the name PNP[O(log n)], where “[O(log n)]” denotes
that at most logarithmically many Turing queries are made to the NP oracle.

Hemaspaandra [Hem89] proved that PNP[O(log n)] = PNP
‖ , and in fact many more

characterizations of PNP
‖ are known [KSW87,Wag90]. Other natural PNP

‖ -hard and

PNP
‖ -complete problems can be found in the papers by Wagner [Wag87], Köbler et

al. [KSW87], Krentel [Kre88], Kadin [Kad89], Eiter and Gottlob [EG97], Hema-
spaandra et al. [HHR97a,HR98,HW02,HSV], and Rothe et al. [RSV03,RR04]; see
also the surveys [HHR97b,HH00].

The type of recognition problem studied in this paper was investigated for other
problems and other heuristics as well. Bodlaender, Thilikos, and Yamazaki [BTY97]
defined and studied the analogous problem for the independent set problem and
the minimum-degree greedy heuristic, which they denoted by Sr. They proved that
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Sr is coNP-hard and belongs to PNP. Closing the gap between these lower and
upper bounds, Hemaspaandra and Rothe [HR98] proved that Sr is PNP

‖ -complete.

As in [HR98], we obtain PNP
‖ -hardness by reducing from a problem (namely, VCgeq,

see Section 2) that can be shown to be PNP
‖ -complete using the techniques of Wag-

ner [Wag87]. Also, we show that the vertex cover problem, restricted to those input
graphs for which the heuristics considered can find an optimal solution, remains
NP-hard. We then lift these NP lower bounds to PNP

‖ lower bounds that prove our
main results. This lifting requires a padding technique such that the given approx-
imation ratio r is precisely met. In particular, to achieve PNP

‖ -hardness of SMDG
r

for each rational number r ≥ 1, we modify a construction by Papadimitriou and
Steiglitz [PS82] that they use to analyze the worst-case approximation behavior
of the maximum-degree greedy heuristic.

2. Two Heuristics for the Vertex Cover Problem

We use the following notation. Fix the two-letter alphabet Σ = {0, 1}. Σ∗ is the
set of all strings over Σ. Let 〈 ·, ·〉 : Σ∗ ×Σ∗ → Σ∗ be a standard pairing function.
For any set L, let ‖L‖ denote the number of elements of L.

All graphs considered in this paper are undirected nonempty, finite graphs with-
out multiple or reflexive edges. For any graph G, let V (G) denote the set of vertices
of G, and let E(G) denote the set of edges of G. For any vertex v ∈ V (G), the
degree of v (denoted by degG(v)) is the number of vertices adjacent to v in G; if
G is clear from the context, we omit the subscript and simply write deg(v). Let
max-deg(G) = maxv∈V (G) deg(v) denote the maximum degree of the vertices of
graph G. Let G and H be two disjoint graphs. The disjoint union of G and H
is defined to be the graph U = G ∪ H with vertex set V (U) = V (G) ∪ V (H)
and edge set E(U) = E(G) ∪ E(H). The join of G and H is defined to be
the graph J = G ./ H with vertex set V (J) = V (G) ∪ V (H) and edge set
E(J) = E(G) ∪ E(H) ∪ {{x, y} | x ∈ V (G) ∧ y ∈ V (H)}.

For any graph G, a subset C ⊆ V (G) is a vertex cover of G if for all edges
{v, w} ∈ E(G), {v, w} ∩ C 6= ∅. A vertex cover is said to be a minimum vertex

cover of G if it is of minimum size. For any graph G, let mvc(G) denote the
size of a minimum vertex cover of G. The vertex cover problem (VC, for short;
see [GJ79]) is defined to be the set of all pairs 〈G, k〉 such that G is a graph, k a
positive integer, and mvc(G) ≤ k.

All hardness and completeness results in this paper are with respect to the
polynomial-time many-one reducibility, denoted ≤p

m . For sets A and B, we say
A≤p

m B if and only if there exists a polynomial-time computable function f such
that for all inputs x ∈ Σ∗, x ∈ A if and only if f(x) ∈ B.

We consider the following two heuristics (see, e.g., [PS82,Pap94]) for finding a
minimum vertex cover of a given graph:

Edge Deletion Heuristic (ED): Given a graph G, the algorithm outputs
a vertex cover C of G. Initially, C is the empty set. Nondeterministically
choose an edge {u, v} ∈ E(G), add both u and v to C, and delete u, v,
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and all edges incident to u and v from G. Repeat until there is no edge
left in G.

Maximum-Degree Greedy Heuristic (MDG): Given a graph G, the al-
gorithm outputs a vertex cover C of G. Initially, C is the empty set.
Nondeterministically choose a vertex v ∈ V (G) of maximum degree, add v
to C, and delete v and all edges incident to v from G. Repeat until there
is no edge left in G.

As mentioned in the introduction, these two heuristics have a quite different
approximation behavior. While the worst-case ratio of the MDG algorithm is
logarithmic in the input size [Pap94,Joh74], the ED algorithm always approximates
the optimal solution within a factor of 2. Thus, despite its extreme simplicity, the
edge deletion heuristic achieves the best approximation ratio known for finding
minimum vertex covers [Pap94].

The central question raised in this paper is: How hard is it to determine for
which graphs G either of these two heuristics can approximate the minimum vertex
cover of G within a factor of r, for a given rational number r ≥ 1? Let min-ed(G)
(respectively, min-mdg(G)) denote the minimum size of the output set of the ED
algorithm (respectively, of the MDG algorithm) on input G, where the minimum
is taken over all possible sequences of nondeterministic choices the algorithms can
make. For any fixed rational r ≥ 1, SED

r (respectively, SMDG
r ) is the class of

graphs for which ED (respectively, MDG) can output a vertex cover of size at
most r times the size of a minimum vertex cover. Formally,

SED
r = {G | G is a graph and min-ed(G) ≤ r · mvc(G)};

SMDG
r = {G | G is a graph and min-mdg(G) ≤ r · mvc(G)}.

We will prove that for each fixed rational number r with 1 ≤ r < 2, SED
r is PNP

‖ -

complete, and that for each fixed rational number r ≥ 1, SMDG
r is PNP

‖ -complete.
To this end, we give reductions from the problem VCgeq, which is defined by

VCgeq = {〈G, H〉 | G and H are graphs such that mvc(G) ≥ mvc(H)}.

It is known that VCgeq is PNP
‖ -complete, cf. Wagner [Wag87]. A reduction from

any problem in PNP
‖ to VCgeq that in addition has some useful properties (see

Lemma 2.1 below) can easily be obtained using the techniques of Wagner [Wag87];
see [SV00, Thm. 12] for an explicit proof of Lemma 2.1.

Lemma 2.1 (cf. [Wag87,SV00]). For any set X ∈ PNP
‖ , there exists a polynomial-

time computable function f that reduces X to VCgeq in such a way that for each

x ∈ Σ∗, f(x) = 〈G, H〉 is an instance of VCgeq and

x ∈ X =⇒ mvc(G) = mvc(H);

x 6∈ X =⇒ mvc(G) < mvc(H).
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3. The Edge Deletion Heuristic

Lemma 3.1 below states that the vertex cover problem restricted to graphs in SED
1

is NP-hard. The reduction g from Lemma 3.1 will be used in the proof of the main
result of this section, Theorem 3.2. Define the problem

VC-SED
1 = {〈G, k〉 | G ∈ SED

1 and k ∈ N
+ and mvc(G) ≤ k}.

Lemma 3.1. There exists a polynomial-time many-one reduction g from VC to

VC-SED
1 transforming any given graph G into a graph H ∈ SED

1 such that

mvc(H) = 2(mvc(G) + ‖V (G)‖). (1)

Hence, VC-SED
1 is NP-hard.1

Proof. Given any graph G, we construct the graph H ∈ SED
1 as follows. For

each vertex v ∈ V (G), create a component Gv that is defined by the vertex set
V (Gv) = {v1, v2, v3, v4} and the edge set E(Gv) = {{v1, v2}, {v3, v4}, {v1, v3}}.

Define the graph H by joining every pair of components that correspond to
adjacent vertices of G:

V (H) =
⋃

v∈V (G)

V (Gv);

E(H) = {{ai, bj} | {a, b} ∈ E(G) and i, j ∈ {1, 2, 3, 4}} ∪
⋃

v∈V (G)

E(Gv).

We now prove Equation (1). Let C be a minimum vertex cover of G, i.e., mvc(G) =
‖C‖. Construct a vertex cover D of H as follows. For each vertex v ∈ C, add
v1, v2, v3, and v4 to D; and for each vertex w ∈ V (G) − C, add w1 and w3 to D.
Hence,

‖D‖ = 2(‖C‖ + ‖V (G)‖).

Since mvc(H) ≤ ‖D‖, it follows that

mvc(H) ≤ 2(mvc(G) + ‖V (G)‖).

Conversely, let D be a minimum vertex cover of H , i.e., mvc(H) = ‖D‖. Then,
it holds that:

• for each edge {u, v} ∈ E(G), V (Gu) ⊆ D or V (Gv) ⊆ D;
• for each vertex v ∈ V (G), ‖D ∩ V (Gv)‖ ≥ 2.

Hence,

‖D‖ ≥ 4 · mvc(G) + 2(‖V (G)‖ − mvc(G))

= 2(mvc(G) + ‖V (G)‖).

1Theorem 3.2 will imply that VC-SED
1 in fact is PNP

‖ -complete.
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It follows that

mvc(H) ≥ 2(mvc(G) + ‖V (G)‖),

which proves Equation (1).
It remains to prove that H ∈ SED

1 . Let C be a minimum vertex cover of G.
The edge deletion algorithm can find a vertex cover of H as follows. For every
vertex v ∈ C, choose the edges {v1, v2} and {v3, v4}. For the remaining vertices
w ∈ V (G)−C, choose the edge {w1, w3}. Thus, min-ed(H) = 2(mvc(G)+‖V (G)‖).
By Equation (1), min-ed(H) = mvc(H), so H ∈ SED

1 . �

Theorem 3.2. For each rational number r with 1 ≤ r < 2, SED
r is PNP

‖ -complete.

Proof. It is easy to see that SED
r is in PNP

‖ . To prove PNP
‖ -hardness, let X be

an arbitrary set in PNP
‖ , and let f be the reduction from X to VCgeq stated in

Lemma 2.1. Fix any rational number r with 1 ≤ r < 2, and let ` and m be
integers such that r = `/m. Note that 1 ≤ m ≤ ` < 2m.

For any string x ∈ Σ∗, let f(x) = 〈G1, G2〉. Since we can add isolated vertices
to any graph G without altering mvc(G), we may without loss of generality assume
that ‖V (G1)‖ = ‖V (G2)‖. Let g be the reduction from Lemma 3.1 that transforms
any given graph G into a graph H ∈ SED

1 such that Equation (1) holds. Let
H1 = g(G1) and H2 = g(G2). Thus, both H1 and H2 are in SED

1 , and for
i ∈ {1, 2}, we have mvc(Hi) = 2(mvc(Gi) + ‖V (Gi)‖).

We will define a graph Ĥ and an integer k ≥ 0 such that:

min-ed(Ĥ) = r(m · mvc(H2) + 2km); (2)

mvc(Ĥ) = m · mvc(H1) + 2km. (3)

The reduction mapping any given string x (via the pair 〈G1, G2〉 obtained ac-
cording to Lemma 2.1 and via the pair 〈H1, H2〉 obtained according to Lemma 3.1)

to the graph Ĥ such that Equations (2) and (3) are satisfied will establish that
X ≤p

m SED
r . In particular, from these equations, we have that:

• mvc(H2) = mvc(H1) implies min-ed(Ĥ) = r · mvc(Ĥ), and

• mvc(H2) > mvc(H1) implies min-ed(Ĥ) > r · mvc(Ĥ).

Note that, due to Lemma 2.1, mvc(H2) ≥ mvc(H1).

Look at Figure 1 for the construction of Ĥ from H1 and H2. The graph Ĥ con-
sists of two subgraphs, L and R, that are joined by the join operation, plus some ad-
ditional vertices and edges that are connected to R. Formally, let H1

1 , H2
1 , . . . , Hm

1

be m pairwise disjoint copies of H1, and let H1
2 , H2

2 , . . . , H`
2 be ` pairwise disjoint

copies of H2. Let k = `‖V (H2)‖ + m‖V (H1)‖. Let I1 and I2 be independent sets
such that L contains exactly k(2m − `) vertices and R exactly k` vertices. (This
is possible, because k(2m − `) − `‖V (H2)‖ is not negative, since 2m − ` ≥ 1, and
k` − m‖V (H1)‖ is not negative, since ` ≥ 1.) Let ei = {ai, bi} (1 ≤ i ≤ k`) be
additional edges. Every vertex ai is adjacent to exactly one vertex in R, and each
vertex in R is adjacent to exactly one vertex ai. The vertices ai and bi are not
adjacent to any other vertices.
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H1
2 H2

2 H2
1H1

1
· · · · · ·

L R

· · ·

indep. set I2
indep. set I1

./

H`
2 Hm

1

a1 a2 ak·`

b1 b2 bk·`

Figure 1. The graph Ĥ constructed from H1 and H2.

(1) We first determine min-ed(Ĥ). Let Ê be a fixed minimum-size output set

of the ED algorithm on input Ĥ , i.e., min-ed(Ĥ) = ‖Ê‖. Since Ê is a

vertex cover of Ĥ , Ê must contain ai or bi for each i ∈ {1, . . . , k`}. Since

the ED-algorithm can delete only edges, and Ê is a minimum-size output

set, it follows that Ê contains all vertices ai, all vertices from R, and no
vertex bi.

Let CL be a minimum-size output set of the ED-algorithm on input
L. By construction of L, ‖CL‖ = ` · min-ed(H2). Thus, since H2 ∈ SED

1 ,
‖CL‖ = ` · mvc(H2).

Define Ê′ = V (R) ∪ CL ∪
⋃k`

i=1{ai}. It is easy to see that Ê′ is a

minimum-size output set of the ED algorithm on input Ĥ . Hence,

min-ed(Ĥ) = 2k` + ` · mvc(H2)

= r(2km + m · mvc(H2)).

This proves Equation (2).

(2) We now determine mvc(Ĥ). Let Ĉ be a fixed minimum vertex cover of Ĥ ,

i.e., mvc(Ĥ) = ‖Ĉ‖. Distinguish the following two cases.

Case 1: V (R) ⊆ Ĉ. In this case, Ĉ contains all vertices from R, at
least one of ai or bi for each i, 1 ≤ i ≤ k`, and a minimum vertex
cover of L. Hence,

mvc(Ĥ) = 2k` + ` · mvc(H2).

Case 2: V (L) ⊆ Ĉ. In this case, Ĉ contains all vertices from L, a
minimum vertex cover of R, and exactly one of ai or bi for each i,
1 ≤ i ≤ k`. Hence,

mvc(Ĥ) = k(2m − `) + k` + m · mvc(H1)

= 2km + m · mvc(H1).
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Since mvc(H1) ≤ mvc(H2), m ≤ `, and 2km ≤ 2k`, it follows that

mvc(Ĥ) = 2km + m · mvc(H1).

This proves Equation (3).

The proof of Theorem 3.2 is complete. �

4. The Maximum-Degree Greedy Heuristic

Lemma 4.1 below states that the vertex cover problem restricted to graphs in
SMDG

1 is NP-hard. The proof of Lemma 4.1 is reminiscent of a proof by Bodlaender
et al. [BTY97, Thm. 4], who show that the independent set problem restricted to
graphs for which the minimum-degree greedy heuristic can find an optimal solution
is NP-hard. The reduction g from Lemma 4.1 will be used in the proof of the main
result of this section, Theorem 4.4. Define the problem

VC-SMDG
1 = {〈G, k〉 | G ∈ SMDG

1 and k ∈ N
+ and mvc(G) ≤ k}.

Lemma 4.1. There is a polynomial-time many-one reduction g from VC to VC-SMDG
1

transforming any given graph G into a graph H ∈ SMDG
1 such that

mvc(H) = mvc(G) + ‖E(G)‖(max-deg(G) + 1). (4)

Hence, VC-SMDG
1 is NP-hard.2

Proof. Given any graph G, we construct the graph H ∈ SMDG
1 as follows. Let

∆ = max-deg(G). Replace each edge of G by a gadget that contains a complete
bipartite graph of size 2(∆ + 1). Formally, H is defined by:

V (H) = V (G) ∪
⋃

e = {u,v} ∈E(G)

({ue
i | 1 ≤ i ≤ ∆ + 1} ∪ {ve

i | 1 ≤ i ≤ ∆ + 1}) ;

E(H) =
⋃

e = {u,v} ∈E(G)

(
{{ue

i , v
e
j} | 1 ≤ i, j ≤ ∆ + 1} ∪ {{u, ue

1}} ∪ {{v, ve
1}}

)
.

We now prove Equation (4). Let C be a minimum vertex cover of G, i.e.,
mvc(G) = ‖C‖. Note that {u, v}∩C 6= ∅ for each edge {u, v} in E(G). Construct
a vertex cover D of H as follows:

• D contains all vertices from C.
• For every edge e = {u, v} in E(G), add to D:

– either all vertices ue
i , 1 ≤ i ≤ ∆ + 1, if u 6∈ C or if both u and v are

in C;
– or all vertices ve

i , 1 ≤ i ≤ ∆ + 1, if v 6∈ C.

2Theorem 4.3 will imply that VC-SMDG
1 in fact is PNP

‖ -complete.
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It follows that

mvc(H) ≤ mvc(G) + ‖E(G)‖(∆ + 1).

Conversely, let D be a minimum vertex cover of H , i.e., mvc(H) = ‖D‖. Con-
struct a vertex cover C of G as follows. Initially, set C = D. Let e = {u, v} be
any fixed edge in E(G). Suppose that at least one vertex from {u, v} is in D.
Since D is a vertex cover of H , it contains at least ∆+1 of the vertices ue

i and ve
i ,

1 ≤ i ≤ ∆ + 1, that correspond to the edge e. Remove any ∆ + 1 such vertices
from C. Suppose now that neither u nor v is in D. Since D is a vertex cover of H ,
it contains at least ∆+2 of the vertices ue

i and ve
i , 1 ≤ i ≤ ∆+1, that correspond

to the edge e. Remove any ∆ + 2 such vertices from C, and add to C one of u or
v instead. Since the set C thus obtained is a vertex cover of G, we have

mvc(H) ≥ mvc(G) + ‖E(G)‖(∆ + 1),

which proves Equation (4).
It remains to prove that H ∈ SMDG

1 . Let C be a minimum vertex cover of G.
The maximum-degree greedy algorithm can find a vertex cover of H as follows.
For every edge e = {u, v} in E(G), the MDG algorithm on input H can choose:

• either all vertices ue
i , 1 ≤ i ≤ ∆ + 1, if u 6∈ C or if both u and v are in C;

• or all vertices ve
i , 1 ≤ i ≤ ∆ + 1, if v 6∈ C.

Note that the MDG heuristic can always do so, since every vertex in V (G) has
degree at most ∆. Subsequently, all vertices that are not in C are isolated. Thus,
the MDG algorithm can now choose all vertices from C. Hence,

min-mdg(H) = mvc(G) + ‖E(G)‖(∆ + 1).

By Equation (4), min-mdg(H) = mvc(H), so H ∈ SMDG
1 . �

Lemma 4.2 below will be used in the proof of Theorem 4.4. The construc-
tion of the graph G in this lemma is a modification of a construction given by
Papadimitriou and Steiglitz [PS82, p. 408, Fig. 17-3], which shows that the worst-
case approximation ratio of the MDG heuristic can be as bad as logarithmic in
the input size, and so grows unboundedly. Similar constructions for achieving the
worst-case approximation behavior of the greedy heuristic solving the more gen-
eral minimum set cover problem were given by Johnson [Joh74], Lovász [Lov75],
and Chvátal [Chv79].

Lemma 4.2. For all positive integers n1, n2, δ ≥ 6, and µ satisfying

µ(lnµ − 2 ln(δ + 2) − 1) ≥ n1 + n2, (5)

there exists a bipartite graph G with the following properties:

(1) V (G) = V ∪ Ṽ such that V ∩ Ṽ = ∅ and both V and Ṽ are independent

sets, where

• V = {u1, u2, . . . , un1
, w1, w2, . . . , wµ, z1, z2, . . . zn2

} and
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• Ṽ = {ũ1, ũ2, . . . , ũn1
, w̃1, w̃2, . . . , w̃µ}.

(2) {{ui, ũi} | 1 ≤ i ≤ n1} ∪ {{wi, w̃i} | 1 ≤ i ≤ µ} ⊆ E(G).
(3) Every vertex ũi, where 1 ≤ i ≤ n1, has degree one.

(4) For each induced subgraph S of G that can be obtained by deleting vertices

from V such that V ∩ V (S) 6= ∅, it holds that

max
v∈V ∩V (S)

degS(v) > max
v∈Ṽ

degS(v) + δ.

Proof. Let the constants n1, n2, δ, and µ be given such that Equation (5) is
satisfied. We describe the construction of the graph G. As stated in the lemma,
the vertex set of G is given by V (G) = V ∪ Ṽ , where V and Ṽ are two disjoint
independent sets. Rename the vertices of V by V = {α1, α2, . . . , αn1+µ+n2

}.

Let W̃ = {w̃1, w̃2, w̃3, . . . , w̃µ}. The edge set of G is defined as follows:

• Create the edges {ui, ũi} for each i with 1 ≤ i ≤ n1 and the edges {wj, w̃j}
for each j with 1 ≤ j ≤ µ.

• Partition W̃ into
⌊

µ
δ+3

⌋
disjoint sets W̃ δ+3

1 , W̃ δ+3
2 , . . . , W̃ δ+3

b µ
δ+3c

of size δ+3

each, possibly leaving out some vertices from W̃ and taking care that no

vertex in W̃ δ+3
i already is connected with αi, 1 ≤ i ≤

⌊
µ

δ+3

⌋
. For each i

with 1 ≤ i ≤
⌊

µ
δ+3

⌋
, connect αi with each vertex in W̃ δ+3

i by an edge.

• Partition W̃ into
⌊

µ
δ+4

⌋
disjoint sets W̃ δ+4

1 , W̃ δ+4
2 , . . . , W̃ δ+4

b µ
δ+4c

of size δ+4

each, possibly leaving out some vertices from W̃ and taking care that no

vertex in W̃ δ+4
i already is connected with αb µ

δ+3c+i
, 1 ≤ i ≤

⌊
µ

δ+4

⌋
. For

each i with 1 ≤ i ≤
⌊

µ
δ+4

⌋
, connect αb µ

δ+3c+i
with each vertex in W̃ δ+4

i

by an edge.

• Partition W̃ into
⌊

µ
δ+5

⌋
disjoint sets W̃ δ+5

1 , W̃ δ+5
2 , . . . , W̃ δ+5

b µ
δ+5c

of size δ+5

each, possibly leaving out some vertices from W̃ and taking care that no

vertex in W̃ δ+5
i already is connected with αb µ

δ+3c+b
µ

δ+4c+i
, 1 ≤ i ≤

⌊
µ

δ+5

⌋
.

For each i with 1 ≤ i ≤
⌊

µ
δ+5

⌋
, connect αb µ

δ+3c+b
µ

δ+4c+i
with each vertex

in W̃ δ+5
i by an edge.

• Continue in this way until all vertices αi are connected with vertices in W̃ .

The construction is possible, since Equation (5) implies

⌊
µ

δ + 3

⌋
+

⌊
µ

δ + 4

⌋
+ · · · +

⌊
µ

µ − 1

⌋
≥ n1 + µ + n2, (6)
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and thus there are enough vertices in W̃ . To see why, note that

⌊
µ

δ + 3

⌋
+

⌊
µ

δ + 4

⌋
+ · · · +

⌊
µ

µ − 1

⌋

=
⌊µ

1

⌋
+

⌊µ

2

⌋
+ · · · +

⌊
µ

µ

⌋
− 1 −

(⌊µ

1

⌋
+

⌊µ

2

⌋
+ · · · +

⌊
µ

δ + 2

⌋)

≥
µ

1
+

µ

2
+ · · · +

µ

µ
− µ −

(
µ

1
+

µ

2
+ · · · +

µ

δ + 2

)

= µHµ − µ − µHδ+2

≥ µ lnµ − µ − µ ln(δ + 2) − µ

≥ µ lnµ − µ ln(δ + 2) − 2µ

≥ µ lnµ − µ ln(δ + 2) − µ ln(δ + 2) (7)

= µ lnµ − 2µ ln(δ + 2).

Here, Hk denotes the kth harmonic number, which is defined by Hk =
∑k

i=1
1
i
. It

is well known that for all k, ln k ≤ Hk ≤ ln k + 1 (see, e.g., Graham, Knuth, and
Patashnik [GKP89]). Equation (7) holds because δ ≥ 6 and hence ln(δ + 2) ≥ 2.

It is evident from the construction that G has all the required properties. In
particular, to see why Property 4 holds, let S be any induced subgraph of G
that can be obtained by deleting vertices from V such that V ∩ V (S) 6= ∅. Let
yS = maxv∈V ∩V (S) degS(v). By construction, S can have only edges of the form
{ui, ũi} or {wj , w̃j} or edges that are added during the stages δ + 3, δ + 4, . . . , yS,

where δ + i denotes the stage in which W̃ is partitioned into subsets of size δ + i.
It follows that

max
v∈Ṽ

degS(v) ≤ 1 + yS − (δ + 3) + 1 = yS − δ − 1 < yS − δ,

which proves the lemma. �

Theorem 4.3. SMDG
1 is PNP

‖ -complete.

Proof. It is easy to see that SMDG
1 is in PNP

‖ . To prove PNP
‖ -hardness of SMDG

1 , let

X be an arbitrary set in PNP
‖ , and let f be the reduction from X to VCgeq stated

in Lemma 2.1. For any string x ∈ Σ∗, let f(x) = 〈G1, G2〉.

We will define a graph Ĝ and an integer q ≥ 0 such that:

min-mdg(Ĝ) = mvc(G2) + q; (8)

mvc(Ĝ) = mvc(G1) + q. (9)

The reduction mapping any given string x (via the pair 〈G1, G2〉 obtained

according to Lemma 2.1) to the graph Ĝ such that Equations (8) and (9) are
satisfied will establish that X ≤p

m SMDG
1 . In particular, from these equations, we

have that:
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• mvc(G2) = mvc(G1) implies min-mdg(Ĝ) = mvc(Ĝ), and

• mvc(G2) > mvc(G1) implies min-mdg(Ĝ) > mvc(Ĝ).

Note that, due to Lemma 2.1, mvc(G2) ≥ mvc(G1).

We now describe the construction of Ĝ. Let g be the reduction from Lemma 4.1
and let H2 = g(G2). Thus, H2 is in SMDG

1 and, by Equation (4),

mvc(H2) = mvc(G2) + ‖E(G2)‖(max-deg(G2) + 1). (10)

Since one can add isolated vertices to any graph G without affecting the values of
mvc(G) or min-mdg(G), we may without loss of generality assume that

‖V (H2)‖ = ‖V (G1)‖ + ‖E(G2)‖(max-deg(G2) + 1). (11)

./
H2

a1 a2

· · ·

aj

b1 b2 bj

L R = G1

Figure 2. The graph Ĝ constructed from G1 and H2.

Look at Figure 2 for the construction of Ĝ from G1 and H2. The graph Ĝ
consists of two subgraphs, L and R, that are joined by the join operation, plus
some additional vertices and edges that are connected to L. Formally, choose 2j
new vertices ai and bi, 1 ≤ i ≤ j, where j is a fixed integer large enough such that
the degree of each vertex in R is larger than the maximum degree of the vertices
in L. Note that the degree of each vertex in R must remain larger than the degree
of any vertex in L even after some vertices have been removed from R.

Let B be the bipartite matching with the vertex set

V (B) = {ai | 1 ≤ i ≤ j} ∪ {bi | 1 ≤ i ≤ j}

and the edge set E(B) = {{ai, bi} | 1 ≤ i ≤ j}. Let R = G1, and let L be the
graph with the vertex set V (L) = {ai | 1 ≤ i ≤ j} ∪ V (H2) and the edge set

E(L) = E(H2). The graph Ĝ is defined by forming the join L ./ R, i.e., there
are edges connecting each vertex of L with each vertex of R, plus attaching the
vertices bi, 1 ≤ i ≤ j, to L by adding the j edges from E(B).

We first consider min-mdg(Ĝ). By our choice of j, each vertex in R has a de-

gree larger than the degree of any vertex not in R. Hence, on input Ĝ, the MDG
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algorithm first deletes all vertices from R. Subsequently, it can find a minimum
vertex cover of H2, which has size mvc(G2)+‖E(G2)‖(max-deg(G2)+1) by Equa-
tion (10), and eventually it can choose, say, the vertices ai, 1 ≤ i ≤ j, to cover the
edges of B. Hence,

min-mdg(Ĝ) = ‖V (G1)‖ + mvc(G2) + ‖E(G2)‖(max-deg(G2) + 1) + j

(11)
= mvc(G2) + ‖V (H2)‖ + j.

We now consider mvc(Ĝ). Since every vertex cover of Ĝ must contain all vertices
of L or all vertices of R to cover the edges connecting L and R, it follows from
Equations (10) and (11) that:

mvc(Ĝ) = min{‖V (G1)‖ + mvc(H2) + j, ‖V (H2)‖ + j + mvc(G1)}

= min{mvc(G2) + ‖V (H2)‖ + j, mvc(G1) + ‖V (H2)‖ + j}.

Since mvc(G2) ≥ mvc(G1), it follows that

mvc(Ĝ) = mvc(G1) + ‖V (H2)‖ + j.

Hence, setting q = ‖V (H2)‖ + j, Equations (8) and (9) are satisfied, which com-

pletes the proof that SMDG
1 is PNP

‖ -complete. �

Theorem 4.4. For each rational number r > 1, SMDG
r is PNP

‖ -complete.

Proof. Fix any rational number r = `/m, where ` and m are integers with 1 ≤
m < `. Without loss of generality, we may assume that gcd(` − m, m) = 1, where
gcd(a, b) denotes the greatest common divisor of the integers a and b. It is easy to

see that SMDG
r is in PNP

‖ . To prove PNP
‖ -hardness of SMDG

r , let X be an arbitrary

set in PNP
‖ , and let f be the reduction from X to VCgeq stated in Lemma 2.1. For

any string x ∈ Σ∗, let f(x) = 〈G1, G2〉. Note that mvc(G2) ≥ mvc(G1).

We will define a graph Ĝr and integers p, q ≥ 0 such that:

min-mdg(Ĝr) = r(p · mvc(G2) + q); (12)

mvc(Ĝr) = p · mvc(G1) + q. (13)

The reduction mapping any given string x (via the pair 〈G1, G2〉 obtained

according to Lemma 2.1) to the graph Ĝr such that Equations (12) and (13) are
satisfied will establish that X ≤p

m SMDG
r . In particular, from these equations, we

have that:

• mvc(G2) = mvc(G1) implies min-mdg(Ĝr) = r · mvc(Ĝr), and

• mvc(G2) > mvc(G1) implies min-mdg(Ĝr) > r · mvc(Ĝr).

We now describe the construction of Ĝr:
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• Let g be the reduction from Lemma 4.1 and let H2 = g(G2). Thus,
H2 ∈ SMDG

1 and Equation (10) holds:

mvc(H2) = mvc(G2) + ‖E(G2)‖(max-deg(G2) + 1).

• Let G1
1, G

2
1, . . . , G

m
1 be m pairwise disjoint copies of G1, and let H1

2 , H2
2 ,

. . ., H`
2 be ` pairwise disjoint copies of H2.

• Let Ũ =
⋃`

i=1 Hi
2 be the disjoint union of these copies of H2, and rename

the vertices of Ũ by V (Ũ) = {ũ1, ũ2, . . . , ũ`·‖V (H2)‖}.
• Let Z =

⋃m
i=1 Gi

1 be the disjoint union of these copies of G1, and rename
the vertices of Z by V (Z) = {z1, z2, . . . , zm·‖V (G1)‖}.

• To apply Lemma 4.2, choose n1 = ` · ‖V (H2)‖, n2 ≥ m · ‖V (G1)‖, and
δ = max{6,max-deg(H2)+1}, where the exact value of n2 will be specified
below. Choose the constant µ so as to satisfy Equation (5):

µ(lnµ − 2 ln(δ + 2) − 1) ≥ n2 + n1.

• Given the constants n1, n2, δ, and µ, define Ĝr to be the bipartite graph G
from Lemma 4.2 extended by the edges between the ũi vertices that were
added above to represent the structure of the copies of H2, and extended
by the edges between the zj vertices that were added above to represent

the structure of the copies of G1. That is, unlike G, the graph Ĝr is no

longer a bipartite graph. Formally, the vertex set of Ĝr is given by

V (Ĝr) = V (G) = V ∪ Ṽ , where

V = {u1, u2, . . . , un1
, w1, w2, . . . , wµ, z1, z2, . . . zn2

} and

Ṽ = {ũ1, ũ2, . . . , ũn1
, w̃1, w̃2, . . . , w̃µ},

and the edge set of Ĝr is given by E(Ĝr) = E(G) ∪ E(Ũ) ∪ E(Z), where
E(G) is constructed as in the proof of Lemma 4.2.

This completes the construction of Ĝr . We now prove Equations (12) and (13).

(1) We first consider min-mdg(Ĝr). By construction, for each vertex v in Ṽ ,
we have

deg bGr
(v) ≤ degG(v) + max-deg(H2) < degG(v) + δ. (14)

Let S be any induced subgraph of Ĝr that can be obtained by deleting
vertices from V such that V ∩ V (S) 6= ∅. Property 4 of Lemma 4.2 and
Equation (14) imply that

max
v∈V ∩V (S)

degS(v) > max
v∈Ṽ

degS(v).

Hence, on input Ĝr, the MDG algorithm starts by choosing the n1+µ+n2

vertices from V , which isolates each vertex w̃i ∈ Ṽ and leaves ` isolated
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copies of H2. Subsequently, since H2 ∈ SMDG
1 , the MDG algorithm can

choose a minimum vertex cover in each of these ` copies of H2. By Equa-
tion (10),

mvc(H2) = mvc(G2) + ‖E(G2)‖(max-deg(G2) + 1),

and hence,

min-mdg(Ĝr) = n1 + µ + n2 + `(mvc(G2) + ‖E(G2)‖(max-deg(G2) + 1)).

(2) We now consider mvc(Ĝr). Define the set C = Ṽ ∪ D, where D with
‖D‖ = m · mvc(G1) is a minimum vertex cover of Z. It is obvious from

the construction of Ĝr that C is a minimum vertex cover of Ĝr. Hence,

mvc(Ĝr) = n1 + µ + m · mvc(G1).

To complete the proof, we have to choose n2 ≥ m · ‖V (G1)‖ such that Equa-
tions (12) and (13) are satisfied for suitable integers p and q. Setting p = m and
q = n1 + µ and requiring

n1 + n2 + µ + ` · ‖E(G2)‖(max-deg(G2) + 1) = r(n1 + µ) (15)

or, equivalently,

m · n2 + m · ` · ‖E(G2)‖(max-deg(G2) + 1) = (` − m)n1 + (` − m)µ (16)

satisfies Equations (12) and (13).
Our assumption that gcd(` − m, m) = 1 implies that the equation

m · n′
2 + 1 = (` − m)µ′ (17)

has integer solutions. Fix one such solution (n′
2, µ

′). Multiplying this solution
with m · ` · ‖E(G2)‖(max-deg(G2) + 1)− (` − m)n1, we obtain an integer solution
(n̂2, µ̂) for Equation (16). For every k ∈ Z, (n2, µ) is a solution of Equation (16),
where

n2 = n̂2 + k(` − m), (18)

µ = µ̂ + km. (19)

Choosing k large enough, we can make sure that (a) n2 and µ are positive integers,3

(b) n2 ≥ m · ‖V (G1)‖, and (c) n2 and µ satisfy Equation (5) for given n1 and δ.
It is easy to see that k can be small enough such that n2 and µ are polynomially
bounded in the size of the input of the reduction being described. This completes
the proof of the theorem. �

3Recall that ` − m > 0 and m > 0.
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In conclusion, we have shown that for both the edge deletion heuristic and the
maximum-degree greedy heuristic, it is PNP

‖ -complete to recognize those graphs
for which the heuristic can approximate the size of a minimum vertex cover within
a constant factor of r, where r is a fixed rational number. These results add
new problems (SED

r and SMDG
r ) to the list of PNP

‖ -complete problems previously
obtained.
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