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Abstract. Holzer and Holzer [HH04] proved that the TantrixTM rota-
tion puzzle problem is NP-complete. They also showed that for infinite
rotation puzzles, this problem becomes undecidable. We study the count-
ing version and the unique version of this problem. We prove that the
satisfiability problem parsimoniously reduces to the TantrixTM rotation
puzzle problem. In particular, this reduction preserves the uniqueness of
the solution, which implies that the unique TantrixTM rotation puzzle
problem is as hard as the unique satisfiability problem, and so is DP-
complete under polynomial-time randomized reductions, where DP is the
second level of the boolean hierarchy over NP.
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1 Introduction

TantrixTM is a puzzle game played with hexagonal tiles firmly arranged in the
plane that each can be rotated around their axes. There are four different types
of tiles (called Sint, Brid, Chin, and Rond, see Figure 1) that differ by the form
of the three colored lines they each have, where colors are chosen among red,
yellow, blue, and green. The objective of the game is to find a rotation of the given
tiles so as to create long lines and loops of the same color. Since its invention
in 1991 by Mike McManaway from New Zealand and its commercial launch,
the TantrixTM rotation puzzle has become extremely popular and commercially
successful.

Holzer and Holzer [HH04] considered two variants of the TantrixTM rotation
puzzle problem, one with finitely many and one with infinitely many tiles in a
given problem instance. They proved that the finite variant of this problem is
NP-complete by reducing the NP-complete boolean circuit satisfiability problem
(restricted to circuits with AND and NOT gates only) to it. They also showed
that the infinite variant of the TantrixTM rotation puzzle problem is undecidable,
again employing a circuit construction. For other results on the complexity of
problems related to Domino-like strategy games, we refer to Grädel [Grä90].

We consider two variants of the finite TantrixTM rotation puzzle problem,
its counting version and its unique version. The counting problem asks for the
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number of solutions of a given rotation puzzle instance. The unique problem
asks whether a given rotation puzzle instance has exactly one solution. Our main
result is that the satisfiability problem parsimoniously reduces to the TantrixTM

rotation puzzle problem.
The class #P was introduced by Valiant [Val79] to capture the complex-

ity of counting the solutions of NP problems. Parsimonious reductions between
NP counting problems—such as ours—preserve the precise number of solutions.
This is an important property for at least two reasons. First, the structure of
the solution space is preserved by a parsimonious reduction from A to B, since
solutions of A are mapped bijectively to solutions of B in polynomial time. Sec-
ond, parsimonious reductions can be used to prove lower bounds for the unique
versions of NP problems. In particular, we apply our above-mentioned parsi-
monious reduction to prove that the unique TantrixTM rotation puzzle problem
is DP-complete1 under polynomial-time randomized reductions in the sense of
Valiant and Vazirani [VV86].

While many standard reductions between NP-complete problems are easily
seen to be parsimonious, there are a number of exceptions. For example, Barban-
chon [Bar04] showed that the (planar) satisfiability problem is parsimoniously
polynomial-time reducible to the (planar) 3-colorability problem via a rather so-
phisticated construction. Other examples of nontrivial parsimonious reductions
can be found in [Pap94]. Holzer and Holzer’s reduction, however, is not parsi-
monious [HH04]. The main purpose of this paper is to show how to modify their
reduction so as to make it parsimonious.

2 Preliminaries

2.1 Definition of Some Complexity-Theoretic Notions

Fix the alphabet Σ = {0, 1}, and let Σ∗ denote the set of strings over Σ.
As is common, decision problems are suitably encoded as languages over Σ.
For any language A ⊆ Σ∗, let ‖A‖ denote the number of elements in A. For
some background on computational complexity theory, we refer to any standard
textbook of this field, e.g., [Pap94, Rot05]. Let NP denote the class of problems
solvable in nondeterministic polynomial time. Generalizing NP, Papadimitriou
and Yannakakis [PY84] introduced the class DP = {A − B | A, B ∈ NP} to
capture the complexity of NP-hard or coNP-hard problems that seemingly are
neither in NP nor in coNP. In particular, they showed that DP contains a number
of uniqueness problems, critical graph problems, and exact optimization problems,
and they showed some of these problems complete for DP; see also the recent
survey [RR06]. Note that DP was later generalized by Cai et al. [CGH+88,
CGH+89], who introduced the boolean hierarchy over NP. Note that DP is the
second level of this hierarchy.

1 DP is the set of differences of any two NP sets [PY84]; so NP ⊆ DP, and it is
considered most unlikely that both classes are equal.
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(a) Sint (b) Brid (c) Chin (d) Rond

(e) red (f) yellow (g) blue (h) green

Fig. 1. TantrixTM tiles and colors

In his seminal paper, Valiant [Val79] initiated the study of counting problems
and introduced the important counting class #P. Members of #P are referred
to as NP counting problems. A well-known NP counting problem is #SAT, the
counting version of the satisfiability problem: Given a boolean formula, how
many satisfying assignments does it have?

Definition 1 (Valiant [Val79]). Let NPTM be a shorthand for nondeter-
ministic polynomial-time Turing machine. For any NPTM M and any in-
put x, let accM (x) denote the number of accepting computation paths of M(x),
i.e., accM is a function mapping from Σ∗ to N. Define the function class
#P = {accM | M is an NPTM}.

We now define the notion of (polynomial-time) parsimonious reducibility, which
will be used to compare the hardness of solving NP counting problems. Intu-
itively, an NP counting problem f parsimoniously reduces to an NP counting
problem g if the instances of f can be transformed into instances of g such that
the number of solutions of f are preserved under this transformation.

Definition 2. Let f and g be any two given counting problems mapping from
Σ∗ to N. We say f (polynomial-time) parsimoniously reduces to g (denoted
by f ≤p

par g) if there exists a polynomial-time computable function ρ such that
for each x ∈ Σ∗, f(x) = g(ρ(x)). If F and G are the NP decision problems
corresponding to the NP counting problems f and g with f ≤p

par g, we will also
say that F parsimoniously reduces to G.

2.2 Variants of the Tantrix Rotation Puzzle Problem

The TantrixTM rotation puzzle has four kinds of hexagonal tiles—the Sint, the
Brid, the Chin, and the Rond—each of which has three colored lines, where the
colors are chosen among red, yellow, blue, and green, see Figure 1(a)–(d). This
gives a total of 56 different tiles. Since we aren’t using actually colored figures,
we encode the colors as shown in Figure 1(e)–(h).

Holzer and Holzer [HH04] showed that the decision problem TantrixTM rota-
tion puzzle (which we denote by TRP, for short) is NP-complete. In this paper,
we introduce and study #TRP, the counting version of TRP.

We now briefly describe the formalism introduced by Holzer and Holzer
[HH04] to define TRP, since the same formalism is useful for defining #TRP. In
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Fig. 2. A two-dimensional hexagonal coordinate system

particular, to represent the instances of both these problems, a two-dimensional
hexagonal coordinate system is used, see Figure 2. In this system, two distinct
pairs a = (u, w) and b = (v, x) from Z

2 are adjacent if and only if one of the
following four conditions is satisfied:

1. u = v and |w − x| = 1,
2. |u − v| = 1 and w = x,
3. u − v = 1 and w − x = 1, and
4. u − v = −1 and w − x = −1.

Let T be the set of all TantrixTM tiles. Let A be a (partial) function mapping
the elements of Z

2 to T , i.e., for those v ∈ Z
2 on which A is defined, A(v) is

the type of the tile located at v. The set shape(A) = {v ∈ Z
2 | A(v) is defined}

gives the positions in Z
2 at which tiles are placed. For all a, b ∈ shape(A), A(a)

is adjacent to A(b) if and only if a is adjacent to b.
TRP is then defined as follows (note that the initial orientation is not specified,

as it doesn’t matter for the question of whether the decision problem TRP is
solvable) [HH04]:2

Name: TantrixTM Rotation Puzzle (TRP, for short).
Given: A finite shape function A : Z

2 → T , appropriately encoded as a string.
Question: Is the rotation puzzle defined by A solvable, i.e., does there exist a

rotation of the given tiles at their positions such that at each joint edge of
two adjacent tiles the corresponding colors match?

For any given TRP instance A, a solution of A is a specification (in some
appropriate encoding) of each tile in shape(A) in some particular orientation
such that for each joint edge of two adjacent tiles the corresponding colors match.
Figure 3 gives an example of a rotation puzzle instance and its solution. Let
SolTRP(A) denote the set of solutions of a given TRP instance A. So A is in
TRP (viewed as a language) if and only if the set SolTRP(A) is nonempty.

We now define the counting version and the unique version of TRP, which
will be considered in Sections 3 and 4.
2 As noted by Holzer and Holzer [HH04], there is a difference between their definition

of TRP, which allows holes in TRP instances, and the original TantrixTM game,
which does not allow holes. The problem of whether the analog of TRP without
holes still is NP-complete is open.
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(a) Puzzle (b) Solution

Fig. 3. An example of a TRP instance and its solution

Definition 3. 1. The TantrixTM rotation puzzle counting problem is the func-
tion #TRP : Σ∗ → N defined by

#TRP(A) = ‖SolTRP(A)‖,

where we assume that inputs A are appropriately encoded as strings in Σ∗

and function values are nonnegative integers (represented in binary).
2. The unique TantrixTM rotation puzzle problem is defined by

Unique-TRP = {A | #TRP(A) = 1}.

3 Satisfiability Parsimoniously Reduces to the TantrixTM

Rotation Puzzle Problem

In this section, we prove our main result:

Theorem 4. #SAT ≤p
par #TRP.

The proof of Theorem 4 will be presented in Sections 3.1, 3.2, 3.3, and 3.4.
To prove TRP NP-complete, Holzer and Holzer [HH04] gave a reduction from

the NP-complete problem Circuit∧,¬-SAT (see Cook [Coo71]): Given a boolean
circuit C with AND and NOT gates, does there exist a truth assignment to the
input gates of C such that C under this assignment evaluates to true? Holzer and
Holzer’s construction simulates the computation of such a boolean circuit C by
a TantrixTM rotation puzzle such that C evaluates to true for some assignment
to its variables if and only if the puzzle has a solution.

Our construction will modify Holzer and Holzer’s reduction [HH04] in such
a way that there is a one-to-one correspondence between the solutions of the
given Circuit∧,¬-SAT instance and the solutions of the resulting rotation puzzle
instance; hence our reduction is parsimonious. The reduction employs planar
cross-over gates (consisting of AND and NOT gates only) to avoid wire crossings
of the given circuit; for technical details and examples, see [HH04].

To simulate the circuit by a rotation puzzle, a number of subpuzzles are used.
The color blue in these subpuzzles will represent the truth value true, and the
color red will represent false. This color encoding at the inputs and outputs of
the subpuzzles thus represent the truth values of the circuit’s gates and wires.
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Due to space limitations, the original subpuzzles from [HH04] that are given in
the full version of this paper [BR07] to allow comparison, are omitted here. Our
arguments about the original subpuzzles refer to the notation used in [BR07].

3.1 Wire Subpuzzles

Wires of the circuit are simulated by the subpuzzles WIRE, MOVE, and COPY.
Figure 4 shows the modified WIRE subpuzzle, which simply represents a

vertical wire. Longer wires can be built by using several WIRE subpuzzles. A
single WIRE has height two, which implies that all other subpuzzles must have
even height. (Otherwise it wouldn’t be possible to simulate a circuit by a rotation
puzzle.) It is easy to see that the original WIRE subpuzzle from [HH04] (see
also [BR07, Figure 11]) has more than one valid solution with the input colors
blue and red. In particular, tile a and tile b have two possible orientations for
each input color, so there are four possible solutions. However, by inserting a
Rond in the colors blue, red, and green at position x, we obtain a unique solution.
If the input color is blue, there is a blue vertical line. Tiles a and b now must
have red at the edge adjacent to tile x, since x doesn’t have yellow. If the input
color is red, tiles a and b have a choice between either blue or yellow for the edge
joint with x. Again, since x doesn’t have yellow, the solution is unique.

Figure 5 presents the modified MOVE subpuzzle by which a wire can be
moved by two positions to the left or to the right. Consider a move to the right
(a move to the left can be handled analogously). The original MOVE subpuzzle
from [HH04] (see also [BR07, Figure 12]) has again more than one valid solution.
To eliminate this ambiguity, we do the following. Suppose the input color is blue.
Since red and yellow are symmetric in all tiles of the original MOVE subpuzzle
(see [BR07, Figure 12]), there are two symmetric solutions. Also, tiles a and i
have two possible orientations for each such solution. However, inserting a Sint
in the colors red, yellow, and blue at position x enforces that the tile b has yellow
at the edge adjacent to x, since e has blue at the edge adjacent to x for both
possibilities. Fixing the orientation of tile b also fixes the orientation of all other
tiles except a and i. Moreover, a’s orientation is also uniquely determined by the
tile at position x. First, for the joint edge of tiles a and x, one can choose among
the colors red and yellow, but since yellow already must be the color x uses for

(a) In: true (b) In: false (c) Scheme

Fig. 4. Modified subpuzzle WIRE
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(a) In: true (b) In: false (c) Scheme

Fig. 5. Modified subpuzzle MOVE

(a) In: true (b) In: false (c) Scheme

Fig. 6. Modified subpuzzle COPY

the edge joint with b, x must have red as the color for the edge joint with a.
Second, to uniquely determine the orientation of tile i, insert another Sint in
the colors red, yellow, and blue at position y. Since tile h has color yellow at the
edge joint with y, symmetric arguments as above work for fixing the orientation
of i via y. The case of red being the input color can be handled similarly.

Finally, Figure 6 presents the modified COPY subpuzzle, which can be used
to “split” a wire into two copies. Its structure is akin to the MOVE subpuzzle,
though it is wider and has two outputs. Due to symmetry, the original COPY
subpuzzle from [HH04] (see also [BR07, Figure 13]) has again more than one
valid solution. However, we can enforce a unique solution (for both input colors,
blue and red) by inserting three asymmetric Sint tiles in the colors red, blue,
and yellow at positions x, y, and z. The argument then is similar to the one for
the MOVE subpuzzle.

3.2 Gate Subpuzzles

In order to simulate a boolean circuit with AND and NOT gates, we need the
subpuzzles AND and NOT corresponding to these gates.

Figure 7 presents the modified NOT subpuzzle, which negates the input value
by flipping the colors blue and red. In the original NOT subpuzzle from [HH04]
(see also [BR07, Figure 14]), there is only one possible orientation for the tiles
e, f , and g, since the tiles c, b, and f do not contain green. Thus tiles c and
b must have red at the edge adjacent to tile e. It follows that for each input
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(a) In: true (b) In: false (c) Scheme

Fig. 7. Modified subpuzzle NOT

color only two orientations are possible for tiles a and d. Inserting a Brid in the
colors blue, yellow, and green at position x uniquely determines the orientation
of tile a. Since x does not contain red, we have that tile a is forced to choose
yellow at the edge adjacent to x if the input color was blue. On the other hand,
if the input color was red, a has a choice between blue and green for this color
because x has blue at the edge joint with b. However, since a doesn’t contain
green, this uniquely determines the orientation of a. The orientation of tile d
can be made unique by inserting a Rond in the colors yellow, red, and green at
position y. For both input colors, c has yellow at the edge joint with y, so d and
y can share either yellow or green. Since tile d contains no green, its orientation
is uniquely determined. Thus, for both input colors, a valid solution of the NOT
subpuzzle is uniquely determined.

Figure 8 presents the somewhat more complicated modified AND subpuzzles.
Similarly as for the original NOT subpuzzle, in the original AND subpuzzle
from [HH04] (see also [BR07, Figure 15]) the tiles o, p, and q have only one
possible orientation, due to the colors at the joint edges with tiles m and n.
The output of these subpuzzles is determined by the orientation of tile c. If c’s
color at the edge joint with j is blue, then the output color also is blue. This is
the case exactly if both inputs have color blue. In all other cases, the color at
the joint edge of c and j is yellow, which implies that the output color will be
red. For each of these subpuzzles’ upper part, the orientations are determined
by the color at the joint edge of c and j. For their lower parts, however, several
solutions are possible. Again, there are two possible orientations of the tiles a
and d. Since the tiles h and i have only one connection to the remaining subpuzzle
each, they too have two possible orientations, independent of the input color.
However, since the tiles h and i do not contain blue, the input color uniquely
determines the orientation of tiles b and e. The tiles c, g, and f have a different
orientation for each combination of input colors, which implies that the correct
output color is passed on by tile j to the upper part of the subpuzzle. However,
two orientations are possible for tile g, which is a Rond. Due to its symmetry and
since its neighbors are c and f , it cannot receive a unique orientation by the colors
at the joint edges with these neighbors in the original subpuzzle (see [BR07,
Figure 15]).
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(a) In: true, true (b) In: true, false (c) In: false, true

(d) In: false, false (e) Scheme

Fig. 8. Modified subpuzzle AND

The orientations of tiles a and h (respectively, of tiles d and i) can be made
unique by inserting a Sint in the colors blue, yellow, and red at position x (re-
spectively, at position y). The orientation of tile g cannot be made unique by
inserting another tile. For these subpuzzles, there exist four possible combina-
tions of input colors, and because of the given colors at joint edges it is not
possible to insert a new tile adjacent to g. This implies that we need to replace
existing tiles by different tiles. So, to obtain a unique solution, we replace the
color yellow by green in the tiles j and c, and tile g is replaced by a Sint in
the colors green, blue, and red. Replacing yellow by green in j and c is easily
possible. Tile j has yellow at the edge joint with c only in some cases, and c’s
yellow is also replaced by green. Also, tile c has yellow at the edge adjacent to g,
which now is green at this edge. By the new tile at position g, the orientation
of f changes if the right input color is blue, since yellow is no longer possible
as the color for the joint edge. These replacements do not alter the behavior of
the AND subpuzzles, other than giving the desired effect that solutions now are
unique.

The shapes of the single subpuzzles have changed by these replacements, which
might imply unintended interactions between various subpuzzles. However, es-
sentially by the argument given by Holzer and Holzer [HH04] about the minimal
horizontal distance between any two wires and/or gates being at least four, such
undesired interactions do not occur.
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3.3 Input and Output Subpuzzles

The BOOL subpuzzle represents the input gates of the circuit. This subpuzzle
has only two valid solutions, either its output is blue (if the corresponding input
variable is true), or it is red (if the corresponding input variable is false). This
ensures that subsequent subpuzzles can obtain only these two colors as input.

The subpuzzle TEST tests whether the function value computed by the circuit
is true or not. This subpuzzle has only one valid solution, namely that its input
is blue (which means that the circuit evaluates to true).

Obviously, neither of these subpuzzles, BOOL and TEST, do require any
modification, and they are the only subpuzzles from [HH04] not modified. For
completeness, we present them in Figures 9 and 10.

(a) Out: true (b) Out: false (c) Scheme

Fig. 9. Subpuzzle BOOL, see [HH04]

(a) Output (b) Scheme

Fig. 10. Subpuzzle TEST, see [HH04]

3.4 Proof of Theorem 4

We are now ready to prove Theorem 4. Let SAT denote the satisfiability problem.

Lemma 5. SAT parsimoniously reduces to Circuit∧,¬-SAT.

Proof. Note that the problems SAT and Circuit-SAT (which is the same as
Circuit∧,¬-SAT except with OR gates allowed as well) are equivalent under par-
simonious reductions [Pap94]. Since OR gates can be expressed by AND and
NOT gates without changing the number of solutions, this gives a parsimonious
reduction from SAT to Circuit∧,¬-SAT. ❑

Now, the parsimonious reduction from SAT to TRP immediately follows from
Lemma 5 and the construction and the arguments presented in Sections 3.1, 3.2,
and 3.3.
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4 The Unique TantrixTM Rotation Puzzle Problem Is
DP-Complete Under Randomized Reductions

Valiant and Vazirani introduced randomized polynomial-time reductions in their
work showing that NP is as easy as detecting unique solutions [VV86]. We
will use ≤p

ran to denote their type of reductions. In particular, Valiant and
Vazirani [VV86] proved that Unique-SAT, the unique version of SAT, is ≤p

ran -
complete in DP (see also Chang, Kadin, and Rohatgi [CKR95]).

Theorem 6. 1. Unique-SAT parsimoniously reduces to Unique-TRP.
2. Unique-TRP is DP-complete under ≤p

ran-reductions.

Proof. To prove the first part, note that by Lemma 5 and Theorem 4, we
obtain a parsimonious reduction from SAT to TRP. It follows that Unique-SAT
parsimoniously reduces to Unique-TRP.

The second part follows from the first part and Valiant and Vazirani’s above-
mentioned result that Unique-SAT is ≤p

ran -complete in DP, and from the obvious
fact that Unique-TRP is in DP. ❑

Acknowledgments. We thank the anonymous MCU 2007 referees for their
helpful comments.
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