
Springer Texts in Business and Economics

Economics
and
Computation

Jörg Rothe
Editor

An Introduction to Algorithmic Game
Theory, Computational Social Choice,
and Fair Division

Springer Texts in Business and Economics

rothe@cs.uni-duesseldorf.de

http://www.springer.com/series/10099

More information about this series at http://www.springer.com/series/10099

rothe@cs.uni-duesseldorf.de

2123

J rg Rotheö

Economics and Computation
An Introduction to Algorithmic Game

and Fair Division
Theory, Computational Social Choice,

Editor

Illustrations by Irene Rothe

rothe@cs.uni-duesseldorf.de

Library of Congress Control Number: 2015948869

© pringe 016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

Printed on acid-free paper

r-Verlag Berlin Heidelberg 2 S

Jörg Rothe
Department of Computer Science
Heinrich-Heine-Universität Düsseldorf
Düsseldorf, Germany

Editor

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media (www.springer.com)

Springer Heidelberg New York Dordrecht London

Illustrations by Irene Rothe

ISSN 2192-4333 ISSN 2192-4341 (electronic)
Springer Texts in Business and Economics
ISBN 978-3-662-47903-2 ISBN 978-3-662-47904-9 (eBook)
DOI 10.1007/978-3-662-47904-9

rothe@cs.uni-duesseldorf.de

http://www.springer.com

Foreword by Matthew O. Jackson and Yoav Shoham

One of the most exciting, interesting, and important areas of interdisciplinary
research over the past two decades has been at the juncture of computer
science and economics, breathing new life into game-theoretic analyses of the
many mechanisms and institutions that pervade our lives. It is an area that
gives rise to fascinating intellectual problems, that are at the same time highly
relevant to electronic commerce and other significant areas of life in the 21st
century. In particular, the focus on complexity has not only forced important
practical considerations to be taken into account in designing systems from
elections to auctions, but has also provided new insights into why we see
specific institutional features rather than more complex cousins that might
be better from an unconstrained theoretical perspective.

The literature has rapidly advanced on this subject, and it is getting to
the point where it is increasingly difficult to keep track of what is known and
what is not, and what general insights are emerging. This volume fills a critical
void. While there exist other, excellent publications covering some parts of
this growing and sprawling literature, notably missing has been coverage of
the areas of computational social choice and fair division, the focus of this
volume. Its coverage is broad and encompassing: from voting systems, to
judgment aggregation, to the allocation of indivisible goods, to the age-old
problem of fair division viewed through a new lens. Moreover, it provides
a very accessible introduction that should be required reading for anyone
venturing into the area for the first time. We offer our congratulations to the
editor and the authors for this impressive achievement.

Matthew O. Jackson and Yoav Shoham
Stanford University, Palo Alto, USA

May 2015

v

rothe@cs.uni-duesseldorf.de

Preface by the Editor

Our work on this book has started in 2012, shortly after its German prede-
cessor, “Einführung in Computational Social Choice: Individuelle Strategien
und kollektive Entscheidungen beim Spielen, Wählen und Teilen” [510], was
published by Spektrum Akademischer Verlag. However, the present book is
not merely a translation of this former book into English: Each of its chap-
ters is considerably more comprehensive than in the predecessor, there is one
additional chapter (namely, Chapter 5 on the complexity of manipulative
actions in single-peaked societies), and instead of having only four authors,
this book has been written by ten authors. That is why this book assigns
authors specifically to the chapters they have written. While each of the four
authors of the German book has been working hard to extend and improve
her or his chapter(s), I am proud and grateful to have found and persuaded
six additional authors, each an internationally renowned expert of her or his
field, to contribute to this book.

Here is some information on each of the ten authors and on their chapters:

• Dorothea Baumeister1 from Heinrich-Heine-Universität Düsseldorf, Ger-
many, has coauthored Chapter 4 on preference aggregation by voting and
Chapter 6 on judgment aggregation,

• Edith Elkind from University of Oxford, UK, has coauthored Chapter 3
on cooperative game theory,

• Gábor Erdélyi2 from University of Siegen, Germany, has coauthored Chap-
ter 6 on judgment aggregation,

• Piotr Faliszewski3 from AGH University of Science and Technology in
Kraków, Poland, has coauthored Chapter 2 on noncooperative game the-
ory,

• Edith Hemaspaandra4 from Rochester Institute of Technology, USA, has
coauthored Chapter 5 on the complexity of manipulative actions in single-
peaked societies,

1 Her work has been supported in part by an NRW grant for gender-sensitive universities
supporting her as a junior professor for Computational Social Choice and by the project
“Online Partizipation,” both funded by the NRW Ministry for Innovation, Science, and
Research, and by DFG grant RO-1202/15-1.
2 His work has been supported in part by DFG grant ER-738/2-1, by “Förderverein
des FB Wirtschaftswissenschaften, Wirtschaftsinformatik und Wirtschaftsrecht der Uni-
versität Siegen e.V.,” and by the Short-term Scientific Mission program of COST Ac-
tion IC1205 on Computational Social Choice.
3 His work has been supported in part by AGH University grant 11.11.230.124.
4 Her work has been supported in part by NSF grant CCF-1101452 and by COST
Action IC1205 on Computational Social Choice.

vi Preface

rothe@cs.uni-duesseldorf.de

Preface vii

• Lane A. Hemaspaandra5 from University of Rochester, USA, also has
coauthored Chapter 5 on the complexity of manipulative actions in single-
peaked societies,

• Jérôme Lang6 from CNRS-LAMSADE, Université Paris-Dauphine, France,
has coauthored Chapter 8 on fair division of indivisible goods,

• Claudia Lindner from University of Manchester, UK, has coauthored Chap-
ter 7 on cake-cutting: fair division of divisible goods,

• Irene Rothe from Bonn-Rhein-Sieg University of Applied Sciences, Ger-
many, has coauthored Chapter 2 on noncooperative game theory, and

• Jörg Rothe7 from Heinrich-Heine-Universität Düsseldorf, Germany, has
written introductory Chapter 1 and has coauthored Chapters 2–8.

The subject of this book, generally speaking, is collective decision making
in three areas, each having both an economical and a computational dimen-
sion. Accordingly, the book is divided into three parts:

Part I (Playing Successfully) is concerned with algorithmic game the-
ory, where Chapter 2 introduces to noncooperative games and Chapter 3
to cooperative games, focusing on their computational aspects.

Part II (Voting and Judging) introduces to computational social
choice. Chapter 4 is concerned with preference aggregation by voting, first
providing some background from social choice theory and then focusing on
the complexity of determining (possible and necessary) winners in elections
and of manipulative actions to influence their outcomes. Chapter 5 sheds
some light on the complexity of manipulative actions in single-peaked soci-
eties. Chapter 6 introduces to the emerging field of judgment aggregation,
again with a focus on the complexity of related problems.

Part III (Fair Division) deals with mechanisms of fair division among a
number of players, both for fairly dividing a divisible good (an area known
as “cake-cutting”) in Chapter 7 and for fairly dividing indivisible goods in
Chapter 8, again focusing on computational aspects.

These three parts are preceded by a brief introduction to playing, voting,
and dividing in Chapter 1, which also gives the needed notions from compu-
tational complexity theory to be used throughout the book.

5 His work has been supported in part by NSF grants CCF-0915792 and CCF-1101479
and by COST Action IC1205 on Computational Social Choice.
6 His work has been supported in part by ANR Project CoCoRICo-CoDec, by the DAAD-
PPP/PHC PROCOPE program entitled “Fair Division of Indivisible Goods: Incomplete
Preferences, Communication Protocols and Computational Resistance to Strategic Be-
havior,” and by COST Action IC1205 on Computational Social Choice.
7 His work has been supported in part by DFG grants RO-1202/14-1 and RO-1202/15-1,
the DAAD-PPP/PHC PROCOPE program entitled “Fair Division of Indivisible Goods:
Incomplete Preferences, Communication Protocols and Computational Resistance to
Strategic Behavior,” by the project “Online Partizipation” funded by the NRW Ministry
for Innovation, Science, and Research, and by COST Action IC1205 on Computational
Social Choice.

rothe@cs.uni-duesseldorf.de

viii Preface

This book provides an accessible introduction to the areas mentioned
above, which makes it a valuable source for teaching. Indeed, I have taught
courses related to most of the single chapters of this book at my university
since 2009, and so have the other authors at their universities. A notewor-
thy feature of this book is that its most important concepts and ideas are
introduced not only in formal, technical terms but are also accompanied by
numerous examples (usually told as a story from everyday life and featuring
the same main characters throughout the book—have a look at the many
gray boxes for the stories and at Figure 1.1 on page 2 for the book’s main
characters!), a total of 119 figures and 59 tables, and wonderful illustrations
created by Irene Rothe.

Care has been taken to unify notation and formalism throughout the book,
and there are plenty of cross-references between the chapters to point the
reader to identical or closely related notions in different contexts. Moreover,
an extensive bibliography with 625 references and a comprehensive index of
more than 25 pages will be helpful for the reader. Note that authors are
indexed even if their names are hidden in “et al.” or in a plain reference
without author names.

Regarding personal pronouns, referring to individual players, voters, candi-
dates, judges, or agents by “she” alone or “he” alone would be inappropriate,
and referring to them as “it” is simply wrong and ugly; therefore, we follow
the approach of Chalkiadakis, Elkind, and Wooldridge [145] who promote an
interleaved, (semi-)random usage of “she” and “he.”

On a personal note, I’m deeply indebted to many individuals for their
help in proofreading the single chapters of this book. They have done a great
job, and my collective thanks go to Dorothea Baumeister, Piotr Faliszewski,
Daniel Neugebauer, Nhan-Tam Nguyen, Anja Rey, and Lena Schend.

I have been working on parts of this book during a number of research visits
to Université Paris-Dauphine, Stanford University (where I spent my sabbat-
ical in 2013), Rochester Institute of Technology, and University of Rochester,
and I’m grateful to the hosts of these visits, Jérôme Lang, Yoav Shoham,
Edith Hemaspaandra, and Lane A. Hemaspaandra, for their warm hospital-
ity. Last but not least, I thank Matthew O. Jackson and Yoav Shoham from
Stanford University for reading an early draft of this book and for contribut-
ing to its preface.

Jörg Rothe
Düsseldorf, Germany

May 2015

rothe@cs.uni-duesseldorf.de

Contents

ix

1 Playing, Voting, and Dividing . 1
J. Rothe

1.1 Playing . 3
1.1.1 Noncooperative Game Theory . 3
1.1.2 Cooperative Game Theory . 4

1.2 Voting . 5
1.2.1 Preference Aggregation by Voting 5
1.2.2 Manipulative Actions in Single-Peaked Societies 8
1.2.3 Judgment Aggregation . 8

1.3 Dividing . 9
1.3.1 Cake-cutting: Fair Division of Divisible Goods 9
1.3.2 Fair Division of Indivisible Goods 10
1.3.3 A Brief Digression to Single-Item Auctions 11

1.4 Some Literature Pointers . 16
1.5 A Brief Digression to Computational Complexity 17

1.5.1 Some Foundations of Complexity Theory 17
1.5.2 The Satisfiability Problem of Propositional Logic 23
1.5.3 A Brief Compendium of Complexity Classes 33

Part I Playing Successfully

2 Noncooperative Game Theory . 41
P. Faliszewski, I. Rothe, and J. Rothe

2.1 Foundations . 42
2.1.1 Normal Form, Dominant Strategies, and Equilibria . . . 43
2.1.2 Further Two-Player Games . 50

2.2 Nash Equilibria in Mixed Strategies . 60
2.2.1 Definition and Application to Two-Player Games 60

. vForeword by Matthew O. Jackson and Yoav Shoham

Contributors xiii

. .Preface by the Editor vi

rothe@cs.uni-duesseldorf.de

x Contents

2.3 Checkmate: Trees for Games with Perfect Information 81
2.3.1 Sequential Two-Player Games . 81
2.3.2 Equilibria in Game Trees . 94

2.4 Full House: Games with Incomplete Information 100
2.4.1 The Monty Hall Problem . 101
2.4.2 Analysis of a Simple Poker Variant 107

2.5 How Hard Is It to Find a Nash Equilibrium? 119
2.5.1 Nash Equilibria in Zero-Sum Games 119
2.5.2 Nash Equilibria in General Normal Form Games 122

3 Cooperative Game Theory . 135
E. Elkind and J. Rothe

3.1 Foundations . 136
3.1.1 Cooperative Games with Transferable Utility 137
3.1.2 Stability Concepts for Cooperative Games 140
3.1.3 Convex Games . 149

3.2 Simple Games . 151
3.2.1 The Core of a Simple Game . 152
3.2.2 Counting and Representing Simple Games 152
3.2.3 Weighted Voting Games . 153
3.2.4 Dimensionality . 157
3.2.5 Power Indices . 159
3.2.6 The Shapley–Shubik Index and the Shapley Value 160
3.2.7 The Banzhaf Indices . 166

3.3 Complexity of Problems for Succinctly Representable Games . 168
3.3.1 Games on Graphs . 169
3.3.2 Weighted Voting Games . 175
3.3.3 Hedonic Games . 183

Part II Voting and Judging

4 Preference Aggregation by Voting . 197
D. Baumeister and J. Rothe

4.1 Some Basic Voting Systems . 198
4.1.1 Scoring Protocols . 199
4.1.2 Voting Systems Based on Pairwise Comparisons 202
4.1.3 Approval Voting and Range Voting 213
4.1.4 Voting Systems Proceeding in Stages 215
4.1.5 Hybrid Voting Systems . 221
4.1.6 Overview of Some Fundamental Voting Systems 227

4.2 Properties of Voting Systems and Impossibility Theorems . . . 228
4.2.1 The Condorcet and the Majority Criterion 229
4.2.2 Nondictatorship, Pareto Consistency, and Consistency 231
4.2.3 Independence of Irrelevant Alternatives 235
4.2.4 Resoluteness and Citizens’ Sovereignty 237

2.2.2 Existence of Nash Equilibria in Mixed Strategies 69

rothe@cs.uni-duesseldorf.de

Contents

4.2.5 Strategy-Proofness and Independence of Clones 238
4.2.6 Anonymity, Neutrality, and Monotonicity 240
4.2.7 Homogeneity, Participation, and Twins Welcome 244
4.2.8 Overview of Properties of Voting Systems 249

4.3 Complexity of Voting Problems . 251
4.3.1 Winner Determination . 253
4.3.2 Possible and Necessary Winners . 260
4.3.3 Manipulation . 269
4.3.4 Control . 291
4.3.5 Bribery . 317

5 The Complexity of Manipulative Actions in Single-Peaked
Societies . 327
E. Hemaspaandra, L.A. Hemaspaandra, and J. Rothe

5.1 Single-Peaked Electorates . 331
5.2 Control of Single-Peaked Electorates . 334
5.3 Manipulation of Single-Peaked Electorates 344
5.4 Bribery of Single-Peaked Electorates . 351
5.5 Do Nearly Single-Peaked Electorates Restore Intractability? . 353

5.5.1 K -Maverick-Single-Peakedness . 355
5.5.2 Swoon-Single-Peakedness . 356

6 Judgment Aggregation . 361
D. Baumeister, G. Erdélyi, and J. Rothe

6.1 Foundations . 365
6.2 Judgment Aggregation Procedures and Their Properties 367

6.2.1 Some Specific Judgment Aggregation Procedures 368
6.2.2 Properties, Impossibility Results, and Characterizations371

6.3 Complexity of Judgment Aggregation Problems 374
6.3.1 Winner Determination in Judgment Aggregation 375
6.3.2 Safety of the Agenda. 376
6.3.3 Manipulation in Judgment Aggregation 376
6.3.4 Bribery in Judgment Aggregation 383
6.3.5 Control in Judgment Aggregation 387

6.4 Concluding Remarks . 391

Part III Fair Division

7 Cake-Cutting: Fair Division of Divisible Goods 395
C. Lindner and J. Rothe

7.1 How to Have a Great Party with only a Single Cake 395
7.2 Basics . 396
7.3 Valuation Criteria . 401

7.3.1 Fairness . 401
7.3.2 Efficiency . 410

xi

rothe@cs.uni-duesseldorf.de

xii Contents

7.3.3 Manipulability...................................411
7.3.4 Runtime..415

7.4 Cake-CuttingProtocols.................................416
7.4.1 TwoEnvy-FreeProtocolsforTwoPlayers...........417
7.4.2 ProportionalProtocolsfornPlayers................423
7.4.3 Super-ProportionalProtocolsfornPlayers..........445
7.4.4 ARoyal Wedding:DividingintoUnequalShares.....450
7.4.5 Envy-FreeProtocolsforThreeandFourPlayers......452
7.4.6 OversaltedCreamCake:Dirty-WorkProtocols.......461
7.4.7 AvoidingCrumbs:MinimizingtheNumberofCuts...466
7.4.8 DegreeofGuaranteedEnvy-Freeness................485
7.4.9 OverviewofSomeCake-CuttingProtocols...........489

8 FairDivisionofIndivisibleGoods.........................493
J.LangandJ.Rothe
8.1 Introduction...493
8.2 DefinitionandClassificationofAllocationProblems........495

8.2.1 AllocationProblems..............................495
8.2.2 ClassificationofAllocationProblems................496

8.3 PreferenceElicitationandCompactRepresentation.........500
8.3.1 OrdinalPreferenceLanguages......................502
8.3.2 CardinalPreferenceLanguages.....................504

8.4 CriteriaforAllocations..................................508
8.4.1 OrdinalCriteria..................................509
8.4.2 CardinalCriteria.................................511

8.5 ComputingAllocations:CentralizedMechanisms...........518
8.5.1 CentralizedFairDivisionwithOrdinalPreferences....519
8.5.2 CentralizedFairDivisionwithCardinalPreferences

withoutMoney...................................522
8.5.3 CentralizedFairDivisionwithCardinalPreferences

andMoney......................................532
8.6 DecentralizedAllocationProtocols........................538

8.6.1 TheDescendingDemandProtocols.................539
8.6.2 ThePickingSequencesProtocols...................541
8.6.3 ContestedPile-BasedProtocols:Undercut...........543
8.6.4 ProtocolsBasedonLocalExchanges................546

8.7 FurtherIssues..547
8.7.1 Strategy-Proofness...............................547
8.7.2 Matching..548
8.7.3 PrivateEndowments..............................549
8.7.4 RandomizedFairDivision.........................549

References..551

Index...587

...581List ofFigures

...585ListofTables .

rothe@cs.uni-duesseldorf.de

Contributors

Dorothea Baumeister, Heinrich-Heine-Universität Düsseldorf, Germany

Edith Elkind, University of Oxford, UK

Gábor Erdélyi, University of Siegen, Germany

Piotr Faliszewski, AGH University of Science and Technology, Kraków, Poland

Edith Hemaspaandra, Rochester Institute of Technology, USA

Lane A. Hemaspaandra, University of Rochester, USA

Jérôme Lang, CNRS-LAMSADE, Université Paris-Dauphine, France

Claudia Lindner, University of Manchester, UK

Irene Rothe, Bonn-Rhein-Sieg University of Applied Sciences, Germany

Jörg Rothe, Heinrich-Heine-Universität Düsseldorf, Germany

xiii

rothe@cs.uni-duesseldorf.de

Chapter 1

Playing, Voting, and Dividing

Jörg Rothe

Playing, voting, and dividing are three everyday activities we all are familiar
with. Having their personal chances of winning, their individual preferences,
and their private valuations in mind, the players, voters, and dividers follow
their individual strategies each. While everyone first and foremost is selfishly
interested in his own advantage only, from the interplay of all actors’ individ-
ual interests, strategies, and actions there will emerge a collective decision,
an outcome of the game with winnings or losings for all players, an elected
president ruling over all voters, or a division of the goods among all parties
concerned. By the end of the day, there will be winners and losers.

However, it is just one thing to maximize one’s individual profit in a game
or in a division of goods, or to make one’s favorite candidate win. It is quite
another thing to look at this from a more global perspective: Is it possible
to find mechanisms that increase the social or societal welfare and thus are
beneficial to all and not only to single individuals? So as to help, for example,
a whole family—both the parents and their children—choosing a consensual
weekend trip destination by voting. Or, so as to help three siblings playing a
parlor game to choose their strategies so optimally that none of them could
do better by picking another strategy without making any other player be
worse off at the same time. Or, so as to help them dividing a cake afterwards,
whose single pieces are valued differently by everyone, in a way that no one
will envy anyone else for their portion. Strategy-proofness of such mechanisms
and procedures is another important goal. If someone tries to get an unfair
advantage by choosing insincere strategies, is it possible to prevent that from
happening by using a strategy-proof mechanism?

This book introduces to three emerging, interdisciplinary fields at the in-
terface of economics and the political and social sciences on the one hand
and (various fields of) computer science and mathematics on the other hand:

• Algorithmic game theory will be handled in Chapters 2 and 3. Starting
from classical game theory that was pioneered by von Neumann [444] (see
also the early work by Borel [86] and the book by von Neumann and

1© Springer-Verlag Berlin Heidelberg 2016
, Springer Texts in Business and Economics, J. Rothe (ed.), Economics and Computation

DOI 10.1007/978-3-662-47904-9_1

rothe@cs.uni-duesseldorf.de

2 1 Playing, Voting, and Dividing

Morgenstern [445]), we will focus on algorithmic aspects of both noncoop-
erative and cooperative games.

• Computational social choice, arising from classical social choice theory (see,
e.g., the celebrated work of Nobel laureate Arrow [14]), is concerned with
the computational aspects of voting. In Chapter 4, we will introduce a vari-
ety of voting systems and study their properties. Particular attention will
be paid to algorithmic feasibility and complexity of winner determination,
the related concepts of possible and necessary winners, and of various ways
of influencing the outcome of elections by manipulation, control, or bribery.
In addition, we will study the complexity of such manipulative attacks for
so-called “single-peaked” electorates in Chapter 5. In Chapter 6, we will
introduce to the emerging field of judgment aggregation where individual
judgment sets of possibly interconnected logical propositions (rather than
individual preferences as in voting) are aggregated to come to a collective
decision.

• Fair division, finally, considers the problem of dividing goods among play-
ers who each can have quite different valuations of these goods. We will
look at “cake-cutting procedures” in Chapter 7, aiming to divide one single,
infinitely divisible good, the “cake.” And, last but not least, we will study
the issue of fairly allocating indivisible, nonshareable goods in Chapter 8, a
field closely related to “multiagent resource allocation” and “combinatorial
auctions.” Concepts of fairness (such as envy-freeness) and social welfare
optimization play a central role in these two chapters.

These three fields are closely interrelated, and we will highlight such cross
connections throughout the book. In each of these areas, our particular fo-
cus is on the computational properties of the arising problems. Therefore,
in Section 1.5, we will provide some background on algorithmics and com-
plexity theory (and also on propositional logic) that will be useful in the
subsequent chapters. Elementary basics of other mathematical fields (such as
probability theory, topology, and graph theory) will be presented when they
are needed, as tersely and informally as possible and with as many details as
necessary. While all crucial concepts will be formally defined, most of them
will be explained using examples and figures to make them easier to access.
Moreover, many situations will be illustrated by short stories from everyday
life, featuring Anna, Belle, Chris, David, Edgar (see Figure 1.1), and others.

(a) Anna (b) Belle (c) Chris (d) David (e) Edgar

Fig. 1.1 The main characters in this book

rothe@cs.uni-duesseldorf.de

1.1 Playing 3

1.1 Playing

Part I of this book is concerned with algorithmic game theory, covering both
noncooperative and cooperative games.

1.1.1 Noncooperative Game Theory

Smith and Wesson, two bank robbers, have been arrested. Since there is only
little evidence that incriminates them and would stand up in court, they are
offered a deal:

• If one of them makes a confession, he will be free to go (on probation),
provided the other one remains silent, and this other one will then have
to serve his ten years alone;

• if both confess, they both will be sent to prison for four years;
• but if both stubbornly keep silent, they can be sentenced only to two

years’ imprisonment (not for bank robbery, due to lack of evidence; only
for minor offenses such as possession of unregistered weapons).

Unfortunately, they cannot coordinate their actions. What would be best for
Smith to do in order to get away with a prison sentence as short as possible,
given that its length does not depend only on his own, but also on Wesson’s
action? And what would be a most clever decision for Wesson, whose prison
sentence conversely depends on Smith’s action as well? That is the famous
“prisoners’ dilemma” !

George and Helena want to spend their first anniversary together and want
to have some fun. George suggests to watch an exciting soccer game with his
wife. Helena, however, would rather like to go to a concert with her husband.
These are quite different things to do. Would it be better for each of them to
try to enforce their own wish or to give way to their partner’s wish? If none
of them gives in, they won’t spend their anniversary together! Every couple
is well familiar with this “battle of the sexes.”

Situations like that, where several individuals interact when making their
decisions and where their gains depend also on the other individuals’ deci-
sions, can be described by strategic games. Almost a century ago, Borel [86]
and von Neumann [444] wrote the first mathematical treatises in game the-
ory. About twenty years later, the foundations of this theory as a stand-
alone research area have been laid by von Neumann and Morgenstern in
their groundbreaking work [445]. Evolving into a rich and central discipline
within economics ever since, game theory has yielded many terrific insights
and results, and a number of Nobel Prize winners in Economics, such as John
Forbes Nash, Reinhard Selten, John Harsanyi, Lloyd S. Shapley, and Alvin
E. Roth.

rothe@cs.uni-duesseldorf.de

4 1 Playing, Voting, and Dividing

Basically, one distinguishes between cooperative and noncooperative games
in this theory. The above examples are noncooperative games.

Noncooperative game theory, which we will be concerned with in Chap-
ter 2, studies games where players face off against each other as lone, selfish
fighters aiming to maximize their own gains. This category of games includes
combinatorial games such as chess and go, but also card games such as poker,
where the players have incomplete information about their opponents and
where chance and the psychology of bluffing play an important role. How-
ever, not only board and gambling games can be expressed and studied in
this theory, but all kinds of competitive situations (e.g., market strategies of
companies or global strategies of states) can be modeled, too.

Some of the most central concepts in noncooperative games concern their
stability, for example, with the intent to predict the outcome of such games.
Is it possible for the individual players to choose their strategies so that they
are all in equilibrium in the sense that no one has an incentive to deviate
from the chosen strategy (provided all other players stick to their chosen
strategies as well)? Historically, this question was of uttermost importance,
for the entire human race, during the cold war between the Eastern bloc and
the NATO countries, in light of the arms race and the doctrine of nuclear
deterrence. One of the questions we study for noncooperative games is: How
hard is it to find such equilibrium strategies?

1.1.2 Cooperative Game Theory

In cooperative game theory, which will be introduced in Chapter 3, we are
concerned with players forming coalitions and working together, seeking to
achieve their common goals. It may be possible to increase the gains of single
players by cooperation with others. Whether a player joins a coalition or
deviates from it certainly depends on whether or not this player will benefit
from this.

Stability concepts for cooperative games are of quite central importance.
If there is an incentive for a player to deviate from the grand coalition (the
set of all participating players), then the game is instable and breaks up into
several smaller coalitions working on their own and sometimes even compet-
ing with each other. In this chapter, we will see various notions that capture
the stability of cooperative games in different ways. Also, one can measure
the influence—or power—of a single player in such a game in various ways.
Roughly speaking, one fundamental such power index of a player is based on
how often this player’s membership in a coalition is decisive for its success.
Stability concepts and power indices in cooperative games will also be stud-
ied in terms of their algorithmic and complexity-theoretic properties where
we will focus on games that can be compactly represented, such as games on
graphs and weighted voting games.

rothe@cs.uni-duesseldorf.de

1.2 Voting 5

1.2 Voting

Part II of this book is concerned with preference aggregation by voting—both
in general and when restricted to single-peaked societies—and with judgment
aggregation. In particular, we will focus on the social-choice-theoretic prop-
erties of voting systems and judgment aggregation procedures, and on the
complexity of manipulative actions.

1.2.1 Preference Aggregation by Voting

Anna, Belle, and Chris meet for a joint evening of gaming. First, however,
they have to agree on which game to play. Up for election are chess, poker,
and Yahtzee.

“Let’s play chess,” Anna suggests. “And if that’s not working for you,
we might play Yahtzee. Poker I like the least.”

“Oh no!” grumbles Chris. “Chess is to-tal-ly boring, and it’s three of
us.”

“True, but we can just play a blitz chess tournament,” replies Anna.
“Then everyone will get to play.”

“But Yahtzee is much more fun!” Chris disagrees. “And if you don’t
like that, we should at least play poker.”

“I like poker the most,” Belle pipes up now, “because I can bluff like
hell, y’know. Yahtzee is what I like the least. If it’s not poker, then we
should play chess.”

“Listen up!” says Anna now. “If we want to play, we need to agree
on a game. But since each of us has different preferences, we should
perhaps simply vote on what we will play.”

Figure 1.2 shows the preferences of Anna, Belle, and Chris over these three
alternatives, ordered from left (the most preferred alternative) to right (the
least preferred one).

Before they can vote, however, they first need to agree on a voting system,
a rule that says how to determine a winner from their individual preferences.
There are a multitude of voting systems (many of which will be introduced in
Section 4.1 starting on page 198). Democratic elections have been of central
importance in human societies already since the roots of democracy have
been planted in ancient Greece, and at least since the French Revolution and
the Declaration of Independence of the United States of America. But, which
rule should Anna, Belle, and Chris choose for their election?

rothe@cs.uni-duesseldorf.de

6 1 Playing, Voting, and Dividing

A A

A

A

A

A

A

2

2

A A

A

A

A

A

A

2

2

A A

A

A

A

A

A

2

2

Anna

Belle

Chris

Fig. 1.2 Anna, Belle, and Chris are voting on which game to play

“All right then,” Belle agrees, “so let us vote like that: Each two of
the games go in a head-on-head contest . . . ”

“I see,” Chris interrupts. “Whatever game wins each of its pairwise
comparisons, by which I mean it is preferred to each other game in at
least two of our rankings, . . . ”

“. . . is the winner of the election and shall be played!” completes
Anna.

“Exactly,” says Belle. “Because then it must be better than every
other game for us. After all, a majority of us prefer it to each other
alternative.”

The rule suggested by Belle was originally proposed by Marie Jean An-
toine Nicolas de Caritat, the Marquis de Condorcet (1743–1794), a French
philosopher, mathematician, and political scientist, in his essay from 230
years ago [163]. Condorcet’s voting system is still very popular, since a Con-
dorcet winner must be unique and there are good reasons indeed to consider a
Condorcet winner the best alternative possible. However, Condorcet elections
have their pitfalls as well.

“Great!” Anna bursts out. “Chess beats Yahtzee! Thanks to my and
Belle’s vote. Sorry, Chris, you can put away your dice box now and . . . ”

“Not so fast, please!” Belle interrupts her. “No frigging way are we
playing chess! Poker beats chess due to my and Chris’s vote, so . . . as
likely as not will we play poker.” She thinks. “After all, if Yahtzee is
beaten by chess and chess is beaten by poker, then poker must beat
Yahtzee, too, must it not?”

rothe@cs.uni-duesseldorf.de

1.2 Voting 7

“Not so fast, girls!” Chris pipes up now. “Screw poker! Because
Yahtzee beats poker thanks to Anna’s and my vote!”

The three look at each other, bewildered. “What the . . . I mean,
what game has won now?” they ask themselves in unison.

The winner is: . . . none of the three games! This feature of the Condorcet
voting system is known as the Condorcet paradox : A Condorcet winner (i.e.,
a candidate who beats every other candidate in pairwise comparison) does
not always exist! Even though the individual rankings of the three voters are
rational in the sense that there are no cycles, the societal ranking produced by
the Condorcet rule is cyclic: Poker beats chess in their head-on-head contest,
chess beats Yahtzee, and yet Yahtzee beats poker. This Condorcet cycle is
depicted in Figure 1.3.

A A

A

A

A

A

A

2

2

Fig. 1.3 The Condorcet paradox

Since the work of Condorcet [163], social choice theory has been concerned
with collective decision making by aggregating individual preferences via vot-
ing. Chapter 4 provides the foundations of this theory and introduces a vari-
ety of voting systems and their properties. In social choice theory, too, path-
breaking insights have been honored by Nobel Prizes in Economics, given to
Kenneth Arrow and John Hicks for their pioneering contributions to general
economic equilibrium theory and welfare theory (see, for example, Arrow’s
famous impossibility theorem [14], stated here as Theorem 4.1 on page 237)
and to Amartya Sen for his contributions to welfare economics.

Not only the players in a game, but also the voters in an election can
act strategically, by reporting a vote that they consider more useful for their
goal than their true preferences and that they hope will—depending on the
voting system and on the other voters’ preferences—ensure their favorite
candidate’s victory. By the celebrated Gibbard–Satterthwaite theorem [521]

rothe@cs.uni-duesseldorf.de

8 1 Playing, Voting, and Dividing

(see Theorem 4.2 on page 239), no reasonable voting system is protected
against this kind of manipulation. Again, we will focus on the algorithmic
and complexity-theoretic aspects: How hard is it to know if one can set one’s
individual preferences strategically so as to successfully manipulate the elec-
tion? Also other ways of influencing the outcome of elections, such as electoral
control (e.g., by adding or deleting either candidates or voters) and bribery,
will be introduced and thoroughly discussed in Chapter 4.

1.2.2 Manipulative Actions in Single-Peaked Societies

Relatedly, in Chapter 5 we will study the complexity of control, manipulation,
and bribery problems when restricted to so-called single-peaked electorates.
This notion has been introduced by Black [77, 78], and is now considered to
be “the canonical setting for models of political institutions” [295, p. 336].
Single-peaked electorates can be used to model societies that are heavily
focused on a single issue (such as taxes, public budgets, cutbacks in military
expenditure, etc.) where political positions can be ordered on an axis (or, in
a “left-right spectrum”).

1.2.3 Judgment Aggregation

In Chapter 6, we will turn to a field called “judgment aggregation,” which
is much younger than the related field of preference aggregation by voting.
Unlike in voting, the individual judgments of experts (the “judges”) regarding
propositions (that can be logically connected) are to be aggregated here. In
judgment aggregation, too, very interesting paradoxical situations may occur,
such as the so-called doctrinal paradox (relatedly, the discursive dilemma [375,
473]), which will be explained in more detail in this chapter.

Just as in elections, it is here possible to influence the outcome of a judg-
ment aggregation procedure. External actors might try to obtain their de-
sired collective judgment set from the experts by bribing them. The judges
themselves might try to manipulate the outcome by reporting insincere in-
dividual judgments instead of their true ones. An external expert might try
to influence the outcome by controlling the structure of the used judgment
aggregation procedure, e.g., by adding or deleting judges. The investigation
of the algorithmic and complexity-theoretic properties of the related prob-
lems has been initiated by Endriss, Grandi, and Porello [236] only recently
and has opened a currently very active field of research, which will also be
surveyed in this chapter.

rothe@cs.uni-duesseldorf.de

1.3 Dividing 9

1.3 Dividing

Part III of this book is concerned with fair division of either divisible or
indivisible goods.

1.3.1 Cake-cutting: Fair Division of Divisible Goods

“Ein Kompromiss,” German economist and politician Ludwig Erhard (Chan-
cellor of West Germany from 1963 until 1966) is quoted as saying, “das ist
die Kunst, einen Kuchen so zu teilen, dass jeder meint, er habe das größte
Stü̈ck bekommen.” In English: “A compromise is the art of dividing a cake in
such a way that everyone believes he has the biggest piece.”

We will be concerned with the fair division of cake (or, “cake-cutting”) in
Chapter 7. The “cake” is only a metaphor here that can be applied to any
divisible resource or good.

Fig. 1.4 Division of a cake into three portions

Figure 1.4 shows a division of a cake into three portions. But when can
it be called a “fair” division? How many parents have failed miserably when
trying to fairly divide a cake among their children? In the worst case, all
the children believe to have received just the worst of all pieces and feel all
hard done-by. Would that be easier perhaps if the children themselves were
to cut the cake and divide it among them? Not very likely: Arguments and
fights will start as soon as envy raises its ugly head. On a larger scale, how
many mediators have failed miserably when trying to fairly divide debatable
territories among opposing parties, be it in the Middle East, Central Africa,
the Balkans, in East Europe, or in other parts of the world?

The purpose of cake-cutting protocols is to produce a fair division of the
cake and to make all participating players as happy as possible. “Fairness”
can be interpreted differently. It can mean, for instance, that no player re-
ceives a smaller share of the cake than is due to them with respect to their
own individual valuation, i.e., everyone gets at least a proportional share.
Or, it can also mean that there is no envy among the players. If possible,

rothe@cs.uni-duesseldorf.de

10 1 Playing, Voting, and Dividing

the protocol should even guarantee these properties. That is, proportional-
ity or even envy-freeness of the allocation should be achieved independently
of the players’ individual valuations. Steinhaus [559] was one of the first to
formulate the problem of fair division in cake-cutting as a most challenging
and beautiful mathematical problem and to propose first solutions to it. In
this chapter, we will survey much of the work that has been done in this field
since his groundbreaking paper, focusing on valuation criteria such as various
notions of fairness and introducing many concrete cake-cutting protocols.

1.3.2 Fair Division of Indivisible Goods

In Chapter 8, finally, we will be concerned with a problem that is closely
related to cake-cutting, namely the problem of fair division of indivisible,
nonshareable goods or resources. All participating agents (or, players) have
individual, subjective (ordinal or cardinal) preferences over the single goods,
or all bundles of goods. We will classify the resulting allocation problems and,
distinguishing between ordinal preferences and cardinal utilities, will first fo-
cus on the problems of preference elicitation and compact representation, and
will then describe ordinal and cardinal fairness criteria. Next we will turn to
centralized fair division mechanisms for computing allocations, again distin-
guishing between ordinal and cardinal preferences, and will then describe a
number of decentralized fair division mechanisms. Finally, we will briefly dis-
cuss a number of further issues in this chapter, such as strategy-proofness
and matching.

As Chapter 8 focuses on fair division, its authors decided to not cover
the related area of (combinatorial) auctions with its many applications, for
example in e-commerce. Auctions will therefore be under-covered with re-
spect to their importance in the literature (see the textbook “Combinatorial
Auctions” edited by Cramton, Shoham, and Steinberg [177]) in this book.

In addition to the individual utility each player can realize for herself, one
is also interested in optimizing the societal utility, the “social welfare,” which
can be measured in various ways (including utilitarian and egalitarian social
welfare, see Section 8.4.2 starting on page 511). Finding an optimal alloca-
tion of all goods that maximizes social welfare is a difficult combinatorial
problem whose algorithmic and complexity-theoretic properties will briefly
be surveyed in Section 8.5.2 starting on page 522. However, as mentioned
above, combinatorial auctions will not be treated in this chapter, a field
much too vast for exposing it in detail on just a few pages. Instead, we point
the reader to the above-mentioned book edited by Cramton, Shoham, and
Steinberg [177] (see also the books by Shoham and Leyton-Brown [542] and
Wooldridge [607]).

On the other hand, it would be unthinkable not to address auctions in a
book on economics and computation. Therefore, in the following section we

rothe@cs.uni-duesseldorf.de

1.3 Dividing 11

will briefly digress to informally introduce a number of common single-item
auctions where the single objects are auctioned off to the bidders—as agents
are called in the field of auctions—one by one (by contrast, in a combinatorial
auction, the bidders make their bids for bundles of objects).

1.3.3 A Brief Digression to Single-Item Auctions

Every bidder knows his individual value for each of the single objects. How-
ever, he of course is not obliged to truthfully announce his actual values for
the objects during the bidding phase, but he may bid quite different prices
for the objects. The bidder’s goal is to win each desired object for a price as
low as possible. The auctioneer’s goal, however, is to make as much profit as
possible from auctioning off all items. In this sense, bidders and auctioneer
are adversaries in this “auction game” and, in addition, the bidders compete
with each other.

1.3.3.1 Classification

The bidders can make their bids

• either openly—in so-called open-cry auctions, i.e., all bidders know which
bids have been made so far (possibly not by whom, though),

• or concealed—in so-called sealed-bid auctions, i.e., no bidder knows any of
the previously made bids of other bidders.

Open-cry auctions can be further subdivided into

• ascending-price auctions where the bids go from lower to higher values,
and

• descending-price auctions where the bids go from higher to lower values.

Winner determination is an important issue in an auction: Which bidder
wins which object and what does she have to pay for it? One can distinguish,
for example, between

• first-price auctions where a bidder wins an object by making the highest
bid and has to pay this price, and

• second-price auctions where, again, a bidder making the highest bid wins
the corresponding object, but has to pay only the price of the second-
highest bid.

We now introduce a number of “classical” types of single-item auctions.
The above classification criteria can be combined with each other. For exam-
ple, one thus obtains a first-price, sealed-bid auction: There is only a single
round in which the bidders hand in an envelope containing their bid, and

rothe@cs.uni-duesseldorf.de

12 1 Playing, Voting, and Dividing

whoever has made the highest bid wins this object (if need be, ties are bro-
ken according to some preassigned rule). The winner pays the amount corre-
sponding to his bid. This type of auction is often used, for example, in public
auctions of real estate property.

What would be a good strategy for a bidder in such an auction? The
highest bid wins, but the greater the difference is between the highest and the
second-highest bid, the more money has been wasted by the winner. Making
a bid just a tiny bit above the second-highest bid would have been enough
to ensure victory, and would have saved a lot of money. Therefore, the best
strategy is to make a bid that is lower than one’s true value for this object.
How much lower, though, depends on the circumstances—for example, it
depends on what the unknown bids of the other bidders are, and on how
desperately one desires to get just this object. There is no general solution
to this problem; some risk is unavoidable. Auctions are like bets and how
risk-loving a bidder is will influence his possible wins and losses.

1.3.3.2 English Auction

This is an ascending-price, first-price, open-cry auction. At the beginning,
the auctioneer announces a minimum price (which may also be 0) for the
object on the table and waits for higher bids. The bidders know the current
bid, which must be exceeded by each new bid. If no bidder raises the current
bid, the object goes to whoever made the last bid for the price of his final
bid. If none of the bidders raises the initial minimum price, the auctioneer
gets the object for this minimum price. Famous auction houses like Sotheby’s
(originally situated in London but now headquartered in New York City) and
Christie’s (with its main headquarters also located in London and New York
City) conduct this type of English auction.

What would be a good strategy for a bidder in such an auction? The high-
est bid wins again, and the winner again wastes the more money, the greater
the difference is between the highest and the second-highest bid. Therefore,
it’s in the interest of the bidder to keep this difference as small as possible.
Since bids are made openly, it would be smart to raise the current bid only
by a small amount. This approach, though, is based on the assumption that
all bidders behave rationally. However, auctions are subject to psychological
aspects, which are not that simple to be modeled game-theoretically. For ex-
ample, it might be that two bidders work themselves up into fierce fighting,
taking turns in outbidding each other again and again, and eventually the
winner may have paid a lot more money than he would have paid if only he
had raised—substantially!—the first bid just once, right at the beginning of
the auction, in order to frustrate his rival. Would this strategy have worked
better? Of course, that’s also just a speculation.

Wooldridge [607] highlights another interesting feature of English (and
other) auctions: If the true value of the object is unknown or uncertain, the

rothe@cs.uni-duesseldorf.de

1.3 Dividing 13

“winner’s curse” may occur, not only in English auctions, but particularly
often in these. This refers to the tendency of the auction winner to overpay
an object. For example, if there is an auction for a house that has not been
thoroughly evaluated by experts, it is unclear if a bidder who wins this house
in an auction should really be happy, or if he rather should be worried to
have paid too much for it. Perhaps the other bidders stopped bidding only
because they knew more than him about the constructional condition of the
house.

1.3.3.3 Dutch Auction

This is a descending-price, first-price, open-cry auction (and is also called
clock auction). At the beginning, the auctioneer announces an obviously too
high price for the object on the table, which lies above the expected maximum
price of the bidders. Then the auctioneer lowers the price step by step until
there is a bidder who is willing to accept and pay the current price. This
bidder receives the object for this price.

What would be a good strategy for a bidder in such an auction? It wouldn’t
make sense for a bidder to accept a price above her own, true value for this
object. Once the auctioneer’s offered price drops below this true value, the
bidder’s potential gain increases the longer she waits to accept a current price,
but at the same time her risk also increases to lose the object to somebody
else. As in the English auction, the winner’s curse can occur here as well,
namely if a bidder gets cold feet too early and accepts the current price,
although it is only a tiny little bit lower than her true value for the object.
This is why Dutch auctions tend to end pretty quickly.

1.3.3.4 Vickrey Auction

A Vickrey auction—named after its inventor William Vickrey, who in 1996
received the Nobel Prize in Economics jointly with James Mirrlees—is a
second-price, sealed-bid auction. As in a first-price, sealed-bid auction, there
is only one round where the bidders submit their bids in a sealed envelope.
The winner is again a bidder with the highest bid, where a tie-breaking rule is
applied to break ties, if there occur any. However, the winner does not have
to pay the highest, but only the second-highest price. This may not seem
intuitively sensible at first, but it does have a big advantage, as we will now
see.

What would be a good strategy for a bidder in such an auction? The
above-mentioned advantage of Vickrey auctions is that telling the truth—
i.e., bidding their true value of the object—is the dominant bidder strategy
(in the sense of Definition 2.2 on page 46). To understand why this is so, let’s

rothe@cs.uni-duesseldorf.de

14 1 Playing, Voting, and Dividing

have a look at the following two cases, where we assume that the second-
highest bid remains the same:

Case 1: The bidder bids more than her true value. Then it is more
likely than when telling the truth for the bidder to get her bid accepted
and win the object. If she really wins it, however, she may have to pay
more than what she would have paid had she remained truthfully. In
other words, by being dishonest the bidder only increases her chances to
make a loss.

Case 2: The bidder bids less than her true value. Then it is less likely
than when telling the truth for the bidder to get her bid accepted and
win the object. However, even if she does win it, the price she has to pay
has not been influenced by her bidding less than her true value: She still
has to pay the second-highest price. That is, the bidder does not have an
advantage in terms of gain maximization; all she has achieved by being
dishonest is to lower her winning chances.

Since there is no advantage for the bidder to deviate from her true value
in either way, it can be expected that she will make a truthful bid. Auctions
similar to Vickrey auctions are used, for example, on the internet auction
platform eBay. The Vickrey–Clarke–Groves mechanism generalizes Vickrey
auctions from single-item to combinatorial auctions (see, e.g., the books by
Cramton, Shoham, and Steinberg [177], Shoham and Leyton-Brown [542],
and Wooldridge [607]).

1.3.3.5 American Auction

This is a special type of auction that is often used in charity events. In our
classification scheme, it is an ascending-price, open-cry auction; however, in
contrast with the English auction, the winner of an object does not pay the
highest price, and does not pay the second-highest price either, but instead
each bidder, immediately when making a new bid, has to pay the difference
between his bid and the previous bid. The auctioneer may predetermine the
allowed difference amounts between bids, and there is a variant in which
the auctioneer also fixes the maximum duration of the auction, which is not
known to the bidders. In this variant of the American auction, the last bid
made prior to termination is accepted and wins.

What would be a good strategy for a bidder in such an auction? On the one
hand, compared with, say, English auctions, American auctions increase the
potential gain of the bidders, since a lucky bidder can win a valuable object
with just one bid—the last one—for really little invested money (namely,
merely the difference to the second-to-last bid). On the other hand, all bidders
not winning the object come away empty-handed, that is, they lose all their
invested money and might make a really big loss. In fact, the actual winner of
an American auction is the auctioneer, who typically makes quite a lot more

rothe@cs.uni-duesseldorf.de

1.3 Dividing 15

money than, e.g., in an English auction. One reason why American auctions
are popular in charity events is that also the losers can better put up with
their losses, knowing that their money has been gambled away for a good
purpose. American auctions resemble gambling more than other auctions.

In an American auction with prefixed maximum duration, the winning
decision is made only close to its end. Therefore, a good bidder strategy is
to make bids only in the final phase. The problem, of course, is that the
maximum length is unknown to the bidders, so they must guess when it is a
good point in time to get in with their own bids. Moreover, when there are
several objects to be auctioned off, one has to give consideration to which
objects one would be most interested in bidding on. If one is too eager to bid
on each object right from the start and then stops too early so as to not lose
too much money, one is likely to maximize one’s loss only.

Another variant of the American auction is known as first-price, sealed-
bid, all-pay auction. In this variant, all bidders submit their bid in a sealed
envelope, and the bidder with the highest bid wins (again making use of a tie-
breaking rule if needed), but all bidders have to pay the price corresponding
to their bid. In this way the auctioneer would carry his own gain to an
extreme. However, he normally wouldn’t find bidders willing to go into such
an auction with their eyes open, since these rules are commonly considered
to be rather unfair. That is why this quite special form of an auction is
rather of theoretical interest; for example, the economic effect of lobbyism,
party donations, and bribery can be modeled this way (cf. Section 4.3.5).
Considering donators as bidders and parties as sellers of a “good” (namely
political influence), the bidder with the highest donation wins in this model
(assuming that this donation has helped the party to win the election) and
increases his political influence. The other bidders come away empty-handed
and increase their political influence not at all or only marginally, but their
donations will still not be refunded (for details, see [5, pp. 83–84]).

1.3.3.6 Expected Revenue

The example of the American auction shows that an auctioneer has to be
concerned about how to maximize the total revenue of an auction when-
ever possible. This concerns in particular choosing the right auction protocol,
and different perspectives of the parties involved have to be taken into ac-
count. For example, American auctions are preferred from the point of view
of an auctioneer, though they are unlikely to be accepted by the bidders.
Sandholm [518, p. 214] discusses this issue (see also [607, pp. 297–298]) and
comes to the following result for the other types of auction considered above
(first-price, sealed-bid auction; English auction; Dutch auction; and Vickrey
auction). In particular, the answer to the question raised above very much
depends on both the auctioneer’s and the bidders’ risk-taking propensity:

rothe@cs.uni-duesseldorf.de

16 1 Playing, Voting, and Dividing

• For risk-neutral bidders, the auctioneer’s expected revenue is provably iden-
tical for these four auction types (under certain simple assumptions). That
is, the auctioneer can expect the same revenue on average, no matter which
type of auction he chooses among these four.

• Maximizing the gain is not the most important issue for a risk-loving
bidder , i.e., such a bidder would rather like to indeed receive an object, even
if that means to pay something more for it. In this case, Dutch auctions
and first-price, sealed-bid auctions provide the auctioneer with a higher
expected revenue. That is so because risk-loving bidders may be inclined
to increase their winning chances at the expense of their own profit by
raising their bids a bit higher than risk-neutral bidders.

• By contrast, a risk-averse auctioneer would be better off on average when
using English or Vickrey auctions.

These assertions are to be treated with caution, though. For example, the
first statement critically depends on the bidders really having private values
for the objects, known only to themselves.

1.4 Some Literature Pointers

In the single chapters about playing (Part I), voting and judging (Part II),
and dividing (Part III), we will often focus on algorithmic aspects. In the
central Part II, which with three chapters is a bit more extensive than the
other two parts, we are dealing with the problems of computational social
choice (COMSOC). On the one hand, COMSOC applies methods of com-
puter science (such as algorithm design, complexity analyses, etc.) to social
choice mechanisms (such as voting systems or judgment aggregation proce-
dures). On the other hand, concepts and ideas from social choice theory are
integrated into computer science, for example, in the area of distributed ar-
tificial intelligence and, most notably, in the design of multiagent systems,
networks, ranking algorithms, recommender systems, and others.

Since 2006, scientists from all over the world, who work in these areas
ranging from economics and the political sciences to computer science, meet
biennially at the International Workshop on Computational Social Choice,
which so far took place at the universities of Amsterdam, The Netherlands
(2006), Liverpool, UK (2008), Düsseldorf, Germany (2010), Kraków, Poland
(2012), and at Carnegie Mellon University in Pittsburgh, USA (2014). The
(informal) proceedings of these workshops have been edited by Endriss and
Lang [239], Endriss and Goldberg [233], Conitzer and Rothe [167], Brandt
and Faliszewski [126], and Procaccia and Walsh [484]. If you like reading this
book, you will also enjoy reading these proceedings, to get deeper insights
into the challenging research questions in this fascinating area.

Moreover, Brandt et al. are currently editing the “Handbook of Computa-
tional Social Choice” [125] to be published by Cambridge University Press.

rothe@cs.uni-duesseldorf.de

1.5 A Brief Digression to Computational Complexity 17

There are also many other, older textbooks on algorithmic game theory (e.g.,
the textbook “Algorithmic Game Theory” edited by Nisan et al. [456]), social
choice theory and welfare economics (e.g., the two volumes of the “Handbook
of Social Choice and Welfare” edited by Arrow, Sen, and Suzumura [15, 16]),
and fair division (e.g., the books by Brams and Taylor [117] and Moulin [432]),
and some more will be mentioned in the relevant chapters of this book.

The reader is also referred to the surveys by Chevaleyre et al. [152, 156],
Conitzer [164], Daskalakis et al. [190], Faliszewski, Hemaspaandra, and
Hemaspaandra [261], Faliszewski and Procaccia [274], Nguyen, Roos, and
Rothe [450], and Rothe and Schend [512], as well as to the book chapters by
Brandt, Conitzer, and Endriss [124], Faliszewski et al. [268], and Baumeister
et al. [58]. They each cover some more specific topics in computational social
choice, algorithmic game theory, and fair division.

But now, let’s get ready to play, vote, and divide . . .

Stop! Before we can actually start playing, voting, and dividing, a few
more preliminaries are needed.

1.5 A Brief Digression to Computational Complexity

As mentioned earlier, we will often focus on the algorithmic and complexity-
theoretic aspects of problems related to playing, voting, and dividing in
this book. But, how exactly does one determine a problem’s algorithmic or
complexity-theoretic properties? To answer this question, we will now briefly
digress, introducing to the foundations of complexity theory as terse and in-
formally as possible and in as much detail as necessary. Crucial concepts of
this theory, which will be important in almost all the following chapters, will
be illustrated for SAT, the satisfiability problem of propositional logic. One
can also skip this digression for now and, only when needed, come back later
to look up one notion or another.

1.5.1 Some Foundations of Complexity Theory

For about half a century now, problems have been investigated and classi-
fied in terms of their computational complexity. Having developed from com-
putability theory (embracing, in particular, recursive function theory) and the
theory of formal languages and automata (see, e.g., the textbooks by Homer
and Selman [340], Hopcroft, Motwani, and Ullman [341], and Rogers [504]),
complexity theory is a subarea of theoretical computer science. Among other
questions, computability theory studies which problems are algorithmically

rothe@cs.uni-duesseldorf.de

18 1 Playing, Voting, and Dividing

solvable and which are not; the latter are so-called undecidable problems, such
as the so-called “halting problem for Turing machines.” By contrast, com-
plexity theory is concerned with algorithmically solvable (i.e., “decidable”)
problems only, but specifically asks for the computational costs required
to solve such problems. There are many useful textbooks and monographs
on computational complexity, such as those by Bovet and Crescenzi [102],
Hemaspaandra and Ogihara [335], Papadimitriou [462], Rothe [508], Wagner
and Wechsung [587], Wechsung [595], and Wegener [596]. Algorithmic and
complexity-theoretic concepts and methods for problems related to playing,
voting, and dividing will be important in many chapters of this book.

1.5.1.1 Turing Machines and Complexity Measures

Complexity theory is to algorithmics as yin is to yang.1 While the main
objective of algorithmics is the design of algorithms that are as efficient as
possible and thus provide as low upper (time) bounds as possible for solving a
given problem, in complexity theory one tries to prove that certain problems
cannot be solved efficiently at all, that is, those problems do not have any
efficient algorithm whatsoever. In other words, the goal of complexity theory
is to prove that solving these problems algorithmically requires as high a lower
(time) bound as possible. And once the least upper and greatest lower bounds
of a problem meet, its complexity analyst and algorithm designer (who often
are just one and the same person) feels perfect harmony and enthusiastically
calls this problem “classified.”

Here, computation time (or, runtime) is a discrete complexity measure de-
fined as the number of elementary computation steps an algorithm performs
as a function of the size of the input. The input size depends on the chosen
encoding of problem instances. Usually, these are encoded in binary, i.e., as
a string over the aphabet Σ = {0,1}, so that they can be processed by a
computer executing the algorithm. Different encodings usually have only a
negligible influence on the computation time of an algorithm; note that con-
stant factors are commonly neglected in the runtime analysis of algorithms.
Therefore, we will disregard coding details.2 What is meant by an “elementary
computation step” of an algorithm depends on the algorithm model at hand.
In theoretical computer science, and particularly so in complexity theory, it

1 In Chinese philosphy, yin and yang denote opposite or contrary forces that are mutually
dependent and interconnected: Opposites that give rise to each other by interrelating to
one another and that cannot exist without each other.
2 That, however, is not to say that we will disregard representation details. In fact, for
many of the problems we will study it is utterly important to choose an appropriate,
compact representation to be able to handle them algorithmically. This refers, for exam-
ple, to Section 2.5.2 about how to represent problems related to compute equilibria of
(noncooperative) games, to Section 3.2.2 about the representation of simple (cooperative)
games, and to Section 8.3 about preference elicitation for and compact representation
of allocation problems for indivisible goods.

rothe@cs.uni-duesseldorf.de

1.5 A Brief Digression to Computational Complexity 19

is common to use the model of Turing machine, named after its inventor
Alan Turing [579]. This is a very simple model, and yet it is universal: By
Church’s thesis [162], everything computable is computable on a Turing ma-
chine. Again, we omit formal details here and instead refer to the literature
on computability and complexity theory given above. All algorithms in this
book will be described only informally; whether they are implemented on
an abstract algorithm model such as a Turing machine or in some concrete
programming language does not matter for our purposes. We will distinguish,
though, between various types of Turing machines or algorithms (where we
confine ourselves to “acceptors,” suitable to solve decision problems only):

• In the computation of a deterministic Turing machine on any input, each
computation step is uniquely determined, i.e., for each current “configura-
tion” of the Turing machine (which is a complete “instantaneous descrip-
tion” of the computation at this point in time), there is a unique successor
configuration until, eventually, an end configuration (or halting configura-
tion) is reached that is either accepting or rejecting. Note that it is also
possible, in principle, that a computation never terminates, i.e., it never
reaches an end configuration. This is important in computability theory
and is closely related to the halting problem’s undecidability.3

• The computation of a nondeterministic Turing machine on any input is
more general: In each computation step (before reaching an end config-
uration), it is possible to branch nondeterministically, i.e., at each point
in time during the computation, the current configuration can have more
than one successor configuration until, eventually, an accepting or rejecting
end configuration is reached. Therefore, a nondeterministic computation
is not a deterministic sequence of configurations, but instead we have a
nondeterministic computation tree

– whose root is the start configuration (which, in particular, encodes the
input string),

– whose inner vertices are the configurations reachable from the start
configuration before the computation has terminated, and

– whose leaves are the accepting and rejecting end configurations.

For an input to be accepted it is enough that there exists at least one
accepting computation path in this computation tree. An input is rejected
only if all paths of this tree lead to rejecting end configurations.

Again, note that the computation tree of a nondeterministic Turing machine
running on some input can have infinite computation paths, in principle.
However, since we will be concerned with decidable problems only and since

3 Roughly speaking, the halting problem (for Turing machines) is the following: Given
(an encoding of) a Turing machine and an input, does the machine on that input ever
halt? That this famous problem is undecidable means that there is no algorithm that
can solve this problem.

rothe@cs.uni-duesseldorf.de

20 1 Playing, Voting, and Dividing

for those it is possible to “clock” (deterministic and nondeterministic) Turing
machines, we can safely ignore the possibility of infinite computations.

In addition to determinism and nondeterminism there are many other com-
putational paradigms (for example, randomized algorithms), and in addition
to computation time there are many other complexity measures (such as the
computation space, or memory, required to solve the problem at hand). How-
ever, these will only rarely be considered here (namely, for PSPACE); we will
mostly restrict ourselves to analyzing the computation time of (deterministic
or nondeterministic) algorithms or to prove lower time bounds of problems.

1.5.1.2 The Complexity Classes P and NP

In complexity theory, one collects all those problems whose solutions require
roughly the same computational cost with respect to some complexity mea-
sure (e.g., computation time) in so-called complexity classes, and the most
central time classes are:

• P (“deterministic polynomial time”) and
• NP (“nondeterministic polynomial time”).

P (respectively, NP) is defined as the class of problems that can be solved
by some deterministic (respectively, nondeterministic) Turing machine in
polynomial time. Deterministic polynomial-time algorithms are thought of
as being efficient, since a polynomial, such as p(n) = n2 + 13 · n+ 7, typ-
ically grows relatively moderately, as opposed to the explosive growth of
an exponential function, such as e(n) = 2n. For very small input sizes n, it
may be true that function e has rather benign values (for example, we have
e(n) = 2n <n2 +13 ·n+7 = p(n) for each n< 8), but already for slightly larger
input sizes, the exponential function blows up compared with the polynomial
(e.g., if n= 30, note that e(30) = 1,073,741,824 is considerably greater than
p(30) = 1,297). For even larger input sizes (say, for n = 100), that are not
uncommon in practice, exponential functions can reach nothing less than as-
tronomically large values. For example, the number of all atoms in the visible
universe (dark matter excluded) has been estimated to be roughly 1077. Sup-
pose that an algorithm having a runtime of, say, 10n and destroying one atom
per computation step, runs on an input of size 77. When this algorithm termi-
nates, it will have wiped out the entire visible universe, including itself4 (yes,
this is a visual algorithm and so belongs to the visible universe). However,
even for an algorithm that does not destroy atoms during its computation
(which is the normal case for algorithms), whoever has started it to run on
that input will have passed away a long, long time before the algorithm finally
comes up with its answer.5

4 Which is why the assumption it would ever terminate is absurd.
5 Like “42” as per Adams [2], although it is not quite clear in this case what the input
was 7.5 million years before supercomputer Deep Thought came up with this answer.

rothe@cs.uni-duesseldorf.de

1.5 A Brief Digression to Computational Complexity 21

In contrast, nondeterministic polynomial-time algorithms are viewed as
not being efficient in general. If one would try to simulate an NP algorithm
deterministically (which seemingly would amount to checking each path in the
nondeterministic computation tree, one by one, systematically searching for
an accepting end configuration), this deterministic algorithm would require
exponential time. Namely, if the runtime of an NP algorithm running on
inputs of size n is bounded by a polynomial p(n) and if we assume that the
NP algorithm, on any input, branches in each inner vertex of its computation
tree into at most two successor vertices, then there can be up to 2p(n) paths
in the computation tree, and only after the last one of these paths has been
checked without success, one can be sure that there really is no accepting
computation path. Of course, this is not a proof that P is not equal to NP.

Indeed, the “P = NP?” question has been open since more than 40 years
now. This is perhaps the most important open problem in all of theoretical
computer science and it is one of the seven millennium problems whose so-
lutions will each be rewarded with a prize money of one million US dollars
by the Clay Mathematics Institute in Cambridge, Massachusetts. It is clear
that P ⊆ NP; the challenging open question is whether or not this inclusion is
strict. In 2002, Gasarch [300] conducted a “P =? NP poll” among complexity
theoreticians where the overwhelming majority indicated by their vote that
they believe that P 6= NP. However, no one succeeded so far with providing
an actual proof of this widely believed inequality; and whenever a “proof”
for it has spread in the past, it didn’t take long to detect its flaws. The prize
money of one million US dollars for a correct solution to this fascinating open
problem is still out there waiting for you to pocket it!

1.5.1.3 Upper and Lower Bounds

In order to show an upper bound t(n) on the (time) complexity of a problem,
it is enough to find some specific algorithm solving this problem in time t,
i.e., it works for all inputs of size n in time at most t(n). A P algorithm, for
instance, shows that the corresponding problem can be solved in time p(n)
for some polynomial p and, therefore, is considered to be efficiently solvable.
As mentioned earlier, when stating an upper bound we can neglect constant
factors and also finitely many exceptions, as we are interested only in the
asymptotic rate of growth of complexity functions.

The following notation describing the asymptotic rates of growth of func-
tions (by orders of magnitude) are due to Bachmann [33] and Landau [382].

Definition 1.1 (asymptotic rates of growth). Let s and t be functions
from N into N, where N is the set of nonnegative integers.

1. s ∈ O(t) if and only if there exist a real constant c > 0 and an integer
n0 ∈ N such that s(n) ≤ c · t(n) for all n ∈ N with n≥ n0.
If s ∈ O(t), we say that s asymptotically does not grow faster than t.

rothe@cs.uni-duesseldorf.de

22 1 Playing, Voting, and Dividing

2. s ∈Ω(t) if and only if t ∈ O(s).
If s ∈Ω(t), we say that s asymptotically grows at least as fast as t.

3. The class Θ(t) = O(t) ∩Ω(t) contains all functions that have the same
asymptotic rate of growth as t.

4. s ∈ o(t) if and only if for all real constants c > 0, there exists an integer
n0 ∈ N such that s(n)< c · t(n) for all n ∈ N with n≥ n0.
If s ∈ o(t), we say that s asymptotically grows strictly slower than t.

5. s ∈ ω(t) if and only if t ∈ o(s).
If s ∈ ω(t), we say that s asymptotically grows strictly faster than t.

For example, p∈ O(e) (and thus also e∈Ω(p)) for the exponential function
e(n) = 2n and the polynomial p(n) = n2 +13 ·n+7 defined above. Since every
exponential function asymptotically not only grows at least as fast as, but
even strictly faster than each polynomial, we even have p∈ o(e) (and e∈ω(p)).
It is also clear that O(1) is the class of all constant functions. The crucial
difference between the definitions of the O and o notation is the quantifier
over the real positive constants c. While the existential quantifier before c in
the definition of O(t) ensures that one may neglect arbitrarily large constant
factors, the universal quantifier before c in the definition of o(t) achieves that
c · t(n) is greater than s(n) even if the growth of c · t(n) is slowed down by an
arbitrarily small constant factor c—that much faster grows t in comparison
with s (see also, e.g., [508, 315] for further details, properties, and examples).

Upper bounds for the complexity of a problem are given in the O notation,
and it is enough to find a suitable algorithm solving the problem within the
time allowed by this upper bound. By contrast, a lower bound t(n) on the
(time) complexity of a problem means that no algorithm whatsoever can solve
this problem in less time than allowed by t(n). At least time t(n) is required
to solve this problem for inputs of size n (perhaps not for all of them, but
at least for some inputs of this size), and no matter which algorithm of the
considered algorithm type we choose. Again, we neglect constant factors and
allow finitely many exceptions.

Obviously, both aspects—the upper and the lower time bounds for solving
a problem algorithmically—are closely related, they are two sides of the same
coin. If one succeeds in finding even matching (asymptotic) upper and lower
bounds for some problem, one has determined its inherent complexity, at
least with respect to the considered class of algorithms.6 Unfortunately, that
is not very often possible.

6 To avoid misunderstandings: Finding matching upper and lower bounds for a problem
does not mean to find an algorithm with running time Θ(t) that solves the problem. That
would merely show that the running time of this particular algorithm (which provides
some upper bound only) has been analyzed well, so that no essential improvements are
possible in the runtime analysis of this algorithm. By constrast, to show a lower bound
matching this upper bound of Θ(t), one would have to show that no algorithm (of the
considered type) for this problem has a runtime that asymptotically is better than that.

rothe@cs.uni-duesseldorf.de

1.5 A Brief Digression to Computational Complexity 23

1.5.2 The Satisfiability Problem of Propositional Logic

In this section, we will introduce SAT, the famous satisfiability problem of
propositional logic, discuss its upper bounds and how to improve them, and
then turn to how to prove lower bounds for computational problems such as
SAT in general, provding some basic tools from complexity theory. Finally,
we give some background on approximation theory.

1.5.2.1 Definitions

Consider, for example, the famous satisfiability problem of propositional logic,
denoted by Satisfiability (or, shorter, by SAT). Decision problems like
that, whose question is to be answered by “yes” or “no,” will be represented
in the following form:

Satisfiability (SAT)

Given: A boolean formula ϕ.
Question: Is there a satisfying truth assignment to the variables of ϕ, i.e., an as-

signment that makes ϕ evaluate to true?

Here, a boolean (or, propositional) formula consists of atomic propositions
(also called the variables of the formula) connected by boolean operations,
such as the following:

• conjunction (i.e., AND or, symbolically, ∧),
• disjunction (i.e., OR or, symbolically, ∨),
• negation (i.e., NOT or, symbolically, ¬),
• implication (i.e., IF . . . THEN . . . or, symbolically, =⇒),
• equivalence (i.e., . . . IF AND ONLY IF . . . or, symbolically, ⇐⇒),
• etc.

Table 1.1 Truth table for some boolean operations

x y x∧y x∨y ¬x x =⇒ y x ⇐⇒ y

0 0 0 0 1 1 1
0 1 0 1 1 1 0
1 0 0 1 0 0 0
1 1 1 1 0 1 1

The above-mentioned boolean operations can be defined via their truth
tables (see Table 1.1), where the truth values (also called boolean constants)
TRUE and FALSE are represented by 1 and 0. Every boolean formula ϕ
with n variables represents a boolean function fϕ : {0,1}n → {0,1}. There

rothe@cs.uni-duesseldorf.de

24 1 Playing, Voting, and Dividing

are exactly two boolean functions of arity zero (namely, the two boolean con-
stants), four 1-ary boolean functions (e.g., the identity and the negation), and
16 2-ary boolean functions (e.g., the functions corresponding to the boolean
operations ∧, ∨, =⇒, and ⇐⇒ in Table 1.1). In general, there exist exactly
22n

n-ary boolean functions, since each of the 2n possible truth assignments
fixes two of them, namely the one with value 0 and the one with value 1 for
the given assignment.

The truth value of a boolean formula (i.e., the value of the corresponding
boolean function) can be determined from the truth values assigned to its
variables. For example, the boolean formula

ϕ(x,y,z) = (x∧¬y∧ z) ∨ (¬x∧¬y∧¬z) (1.1)

depends on three boolean variables, x, y, and z, and for the truth assignment
(1,1,1) to (x,y,z) it can be evaluated as follows:

ϕ(1,1,1) = (1 ∧¬1 ∧1) ∨ (¬1 ∧¬1 ∧¬1) = (1 ∧0 ∧1) ∨ (0 ∧0 ∧0) = 0 ∨0 = 0,

that is, ϕ is false under this assignment. Using the assignment (1,0,1), how-
ever, we obtain

ϕ(1,0,1) = (1 ∧¬0 ∧1) ∨ (¬1 ∧¬0 ∧¬1) = (1 ∧1 ∧1) ∨ (0 ∧1 ∧0) = 1 ∨0 = 1,

so ϕ is true under this assignment. A boolean formula ϕ is satisfiable if there
exists an assignment to its variables such that ϕ evalutes to true. The formula
ϕ from (1.1) is satisfiable, since it has two satisfying assignments, (0,0,0) and
the already mentioned assignment (1,0,1). None of the other six assignments
satisfies ϕ.

A literal is a variable, such as x, or its negation, ¬x. An implicant is a
conjunction of literals, such as (x∧ ¬y∧ z), and a clause is a disjunction of
literals, such as (x∨y∨¬z). Formulas like the one in (1.1) are in disjunctive
normal form (DNF), i.e., they are disjunctions of implicants. Similarly, a
formula is in conjunctive normal form (CNF) if it is a conjunction of clauses.

Every boolean formula can be transformed into an equivalent one in DNF,
and also into an equivalent formula in CNF, where the new formulas can be
exponentially larger than the given formula, though. Two formulas are said
to be equivalent if they have the same truth value for all truth assignments
to their variables. For example, one can easily check that

ϕ′(x,y,z) = (x∨y∨¬z) ∧ (x∨¬y∨ z) ∧ (x∨¬y∨¬z) ∧
(¬x∨y∨ z) ∧ (¬x∨¬y∨ z) ∧ (¬x∨¬y∨¬z) (1.2)

is a formula in CNF equivalent to ϕ from (1.1). If the number of literals in
all clauses of a formula in CNF is bounded by a constant k, we say that the
formula is in k-CNF. For example, the formula ϕ′ from (1.2) is in 3-CNF.

rothe@cs.uni-duesseldorf.de

1.5 A Brief Digression to Computational Complexity 25

The restriction of the above-defined problem SAT to formulas in k-CNF is
denoted by k-SAT.

1.5.2.2 Upper Bounds for SAT

How hard is SAT? Since formulas with n variables have 2n truth assignments,
the naive deterministic algorithm for SAT runs in time O(n2 ·2n): On input ϕ
(a given boolean formula with n variables), this algorithm tests for all possible
truth assignments to the variables of ϕ, one after the other, whether they
satisfy ϕ, and each single test can be done in quadratic time. If a satisfying
assignment is found, the algorithm halts and accepts; but it can reject its
input only after having tested all 2n assignments unsuccessfully. This naive
algorithm for SAT can be improved, as we will see below.

It is also known that certain restrictions of the problem SAT can be solved
more efficiently. For example, if the given formula is in DNF, then it can be
decided in polynomial time whether or not it is satisfiable. This is because
in this case we can check the satisfiability of the implicants of the formula,
one by one; as soon as a satisfiable one is found, the formula is accepted;
otherwise, we can safely reject it as soon as the last unsatisfiable implicant
has been checked.

If the given formula is in CNF, however, the problem seems to be much
harder, namely as hard as the unrestricted problem SAT. Yet even in this
case, an efficient algorithm is possible, provided there is no clause with more
than two literals in the given formula: Jones, Lien, and Laaser [354] showed
that 2-SAT is solvable in polynomial time, and that it belongs to a complexity
class that (presumably) is yet smaller than P, namely, to the class of problems
solvable by a nondeterministic Turing machine in logarithmic space (see, e.g.,
[508] for a detailed proof). This class is widely believed to be a proper subclass
of P, just as P is widely believed to be a proper subclass of NP.

The runtime of the naive algorithm for SAT was given as a function of
the number of variables of the given formula. Why? It would seem more
natural to define the size of a formula as the number of occurrences of (pos-
itive or negated) variables (neglecting the encoding details with respect to
parentheses, ∧, ∨, and ¬ symbols, etc.), and each variable can occur very
often in a formula. For example, x, y, and z each occur twice in the formula
ϕ from (1.1), but they each occur six times in the equivalent formula ϕ′

from (1.2). In general, every variable might occur exponentially often (in the
number of variables). However, this is only due to the fact that the way we
represented these formulas in (1.1) and (1.2) was more wasteful than needed.
If one represents a boolean formula by a boolean circuit (as in Figure 1.5),
then we have a compact representation of the given SAT instance whose size
(under a reasonable encoding) is polynomial in the number of variables, and
a polynomial blow-up is something we can easily cope with.

rothe@cs.uni-duesseldorf.de

26 1 Playing, Voting, and Dividing

1

∨

¬ ¬ ¬

∧∧

10

1

1

0 0

0

1

x y z

Fig. 1.5 A boolean circuit for the formula in (1.1) with satisfying assignment (1,0,1)

Alternatively, the runtimes of SAT and k-SAT algorithms are also given
in the number of clauses or in relation to both parameters, the number of
variables and the number of clauses.

As mentioned above, the naive SAT algorithm can be crucially improved.
This fascinating, exceedingly important problem has been investigated in
computer science for decades, in order to develop better and better SAT
solvers. Not much different than in high-performance sports, new records
are established for SAT again and again (see, e.g., the surveys by Schön-
ing [527], Woeginger [599], and Riege und Rothe [501] for results on moder-
ately exponential-time algorithm for SAT and other hard problems).

Table 1.2 Some deterministic upper bounds for k-SAT and SAT

Problem Upper bound Source

2-SAT P Jones, Lien, and Laaser [354]

3-SAT 1.4726n Brueggemann and Kern [134]

k-SAT, k ≥ 4
(

2− 2
(k+1)

)n

Dantsin at al. [183]

SAT 2
n
(

1− 1
log(2m)

)
Dantsin and Wolpert [184]

Table 1.2 lists some of these upper bounds for k-SAT and SAT, where n is
the number of variables and m the number of clauses of the input formula and
where polynomial factors are ignored.7 Table 1.3 shows how the results for
3-SAT have evolved over time. All these upper bounds refer to deterministic

7 It is common to neglect polynomial factors when analyzing exponential runtimes.

rothe@cs.uni-duesseldorf.de

1.5 A Brief Digression to Computational Complexity 27

algorithms (as opposed to randomized algorithms that may be more efficient,
but can make errors) and to the worst case, i.e., when analyzing the runtimes
of these algorithms, one assumes the “worst cases,” the most difficult problem
instances the algorithm must be able to handle.

Table 1.3 Improving the deterministic upper bounds for 3-SAT

Upper bound Source

2n naive 3-SAT algorithm

1.6181n Monien and Speckenmeyer [428]

1.4970n Schiermeyer [524]

1.4963n Kullmann [378]

1.4802n Dantsin et al. [183]

1.4726n Brueggemann and Kern [134]

As one can see, all upper bounds listed in Tables 1.2 and 1.3 for these
variants of the satisfiability problem are still exponential in the number of
variables. Now, what is the point in improving an exponential-time algorithm
running in time, say, 2n to another one with a more moderate exponential
runtime of cn, where c is a constant with 1< c< 2? In practical applications,
such an improved, more moderate exponential runtime can have a great im-
pact, as one is then able to process significantly larger inputs in the same time.
Note that the exponential growth hits only from a certain input size on; there-
fore, even exponential-time algorithms can be practicable for moderate input
sizes below this threshold. Suppose, for instance, that within one hour we can
solve all inputs of size up to 30 by an algorithm running in time 2n. If we are
able to improve this algorithm so that our new algorithm runs in time, say,√

2
n ≈ 1.4142n, then we will now be able to handle inputs up to size 60 on

the same computer within one hour, since we have
√

2
60

= 2(1/2)·60 = 230. In
practice, this really can make a difference.

1.5.2.3 How to Prove Lower Bounds: Reducibility and Hardness

However, how can one prove a lower bound for SAT? Indeed, for (unre-
stricted) deterministic algorithms, no better lower bound than linear time is
known for SAT to date (see, e.g., the work of Fortnow et al. [289]). But this
lower bound is trivial, as linear time is needed just to read the input. Due
to this difficulty to prove lower bounds of problems in the sense of the Ω or
ω notation, one takes another approach: One compares the complexity of a
given problem with that of other problems in a complexity class and tries to
show that it is at least as hard to solve the given problem as it is to solve any
of the other problems in the class. If one succeeds, the considered problem is
hard for the entire complexity class, and also in this sense it is common to

rothe@cs.uni-duesseldorf.de

28 1 Playing, Voting, and Dividing

speak of a problem’s lower bound: The related complexity class provides a
lower bound for the problem at hand, since solving any problem in the class
is no harder than solving this problem. If the latter belongs to this class in
addition, it is said to be complete for it.

To compare two given problems in terms of their complexity, we now intro-
duce the notion of reducibility on which the above notions of hardness and
completeness are based. Intuitively, a reduction of a decision problem A to
a decision problem B means that all instances of A can efficiently be trans-
formed into instances of B such that the original instances are yes-instances
of A if and only if their transformations are yes-instances of B. This notion of
reducibility is just one among many, but perhaps the most important one, and
it is called polynomial-time many-one reducibility because different instances
of A can be mapped to one and the same instance of B by the transforma-
tion (see, e.g., the textbooks by Papadimitriou [462] and Rothe [508] for more
details and for other reducibilities some of which will be presented in later
chapters).

Definition 1.2 (reducibility, hardness, completeness, and closure).
An alphabet is a finite, nonempty set of characters (or symbols). Σ∗ denotes
the set of all strings over the alphabet Σ. A total function f : Σ∗ → Σ∗ is
said to be polynomial-time computable if there is an algorithm that, given
any string x ∈Σ∗, computes the function value f(x) in polynomial time. Let
FP denote the class of all polynomial-time computable functions.

Let A and B be two given decision problems (for simplicity, they are
assumed to be encoded over the same alphabet Σ, i.e., A,B ⊆Σ∗). Let C be
any complexity class.

1. We say that A is (polynomial-time many-one) reducible to B (denoted
by A ≤p

m B) if there is a function f ∈ FP such that for each x ∈ Σ∗,
x ∈A ⇐⇒ f(x) ∈B.

2. B is ≤p
m-hard for C (or, shorter, C-hard) if A ≤p

m B for each set A ∈ C.

3. B is ≤p
m-complete in C (or, shorter, C-complete) if B is C-hard and in C.

4. C is closed under the ≤p
m-reducibility (or, shorter, ≤p

m-closed) if for any
two problems A and B, it follows from A ≤p

m B and B ∈ C that A is in C.

Cook [174] proved that SAT is NP-complete by encoding the computation
of an arbitrary NP algorithm on any given input into a boolean formula that
is satisfiable if and only if the algorithm accepts its input. This ≤p

m-reduction
of an arbitrary NP problem to SAT shows NP-hardness of, and thus a lower
bound for, SAT. That SAT belongs to NP—which provides the correspond-
ing upper bound for this problem—is easy to see: Given a boolean formula
ϕ with n variables, an NP algorithm for SAT nondeterministically guesses a
truth assignment for ϕ and then tests deterministically whether the guessed
assignment satisfies the given formula. Here, the power of nondeterminism
is exploited. In nondeterministic polynomial time, one can guess (and then

rothe@cs.uni-duesseldorf.de

1.5 A Brief Digression to Computational Complexity 29

deterministically verify) each of the 2n possible assignments, where the corre-
sponding computation tree has exactly 2n paths whose length is polynomial
in n. If there exists at least one accepting path in this tree (i.e., at least one
satisfying assignment), the formula is accepted; otherwise, it is rejected.

SAT is the first natural problem whose NP-completeness could be proven;
therefore, Cook’s result [174] is a milestone in complexity theory. The notion
of NP-comleteness has an immediate relation to the above-mentioned “P =
NP?” problem, as the following lemma shows. In addition, we list a number
of other fundamental properties of the ≤p

m-reducibility and of the complexity
classes P and NP that will be useful throughout the book.

Lemma 1.1. 1. P and NP are ≤p
m-closed.

2. If A ≤p
m B and B is in P, then A is in P.

3. If A ≤p
m B and A is NP-hard, then B is NP-hard.

4. P = NP if and only if SAT is in P.

Like most complexity classes, P and NP are closed under ≤p
m-reductions

according to the first statement in Lemma 1.1. This is a very useful property
that can be applied in many proofs about these classes, such as in the proof
of the fourth statement of this lemma, which says that the famous “P = NP?”
problem can be solved simply by finding a (deterministic) polynomial-time
algorithm for SAT. In this sense, SAT—just as every other NP-complete
problem—represents the whole class NP. That is, one could take any other
NP-complete problem to replace SAT in this equivalence. To see why this
equivalence holds, just note that (a) if P = NP then the NP problem SAT is
immediately in P, and (b) if SAT—or any other NP-complete problem—were
in P, then all the rest of NP would trail behind due to the ≤p

m-closure of P,
which immediately would imply equality of P and NP. Similarly simple proofs
can be given for the remaining statements of this lemma that are immediate
consequences of the definitions, too.

By the second statement of Lemma 1.1, upper bounds are inherited down-
ward in terms of ≤p

m, and by its third statement, lower (NP-hardness) bounds
are inherited upward in terms of ≤p

m. That is why the ≤p
m-reducibility is a

very useful tool:

• on the one hand, to prove new upper bounds (in particular, new P algo-
rithms), and

• on the other hand, to prove new lower bounds (in particular, new NP-
hardness results).

As regards the latter task, the problem SAT is particularly useful to show
other problems NP-hard: Starting from a SAT instance, reductions to many
other problems can easily be given. And even more suitable are certain re-
strictions of this problem. For example, the Cook reduction to SAT even
provides a boolean formula in CNF. Thus, also the restriction of the satisfi-
ability problem to formulas in CNF is NP-complete. Moreover, if one wants
to start from that problem to show other problems NP-hard, it is sometimes

rothe@cs.uni-duesseldorf.de

30 1 Playing, Voting, and Dividing

very useful if the given boolean formula is not only in CNF, but is even a
3-CNF, i.e., if every clause of the formula has at most three literals. To this
end, we first need to show that this restriction of SAT is NP-hard. That is,
we need to give a ≤p

m-reduction from, say, SAT restricted to CNF formulas
to SAT restricted to 3-CNF formulas. And that is what we will do now to
give a specific example of a ≤p

m-reduction (see also, e.g., [299, 508]).
For any given formula ϕ in CNF, we want to construct an equivalent

formula ψ in 3-CNF. To this end, it is enough to replace every clause ϕ
with more than three literals, say C = (ℓ1 ∨ ℓ2 ∨ ·· · ∨ ℓk) with k ≥ 4 literals
ℓ1, ℓ2, . . . , ℓk, by a new subformula C′ that, first, is in 3-CNF and, second, is
satisfiable if and only if C is satisfiable. This new subformula will have k−3
new variables, y1,y2, . . . ,yk−3, and will consist of k−2 clauses of the following
kind:

C′ = (ℓ1 ∨ ℓ2 ∨y1) ∧ (¬y1 ∨ ℓ3 ∨y2) ∧·· · ∧
(¬yk−4 ∨ ℓk−2 ∨yk−3) ∧ (¬yk−3 ∨ ℓk−1 ∨ ℓk).

It is easy to see that if C is satisfiable, so is C′, since a satisfying assignment
for C can by extended to a satisfying assignment for C′ as follows:

• If the clause (ℓ1 ∨ ℓ2 ∨ y1) is true under the satisfying assignment for C
because ℓ1 or ℓ2 are satisfied already, then extend this assignment by
setting all variables yi to 0. Obviously, this ensures that every clause of C′

is satisfied as well.
• If the clause (¬yk−3 ∨ ℓk−1 ∨ ℓk) is true under the satisfying assignment

for C because ℓk−1 or ℓk are satisfied already, then extend this assignment
by setting all variables yi to 1. Obviously, this ensures that every clause
of C′ is satisfied as well.

• Otherwise, there must exist another clause of C′ (neither the first nor the
last one) that is true under the satisfying assignment for C, since we know
that at least one of the literals ℓj is satisfied. Let (¬yj−2 ∨ ℓj ∨ yj−1) be
the first such clause of C′. Now, extending the assignment for C by setting
to 1 all variables yi, 1 ≤ i ≤ j− 2, and by setting to 0 all the remaining
variables, yi with j− 1 ≤ i≤ k− 3, obviously satisfies every clause of C′.

On the other hand, restricting any satisfying assignment for C′ to the vari-
ables occurring in C (which correspond to the literals ℓ1, ℓ2, . . . , ℓk) provides
a satisfying assignment for C. Therefore, if C′ is satisfiable, so is C. It follows
that the clause C is equivalent to the subformula C′. Since we introduce for
each such clause with more than three literals a new (disjoint) set of new vari-
ables, the original formula ϕ is equivalent to the new formula ψ constructed
in this way. It is also clear that the construction can be done in polynomial
time. Hence, by the third statement of Lemma 1.1, even 3-SAT is NP-hard.

By the way, sometimes it is useful to start in a reduction from a formula
that not only is in 3-CNF, but that even has the property that each clause
has exactly three literals. Do you see how one would have to modify the

rothe@cs.uni-duesseldorf.de

1.5 A Brief Digression to Computational Complexity 31

above reduction in order to show that even that restriction of the satisfiability
problem is NP-complete?

Garey and Johnson [299] collected hundreds of NP-complete problems
from a variety of scientific fields already more than three decades ago; mean-
while, there are probably thousands, if not tens of thousands, problems known
to be NP-complete (see also Johnson’s related column in the Journal of Al-
gorithms [352]). For example, Independent-Set is the problem to decide,
given a graph G and a positive integer m, whether or not G has an indepen-
dent set of size at least m.8 It is easy to see that this problem is in NP. On
the other hand Independent-Set can be seen to be NP-hard (and, there-
fore, NP-complete [299]) by a reduction from 3-SAT that, informally stated,
works as follows. Given a boolean formula in 3-CNF with m clauses (each of
which has exactly three literals), create a triangle for each clause (i.e., create
three vertices—each being labeled with one of the literals of that clause—
and connect any two of them by an edge), and create an edge between any
two vertices of two distinct triangles whenever one is labeled with a literal
and the other one with its negation. It is easy to see that this graph has an
independent set of size m if and only if the given formula is satisfiable.

We will come across the satisfiability problem, SAT, and its variants in
several places later in this book. On the one hand, we will apply its NP-
completeness to determine the complexity of some of those problems we are
interested in here. On the other hand, in Chapter 6 we will be concerned with
boolean formulas in the context of judgment aggregation.

1.5.2.4 Some Background on Approximation Theory

If a decision problem is NP-hard, one cannot expect to find a deterministic
polynomial-time algorithm solving it exactly. However, one can try to find effi-
cient approximation algorithms for the optimization variants of this problem,
i.e., polynomial-time algorithms that may not find an exact solution to the
problem but can approximate an optimal solution within a certain factor. For
example, an optimization variant of SAT is the problem Max-SAT: Given
a boolean formula in CNF, find an assignment of its variables that satisfies
most of its clauses. An optimization variant of the problem Independent-
Set defined above is Max-Independent-Set: Given a graph G, output the
size of a maximum independent set of G.

Fix some α, 0 < α < 1. An α-approximation algorithm A for a maximiza-
tion problem is a polynomial-time algorithm such that for each instance x,
A outputs a solution to the problem whose value is at least α times the op-
timal value for x. The value α is called the approximation factor (a.k.a. the
approximation ratio or performance guarantee) of an α-approximation algo-

8 An independent set of a graph is a subset I of its vertex set such that no two vertices in
I are connected by an edge. The size of an independent set is the number of its vertices.

rothe@cs.uni-duesseldorf.de

32 1 Playing, Voting, and Dividing

rithm. Note that α may also depend on the size of the given instance. For
minimization problems, the analogous notions are defined for α > 1.

As an example, consider the restriction of Independent-Set where the
degree of each vertex (i.e., the number of incident edges) is bounded by k; de-
note this problem by k-Degree-Independent-Set. Note that for k≥ 4, this
problem is also NP-complete. However, there is a simple k

k+1 -approximation
algorithm for Max-k-Degree-Independent-Set: Start with I set to the
empty set (which is trivially independent); while there are still vertices in
the given graph G, delete an arbitrary vertex v and all its neighbors from
G and add v to I. The resulting set I will obviously be independent. Since
in each while-loop, some vertex is added to I and at most k+ 1 vertices are
deleted from G (due to the bound on the vertex degree), I has size at least
the number of G’s vertices divided by k+ 1, which is at least 1/(k+1) times
the size of a maximum independent set of G.

For the general Max-Independent-Set problem (without any given
bound on the vertex degree of the given graph), a quite similar algorithm, the
so-called minimum-degree greedy heuristic, provides a good approximation in
certain cases: Given a graph G, pick any vertex of minimum degree, delete
it and all its neighbors from G, and repeat this procedure until you are left
with an empty graph. Bodlaender, Thilikos, and Yamazaki [79] show that for
certain well-behaved classes of graphs (including trees, so-called split graphs,
and complete k-partite graphs, for any k), this simple heuristic indeed finds
the optimum, i.e., a maximum independent set.

We say an optimization problem has a polynomial-time approximation
scheme (PTAS) if for each ε, 0 < ε < 1, there is an α-approximation algo-
rithm for the problem, where α= 1 − ε if it is a maximization problem, and
α = 1 + ε if it is a minimization problem. A fully polynomial-time approxi-
mation scheme (FPTAS) is a PTAS whose running time is bounded by a
polynomial of the input size and of 1/ε. For example, it is known that Max-
3-Degree-Independent-Set has no PTAS [65].

For more background on approximation theory, including techniques to
show approximation results as well as techniques to prove inapproximabil-
ity results (under certain complexity-theoretic hypotheses), we refer to the
textbook by Vazirani [583] and the survey by Arora and Lund [13]. Approx-
imation results will be mentioned in most of the following chapters; see, in
particular, Sections 8.5.2.2 and 8.5.2.3 starting on page 523.

We conclude the current chapter by giving a brief compendium of complex-
ity classes and we will illustrate these classes by exhibiting suitable variants
of SAT that are complete for them.

rothe@cs.uni-duesseldorf.de

1.5 A Brief Digression to Computational Complexity 33

1.5.3 A Brief Compendium of Complexity Classes

We got to know the complexity classes P and NP already, see Section 1.5.1.2
starting on page 20. As we said there, these are the most central complexity
classes with respect to the time complexity measure, and indeed, most of the
problems we will come across in this book can be classified to either belong to
P or be NP-complete. Moreover, we have already seen that SAT and 3-SAT,
too, are NP-complete and that 2-SAT is in P.9 However, as we will also see
completeness results for classes other than NP later in this book, we now
briefly describe these classes, along with “their” variants of SAT, and point
the reader to the relevant chapter or section for more details.

1.5.3.1 Polynomial Space

SAT is the satisfiability problem for propositional formulas with no quanti-
fiers involved. Its quantified variant is the following:

Quantified-Boolean-Formula (QBF)

Given: H = (∃X1)(∀X2) · · ·(QXk) [ϕ(X1 ,X2, . . . ,Xk)], a quantified boolean for-
mula, where the Xi are disjoint sets of variables, ϕ is a boolean formula
without quantifiers, all variables occurring in ϕ are quantified, and Q= ∃
if k is odd, and Q = ∀ if k is even.

Question: Does H evaluate to true, i.e., does there exist a truth assignment to the
variables in X1 such that for each truth assignment to the variables in
X2, there exists . . . a truth assignment to the variables in Xk such that
ϕ is true under this assignment?

Because of its quantifier structure QBF seems to be much harder a prob-
lem than SAT; in fact, it is PSPACE-complete, where PSPACE is the class
of problems that can be solved by a Turing machine10 in polynomial space;
alternatively, PSPACE is the class of problems that can be solved by an alter-
nating Turing machine in polynomial time (see the work of Chandra, Kozen,
and Stockmeyer [148]).

We will come across PSPACE-complete problems in Section 2.3.1.4 on
page 88, where we consider the hardness of detecting whether a player in a
combinatorial two-player game with perfect information has a winning strat-
egy. We will also see PSPACE-complete problems in the context of online ma-
nipulation in sequential elections (see Section 4.3.3.10 starting on page 284).

9 We won’t consider completeness for P here. Note that ≤p
m-completeness in P is trivial,

as ≤p
m is too coarse for P and smaller classes (see, e.g., [508, Lemma 3.37], which says

that every P set distinct from ∅ and Σ∗ is ≤p
m-complete in P). There are also nontrivial

completeness results for this class, but with respect to other reducibilities than ≤p
m.

10 It does not matter whether this Turing machine is deterministic or nondeterminis-
tic; a consequence of Savitch’s theorem [522] is that nondeterministic polynomial space
coincides with deterministic polynomial space.

rothe@cs.uni-duesseldorf.de

34 1 Playing, Voting, and Dividing

1.5.3.2 The Polynomial Hierarchy

Restricting QBF to a fixed number of i alternating quantifiers gives the prob-
lems QBFi (starting with an existential quantifier) and their complements,
QBFi (starting with a universal quantifier). Note that QBF1 is nothing
other than SAT. The corresponding hierarchy of complexity classes has been
introduced and studied by Meyer and Stockmeyer [424, 562]: the so-called
polynomial hierarchy, PH =

⋃
i≥0Σ

p
i . Its Σp

i levels are inductively defined by

Σp
0 = P, Σp

1 = NP, and Σp
i = NPΣ

p
i−1 , i≥ 2,

where “NPΣ
p
i−1” means that an NP “oracle Turing machine” accesses an

“oracle” from Σp
i−1 (see page 255 and [508, Def. 2.22] for more details). Since

these classes are not likely to be closed under complementation, one has also
studied their co-classes, the Πp

i levels of the polynomial hierarchy, defined by
Πp

i = coΣp
i = {L |L ∈Σp

i }, i≥ 0.
In particular, Πp

0 = P (because, as a deterministic class, P clearly is closed
under complementation) and Πp

1 = coNP is the class of complements of NP
problems. Just as with the “P = NP?” question, it is open whether or not NP
equals coNP, but it is widely believed that these two classes are distinct. It
is also widely believed (but as yet unproven) that the polynomial hierarchy
is strict, i.e., that all their levels differ from each other. Note that P = NP
would imply NP = coNP, and even that PH = P. More generally, a collapse
of any level of this hierarchy (Σp

i = Πp
i , i ≥ 1, or Σp

i = Σp
i+1, i ≥ 0) would

imply an upward collapse of the entire hierarchy to this level (PH =Σp
i).

It is known that for each i > 0, QBFi is Σp
i -complete and QBFi is Πp

i -
complete. It is also known that the levels of the polyomial hierarchy can be
characterized via alternating, polynomially length-bounded existential and
universal quantifiers (where the Σp

i levels start with an existential and the
Πp

i levels with a universal quantifier), which nicely mirrors the structure of
QBFi and QBFi formulas, respectively; see the original work of Meyer and
Stockmeyer [424, 562] or the textbook by Rothe [508, Section. 5.2] for a proof
of this characterization.

Completeness for the levels of the polynomial hierarchy, specifically forΣp
2k,

k ≥ 1, will play a role in Section 3.3.1.3 on page 174 when we will be con-
cerned with bribery in path disruption games; in Section 3.3.3 starting on
page 183 when we will study stability problems in hedonic games; in, again,
Section 4.3.3.10 starting on page 284 when we will consider online manipu-
lation in sequential elections; in Section 6.3 starting on page 374 when we
will study the complexity of problems related to judgment aggregation; and
in Section 8.5.2.5 starting on page 529 when we turn to the complexity of
problems related to Pareto efficiency (see Definition 8.2 on page 509) and
envy-freeness (see Definition 8.3 on page 510) in the allocation of indivisible
goods.

rothe@cs.uni-duesseldorf.de

1.5 A Brief Digression to Computational Complexity 35

The ∆p
i levels of the polynomial hierarchy are ∆p

0 = P and ∆p
i = PΣ

p
i−1 for

i≥ 1; note that ∆p
1 = PP = P =∆p

0. Once again related to online manipulation
in sequential elections, we will specifically come across the class PNP = ∆p

2
in Section 4.3.3.10 starting on page 284. In addition, we will also see com-
pleteness for the restriction PNP[1] of PNP with only one oracle query allowed.
Relatedly, the restriction of PNP to logarithmically many oracle queries, de-
noted by PNP[log], is known to be equivalent (due to results of Hemachan-
dra [320] and Köbler, Schöning, and Wagner [370]) to “parallel access to NP,”
denoted by PNP

‖ and formally defined on page 255. PNP
‖ -completeness will be

relevant to the winner problems for Dodgson, Young, and Kemeny elections
in Section 4.3.1.3 starting on page 255. Another problem known to be com-
plete for this class is the problem of whether the minimum-degree greedy
heuristic (described in Section 1.5.2.4 starting on page 31) can approximate
the size of a maximum independent set of a given graph within a constant
factor [332] (see the work of Hemaspaandra, Rothe, and Spakowski [333] for
the analogous results regarding the problem Min-Vertex-Cover11 and the
so-called edge deletion heuristic and the maximum-degree greedy heuristic).

The following problem is a variant of the satisfiability problem that (by a
result of Wagner [585]; see also [331] for some technical tweaks in the proof)
is known to be complete in PNP:

Max-Satisfying-Assignment-Equality (Max-SAT-ASG=)

Given: Two boolean formulas in CNF with exactly three literals per clause.
Question: Do they have the same maximal satisfying assignment?

And an example of a variant of the satisfiability problem that (again due
to Wagner [585]) is known to be PNP

‖ -complete is the problem Odd-SAT:
Given a list of boolean formulas, is it true that the number of satisfiable
formulas in the list is odd?

1.5.3.3 DP: the Second Level of the Boolean Hierarchy over NP

There are also other hierarchies built upon NP, for example, the boolean
hierarchy over NP (see, e.g. [136, 137, 508, 500]). In this book, we will only
be interested in the second level of this hierarchy, the class DP, which was
introduced by Papadimitriou and Yannakakis [464] and is defined as the class
of differences of any two NP sets. An example of a variant of the satisfiability
problem that is DP-complete is the problem SAT-UNSAT, which contains
all pairs (ϕ,ψ) of boolean formulas such that ϕ is satisfiable and ψ is not.

We will come across further DP-complete problems that are related to the
exact variant of the margin of victory problem in voting (see Section 4.3.5.4

11 Min-Vertex-Cover is defined as the problem: Given a graph G, output the size of
a minimum vertex cover of G, where a vertex cover of G is a subset of the vertices of G
that contains at least one of the two vertices of each edge of G.

rothe@cs.uni-duesseldorf.de

36 1 Playing, Voting, and Dividing

starting on page 321) and to exactly maximizing social welfare in allocating
indivisible goods (see Sections 8.5.2.2 and 8.5.2.3 starting on page 523).

1.5.3.4 Probabilistic Polynomial Time

Majority-SAT is the problem of whether a given boolean formula with n
variables has at least 2n−1 satisfying assignments, i.e., at least half of the
total number of assignments are required to be satisfying assignments. The
complexity class that naturally corresponds to this problem has been intro-
duced by Gill [305] as probabilistic polynomial time, abbreviated by PP. He
defines PP via probabilistic (polynomial-time) Turing machines, which can be
viewed as nondeterministic (polynomial-time) Turing machines that accept
their input if and only if at least half of their total number of computa-
tion paths accept. In Section 3.3.2.2 on page 178, we will see that certain
problems related to the complexity of “false-name manipulation” in weighted
voting games (defined in Section 3.2.3) are PP-complete.

Overview

The landscape of the above-defined complexity classes is shown in Figure 1.6
as a Hasse diagram, i.e., every ascending line from some complexity class
C to some other class D indicates an inclusion: C ⊆ D. Most of these in-
clusions follow immediately from the definitions; some require a nontrivial
proof. For example, the inclusion PNP

‖ ⊆ PP follows from the closure of PP
under so-called parity reductions that was shown by Beigel, Hemachandra,
and Wechsung [64]. Presumably, PNP is not contained in PP, and PP and
PH are incomparable. None of the inclusions depicted in Figure 1.6 is known
to be strict, though it is widely suspected that they are.

In later chapters, some further complexity classes will be introduced and
discussed (e.g., those depicted in Figure 2.25 on page 129 or the parameter-
ized complexity class W[2] occurring in Table 6.5 on page 387). However, as
will be explained there, these classes are of a different type (those from Fig-
ure 2.25 are classes of functions and not classes of sets, while parameterized
complexity classes contain parameterized problems that, unlike regular deci-
sion problems, specify one or more parameters in addition to the input) and,
therefore, cannot directly be compared with those in Figure 1.6.

1.5.3.5 And Now, Finally, . . .

. . . let’s get ready to play, vote, and divide!

rothe@cs.uni-duesseldorf.de

1.5 A Brief Digression to Computational Complexity 37

PP

P

PNP[1]

Σ
p
1 = NP Π

p
1 = coNP

DP coDP

PNP[log] = PNP
‖

PNP

PH

PSPACE

.. .

Σp
2 = NPNP Πp

2 = coNPNP

. .
.

Fig. 1.6 Inclusions between some complexity classes

rothe@cs.uni-duesseldorf.de

