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Abstract. We investigate issues regarding two hard problems related
to voting, the optimal weighted lobbying problem and the winner prob-
lem for Dodgson elections. Regarding the former, Christian et al. [2]
showed that optimal lobbying is intractable in the sense of parameter-
ized complexity. We provide an efficient greedy algorithm that achieves
a logarithmic approximation ratio for this problem and even for a more
general variant—optimal weighted lobbying. We prove that essentially
no better approximation ratio than ours can be proven for this greedy
algorithm.

The problem of determining Dodgson winners is known to be complete
for parallel access to NP [11]. Homan and Hemaspaandra [10] proposed
an efficient greedy heuristic for finding Dodgson winners with a guar-
anteed frequency of success, and their heuristic is a “frequently self-
knowingly correct algorithm.” We prove that every distributional prob-
lem solvable in polynomial time on the average with respect to the uni-
form distribution has a frequently self-knowingly correct polynomial-time
algorithm. Furthermore, we study some features of probability weight of
correctness with respect to Procaccia and Rosenschein’s junta distribu-
tions [15].

1 Introduction

Preference aggregation and election systems have been studied for centuries in
social choice theory, political science, and economics. Recently, these topics have
become the focus of attention in various areas of computer science as well, such
as artificial intelligence (especially with regard to distributed AI in multiagent
settings), systems (e.g., for spam filtering), and computational complexity.
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This paper’s topic is motivated by two hard problems that both are related
to voting, the optimal weighted lobbying problem and the winner problem for
Dodgson elections. Regarding the former problem, Christian et al. [2] defined its
unweighted variant as follows: Given a 0-1 matrix that represents the No/Yes
votes for multiple referenda in the context of direct democracy, a positive in-
teger k, and a target vector (of the outcome of the referenda) of an external
actor (“The Lobby”), is it possible for The Lobby to reach its target by chang-
ing the votes of at most k voters? They proved the optimal lobbying problem
complete for the complexity class W[2], thus providing strong evidence that it is
intractable even for small values of the parameter k. However, The Lobby might
still try to find an approximate solution efficiently. We propose an efficient greedy
algorithm that establishes the first approximation result for the weighted version
of this problem in which each voter has a price for changing his or her 0-1 vector
to The Lobby’s specification. Our approximation result applies to Christian et
al.’s original optimal lobbying problem (in which each voter has unit price), and
also provides the first approximation result for that problem. In particular, we
achieve logarithmic approximation ratios for both these problems.

The Dodgson winner problem was shown NP-hard by Bartholdi, Tovey, and
Trick [1]. Hemaspaandra, Hemaspaandra, and Rothe [11] optimally improved
this result by showing that the Dodgson winner problem is complete for PﬂIP,
the class of problems solvable via parallel access to NP. Since these hardness
results are in the worst-case complexity model, it is natural to wonder if one
at least can find a heuristic algorithm solving the problem efficiently for “most
of the inputs occurring in practice.” Homan and Hemaspaandra [10] proposed
a heuristic, called Greedy-Winner, for finding Dodgson winners. They proved
that if the number of voters greatly exceeds the number of candidates (which in
many real-world cases is a very plausible assumption), then their heuristic is a
frequently self-knowingly correct algorithm, a notion they introduced to formally
capture a strong notion of the property of “guaranteed success frequency” [10].
We study this notion in relation with average-case complexity. We also investi-
gate Procaccia and Rosenschein’s notion of deterministic heuristic polynomial
time for their so-called junta distributions, a notion they introduced in their
study of the “average-case complexity of manipulating elections” [15]. We show
that under the junta definition, when stripped to its basic three properties, ev-
ery NP-hard set is <P -reducible to a set in deterministic heuristic polynomial
time relative to some junta distribution and we also show a very broad class of
sets (including many NP-complete sets) to be in deterministic heuristic polyno-
mial time relative to some junta distribution. We note (see also [17]) that the
“average-case complexity” results of [15] are not really average-case complexity
results (in the sense of being about some sort of averaging of running times), but
rather are frequency of correctness—or, to be more precise, probability weight
of correctness—results (as are also the results of Homan and Hemaspaandra).

This paper is organized as follows. In Section 2, we propose and analyze an
efficient greedy algorithm for approximating the optimal weighted lobbying prob-
lem. In Section 3, we show that every problem solvable in average-case polyno-
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mial time with respect to the uniform distribution has a frequently self-knowingly
correct polynomial-time algorithm, and we study Procaccia and Rosenschein’s
junta distributions. The heuristic Greedy-Score on which Greedy-Winner is
based [10], some technical definitions from average-case complexity theory [13,
9, 18], and the proofs omitted due to space constraints can be found in the full
version of this paper [6].

2 Approximating Optimal Weighted Lobbying

2.1 Optimal Lobbying and its Weighted Version

Christian et al. [2] introduced and studied the following problem. Suppose there
are m voters who vote on n referenda, and there is an external actor, which is
referred to as “The Lobby” and seeks to influence the outcome of these referenda
by making voters change their votes. It is assumed that The Lobby has complete
information about the voters’ original votes, and that The Lobby’s budget allows
for influencing the votes of a certain number, say k, of voters. Formally, the
Optimal-Lobbying problem is defined as follows: Given an mxn 0-1 matrix V'
(whose rows represent the voters, whose columns represent the referenda, and
whose 0-1 entries represent No/Yes votes), a positive integer k& < m, and a
target vector x € {0,1}", is there a choice of k rows in V such that by changing
the entries of these rows the resulting matrix has the property that, for each j,
1 < j < n, the jth column has a strict majority of ones (respectively, zeros) if
and only if the jth entry of the target vector x of The Lobby is one (respectively,
zero) [2]7

Christian et al. [2] showed that Optimal-Lobbying (with respect to parame-
ter k, the number of voters influenced by The Lobby) is complete for the com-
plexity class W[2]; see, e.g., Downey and Fellows [4] and Flum and Grohe [7] for
background on the theory of parameterized complexity and in particular for the
definition of WJ[2].

This result is considered strong evidence that Optimal-Lobbying is in-
tractable, even for small values of the parameter k. However, even though the
optimal goal of The Lobby cannot be achieved efficiently, it might be approx-
imable within some factor. That is, given an mxn 0-1 matrix V' and a target
vector € {0,1}", The Lobby might try to reach its target by changing the
votes of as few voters as possible.

We consider the more general problem Optimal-Weighted-Lobbying, where
we assume that influencing the 0-1 vector of each voter v; exacts some price,
price(v;) € Q, where Q denotes the set of nonnegative rational numbers. In
this scenario, The Lobby seeks to minimize the amount of money spent to
reach its goal. The problem Optimal-Lobbying (redefined as an optimization
problem rather than a parameterized problem) is the unit-prices special case
of Optimal-Weighted-Lobbying, i.e., where price(v;) = 1 for each voter v;. It
follows that Optimal-Weighted-Lobbying (redefined as a parameterized rather
than an optimization problem, where the parameter is The Lobby’s budget of
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money to be spent) inherits the W[2]-hardness lower bound from its special case
Optimal-Lobbying, and that the logarithmic approximation algorithm we build
for Optimal-Weighted-Lobbying will provide the same approximation ratio for
Optimal-Lobbying.

In the remainder of this section, we describe and analyze an efficient greedy
algorithm for approximating Optimal-Weighted-Lobbying.

2.2 A Greedy Algorithm for Optimal Weighted Lobbying

Let a matrix V € {0,1}™*" be given, where the columns ry,79,...,7, of V
represent the referenda and the rows vy, ve,..., v, of V represent the voters.
Without loss of generality, we may assume that The Lobby’s target vector is of
the form z = 1" (and thus may be dropped from the problem instance), since
if there is a zero in = at position j, we can simply flip this zero to one and also
flip the corresponding zeros and ones in column 7;.

For each column 7}, define the deficit d; to be the minimum number of zeros
that need to be flipped to ones such that there are strictly more ones than zeros
in this column. Let Dy = Z?Zl d; be the sum of all initial deficits.

Figure 1 gives the greedy algorithm, which proceeds by iteratively choosing
a most “cost-effective” row of V' and flipping to ones all those zeros in this row
that belong to columns with a positive deficit, until the deficits in all columns
have decreased to zero. We assume that ties between rows with equally good
cost-effectiveness are broken in any simple way, e.g., in favor of the tied v; with
lowest <.

Let R be the set of columns of V' whose deficits have already vanished at
the beginning of an iteration, i.e., all columns in R already have a strict ma-
jority of ones. Let v;1r- denote the entries of v; restricted to those columns not
in R, and let #0(v;)ge) denote the number of zeros in v;)ge. (For 4 such that
#o(vi1re) = 0, we consider price(v;)/#0(vi1re) to be +00.) During an iteration,
the cost per flipped entry in row v; (for decreasing the deficits in new columns by
flipping v;’s zeros to ones) is price(v;)/#o(vi1re ). We say a voter v; is more cost-
effective than a voter v; if v;’s cost per flipped entry is less than v;’s. When our
algorithm chooses to alter a row v;, we will think of its price being distributed
equally among the new columns with decreased deficit, and at that instant will
permanently associate with every flipped entry, e, in that row its portion of the
cost, i.e., cost(ex) = price(v;)/#o(vi1re)-

Clearly, the greedy algorithm in Figure 1 always stops, and its running time
is polynomial, since the while loop requires only linear (in the input size) time
and has to be executed at most Do = > 7, d; < n-[(m +1)/2] times (note
that at most [(m + 1)/2] flips are needed in each column to achieve victory for
The Lobby’s position).

Now, enumerate the Dy entries of V' that have been flipped in the order in
which they were flipped by the algorithm. Let ej,es,...,ep, be the resulting
enumeration. Let OPT be the money that would be spent by The Lobby for an
optimal choice of voters such that its target is reached.
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1. Input: A matrix V € {0,1}™*".
2. Initialize:
Compute the deficits d;, 1 < j < n.
D370 d;. /* Initially, D = Dg. x/
X 0.
3. While D # 0 do
Let R be the set of columns 7; with d; = 0.
Find a voter whose cost-effectiveness is greatest, say v;.
Let i = price(vi)/#o(vi re).
Choose v; and flip all zeros in v;1ge to ones.
For each flipped entry e in v;, let cost(e) = ;.
/* cost(e) will be used in our analysis. */
X — X U {i}.
d;j « dj — 1, for each column r; for which a zero was flipped.
D «— Z;‘lzl dj.
4. Output: X.

Fig. 1. Greedy algorithm for Optimal-Weighted-Lobbying

Lemma 1. For each k € {1,2,..., Do}, we have cost(er) < OPT/(Do—k+1).
The proof of Lemma 1 can be found in the full version of this paper [6].

Theorem 1. The greedy algorithm presented in Figure 1 approximates the prob-
lem Optimal-Weighted-Lobbying with approximation ratio at most

D
=1
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i

Proof. The total price of the set of voters X picked by the greedy algo-
rithm is the sum of the costs of those entries flipped. That is, price(X) =

> iex price(vi) = ZkD:01 cost(er) < (1 + % + 1+ DLU) - OPT, where the last

inequality follows from Lemma 1. O

Since the input size is lower-bounded by m - n, Theorem 1 establishes a
logarithmic approximation ratio for Optimal-Weighted-Lobbying (and also for
Optimal-Lobbying). Note that the proof of Theorem 1 establishes an approxi-
mation ratio bound that is (sometimes nonstrictly) stronger than Zi”l 1/i. In
particular, if the number of zeros flipped in successive iterations of the algo-
rithm’s while loop are 1, o, ..., {,, where {1 + {5+ -+, = Dy, then the proof
gives a bound on the approximation ratio of

ﬁ+£72+ + Ep —igij
DO Dofgl Do* (€1+"'+€P*1) j=1 DO*Zi;i gk
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L [mafra[rs] o [ rn |l price(w) |
VU1 0 1 1 1 1

V2 1 0 1 1 1/2

VU3 1 1 0 1 1/3

Un, 1 1 1 0 1/n
Un+1 0 0 0 0 1+e€
Un42 1 0 0 0 2
Un+3 0 1 0 0 2
Un+4 0 0 1 0 2
van+1|| O 0 0 1 2

Table 1. A tight example for the greedy algorithm in Figure 1

This is strictly better than Zfi’l 1/i except in the case that each ¢; equals 1.
And this explains why, in the example we are about to give that shows that
the algorithm can at times yield a result with ratio essentially no better than
le:ol 1/, each ¢; will equal 1.

Now, we show that the Zfi’l 1/ approximation ratio stated in Theorem 1
is essentially the best possible that can be stated for the greedy algorithm of
Figure 1. Consider the example given in Table 1. The prices for changing the
voters’ 0-1 vectors are shown in the right-most column of Table 1: Set price(v;) =
1/i for each i € {1,2,...,n}, set price(v;) =2 for each i € {n+2,n+3,...,2n+
1}, and set price(vp+1) =1 + €, where € > 0 is a fixed constant that can be set
arbitrarily small. Note that, for each j, 1 < 7 < n, we have d; = 1, and hence
D() =n.

When run on this input, our greedy algorithm sequentially flips, for ¢ =
n,n —1,...,1, the single zero-entry of voter v; to a one. Thus the total money
spent is 1 +1/2+---+1/n=1+1/24+---+1/Dy. On the other hand, the
optimal choice consists of influencing just voter v,41 by flipping all of v,11’s
entries to ones, which costs only 1 + e.

3 Frequency of Correctness versus Average-Case
Polynomial Time

3.1 A Motivation: How to Find Dodgson Winners Frequently

An election (C,V) is given by a set C of candidates and a set V of voters, where
each vote is specified by a preference order on all candidates and the underlying
preference relation is strict (i.e., irreflexive and antisymmetric), transitive, and
complete. A Condorcet winner of an election is a candidate ¢ such that for each
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candidate j # 1, a strict majority of the voters prefer ¢ to j. Not all elections have
a Condorcet winner, but when a Condorcet winner exists, he or she is unique. In
1876, Dodgson [5] proposed an election system that is based on a combinatorial
optimization problem: An election is won by those candidates who are “closest”
to being a Condorcet winner. More precisely, given a Dodgson election (C, V),
every candidate ¢ in C' is assigned a score, denoted by DodgsonScore(C,V, ¢),
which gives the smallest number of sequential exchanges of adjacent preferences
in the voters’ preference orders needed to make ¢ a Condorcet winner with respect
to the resulting preference orders. Whoever has the lowest Dodgson score wins.

The problem Dodgson-Winner is defined as follows: Given an election (C, V')
and a designated candidate ¢ in C, is ¢ a Dodgson winner in (C, V)? (The search
version of this decision problem can easily be stated.) As mentioned earlier,
Hemaspaandra et al. [11] have shown that this problem is Pwp—complete.

It certainly is not desirable to have an election system whose winner problem
is hard, as only systems that can be evaluated efficiently are actually used in
practice. Fortunately, there are a number of positive results on Dodgson elections
and related systems as well (see, e.g., [1, 8,16, 14]). One of these positive results
is due to Homan and Hemaspaandra [10] who proposed a greedy heuristic that
finds Dodgson winners with a “guaranteed high frequency of success.” To capture
a strengthened version of this property formally, they introduced the notion of
a “frequently self-knowingly correct algorithm.”

Definition 1 ([10]). Let f : S — T be a function, where S and T are sets. We
say an algorithm A : S — T x { “definitely”, “maybe”} is self-knowingly correct
for f if, for each s € S and t € T, whenever A on input s outputs (t, “definitely”)
then f(s) =t. An algorithm A that is self-knowingly correct for g : X* — T is
said to be frequently self-knowingly correct for g if

i Mz € 2" [ A(z) € T x { “maybe”}}| _
oo 2]

0.

3.2 On AvgP and Frequently Self-Knowingly Correct Algorithms

The theory of average-case complexity was initiated by Levin [13]. A prob-
lem’s average-case complexity can be viewed as a more significant measure than
its worst-case complexity in many cases, for example in cryptographic appli-
cations. For an excellent introduction to this theory, we refer to Goldreich [9]
and Wang [18]. Formal definitions can be found there and in the full version
of this paper [6]. An alternative view of the definition of Levin’s class average
polynomial time (AvgP) was provided by Impagliazzo [12].

Definition 2 ([12]). An algorithm computes a function f with benign faults
if it either outputs an element of the image of f or “?7,” and if it outputs any-
thing other than “?” it is correct. For any distribution p on X*, let p<, denote
the restriction of p to strings of length at most n. A polynomial-time benign
algorithm scheme for a function f on u is an algorithm A(x,d) such that:



8 G. Erdélyi, L. Hemaspaandra, J. Rothe, and H. Spakowski

1. A runs in time polynomial in |z| and 1/6.
2. A computes f with benign faults.
8. For each 6,0 < <1, and for each n € N*, Prob,_ [A(z,d) = ?] <.

Our main result in this section is that every distributional problem that has
a polynomial-time benign algorithm scheme with respect to the uniform distri-
bution must also have a frequently self-knowingly correct polynomial-time algo-
rithm. It follows that all uniformly distributed AvgP problems have a frequently
self-knowingly correct polynomial-time algorithm. The proofs of Theorem 2 and
Proposition 1 (which says that the converse implication of that of Corollary 1
below is not true) can be found in the full version of this paper [6].

Theorem 2. Suppose that A(x,d) is a polynomial-time benign algorithm
scheme for a distributional problem f on the standard uniform distribution. Then
there is a frequently self-knowingly correct polynomial-time algorithm A’ for f.

Theorem 2 and Proposition 2 in [12] establish the following corollary.

Corollary 1. FEwvery distributional problem that under the standard uniform dis-
tribution is in AvgP has a frequently self-knowingly correct polynomial-time al-
gorithm.

Proposition 1. There exist (distributional) problems with a frequently self-
knowingly correct polynomial-time algorithm that are not in AvgP under the
standard uniform distribution.

3.3 A Basic Junta Distribution for SAT

Procaccia and Rosenschein [15] introduced “junta distributions” in their study
of NP-hard manipulation problems for elections. The goal of a junta is to be
such a hard distribution (that is, to focus so much weight on hard instances)
that, loosely put, if a problem is easy relative to a junta then it will be easy
relative to any reasonable distribution (such as the uniform distribution). This
is a goal, not (currently) a theorem; Procaccia and Rosenschein [15] do not
formally establish this, but rather seek to give a junta definition that might
satisfy this. Their paper in effect encourages others to weigh in and study the
suitability of the notion of a junta and the notion built on top of it, heuristic
polynomial time. Furthermore, they repeatedly describe their theory as one of
average-case complexity. In the full version of this paper [6] we suggest that
it is potentially confusion-inducing to describe their theory as one of average-
case complexity. Their theory adds to the study of frequency of correctness the
notion of probability weight of correctness. This is a very valuable direction, but
we point out (see also [17]) that it is neither explicitly about, nor does it seem to
implicitly yield claims about, average-case complexity. Their paper states that
work of Conitzer and Sandholm [3] is also about average-case complexity but,
similarly, we mention that that work is not about average-case complexity; it
is about (and carefully and correctly frames itself as being about) frequency of
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correctness. We do not mean this as a weakness: We feel that frequency of (or
probability weight of) correctness, most especially when as in the work of Homan
and Hemaspaandra [10] the algorithm is “self-knowingly” correct a guaranteed
large portion of the time, is an interesting and important direction.

Regarding Procaccia and Rosenschein’s notion of juntas, they state three
“basic” conditions for a junta, and then give two additional ones that are tai-
lored specifically to the needs of NP-hard voting manipulation problems. They
state their hope that their scheme will extend more generally, using the three
basic conditions and potentially additional conditions, to other mechanism prob-
lems. One might naturally wonder whether their junta/heuristic polynomial-
time/susceptibility approach applies more generally to studying the probability
weight of correctness for NP-hard problems, since their framework in effect (aside
from the two “additional” junta conditions just about voting manipulation) is
a general one relating problems to probability weight of correctness. We first
carefully note that in asking this we are taking their notion beyond the realm
for which it was explicitly designed, and so we do not claim to be refuting any
claim of their paper. What we will do, however, is show that the three basic con-
ditions for a junta are sufficiently weak that one can construct a junta relative
to which the standard NP-complete problem SAT—and a similar attack can be
carried out on a wide range of natural NP-complete problems—has a determinis-
tic heuristic polynomial-time algorithm. So if one had faith in the analog of their
approach, as applied to SAT, one would have to believe that under essentially
every natural distribution SAT is easy (in the sense that there is an algorithm
with a high probability weight of correctness under that distribution). Since the
latter is not widely believed, we suggest that the right conclusion to draw from
the main result of this section is simply that if one were to hope to effectively
use on typical NP-complete sets the notion of juntas and of heuristic polynomial
time w.r.t. juntas, one would almost certainly have to go beyond the basic three
conditions and add additional conditions. Again, we stress that Procaccia and
Rosenschein didn’t focus on examples this far afield, and even within the world
of mechanisms implied that unspecified additional conditions beyond the core
three might be needed when studying problems other than voting manipulation
problems. This section’s contribution is to give a construction indicating that
the core three junta conditions, standing on their own, seem too weak.

Since we will use the Procaccia—Rosenschein junta notion in a more general
setting than merely manipulation problems, we to avoid any chance of confusion
will use the term “basic junta” to denote that we have removed the word “ma-
nipulation” and that we are using their three “basic” properties, and not the two
additional properties that are specific to voting manipulation. Our definition of
“deterministic heuristic polynomial-time algorithm” is identical to theirs, except
we have replaced the word “junta” with “basic junta”’—and so again we are al-
lowing their notion to be extended beyond just manipulation and mechanism
problems.

Definition 3 (see [15]). Let p = {n fnen be a distribution over the possible
instances of an NP-hard problem L. (In this model, each u, sums to 1 over all
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length n instances.) We say p is a basic junta distribution if and only if 1 has
the following properties:

1. Hardness: The restriction of L to u is the problem whose possible instances
are only U, cniz | 2] = n and p, (x) > 0}. Deciding this restricted problem
is still NP-hard.

2. Balance: There exist constants ¢ > 1 and N € N such that for alln > N
and for all instances x, |x| =n, we have 1/c¢ < Prob, [r € L] <1—1/ec.

3. Dichotomy: There exists some polynomial p such that for all n and for all
instances x, |x| = n, either u,(x) > 2P or u,(z) = 0.

Let (L, 1) be a distributional decision problem (see, e.g., [6, Definition B.1]). An
algorithm A is said to be a deterministic heuristic polynomial-time algorithm for
(L, ) if A is a deterministic polynomial-time algorithm and there exist a polyno-

mial ¢ and N € N such that for each n > N, Prob,, [z ¢ L <= A accepts x] <
1

a(n)”

We now explore their notion of deterministic heuristic polynomial time and
their notion of junta, both however viewed for general NP problems and using
the “basic” three conditions. We will note that the notion in such a setting is in
some senses not restrictive enough and in other senses is too restrictive. Let us
start with the former. We need a definition.

Definition 4. We will say that a set L is well-pierced (respectively, uniquely
well-pierced) if there exist sets Pos € P and Neg € P such that Pos C L,
Neg C L, and there is some N € N such that at each length n > N, each of Pos
and Neg has at least one string at length n (respectively, each of Pos and Neg
has exactly one string at length n).

Each uniquely well-pierced set is well-pierced. Note that, under quite natural
encodings, such NP-complete sets as, for example, SAT certainly are well-pierced
and uniquely well-pierced. (All this says is that, except for a finite number of
exceptional lengths, there is one special string at each length that can easily,
uniformly be recognized as in the set and one that can easily, uniformly be
recognized as not in the set.) Indeed, under quite natural encodings, undecidable
problems such as the halting problem are uniquely well-pierced.

Recall that juntas are defined in relation to an infinite list of distributions,
one per length (so pt = {pn}nen). The Procaccia and Rosenschein definition of
junta does not explicitly put computability or uniformity requirements on such
distributions in the definition of junta, but it is useful to be able to make claims
about that. So let us say that such a distribution is uniformly computable in
polynomial time (respectively, is uniformly computable in exponential time) if
there is a polynomial-time function (respectively, an exponential-time function)
f such that for each i and each z, f(i,x) outputs the value of p;(x) (say, as a
rational number—if a distribution takes on other values, it simply will not be
able to satisfy our notion of good uniform time).
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Theorem 3. Let A be any NP-hard set that is well-pierced. Then there ex-
ists a basic junta distribution relative to which A has a deterministic heuris-
tic polynomial-time algorithm (indeed, it even has a deterministic heuristic
polynomial-time algorithm whose error weight is bounded not merely by 1/poly
as the definition requires, but is even bounded by 1/2"2_"). Moreover, the junta
1s uniformly computable in exponential time, and if we in addition assume that
A is uniquely well-pierced, the junta is uniformly computable in polynomial time.

The proof of Theorem 3, additional results, and extensive related discussions
on the junta approach can be found in the full version of this paper [6].

4 Conclusions

Christian et al. [2] introduced the optimal lobbying problem and showed it com-
plete for W[2], and so generally viewed as intractable in the sense of parame-
terized complexity. In Section 2, we proposed an efficient greedy algorithm for
approximating the optimal solution of this problem, even if generalized by assign-
ing prices to voters. This greedy algorithm achieves a logarithmic approximation
ratio and we prove that that is essentially the best approximation ratio that can
be proven for this algorithm. We mention as an interesting open issue whether
more elaborate algorithms can achieve better approximation ratios.

Section 3 studied relationships between average-case polynomial time, be-
nign algorithm schemes, and frequency (and probability weight) of correctness.
We showed that all problems having benign algorithm schemes relative to the
uniform distribution (and thus all sets in average-case polynomial time relative
to the uniform distribution) have frequently self-knowingly correct algorithms.
We also studied, when limited to the “basic” three junta conditions, the notion
of junta distributions and of deterministic heuristic polynomial time, and we
showed that they admit some extreme behaviors. We argued that determinis-
tic heuristic polynomial time should not be viewed as a model of average-case
complexity.
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