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Abstract

This thesis deals with preference and judgment aggregation in the context of computational
social choice, a subfield of multiagent systems and artificial intelligence. In preference
aggregation, agents (typically called voters) have preferences over a given set of candidates
and the goal is to aggregate ballots derived from these preferences to determine an output
(e.g., a single candidate, a set of candidates, or a linear order over the candidates). In
judgment aggregation, agents (typically called judges) have judgments over a given set of
issues and the goal is to aggregate these judgments into a collective set of judgments.

In the context of multiwinner elections that elect a committee of candidates, this thesis
studies a new type of ballot called `-ballots. In contrast to existing ballot types, `-ballots are
a compromise between ordinal and cardinal ballots. This thesis focuses on the axiomatic
properties of two newly defined types of multiwinner voting rules using these `-ballots as
input, and proposes a generalization of `-ballots to fully cardinal ballots.

Furthermore, this thesis explores the computational complexity of strategic attacks on
voting rules. For several prominent iterative voting rules, i.e., voting rules that proceed in
rounds, it is shown that shift bribery is NP-complete in all considered cases. In the context
of iterative voting, voters are encouraged to repeatedly update their ballots as a reaction to
the current state of the election. This thesis uses a model where voters are connected via
an underlying social network and compute their information about the current state of the
election both by observing their neighbors’ ballots and an opinion poll announced by a
polling agency. This thesis explores the manipulation power of the polling agency for the
voting rules plurality and veto and shows that manipulation is para-NP-hard even for very
restricted social networks and permitted ballot deviations. In particular, the thesis focuses
on distance restrictions for the polling agency in regard to the manipulated opinion poll
and for the voters in regard to their deviations.

Finally, this thesis deals with control in judgment aggregation under various preference
types of the chair where a chair tries to achieve a better outcome by changing the structure
of the aggregation process, e.g., by adding or deleting judges. This thesis shows NP-
completeness for most considered problems for the judgment aggregation procedures
uniform (constant) premise-based quota rules.
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Chapter 1

Introduction

Computational social choice is an interdisciplinary field that encompasses among others
political science, economics, mathematics, and computer science. The aim is to aggregate,
e.g, preferences, opinions, or judgments over a set of, e.g., candidates, items, or issues
to reach a collective outcome. This process of collective decision making is present in
everyday life, be it political elections or choosing a selection of menu items. See the book
edited by Brandt et al. (2016) for an overview on the field of computational social choice,
and the book edited by Endriss (2017) for an outlook on current research directions.

In preference aggregation, the goal is to aggregate voters’ preferences over candidates
to either elect a winning candidate, elect a winning committee, or create a ranking over
the given candidates. Examples include electing a president, electing a parliament, or
creating a ranking over politicians of a party stating in which order the party will assign
them seats in parliament. Well-known contributors to the field of preference aggregation
include, for example, the mathematician Jean-Charles de Borda (1733–1799), the Marquis
de Condorcet (1743–1794), a philosopher and mathematician, and economist and Nobel
laureate Kenneth Arrow (1921–2017). But preference aggregation is not confined to
political elections. Preference aggregation provides models that can be used to describe
and design the decision making process for autonomous (computer) systems, and is of
particular interest to the field of artificial intelligence and multiagent systems. Computer
scientists are not only concerned with combinatorial problems that result from large-
scale applications, but also provide tools to analyze, among others, the suitability of
an aggregation procedure for the given application. Important contributions include the
design of algorithms and the study of computational complexity. The latter deals with
quantifying the amount of time or space a problem takes to solve and provides, for example,
barriers against strategic attacks on aggregation procedures by proving that attacks need
an unfeasible span of time to execute in the worst case. The theory of parameterized
complexity is able to give a more fine-grained analysis than the classical complexity setting
that focuses on worst-case complexity.
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Chapter 1 Introduction

In contrast to preference aggregation, the field of judgment aggregation only emerged quite
recently. Kornhauser and Sager (1986) note that in a court of three judges that have to
decide whether the defendant is guilty, the intuitive approach of aggregating consistent
judgments can lead to an inconsistent collective outcome. The reformulation of this
paradox by Pettit (2001) marked the starting point of a series of impossibility theorems
regarding the incompatibility of desirable axioms for judgment aggregation procedures.
Judgment aggregation generalizes preference aggregation and is able to express various
scenarios in one framework. However, this expressiveness often comes with the toll of a
high computational complexity.

This thesis is organized as follows. Chapter 2 formally introduces complexity theory, pref-
erence aggregation, and judgment aggregation, and provides a short overview of related
work. The following chapters then illustrate my contribution to the field of voting and
judgment aggregation. In multiwinner voting, the goal is to elect a committee of candi-
dates. In this thesis, one focus for multiwinner voting is on the representation of voters’
preferences. Chapter 3 deals with a new type of ballot that generalizes existing models
for representing voters’ preferences and studies the axiomatic properties of corresponding
multiwinner rules. The next chapters deal with strategic attacks on aggregation proce-
dures where an attacker tries to reach a more favorable outcome by interfering with the
aggregation process. Chapter 4 extends the study of shift bribery—a type of attack where
voters are influenced to change their ballots—to iterative voting rules. Chapter 5 proposes
distance-based manipulation problems for iterative elections with polls, where an attacker
can influence the information voters have about the election, and gives parameterized
complexity results. Chapter 6 introduces the concept of control to judgment aggregation
where an attacker is able to change the structure of the judgment aggregation process, for
example by adding or deleting judges, and presents complexity results for various notions
of what constitutes a more favorable outcome. Finally, Chapter 7 concludes the thesis and
provides perspectives for future work in my field.
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Chapter 2

Background and Related Work

This chapter provides the necessary background for the following chapters. Section 2.1
shortly introduces the concept of computational complexity that is used in all following
chapters. Then Section 2.2 gives an overview on preference aggregation. In particular,
Section 2.2.1 deals with singlewinner elections, Section 2.2.2 introduces the concept
of strategic behavior in collective decision making with a focus on preference aggre-
gation, Section 2.2.3 extends singlewinner to multiwinner preference aggregation, and
Section 2.2.4 gives the background for iterative elections. Finally, Section 2.3 introduces
judgment aggregation which generalizes preference aggregation.

2.1 Complexity Theory

Computer science is, among others, concerned with solving problems where problems are
defined by the input they receive and the question (or task) they answer (or execute). An
important factor for a given problem is the question how fast the best algorithm is able to
solve it (i.e., the computational complexity of the problem (Hartmanis and Stearns, 1965)),
and therefore how “hard” the problem is. However, if no fast algorithm for a problem is
known, does that mean that a fast algorithm has just not been discovered yet, or does it not
exist? While the specific running time is dependent on the algorithm, there are upper and
lower bounds for a best algorithm that are due to the nature of the problem. For example,
there are problems that can provably be solved in at most linear time (because there is
an algorithm with that running time), or that are impossible to solve without using an
exponential length of time (and therefore no algorithm can exist that solves the problem
faster), where “linear” and “exponential” are seen in relation to the size of the input. This
thesis mostly uses worst-case (computational) complexity, where the given upper bound
is for the input that takes the most time to solve by a best (i.e., fastest) algorithm for the
given problem. Problems can be grouped in so-called complexity classes depending on the
upper bound for the worst-case input.
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Chapter 2 Background and Related Work

This thesis focuses on decision problems, i.e., problems that ask a yes/no question. For-
mally, a decision problem is a set S of words over the alphabet {0,1},1 where S is
considered to be the set of inputs for which the answer is yes. An algorithm solves S

if—given an input x ∈ {0,1}∗—it always correctly decides whether x ∈ S. An algorithm
is deterministic if for each input, each step the algorithm takes is predetermined by the
previous step, which among others implies that executing the algorithm several times for
the same input always results in the same outcome. In contrast to a deterministic algorithm,
a nondeterministic algorithm can take different steps in executions of the same input. In
particular, a nondeterministic algorithm solves a decision problem S if for a given input x,
at least one series of steps leads to the output ’yes’ if x ∈ S, and the algorithm does not
output ’yes’ for any series of steps if x /∈ S. The complexity class P contains all decision
problems that can be solved in deterministic polynomial time (i.e., can be solved by a
deterministic algorithm in polynomial time), whereas NP contains all decision problems
that can be solved in nondeterministic polynomial time. Alternatively, one can define NP as
the class of decision problems where a solution can be verified in deterministic polynomial
time. Obviously, P is a subset of NP. One of the most prominent open problems in the
field of complexity theory is the question whether P is equal to NP.

Since complexity classes only give upper bounds, but not lower bounds for the problems
contained in them, the actual complexity between the problems in one class can vary. One
idea to compare two problems in terms of complexity is to show that one problem is at least
as hard as the other problem. This thesis uses many-one reducibility for the comparison of
problems.

Definition 2.1 (polynomial-time many-one reducibility). Let A and B be sets of words over
{0,1}. A is polynomial-time many-one reducible to a problem B—denoted by A≤P

m B—if
there exists a polynomial-time computable function f : {0,1}∗→{0,1}∗ so that x ∈ A⇔
f (x) ∈ B for all x ∈ {0,1}∗.

If A≤P
m B, then A can be solved given the input x∈ {0,1}∗ by solving B with the input f (x).

That means that problem B is at least as hard as problem A. Note that ≤P
m is transitive, so

that A≤P
m B and B≤P

m C implies A≤P
m C for all A,B,C ⊆ {0,1}∗.

One goal of complexity theory is to find problems that can be seen as representatives of

1Note that it is always possible to encode words over other, more complex alphabets into words in {0,1}∗.

4



2.1 Complexity Theory

their complexity class because they are a member of this complexity class and are at least
as hard to solve as every other member of this class.

Definition 2.2 (hardness and completeness). Let B be a set of words over {0,1}∗ and let
C be a complexity class. B is called C-hard if for all A ∈ C , it holds that A≤P

m B, and
C-complete if B is C-hard and B ∈ C.

Problems in P are called tractable, whereas NP-hard problems are called intractable under
the assumption that P and NP are not equal. Since NP is closed under many-one reducibility,
i.e., A≤P

m B and B ∈ NP implies A ∈ NP, the existence of a deterministic polynomial-
time algorithm for an NP-complete problem would imply deterministic polynomial-time
algorithms for all problems in NP. Building on the work by Cook (1971) who proved for
the first time that a decision problem—namely, deciding whether a given Boolean formula
is satisfiable (SAT for short)—is NP-complete, Karp (1972) proved the NP-completeness
for various other natural decision problems. While intractability is a huge disadvantage for
many problems arising in natural applications, in this thesis it is mostly seen as a positive
aspect in the context of problems that deal with strategic behavior (see Section 2.2.2
for a short introduction). Therefore, the following chapters explore the complexity of
the considered problems in detail. See the book by Garey and Johnson (1979) for an
introduction to NP-completeness and the book by Arora and Barak (2009) for an extensive
introduction to complexity theory in general.

A disadvantage of classical complexity theory is the sole focus on the worst case. A
brute-force search approach does not have to be the best way to find a solution for an
intractable problem. In practice, the worst case might appear rarely so that algorithms
might still solve the problem efficiently in the average case, or there might be efficient
heuristics. Furthermore, in many applications the considered instances are bounded in size,
for example because there are only a few data sets or the considered graphs are sparse. If
such a bound is guaranteed to be small or even fixed, an algorithm might exploit it to find
solutions efficiently. The study of problems that include a parameter corresponding to a
bound on the input is called parameterized complexity theory.

A part of this thesis focuses on parameterized decision problems. In contrast to the classical
decision problems, these problems also include a (numerical) parameter that is assumed
to be small, e.g., the number of clauses in a Boolean formula for a parameterized version
of SAT. Formally, a parameterized decision problem is a set S ⊆ {0,1}∗ of inputs for
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Chapter 2 Background and Related Work

which the answer is yes and a parameterization κ that assigns each instance x ∈ {0,1}∗
a numerical value k as a parameter. The parameterized complexity class FPT (fixed-
parameter tractable) is the parameterized equivalent of P (Downey and Fellows, 1995a),
whereas para-NP is the parameterized equivalent of NP (Flum and Grohe, 2003). Note
that the membership in a parameterized complexity class is obviously dependent on
the parameter, i.e., the same classical decision problem can be a member of different
parameterized complexity classes for different choices of parameterization.

Definition 2.3 (FPT, fpt-algorithm, and para-NP). Let S⊆ {0,1}∗, let κ be a parameteri-
zation κ : {0,1}∗→ N, let f : N→ N be a computable function, and let g : {0,1}∗→ N
be a polynomial-time computable function.

1. (S,κ) is in FPT in regard to parameterization κ if there exists a deterministic algo-
rithm that solves S in time f (κ(x)) ·g(x) for each x ∈ {0,1}∗. Such an algorithm is
called an fpt-algorithm.

2. (S,κ) is in para-NP in regard to parameterization κ if there is a nondeterministic
algorithm that solves S in time f (κ(x)) ·g(x) for each x ∈ {0,1}∗.

Analogously to classical complexity theory, a parameterized (polynomial-time many-one)
reduction is a tool to compare the hardness of two parameterized problems.

Definition 2.4 (parameterized reduction). Let A,B be sets of words over {0,1} and let
κ,κ ′ : {0,1}∗→ N be parameterizations. (A,κ) is parameterized polynomial-time many-

one reducible to (B,κ ′) if there exists an fpt-algorithm f : {0,1}∗ → {0,1}∗ so that
x ∈ A⇔ f (x) ∈ B for all x ∈ {0,1}∗, and there exists a computable function g so that
κ ′( f (x))≤ g(κ(x)) for all x ∈ {0,1}∗.

Note that in contrast to the classical setting, the algorithm that transforms an instance of a
problem A into an instance of the problem B is not a polynomial-time, but an fpt-algorithm.
That means that the existence of a parameterized reduction does not imply the existence of
a polynomial-time reduction and cannot be used to show NP-hardness. The definitions for
hardness and completeness as in Definition 2.2 carry over to the parameterized context.

Downey and Fellows (1995a,b) introduce the W-hierarchy including the complexity classes
W[1] and W[2]. A parameterized decision problem is in the complexity class W[t] if
there exists a parameterized reduction to a certain weighted circuit satisfiability problem.
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2.2 Preference Aggregation

Note that FPT = W [0] ⊆W[1] ⊆W[2] ⊆ ·· · ⊆ para-NP and that it is an open question
whether FPT is equal to W[1]. Parameterized problems in FPT are called tractable, whereas
problems that are W[t]-hard, t > 0, or para-NP-hard are called intractable. See the books
by Flum and Grohe (2006) and Cygan et al. (2015) for an introduction to parameterized
complexity theory.

In contrast to the yes/no questions by decision problems, optimization problems ask
for a solution with certain “optimal” properties, e.g., a satisfying truth assignment to a
Boolean formula with the maxinum number of 1’s possible. Finding an optimal solution
for a problem can often be intractable. However, for most applications it is sufficient if
the solution is always provably close to the optimal solution. Johnson (1974) starts the
comprehensive study of approximation algorithms and, among others, gives examples
of algorithms that guarantee that the size of a solution is within a factor c the size of the
optimal solution while still computing the solution in deterministic polynomial time. See
the book by Vazirani (2013) for an overview on approximation.

2.2 Preference Aggregation

In the field of preference aggregation, the goal is to aggregate preferences of agents called
voters over a set of alternatives (or candidates) to elect a winner. One focus in this thesis
is the computational complexity of aggregation and of strategic behavior in preference
aggregation.

Formally, let C = {c1, . . . ,cm} be a set of candidates and let N = {1, . . . ,n} be a set
of voters, where each voter j has a (private, not further specified) preference over the
candidates and submits a ballot v j. In many applications, these ballots are seen as “sincere”,
meaning that they reflect the voters’ preferences over the candidates in some way. In these
contexts, the notions ballot and preference are often used interchangeably in the literature.
See Section 2.2.2 and Section 2.2.4 for examples of “insincere” or “strategic” ballots. A
list of ballots P = (v1, . . . ,vn) is called a profile.

In this thesis, the following types of ballots will be used. Note that these types can also be
used to model preferences (see, e.g., Section 2.2.4), but in general, preferences are assumed
to be far more complex. Using ordinal ballots, each voter ranks the candidates from best
to worst, e.g., each ballot v j is a linear order > j over the candidates where ci > j ck can be
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Chapter 2 Background and Related Work

interpreted as v j strictly preferring candidate ci to candidate ck. Note that a linear order >
is

• complete (a > b or b > a holds for all a,b ∈C, a 6= b),

• transitive (a > b and b > c implies a > c for all a,b,c ∈C), and

• asymmetric (if a > b, then b > a does not hold).

There are also models where the ballot is a weak order % j, where ci % j ck denotes that
voter j either prefers ci over ck, or does not distinguish between them. Weak orders do
not have to be asymmetric. Let pos j(c) denote the rank of candidate c in ballot v j. For
example, for the ballot c3 >2 c1 >2 c2, it holds that pos2(c3) = 1.

For approval ballots, voters only distinguish between approved and disapproved candidates,
and the ballot v j ⊆C is a set denoting the approved candidates of voter j. Note that this
dichotomous model can also be generalized to allow for more groups of candidates (see
Chapter 3 for my contribution to this generalization). Furthermore, for some applications,
the number of candidates in an approval ballot might be fixed. The model studied in
Chapter 5 uses so-called plurality ballots, where each voter can only approve of exactly one
candidate, and veto ballots, where each voter can only disapprove of exactly one candidate
and v j denotes the disapproved candidate of voter j.

Finally, voters can assign a numerical value to each candidate. For these cardinal ballots,
the ballot is a set v j = {(ci,ki) | ci ∈C,ki ∈Q,1≤ i≤ m}. Depending on the application,
there might be upper or lower bounds for the values of ki, or the ballot might be normalized
so that the values for the most preferred candidate and for the most disliked candidate
are fixed for all voters. See Section 3.4 for voting rules designed for cardinal ballots. In
computational social choice, cardinal ballots (or cardinal utilities) are mostly used in the
field fair division of indivisible goods, where agents (the equivalent to voters) assign values
to items (the equivalent to candidates) and the goal is to find an assignment of items to
agents that maximizes the utility in some way.

Example 2.5 (ballot types). Let C = {a,b,c,d} be a candidate set. Assume that a voter is a
big fan of a, likes both b and c equally, and slightly dislikes d. A possible (sincere) ordinal
ballot using linear orders is then v = a > b > c > d, a weak order v = a� b∼ c� d,2 a

2Here, a� b denotes that a % b and not b % a, and b∼ c denotes that b % c and c % b.
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2.2 Preference Aggregation

possible approval ballot v = {a,b,c}, a plurality ballot v = {a}, a veto ballot v = {d}, and
a possible cardinal ballot v = {(a,10),(b,3),(c,3),(d,1)}.

2.2.1 Singlewinner Elections

This section deals with singlewinner elections where the goal is to elect a winner among
the set of candidates. To determine the outcome of the election, an aggregation function is
needed to aggregate the voters’ ballots (and therefore their underlying preferences). In this
chapter, the following two types of functions are used.

Definition 2.6 (voting rule, social welfare function). Let C be a set of candidates, let
N = {1, . . . ,n} be the set of voters, let B(C) be the set of all possible ballots over C,3 and
let L(C) be the set of all possible linear orders over C.

• A (singlewinner) voting rule R maps a profile to a subset of candidates called the
winners of the election. Formally, R : B(C)n→ 2C.

• A social welfare function R maps a profile to a set of linear orders over the candidates.
Formally, R : B(C)n→ 2L(C).

Note that the above definition allows for an empty set of winners. However, most aggrega-
tion functions are designed to always output a winner. If the set of winners of a voting rule
is a singleton, the respective candidate is called a unique winner of the election, and else
a nonunique winner. In the case where the output of the aggregation function is always
a singleton, the function is said to be resolute, and irresolute otherwise. A tiebreaking

scheme is a function that maps a set to a single member from this set and can be used to
make an irresolute aggregation function resolute. See also the book chapter by Baumeister
and Rothe (2015) for a detailed introduction to singlewinner preference aggregation.

In this thesis, one important family of voting rules with ordinal ballots are the (positional)
scoring rules. Each scoring rule is associated with a family of scoring vectors of the
form α = (α1, . . . ,αm) for each number m of candidates, where αi ∈ N, α1 ≥ ·· · ≥ αm,
and α1 > αm. For example, the scoring rule plurality uses scoring vectors of the form
(1,0, . . . ,0), veto (also called anti-plurality) has scoring vectors of the form (1, . . . ,1,0),
and Borda Count uses scoring vectors of the form (m−1,m−2, . . . ,1,0) for m candidates

3Note that most aggregation functions are only defined for a single type of ballot.
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Chapter 2 Background and Related Work

(see Example 2.9). For each voter, a candidate receives the points as indicated in the
scoring vector according to the rank in the respective voter’s ordinal ballot. For example,
the highest-ranked candidate in a ballot receives α1 points. These points are added to
compute the resulting score for each candidate, and the winners of the election are then
the candidates with the highest score (also called plurality winners, veto winners, . . . ,
respectively). Let rα denote the scoring rule with scoring vector α , let C be a set of
candidates, and let P be a profile over C, then

rα(P) = argmax
c∈C

∑
vi∈P

αposi(c).

In the context of approval ballots, the rule approval voting elects the candidates that appear
in the most ballots, i.e., have the highest approval score. See the book by Laslier and
Sanver (2010) for a detailed analysis of approval voting. Note that approval voting in the
context of plurality ballots (respectively, veto ballots) is also called plurality (respectively,
veto). Here, a plurality winner (respectively, veto winner) is the candidate with the most
approvals (respectively, least disapprovals). Scoring rules can also be modified to allow for
several consecutive rounds. These iterative (positional) scoring rules proceed in a (variable
or fixed) number of rounds, where the candidates with the lowest scores are eliminated
each round. After elimination, the voters’ ballots are reduced to only include the candidates
that are still participating. The election ends when all remaining candidates have the same
score (and are therefore considered the winners of the election) or—in the case of a fixed
number of rounds—after the last round (where the candidates with the highest score in the
reduced profile after the final elimination are considered the winners). My contribution
in Chapter 4 deals with the iterative scoring rules iterated veto and veto with runoff. For
iterated veto (see Example 2.12), all but the candidates with the highest veto score are
eliminated. Veto with runoff (see Example 2.10) proceeds in two fixed rounds. In the first
round, all candidates that do not have the highest veto score are eliminated, unless this
leaves only one candidate, then this candidate and the candidate(s) with the second-highest
veto score proceed to the next round. Further iterative scoring rules in this thesis include
the Hare rule, iterated plurality, and plurality with runoff (all based on plurality), the
Baldwin and the Nanson rule (both based on Borda), and another veto-based rule called
Coombs rule, see Chapter 4.

There are various aggregation functions using ordinal ballots that rely on the concept of
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2.2 Preference Aggregation

pairwise comparisons. Given a profile of ordinal ballots, a candidate c wins a pairwise
comparison against a candidate d if c is ranked higher than d in more ballots than the other
way round. A candidate that wins the pairwise comparisons against all other candidates
is called a Condorcet winner. Note that a Condorcet winner does not always have to
exist. The voting rule Condorcet (Condorcet, 1785) elects the Condorcet winner, if such a
candidate exists. The voting rule Copeland (see Example 2.8) based on a social welfare
function proposed by Copeland (1951) elects the candidates with the most wins in pairwise
comparisons against other candidates where a tie with another candidate counts as half
a win. However, there are several variants depending on how tied candidates are treated.
Other examples include counting a tied comparison as a win or as a loss. Define the Kendall
tau distance dτ (Kendall, 1938) between two linear orders >i and > j as the number of
candidates where both orders disagree, i.e.,

dτ(>i,> j) = |{(a,b) | a,b ∈C∧a >i b∧b > j a}|.

The social welfare function Kemeny rule (Kemeny, 1959) returns the linear orders that
minimize the Kendall tau distance to the profile. Note that the rule Kemeny originally
proposed uses weak orders. However, the version with linear orders is more prevalent.

For large-scale applications, an extremely important aspect of a voting rule is the computa-
tional complexity of the winner determination. In these cases, it is essential to be able to
decide in polynomial time whether a candidate is a winner of the election. Formally, the
winner determination decision problem is defined as follows.

R-WINNER-DETERMINATION

Given: An election (C,P), where C = {c1, . . . ,cm} is a set of candidates and
P = (v1, . . . ,vn) is a profile, and a designated candidate w ∈C.

Question: Is w a winner of the election using voting rule R, i.e., is w ∈ R(P)?

Note that it is possible in polynomial time to compute the set of winning candidates for
all scoring rules including iterative scoring rules, so the respective winner determination
problem is in P. However, the winner determination problem for the Kemeny rule is
intractable (Bartholdi III et al., 1989b; Hemaspaandra et al., 2005).

Another important aspect of aggregation functions is the properties they satisfy. For
example, for the voting rule that always returns the highest-ranked candidate of the first
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Chapter 2 Background and Related Work

voter as the winner, the winner determination is tractable, but it definitely does a bad
job at aggregating the ballots and therefore the underlying preferences of the voters.
The aforementioned voting rule is dictatorial, so a non-dictatorial aggregation function
is certainly desirable. A voting rule R is non-imposed . if for each candidate c ∈ C,
there exists at least one profile P in the domain of R so that {c} = R(P). Based on the
aforementioned notion of a Condorcet winner, a voting rule is Condorcet consistent if it
always returns the Condorcet winner as the unique winner if such a candidate exists. The
Condorcet rule is obviously Condorcet consistent, whereas the positional scoring rules are
not (Fishburn, 1974). For ordinal ballots, a voting rule R is monotone (Arrow, 1950) if
a winner w ∈ R remains a winner whenever a voter improves the rank of w in her ballot
(and does not change any other relative rankings), and positive responsive (May, 1952) if
this improvement leads to w being a unique winner. See Chapter 3 for an adaption of these
axioms to multiwinner elections as introduced in Section 2.2.3.

Some (intuitively desirable) properties for social welfare functions for ordinal ballots
include the following axioms: The axiom universal domain demands that the domain of
the social welfare function has to consist of all possible profiles over the given candidate
set. A social welfare function R is Pareto optimal (see, e.g., the book by Arrow (1963)) if
for all candidates a,b ∈C, a >i b for all vi ∈ P implies that a > b for all >∈ R(P). This
axiom ensures that R actually considers the voters’ ballots when returning a winning linear
order, by following the voters’ lead when they all agree on a relative ranking between
two candidates. Furthermore, R is independent of irrelevant alternatives (see, e.g., the
book by Arrow (1963)) if for each pair of candidates a,b ∈C and each pair of profiles
P = (p1, . . . , pn) and Q = (q1, . . . ,qn) that agree on the relative ranking of a and b for all
voters i ∈ N,4 all linear orders in R(P) and R(Q) also agree on the relative ranking of a

and b. That means that R should decide on the relative ranking of a and b in the winning
linear order solely by considering the relative rankings of them in the voters’ ballots and
not rankings of the other candidates.

However, not all aforementioned properties are compatible with each other in the sense that
they can be satisfied by a single aggregation function. In the context of ordinal ballots, the
famous impossibility result by Arrow (1963) states that for at least three candidates, there
exists no social welfare function using ordinal ballots that has a universal domain, is Pareto
optimal, independent of irrelevant alternatives, and is non-dictatorial, i.e., the result does

4This means that either a >i b in both pi and qi, or b >i a in both pi and qi, for all voters i ∈ N.
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2.2 Preference Aggregation

not correspond to a fixed voter’s ballot for each given profile. Note that Arrow’s theorem
can also be restated using voting rules and adapted notions of the relevant axioms (Taylor,
2005). One way to circumvent Arrow’s theorem is to restrict the domain of the considered
aggregation function. Black (1958) introduces the concept of single-peaked domains for
ordinal ballots. Given an ordering of the candidates π , the corresponding single-peaked
domain contains all linear orders >i where top(i) π c j π ck or ck π c j π top(i) implies that
c j >i ck for all c j,ck ∈C, where top(i) denotes the highest ranked candidate in >i. This
ordering corresponds to arranging the candidates on an axis, e.g., left to right in political
elections. To illustrate this property, each single-peaked order only has one peak when the
positions of the candidates in the ballots are plotted on axis π (see Example 2.7). Bartholdi
and Trick (1986) show that it is possible in polynomial time to decide whether a given
profile is single-peaked, i.e., whether each ballot in the given profile is single-peaked with
respect to an ordering.

Another well-studied domain restriction are the single-crossing domains as introduced
by Mirrlees (1971) in the context of income taxation, which contain the profiles where,
given an ordering π of the voters, there are no voters vi,v j,vk and candidates c,d so that
vi π v j π vk, but c >i d, d > j c, and c >k d. This corresponds to the idea that the voters are
ordered in a way so that for each pair of candidates c,d ∈C, the voters ranking c higher
than d form an interval in the profile. To illustrate this property, draw a line between each
occurence of a candidate in the profile. Then for each pair of candidates, the respective lines
between them are allowed to only cross once (see Example 2.7). Elkind et al. (2012) and
Bredereck et al. (2013) provide polynomial algorithms to decide whether a given profile
is single-crossing, and Bredereck et al. also characterize the single-crossing domain by
identifying two forbidden substructures of the profiles. Faliszewski et al. (2011) adapt the
notion of single-peaked and Elkind and Lackner (2015) adapt the notion of single-crossing
to approval ballots, and Elkind et al. (2020b) give a characterization for domains that are
single-peaked and single-crossing at the same time.

Example 2.7 (single-peaked and single-crossing profile). Let C = {a,b,c,d} be a can-
didate set and let P be the profile in Figure 2.1a of ordinal ballots over C. Figure 2.1b
plots the candidates against their rank in the respective ballots for the candidate ordering π
where a π b π c π d. Since each plot has exactly one peak, p is single-peaked. Furthermore,
Figure 2.1c plots the ballots for the voter ordering π with v1 π v2 π v3 and shows that the
lines connecting the candidates cross each other line at most once. Therefore, P is also
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P: v1 = a > b > c > d
v2 = b > c > d > a
v3 = c > d > b > a

(a) Profile P
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(c) Profile P is single-crossing.

Figure 2.1: The profile P in Example 2.7 is single-peaked and single-crossing.

single-crossing.

Restricted domains not only allow for non-dictatorial aggregation functions that satisfy
the axioms in Arrow’s theorem (and allow for non-manipulable aggregation functions that
satisfy the axioms in the Gibbard-Satterthwaite Theorem, see Section 2.2.2), but can also
have an impact on the computational complexity of the winner determination of other
aggregation functions. For example, Brandt et al. (2015) show that the highly intractable
winner determination of the Dodgson rule5 and the Kemeny rule become tractable for
single-peaked profiles. See the book chapter by Elkind et al. (2017b) for an overview on
restricted domains.

5Given a profile of linear orders, the Dodgson rule returns the candidate(s) for which the number of swaps
between adjacent candidates in the ballots needed to make this candidate the Condorcet winner is minimal
(Dodgson, 1876). The complexity of the winner determination for the Dodgson rule was studied by
Bartholdi III et al. (1989b) and Hemaspaandra et al. (1997).
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2.2 Preference Aggregation

2.2.2 Strategic Behavior

Unfortunately, not all actors in an election are honest. This section explores strategic
behavior in elections where an attacker changes some aspects of the preference aggregation
in order to reach a more desirable outcome.

There are several ways for strategic attacks on preference aggregation procedures.

• In manipulation (see, e.g., the book chapter by Zwicker (2016)), an agent that
participates in the aggregation procedure reports an insincere ballot, i.e., a ballot that
does not correspond to her underlying preferences over the candidates, in order to
reach a more desired outcome of the election (see Example 2.8). In some problem
variants, there can be a group of manipulators that work together to reach a joint
objective, or there are (distance) restrictions on which insincere ballots may be
reported. This thesis studies a slightly different notion of manipulation in the context
of iterative elections as introduced in Section 2.2.4 where an attacker does not report
an insincere ballot, but an insincere poll. See Chapter 5 for my contribution to the
topic manipulation in iterative elections.

• In bribery, an external agent is able to bribe a given number of voters to submit
insincere ballots in order to change the election result in his or her favor (see
Example 2.9). Variations of the problem include prices for the voters, i.e., the briber
has a budget and each voter (or even each change in a ballot) has a (possibly different)
price attached. This thesis studies a model called shift bribery as introduced on
page 23. See Chapter 4 for my contribution to the topic bribery for iterative scoring
rules.

• In control, an external agent called the chair does not have any influence on the
agents’ ballots, but on the structure of the aggregation procedure (see Example 2.10).
This can include adding or deleting candidates or voters, or partitioning the voters or
candidates in groups where the aggregation takes place for each group separately.
This thesis studies control for the related setting of judgment aggregation as intro-
duced in Section 2.3. See the book chapter by Faliszewski and Rothe (2016) for an
overview of bribery and control in voting, and see Chapter 6 for my contribution to
the study of judge control problems in judgment aggregation.
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Note that it is necessary to define beforehand what constitutes a more desirable outcome
for an attacker. One way is via a preference (see, e.g., the book by Taylor (2005)), where
for a resolute voting rule the new outcome is preferred to the old one if and only if the
attacker prefers the new winner to the old winner. In the case of irresolute voting rules,
the notion of a “better outcome” is more complicated and requires assumptions about the
attacker’s preferences over sets of candidates. For an overview over these so-called set
extensions see, e.g., the book chapter by Barberà et al. (2004). In the models used in this
section, there is a target candidate given. In a constructive attack, the attacker wants the
target candidate to win the election, whereas in a destructive attack, the attacker tries to
prevent the target candidate from winning.

Unfortunately, in most cases, voting rules are susceptible to strategic attacks. Gibbard
(1973) and Satterthwaite (1975) independently proved the so-called Gibbard-Satterthwaite
Theorem stating that there are no resolute, non-dictatorial and non-imposing voting rules
for at least three candidates that cannot be successfully manipulated, assuming there are
no restrictions on the voters’ ballots.6 This result started research on how manipulation
can nevertheless be prevented. One important aspect in this research is the computational
complexity of deciding whether a successful strategic attack is possible in the given
election. If it turns out that the underlying problem is computationally hard for a voting
system, then this might discourage an attacker.

Bartholdi III et al. (1989a) pioneered the approach of studying the computational com-
plexity of manipulation by studying the following decision problem for voting rules using
ordinal ballots.

R-MANIPULATION

Given: A set of candidates C, a profile P = (v1, . . . ,vn) over C, and a
designated candidate c ∈C.

Question: Is there a ballot vn+1 so that c ∈ R((v1, . . . ,vn,vn+1))?

They show that for all voting rules that satisfy certain properties and for a single manip-
ulator, there exists a polynomial-time greedy algorithm that computes a ballot for the
manipulator to successfully make a designated candidate the winner of the election (or

6Black (1958) (respectively, Saporiti and Tohmé (2006)) show the existence of a non-manipulable rule
when the input profile is single-peaked (respectively, single-crossing).

16



2.2 Preference Aggregation

P: v1 = a > b > c > d
v2 = a > b > c > d
v3 = b > c > d > a

(a) Original profile P

P′: v1 = a > b > c > d
v2 = a > b > c > d
v3 = b > c > d > a
v4 = b > a > c > d

(b) Manipulated profile P′

Table 2.1: Original and manipulated profile in Example 2.8.

determines that such a ballot does not exist). Examples of such voting rules include the
family of positional scoring rules. In contrast to this result, they show that the computa-
tional complexity of manipulating a voting rule called second-order Copeland (a variant
of the Copeland rule) is NP-hard, although the winner can be computed in polynomial
time. Bartholdi III and Orlin (1991) show that is computationally hard to manipulate the
widely used iterative voting rule called STV (Single Transferable Vote, in the singlewinner
version also called the Hare rule, see Chapter 4). Conitzer and Sandholm (2003) add a
preround to several well-known voting rules to increase the complexity of manipulation.
Conitzer et al. (2007) introduce the concept of coalitional manipulation where a group of
manipulators cast ballots to achieve a common goal. A slightly different formulation of
the manipulation decision problem includes the manipulator’s sincere ballot in the given
profile and asks whether the manipulator can successfully change her ballot to achieve a
better outcome. Instead of allowing a complete change in the manipulator’s ballot, one can
restrict the new ballot to have at most a certain distance to the original ballot (Obraztsova
and Elkind, 2012). See the survey by Faliszewski and Procaccia (2010) and the book
chapter by Conitzer and Walsh (2016) for an overview of results for the computational
complexity of manipulating voting rules.

Example 2.8 (manipulation). Let C = {a,b,c,d} be a candidate set and let P = (v1,v2,v3)

be a profile over C defined in Table 2.1a. Consider the voting rule Copeland (rCope) where
candidates acquire one point for each win in a pairwise comparison and half a point
for each tie, and the candidates with the highest score win the election. Assume that a
manipulator wants candidate b to win the election in profile P. Then she can submit the
ballot v4 = b > a > c > d. The election with profile P′ = (v1,v2,v3,v4) (see Table 2.1b)
proceeds as follows: Candidate a wins the pairwise comparison against c and d and ties
with b, so that a has a score of 2.5. Candidate b has a score of 2.5, candidate c a score
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of 1, and candidate d a score of 0. Therefore, {a,b}= rCope(P′) and the manipulation was
successful.

Faliszewski et al. (2009a) were the first to study the computational complexity of bribery
in elections, including the following decision problem.

R-BRIBERY

Given: A set of candidates C, a profile P over C, a designated candidate
c ∈C, and an integer k ∈ N.

Question: Is there a profile P′ where at most k voters change their ballots
compared to P, so that c ∈ R(P′)?

In the priced variant, voters do not have an equal price like in the above scenario, so
the problem includes a price function for voters and asks whether in the profile P′ only
voters changed their ballots whose total price does not exceed the budget k. Hemaspaandra
et al. (2007) focus on destructive bribery where the briber wants to prevent the victory of
a designated candidate. Dey et al. (2017) introduce a mix of manipulation and bribery
where a briber can only bribe voters that profit from this action, i.e., voters who prefer the
outcome after the bribery to the original one. As for manipulation, it is possible to restrict
the new ballots of the bribed voters, for example by a distance restriction to the sincere
ballot. This models scenarios where voters are not willing to deviate too much from their
sincere ballot, be it for ethical reasons or the fear of negative consequences for casting an
insincere ballot if there is a risk of having their ballot exposed. Dey (2021) studies this
problem for bribery. Baumeister et al. (2019) introduce a generalized version of distance
bribery where the resulting bribed profile (and not the individual votes) is subject to a
distance restriction.

Example 2.9 (bribery). Let C = {a,b,c,d} be a candidate set and let P be a profile over C

defined in Table 2.2a. Consider the scoring rule Borda Count (rBorda). Recall that under
Borda, each candidate receives a score based on the positions in the voters’ ballots, and
the candidates with the highest score win. Assume that a briber wants candidate c to win
in profile P and is able to bribe at most one voter. In P, candidate a receives a score of
|C|−1+ |C|−1+ |C|−4 = 3+3+0 = 6, whereas candidate b has a score of 7, candidate
c has a score of 4, and candidate d has a score of 1, therefore {b}= rBorda(P). If the briber
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P: v1 = a > b > c > d
v2 = a > b > c > d
v3 = b > c > d > a

(a) Original profile P

P′ : v′1 = c > d > a > b
v2 = a > b > c > d
v3 = b > c > d > a

(b) Bribed profile P′

Table 2.2: The original and the bribed profile in Example 2.9.

convinces voter 1 to change v1 into v′1 = c > d > a > b, then c wins in the resulting profile
P′ (see Table 2.2b) with a score of 6 in contrast to the scores of 4, 5, and 3 of candidates a,
b, and d, respectively. Therefore, the bribery was successful.

The computational complexity of control by adding, deleting, and partitioning candidates
or voters was first studied by Bartholdi III et al. (1992) for plurality and the Condorcet
rule. For example, the following decision problem shows the notion of control by adding
candidates. Let PS denote the restricted profile of P where each ballot in P is restricted to
the candidates in S.

R-CONTROL-BY-ADDING-CANDIDATES

Given: A set of candidates C, a set of additional candidates D, a profile P

over C∪D, a designated candidate c ∈C, and an integer k ∈ N.
Question: Is there a set D′ ⊆ D of size at most k so that c ∈ R(PC∪D′)?

Faliszewski et al. (2009b) study constructive control for these control types for the
Copeland rule for all variants of ties in the pairwise comparisons. Furthermore, Elkind
et al. (2011) provide, among others, results for the constructive control of Borda by adding
candidates. Analogous to bribery, Miasko and Faliszewski (2016) introduce prices to
control actions.

Example 2.10 (control by adding candidates). Let C = {a,b,c} and D = {d,e} be candi-
date sets, let P be the profile over C∪D defined in Table 2.3a and let PS be the restricted
profile of P where each ballot is restricted to candidates in S.

Consider the iterative voting rule veto with runoff (rVRO). Recall that veto with runoff
proceeds in two fixed rounds. After the first round, all candidates that do not have the
highest veto score are eliminated, unless that leaves just one candidate, then the candidates
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P: v1 = a > e > b > c > d
v2 = e > a > b > c > d
v3 = e > b > c > d > a

(a) The profile P over C∪D.

PC: v1 = a > b > c
v2 = a > b > c
v3 = b > c > a

PC\{c}: v1 = a > b
v2 = a > b
v3 = b > a

(b) Election without adding candidates.

PC∪{d}: v1 = a > b > c > d
v2 = a > b > c > d
v3 = b > c > d > a

P(C∪{d})\{a,d}: v1 = b > c
v2 = b > c
v3 = b > c

(c) Election after adding candidate d.

Table 2.3: Profiles in Example 2.10.

that do not have the highest or second-highest veto score are eliminated. The election
winners are the candidates with the highest veto score in the second round. Assume that
the chair wants candidate b to win and is able to add at most one candidate from D to the
candidate set. In the election using profile PC (see Table 2.3b), b is the unique candidate
with the highest veto score, namely a score of 3, whereas a has the second-highest score of
2. Therefore c is eliminated after the first round, resulting in the profile PC\{c}. Here, a has
a veto score of 2 in contrast to the veto score of 1 of b, therefore b /∈ {a}= rVRO(PC).

Next, consider the profile PC∪{d} where the chair added candidate d (see Table 2.3c). Both
b and c have the highest veto score of 3, so that a and d are eliminated after the first round,
resulting in the profile P(C∪{d})\{a,d}. Here, b has a veto score of 3, whereas c has a veto
score of 0, so b ∈ {b}= rVRO(PC∪{d}). Therefore, the control action was successful.

Note that for all aforementioned results, an attacker is assumed to have complete infor-
mation about the election, notably about the exact ballots of all voters. This is a highly
unlikely assumption, but widely accepted since it cannot be easier to favorably change the
election result in the presence of incomplete information than in an election with complete
information. Therefore, the hardness results carry over to the case where the information
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of the attacker is limited. However, limiting the information an attacker has can make
influencing an election difficult even for voting rules where favorably changing the election
result is a tractable problem in the complete information model. Conitzer et al. (2011)
show for many common voting rules that, given the manipulator only knows partial ordinal
ballots of the other voters, it is NP-hard to decide whether a dominating manipulation
strategy exists (i.e., a vote that will not be detrimental to the manipulator in comparison to
his truthful vote regardless of how the full preferences of the other voters look like). Dey
et al. (2018) extend this model and introduce the concept of weak (respectively, strong)
manipulation where the manipulator has to be successful in at least one (respectively, in all)
extensions of the partial ballots. Inspired by typical limited information a manipulator has
in real life, Endriss et al. (2016b) introduce different models for incomplete information
(e.g., knowledge about the candidate scores, but not about ballots) and study the effect of
limited information on the computational complexity of manipulation for several voting
rules including scoring rules.

The aforementioned results assume that strategic attacks are infeasible when the corre-
sponding decision problems are intractable. However, such a computational barrier as
protection against strategic attacks might still not be effective in practice. Recall that
the notion of NP-hardness relates to the worst-case complexity of a decision problem.
Typical real-world scenarios might involve certain restricted preferences in contrast to
the unrestricted preferences in theory, or might have certain small parameters such as the
number of candidates.

Faliszewski et al. (2011) show that many manipulation and control problems become
tractable when the given profile is single-peaked, whereas Brandt et al. (2015) show the
same for bribery. Magiera and Faliszewski (2017) show that several control problems
become tractable for restricting the input to single-crossing profiles. Procaccia and Rosen-
schein (2007) show that for most profiles, it suffices to compute the fraction of untruthful
and truthful votes to make a decision about the success of manipulation. Conitzer et al.
(2007) introduce the problem of weighted coalitional manipulation (i.e., manipulation by
a coalition of voters in the presence of weighted voters7) and determine for a variety of
common voting rules the number of candidates for which weighted coalitional manipula-

7In an election with weighted voters, there is a given weight function ω : N→ N that maps each voter to
a positive integer called the weight wi of the voter i. The aggregation function then uses the modified
profile P′ as input, where P′ denotes the profile where the ballot of each voter i is duplicated wi−1 times.
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tion becomes intractable. Along these lines, Chen et al. (2017) study the parameterized
complexity of control by adding or deleting candidates for common voting rules when
parameterized by the number of voters, and Bredereck et al. (2015) and Knop et al. (2020)
study the complexity of bribery when the number of candidates is small, the latter for a
form of bribery called multi-bribery (where voters can be bribed to abstain, swap adja-
cent candidates in their preference list, or change the number of approved candidates).
Bredereck et al. (2014a) identify research challenges in voting regarding parameterized
complexity. See the survey by Rothe and Schend (2013) for an overview of typical-case,
parameterized, and approximation results for manipulation and control.

There are other, more positive interpretations of the aforementioned strategic attacks in
voting. Manipulation can increase the satisfaction of voters with the outcome as described
in Section 2.2.4. The concept of destructive bribery is closely related to the margin of

victory, first defined by Xia (2012). Here, the goal is to compute how robust the election
result is by computing the minimal number of voters that would have to report a different
preference in order to change the election outcome. Reisch et al. (2014) show that the
corresponding decision problem is intractable for several tournament voting rules, and
Dey and Narahari (2015) provide sampling algorithms to estimate the margin of victory.
Another interpretation of bribery is campaign management, where the bribing action can
be modeled by real-life election campaigns, e.g., spending money to promote a designated
candidate in the ballots. In the constructive case, campaign managers want to promote their
candidate, for example by running advertisements and therefore positively influencing the
voter’s preference about the candidate, which leads to changes in their ballot. Furthermore,
campaigns are bound by a budget and therefore need to carefully evaluate which actions
yield the desired results. In this context, it makes sense to define a price per change in a
voter’s ballot rather than a price for each voter. Schlotter et al. (2017) focus on approval-
based voting rules and give classical and parameterized complexity results for campaign
management, and Elkind and Faliszewski (2010) give approximation algorithms for several
voting rules including scoring rules.

One important topic for this thesis in the context of campaign management is the notion of
shift bribery for ordinal ballots. Shift bribery is a special case of swap bribery (Elkind et al.
(2009); introduced in another context by Faliszewski et al. (2009b) as microbribery), where
a price function ρ j : C×C→ N denotes the price for swapping two adjacent candidates ci

and ck in the ballot of voter j, and a swap bribery is successful if a given candidate wins
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the election after a series of swaps in the voters’ ballots whose total price do not exceed
the given budget. The price functions for shift bribery are defined in Definition 2.11.

Definition 2.11 (shift bribery price function). Let C be a set of candidates, let c ∈C be
a target candidate, and let v j be a linear order over C. A shift bribery price function

is a function ρ j : N→ N for a voter j where ρ j(0) = 0, ρ j(x) ≥ ρ j(y) for x > y, and
ρ j(x) = ρ j(x−1) for all x≥ pos j(c).

Note that ρ(i) indicates the price for shifting the target candidate c forward by i positions
in the ballot v j and that it is not possible to shift the candidate further than the first position
in the voter’s ballot. For example, ρ j(1) = 2 indicates that changing voter j’s ballot from
. . . > ck > ci > .. . to . . . > ci > ck > .. . costs two units. The shift bribery problem in the
constructive case is then defined as follows.

R-SHIFT-BRIBERY

Given: A set of candidates C, a profile P of n linear orders over C, a target
candidate c ∈C, a budget B ∈ N, and a list of price functions
ρ = (ρ1, . . . ,ρn).

Question: Is it possible to shift c in the ballots in P such that the total price does
not exceed the budget b and c ∈ R(P′) for the new profile P′?

In particular, it is only possible to shift the target candidate rather than all candidates
as in swap bribery, and the shift can only be forwards in the constructive case. This
model assumes that campaign managers do not run so-called smear campaigns where
they negatively influence the voters’ opinions about opposing candidates. To define the
destructive case where the goal is to prevent a target candidate from winning, the shift
bribery price functions are interpreted as the price for shifting the designated candidate
backwards.8

Example 2.12 (shift bribery). Let C = {a,b,c,d} be the candidate set and let P be the
profile over C defined in Table 2.4a. Note that PS denotes the restricted profile of P where
each ballot is restricted to candidates in S. Consider the iterative scoring rule iterated veto
(rIV). Recall that each round, the candidates that do not have the highest veto score are

8Note that in the destructive case, the condition ρ j(x) = ρ j(x−1) for all x≥ pos j(c) changes to ρ j(x) =
ρ j(x−1) for all x≥ m− pos j(c) in order to prevent shifting the candidate too far backwards.
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P: v1 = a > b > c > d
v2 = a > b > c > d
v3 = b > c > d > a

PC\{a,d}: v1 = b > c
v2 = b > c
v3 = b > c

(a) Election with the original profile P.

P′: v1 = a > b > c > d
v2 = a > b > c > d
v′3 = b > c > a > d

P′C\{d}: v1 = a > b > c
v2 = a > b > c
v′3 = b > c > a

(b) Election with the bribed profile P′.

Table 2.4: The election with the original and the bribed profile in Example 2.12.

eliminated. Assume that a briber wants candidate a to win the election and that he has a
budget of 2. Further assume that the price function ρ3 for voter 3 is defined as ρ3(0) = 0,
ρ3(1) = 1, and ρ3(2) = ρ3(3) = 3. In P, the election proceeds as follows. In the first round,
candidates b and c have the highest veto score with a score of 3, so that candidates a and
d are eliminated, resulting in the profile PC\{a,d}. Here, candidate b has the highest veto
score of 3 whereas c only has a veto score of 0. Therefore, a /∈ {b}= rIV(P), so the briber
has to employ a bribing action.

Recall that the briber can only shift the designated candidate a forward. In the ballots of
voters 1 and 2, a is already in the top position and cannot be shifted forward. Shifting a

at least two positions forward in ballot v3 costs 3 units and therefore exceeds the budget.
Consider the profile P′ in Table 2.4b where a was shifted forward in v3 by one position.
The election then proceeds as follows. In the first round, d has the lowest veto score
and is eliminated, resulting in the profile P′C\{d}. In the second round, a, b, and c have
a veto score of 2, 3, and 1, respectively, therefore a and c are eliminated. It holds that
a /∈ {b}= rIV(P′), so there does not exist a successful shift bribing action.

Elkind et al. (2020a) consider swap and shift bribery in single-peaked and single-crossing
domains, whereas Dorn and Schlotter (2012) analyze the parameterized complexity for
swap bribery. Bredereck et al. (2016a) show that different classes of price functions
lead to different complexity results for shift bribery when parameterized by the budget
for a number of voting rules. They also study the parameterized complexity regarding
other parameters. Faliszewski et al. (2021) investigate the approximability of shift bribery
for positional scoring rules and Copeland. For the destructive variant of the problem,
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Kaczmarczyk and Faliszewski (2019) give efficient algorithms for solving the destructive
shift bribery problems and identify cases where the complexity between the constructive
and destructive problem variant differ. Similar to the margin of victory, Shiryaev et al.
(2013) study the robustness of elections by viewing the destructive swap bribery problem
as a mean to measure the maximal number of errors that voters can make in their ballot
before the election result changes. Here, an error in a voter’s ballot is defined as a pair of
adjacent candidates that are swapped in the ballot in contrast to the true preference of the
voter. In another variant of shift bribery called combinatorial shift bribery, it is possible
to affect several votes at once with just a single bribery action (Bredereck et al., 2016c).
See Chapter 4 for my contribution to the study of the computational complexity of shift
bribery.

2.2.3 Multiwinner Elections

In contrast to singlewinner elections as presented in Section 2.2.1, in the context of
multiwinner elections, the goal is to elect a group of candidates called a committee as the
winner of the election. That means that a multiwinner voting rule maps a profile and a
desired committee size k to a set that consists of the winning committees, i.e., subsets of
candidates of size exactly k.

Definition 2.13 (multiwinner voting rule). Let C be a set of candidates, let P be a profile
over C, let k < |C| be a positive integer, and let Wk = {S | S ⊆C∧ |S| = k} be the set of
k-sized committees. A multiwinner voting rule F maps a tuple (P,k) to sets in Wk.

In the above definition of a multiwinner voting rule, the committee size is part of the input.
However, there are a few scenarios where it makes sense to not fix the size of a winning
committee, called the variable number of winners setting. For example, this setting can
be motivated in the context of a Hall of Fame where each year, only the best of the best
candidates (e.g., athletes) are supposed to be elected into the Hall of Fame. However, this
number can vary: Some years, there might be several outstanding candidates, whereas in
other years, there might even be none that are deemed exceptional enough to be honored.
Kilgour (2016) provides an in-depth study of multi-winner voting rules with a variable
number of winners in the approval-based setting and explores the axiomatic properties
of corresponding voting rules. Faliszewski et al. (2020) study the complexity of these
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approval-based rules. The rest of this thesis only considers the fixed number of winners
model as defined in Definition 2.13, where the desired committee size is predetermined.
For an overview on multiwinner elections, see the book chapter by Faliszewski et al.
(2017b).

There are several possible directions for the design of multiwinner voting rules. One
prominent design concept is individual excellence where the winning committee consists
of the best candidates according to certain criteria, e.g., approval scores. One application
for these rules is shortlisting, i.e., preselecting a short list of candidates for the next stage
(e.g., of a hiring process). An example of an excellence-based multiwinner voting rule is
the rule by Debord (1992) that extends Borda Count to multiwinner voting with a fixed
committee size. Lackner and Maly (2021) study shortlisting procedures using approval
ballots.

A second design concept is diversity, where the goal is to elect candidates in a way that
preferably each voter has a candidate she approves of. A possible application is the facility
location problem, where several facilities (e.g., hospitals) have to be placed (e.g., in a city)
according to certain criteria. If candidates are possible locations and voters approve of
locations that are (easily) accessible to them, multiwinner voting rules based on diversity
help in finding optimal locations so that each voter has hospital access. See the article
by Skowron et al. (2016) for other applications for diversity. A voting rule aiming at
diversity was proposed by Chamberlin and Courant (1983). The Chamberlin-Courant rules
are a family of multiwinner rules that elect the committee that—given a misrepresentation
function—minimizes the misrepresentation of voters. Here, each voter is assigned their
most preferred candidate from the committee as a representative.

Definition 2.14 (family of Chamberlin-Courant rules). Let C be a set of candidates, let
N be the set of voters, let B(C) be the set of all possible ballots over C, let P ∈ B(C)

be a profile, let k > 0 be the desired committee size, and let Wk be the set of all k-sized
committees over C.

1. A misrepresentation function µ : N ×C → N computes how much a candidate
misrepresents a voter.

2. For a committee S ⊆ C, an assignment function φS : N → S assigns each voter a
representative from S. For the Chamberlin-Courant rules, φS(i) = argminc∈S µ(i,c),
i.e., voters are represented by the best candidate in a given committee.
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3. A committee misrepresentation function d : B(C)×Wk→ N computes for a given
profile P and k-sized committee S how misrepresented the voters in P are when S is
elected.

4. A Chamberlin-Courant rule is a multiwinner voting rule fCC so that

fCC(P,k) = argmin
S∈Wk

d(P,S).

Note that the Chamberlin-Courant rules are used for both ordinal and approval ballots and
that they can also be stated in terms of satisfaction instead of dissatisfaction (or misrepre-
sentation) of the voters. A widely used misrepresentation function µ for ordinal ballots
outputs the inverse Borda score, i.e., µ(i,c) = posi(c)−1 for a voter vi and a candidate c,
whereas the variant for approval ballots returns 0 if the voter approves of the candidate,
and 1 otherwise. The choice for the committee misrepresentation function d depends on
the application. The utilitarian approach that minimizes the total misrepresentation of each
of the n voters with the winning committee (i.e., that uses the committee misrepresentation
function dsum(P,S) = ∑1≤i≤n µ(i,φS(i))) is called the minisum principle, whereas the egal-
itarian approach that minimizes the maximum misrepresentation for a voter (i.e., that uses
the committee misrepresentation function dmax(P,S) = max1≤i≤n µ(i,φS(i))) is called the
minimax principle (see, e.g., the book chapter by Kilgour et al. (2006)).

Example 2.15 (Chamberlin-Courant rule). Let C = {a,b,c} be the candidate set, let k = 2
be the committee size, and let P be the profile in Table 2.5a of ordinal ballots over C.

For each committee W ⊂C, the assignment function ΦW assigns the respective best-ranked

P: v1 = a > b > c
v2 = b > a > c
v3 = b > a > c
v4 = c > b > a

(a) Profile P

{a,b} {a,c} {b,c}
v1 : µ(1,a) = 0 µ(1,a) = 0 µ(1,b) = 1
v2 : µ(2,b) = 0 µ(2,a) = 1 µ(2,b) = 0
v3 : µ(3,b) = 0 µ(3,a) = 1 µ(3,b) = 0
v4 : µ(4,b) = 1 µ(4,c) = 0 µ(4,c) = 0

∑ : 1 2 1

(b) Misrepresentation of each voter for committees of size 2.

Table 2.5: Profile and misrepresentation values in Example 2.15.
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candidate from W to each voter. For example, Φ{a,b} assigns candidate a to voter 1, and
candidate b to voters 2, 3, and 4. Table 2.5b states the misrepresentation for each voter
with a given committee and computes d(P,W ) for each committee W of size 2 using the
minisum principle. It follows that fCC(P,2) = {{a,b},{b,c}}.

Finally, the third important design concept in multiwinner elections is the concept of
proportional representation. In many settings, e.g., in the election of a parliament, it is
important to ensure that voters’ opinions are adequately represented. Skowron (2018)
studies the proportionality of common multiwinner rules and ranks them in a hierarchy.
Lackner and Skowron (2019) classify multiwinner voting rules by how close they are to
the design concepts individual excellence and proportionality. The voting rules by Monroe
(1995) aim exactly at fully representing voters. The Monroe rules use the same underlying
idea as the Chamberlin-Courant rules, but additionally require that each candidate in a
committee represents the same number of voters (barring rounding differences), therefore
the assignment function does not always assign a voter’s most preferred committee member
as their representative.

However, even determining whether there exists a committee with a misrepresentation of at
most a given integer is already intractable for both the Chamberlin-Courant and the Monroe
rules (Procaccia et al., 2007). Deciding whether a given committee is a winning committee
for these voting rules (which is one variant of the winner determination problem) is at
least as hard as the aforementioned problem. In contrast to the winner determination of
the Monroe rules, the winner determination for the Chamberlin-Courant rules become
tractable in the presence of profiles from restricted domains (see the article by Betzler
et al. (2013) for parameterized complexity results and single-peaked profiles, and see the
article by Skowron et al. (2015b) for single-crossing profiles). Peters (2018b) introduces
a new technique to compute winning committees in polynomial time for single-peaked
profiles for several voting rules whose winner determination is NP-hard, including the
Chamberlin-Courant rules. Skowron and Faliszewski (2017) give approximation algorithms
for Chamberlin-Courant under approval ballots, whereas Skowron et al. (2015a) prove
that the winner determination of both the Chamberlin-Courant and the Monroe rules is
inapproximable under linear orders.

To be able to properly decide on a multiwinner rule in a given context, it is important
to study the properties of multiwinner rules. Felsenthal and Maoz (1992) adapt four

28



2.2 Preference Aggregation

singlewinner rules to elect more than one winner and study how this change affected
their properties. Elkind et al. (2017a) introduce a variety of axioms—partly inspired by
axioms for singlewinner rules, see Section 2.2.1—and show which of several well-known
multiwinner rules satisfy them. Lackner and Skowron (2021) study the properties of several
approval-based multiwinner rules. There are also a variety of axioms that deal with the
stability of multiwinner rules. In the context of approval ballots, one axiom called justified

representation (Aziz et al., 2017a) and variants thereof have received a lot of attention. A
multiwinner rule satisfies justified representation if it always elects a committee so that
there does not exist a large enough group of unrepresented voters that have a common
approved candidate.

Definition 2.16 (justified representation (Aziz et al., 2017a)). Let C be the set of candidates,
let N = {1, . . . ,n} be the set of voters, let P= (v1, . . . ,vn) be a profile over C using approval
ballots, and let k > 0 be a committee size.

1. A committee S of size k satisfies justified representation under P and k if there does
not exist a subset of voters N′ ⊆ N with size at least n/k, so that

⋂
i∈N′ vi 6= /0 and

vi∩S = /0 for each i ∈ N′.

2. A multiwinner voting rule F using approval ballots satisfies justified representation

if for each profile P and each k > 0, each winning committee W ∈ F(P,k) satisfies
justified representation under P and k.

Aziz et al. (2017a) also define a more demanding axiom named extended justified repre-
sentation (EJR), whereas Sánchez-Fernández et al. (2017) introduce an in-between axiom
called proportional justified representation (PJR). Aziz et al. (2018) give complexity results
for EJR and PJR. An option to measure the stability of an elected committee for multiwin-
ner rules based on ordinal ballots relies in principle on the notion of a Condorcet winner
(see Section 2.2.1). A committee is Gehrlein-stable (Gehrlein, 1985; Ratliff, 2003) if there
are no candidates outside of the committee that a strict majority of voters prefers to any
candidate in the committee. Based on the this concept, Barberà and Coelho (2008) study
which multiwinner rules used for shortlisting are stable in the sense that the elected com-
mittee contains a (weak) Condorcet winner if one exists. Aziz et al. (2017b) study Gehrlein
stability and local stability (the latter based on the Condorcet winning sets introduced by
Elkind et al. (2015)) and determine, among other things, the computational complexity of
mutiwinner rules that satisfy these types of stability. Gupta et al. (2019) complement these
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results by studying the parameterized complexity of finding a Gehrlein stable committee.
See Chapter 3 for my contribution to the study of properties for multiwinner voting rules.

Bredereck et al. (2018) introduce a model where not only the voters’ preferences, but also
certain attributes of candidates such as gender or skill level play a part in finding the best
committee. In the model by Kagita et al. (2021), voters do not approve candidates, but only
such attributes. Izsak et al. (2018) study the case where there are certain relations between
candidates that have to be taken into account when finding a good committee. For example,
there might be candidates that work exceptionally well (respectively, exceptionally poorly)
with each other. Further, Faliszewski et al. (2017a) introduce voting rules where the
winning committee is a good compromise between several extremes, for example individual
excellency and proportionality. Brill et al. (2019) give approximation algorithms for these
type of balanced rules, and Kocot et al. (2019) adapt these rules to guarantee specific score
results of committee scoring rules. Note that these committee scoring rules defined by
Elkind et al. (2017a) are the multiwinner analogues of the (singlewinner) scoring rules
introduced in Section 2.2.1 (see the articles by Skowron et al. (2019) and Faliszewski et al.
(2019) for an axiomatic characterization of committee scoring rules).

There are a multitude of papers about strategic attacks on multiwinner rules. Lackner and
Skowron (2018) define the axioms independence of irrelevant alternatives, monotonicity,
and SD-strategyproofness to study the susceptibility of approval-based multiwinner rules.
Continuing this work, Peters (2018a) proves an impossibility result that says that no
multiwinner rule can satisfy a form of proportionality and a form of strategy-proofness at
the same time. Meir et al. (2008) study the computational complexity of manipulation and
control for SNTV (Single Non-Transferable Vote; a multiwinner equivalent of Plurality),
Bloc (a multiwinner equivalent of k-approval, where k is the desired committee size),
approval voting, and cumulative voting (a voting rule that uses cardinal ballots). Yang
(2019) also focuses on manipulation and control and, among other things, studies the
parameterized complexity of these attacks for approval-based rules. Obraztsova et al.
(2013) study the complexity of manipulating scoring rules and give several polynomial-
time algorithms. Further, they focus on the role of tie-breaking rules for the success of
manipulation. In the context of bribery for approval-based multiwinner rules, Faliszewski
et al. (2017c) study the computational complexity and approximability of bribery actions
where only a single approval might be added, deleted, or moved within a vote, and Yang
(2020) focuses on destructive bribery and gives classical and parameterized complexity
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results. Bredereck et al. (2016b) study the computational complexity of shift bribery in
multiwinner elections for linear orders. Related to this line of research is the question of
the robustness of a multiwinner voting rule. Bredereck et al. (2021) study what impact a
swap of neighboring candidates has in the linear order of a voter for several rules. Further,
they show that it is NP-hard to decide whether the election result can be changed by a
given number of swaps.

Baumeister and Dennisen (2015) generalize the concept of the multiwinner rules minisum
and minimax from dichotomous ballots to trichotomous ballots9 and to complete and
incomplete linear orders. Then Baumeister et al. (2015a) study the complexity of winner
determination and manipulation for these rules, whereas Liu and Guo (2016) focus on
the parameterized complexity of winner determination for the generalized minimax rules.
Cygan et al. (2018) extend the results for winner determination for the minimax approval
rule including approximation and parameterized complexity results. See Chapter 3 for my
contribution on the research on minisum and minimax based rules.

2.2.4 Iterative Elections

As seen in Section 2.2.2, all “reasonable” voting rules can be manipulated. This section
deals with iterative elections where voters may change their reported ballot in each round,
i.e., repeatedly manipulate the election. This corresponds to the idea of white manipulation,
where manipulation by voters is encouraged as it leads to a better outcome for the voters.
Iterative elections can also model the case where voters submit their ballot sequentially,
for example in Doodle polls.

Formally, let N = {1, . . . ,n} be the set of voters, let C be the set of candidates, let
P = (p1, . . . , pn) be a preference profile10 (usually ordinal preferences) over C, let P0 =

(a1, . . . ,an) be an (optional) profile of ballots over C, and let R be a voting rule. Iterative
elections can be modeled as a game (see, e.g., the book chapter by Faliszewski et al.
(2016) for an introduction to noncooperative game theory), where the voters are the players
and the set of actions Ai (also called strategies) that each player i can take corresponds
to the set of possible ballots over C of a type applicable to R, and are therefore equal

9In a trichotomous ballot, the set of candidates is partitioned into three sets corresponding to approved,
indifferent, and disapproved candidates.

10A preference profile is a list of preferences over a candidate set.
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for all voters. The game proceeds in turns, where—depending on the model—voters
either all act simultaneously or each turn t, a voter j is singled out to take an action so
that at−1

i = at
i for all voters i ∈ N \ { j}. A strategy profile for turn t is then a profile

Pt = (at
1, . . . ,a

t
n) ∈ A1×·· ·×An =A, where in most applications, P0 is a profile of initial

ballots that are assumed to be truthful, i.e., where the ballots a0
1, . . . ,a

0
n correspond to

the preferences p1, . . . , pn. Each voter further has a utility function u j : A→ R where
u j(Pt) denotes the utility voter j gains from the the strategy profile Pt in turn t. In the
context of iterative elections, u j(Pt)> u j(Ps) if voter j prefers R(Pt) to R(Ps) according
to preference p j. Note that in this context, R is generally assumed to be resolute, for
example by applying a tie-breaking scheme to the outcome. Therefore, preferences over
election outcomes can be determined straightforward. Assume that voters only use best-
response dynamics to change their ballots i.e., they submit a ballot that will result in the
best outcome for them.

Definition 2.17 (best response). Let N = {1, . . . ,n} be the set of players, let A = A1×
·· · × An be the set of strategy profiles, and let u j : A→ R be the utility function of
player j ∈ N. An action a j ∈ A j is a best response to the strategy profile (a1, . . . ,a j−1,

a j+1, . . . ,an) ∈ A1×·· ·×A j−1×A j+1×·· ·×An if for all a′j ∈ A j,

u j(a1, . . . ,a j−1,a j,a j+1, . . . ,an)≥ u j(a1, . . . ,a j−1,a′j,a j+1, . . . ,an).

Note that—depending on the information model—a voter’s computed best response does
not have to coincide with the actual best response in that situation since voters may not
have access to the current strategy profile. See Chapter 5 for a model where voters can
only see the submitted ballots of their neighbors in a social network. Further, voters are
assumed to have no memory, i.e., their best response does only depend on the current state
of the election, not past states, and they are assumed to be myopic, i.e., they do not have
access to the preference profile and do therefore not predict any future deviations by a
voter.

In the basic model of Meir et al. (2010), a voter only deviates if he is pivotal, i.e., if his
best response changes the election outcome. In contrast to this, Obraztsova et al. (2016)
study the model where a voter not only changes her ballot when she knows that this change
will impact the outcome positively, but also deviates optimistically, i.e., when she believes
that other voters will also change their ballot in her favor. The winner is announced as
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P: p1 = a > b > c

p2 = b > c > a

p3 = c > b > a

(a) Preference profile P

P0: a0
1 = {a}

a0
2 = {b}

a0
3 = {c}

(b) Ballot profile P0

Table 2.6: The preference profile and ballot profile in Example 2.18.

P1
a : a1

1 = {a}
a1

2 = {b}
a1

3 = {a}

P1
b : a1

1 = {a}
a1

2 = {b}
a1

3 = {b}

P1
c : a1

1 = {a}
a1

2 = {b}
a1

3 = {c}

Table 2.7: Possible profiles in the first turn in Example 2.18.

soon as the profile does not change anymore. Iterative elections where voters take turns are
path-dependent, i.e., the election winner depends on the order in which voters are allowed
to deviate. See the book chapter by Meir (2017) for an overview of iterative elections.

Example 2.18 (iterative elections). Let rPlu be the plurality rule, let C = {a,b,c} be a
candidate set, let P in Table 2.6a be the preference profile over C, and let P0 in Table 2.6b be
the profile of sincere plurality ballots over C. Assume that ties are broken lexicographically
and that voters change their ballot sequentially, starting with voter 3. The plurality winner of
P0 is rPlu(P0) = {a}. It holds that A1 = A2 = A3 = {{a},{b},{c}}, so consider the profiles
P1

a , P1
b , and P1

c in Table 2.7, where voter 3 submits the ballot {a}, {b}, and {c}, respectively,
and the other voters do not change their ballots. It holds that rPlu(P1

a ) = rPlu(P1
c ) = {a}

and rPlu(P1
b ) = {b}, so that

u3(P1
b )> u3(P1

a ) = u3(P1
c ) ,

therefore only the action {b} is a best response for strategy profile ({a},{b}). In the
profile P1

b , the best-response of voter 2 and 3 is to not change ballots, whereas voter 1 does
not change ballots because she is not pivotal. Therefore the winner of the iterative election
is candidate b. Now assume that given profile P0, it is the turn of voter 2. The only best
response for voter 2 is to submit the ballot {c}, after which no other voter changes ballots.
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P0: a0
1 = {a}

a0
2 = {b}

a0
3 = {c}

(a) Initial profile P0.

P1: a1
1 = {a}

a1
2 = {c}

a1
3 = {b}

(b) Profile P1 after the first turn.

Table 2.8: Profiles after turn 0 and 1 in Example 2.19.

Therefore, in this case the winner of the iterative election is candidate c, illustrating the
path-dependency of iterative elections when voting sequentially.

An important topic for iterative elections is convergence. Since voters may change their
ballots repeatedly, the resulting profiles can cycle, i.e., there may be a sequence of profiles
that repeat over and over again.

Example 2.19 (convergence). Consider the setting from Example 2.18, but this time
assume that voters submit their ballots simultaneously. The best response for voter 2 and 3
in profile P0 in Table 2.8a is to submit the ballots {c} and {b}, respectively, whereas voter 1
does not change ballots. In the resulting profile P1 in Table 2.8b, the best response for
voter 2 and 3 is to submit the ballots {b} and {c}, respectively, whereas voter 1 again does
not change ballots, resulting again in profile P0. Recall that voters do not have memories,
therefore this cycle repeats over and over again and the election does not converge.

Meir et al. (2010) initiate the study of conditions and voting rules for which elections are
guaranteed to converge, i.e., result in a profile where no voter has any incentive to change
their ballot. Such a profile is also called an equilibrum. Note that—depending on the
deviations allowed for the voters and their ballots—there are different kinds of equilibria,
e.g., a Nash equilibrium defined as follows.

Definition 2.20 (Nash equlibrium). Let N = {1, . . . ,n} be the set of players and let A=

A1× ·· ·×An be the set of strategy profiles. A strategy profile P = (a1, . . . ,an) ∈ A is
in a Nash equilibrium if action a j is a best response to the strategy profile (a1, . . . ,a j−1,

a j+1, . . . ,an) ∈ A1×·· ·×A j−1×A j+1×·· ·×An for each player j ∈ N.

For example, when voters deviate sequentially, Meir et al. (2010) prove that pluality always
converges to a Nash equilibrium when the inital ballot profile is sincere. Reyhani and
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Wilson (2012) and Lev and Rosenschein (2016) show that no scoring rule except plurality
and veto converges in iterative elections. The latter also study tie-breaking schemes and
show that the result holds for all tie-breaking schemes and that even restricting the tie-
breaking to a certain scheme does not guarantee convergence. Since iterative elections do
not converge for many common voting rules, Grandi et al. (2013) and Obraztsova et al.
(2015b) restrict the allowed deviations even more than the best-response dynamics in
order to achieve guaranteed convergence. Gourvès et al. (2016) consider a model where
voters are embedded in a social network. They introduce considerate equilibria to iterative
voting, where voters do not selfishly update their ballot, but consider their neighbors in the
network. A profile is then a considerate equilibrium when a coalition of voters consisting
of a clique in a graph cannot deviate without harming themselves or their neighbors.

Iterative voting can improve the quality of the election outcome, i.e., lead to a higher utility
of the voter. Brânzei et al. (2013) analyze the price of anarchy in iterative elections, which
is defined as the ratio between the quality of the outcome in a Nash equilibrium that can
be reached when starting a sequence of best responses from the original profile, and the
quality of the outcome in the original profile. Meir et al. (2014) also analyze the quality
of the outcome in iterative elections. They conduct experiments in the situation where
voters are uncertain about the current state of the election. However, in real-world elections
with underlying social networks, this effect of a better outcome is not as pronounced.
Tsang and Larson (2016) explain this phenomenon with the fact that many voters are only
connected to voters with a similar view to their own which lessens the possibilities for
pivotal deviations.

Reijngoud and Endriss (2012) consider opinion polls as a source of information for voters.
Fairstein et al. (2019) compare different models for strategic voting in the presence of
opinion polls and introduce a heuristic to predict how voters will behave in this scenario.
Sina et al. (2015) consider a social network that the voters are embedded in. Voters obtain
their information by an opinion poll and by their neighbors in the social network and
can act accordingly to this information. They introduce the concept of network control
where the chair can introduce new edges to the social network to obtain a desired outcome.
Wilczynski (2019) introduces the concept of manipulation by the agency that publishes
the opinion poll. Here, the agency publishes an incorrect poll to influence the voters to
change their ballots so that a designated candidate wins the election. See Chapter 5 for my
contribution to the study of the computational complexity of poll manipulation.
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2.3 Judgment Aggregation

This section generalizes the notion of preference aggregation. In the field of judgment
aggregation, agents called judges have to come to collective decisions in the form of
yes/no answers concerning several possibly logically related issues. Formally, let Φ =

{ϕ1,¬ϕ1, . . . ,ϕm,¬ϕm} be the agenda consisting of the ϕi (called issues, 1 ≤ i ≤ m) to
be decided over. Note that Φ is closed under complementation, consists of propositional
formulas ϕi over a set of propositional variables built by using the standard boolean
connectives, does not contain any doubly-negated formulas, and is assumed to be finite by
a large part of the existing literature. Let N = {1, . . . ,n} be the set of judges. Each judge
i ∈ N has an individual judgment set Ji ⊆Φ that is required to be complete (i.e., for each
ϕ ∈Φ, Ji contains ϕ or its complement),11 and Ji is required to be consistent (i.e., there
exists a truth assignment for the underlying set of propositional variables so that each issue
in Ji evaluates to true). Then J(Φ) denotes the set of all possible individual judgment sets
and J = (J1, . . . ,Jn) ∈ J(Φ)n is called a profile.

Definition 2.21 (judgment aggregation procedure). Let Φ be an agenda and let N =

{1, . . . ,n} be the set of judges. A judgment aggregation procedure P is a function

P : J(Φ)n→ 22Φ

that maps a profile J = (J1, . . . ,Jn) ∈ J(Φ)n to a set of (possibly incomplete and inconsis-
tent) judgment sets over Φ.

Note that most of the prevalent procedures are resolute, i.e., the collective outcome is
always a singleton. The formula-based framework based on Boolean algebra dominates
the literature, but Dietrich (2007) shows that the concepts of judgment aggregation can
also be employed with different types of logic. Ågotnes et al. (2011) also introduce a
new framework for judgment aggregation based on modal logic. Endriss et al. (2016a)
compare the formula-based framework with a framework where issues are propositional
variables whose logical relations are expressed in an external integrity constraint. This
model is a special case of the field of binary aggregation, see, e.g., the article by Dokow
and Holzman (2010). For a detailed introduction to judgment aggregation, see the book
chapters by Baumeister et al. (2015c), List and Puppe (2009), and Endriss (2016).
11See Terzopoulou et al. (2018) for a model where the judges’ judgment sets are not required to be complete.
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c b `

J1 1 1 1
J2 0 1 0
J3 1 0 0

Maj 1 1 0

Table 2.9: Illustration of the doctrinal paradox/discursive dilemma

The famous doctrinal paradox—first presented by Kornhauser and Sager (1986) and later
generalized to the discursive dilemma by Pettit (2001) and List and Pettit (2002)—shows
that when deciding each issue majority-wise, the resulting majority outcome might be
inconsistent even if all individual judgment sets are consistent. The corresponding rule is
called majority rule and always outputs a single judgment set where a formula ϕ ∈Φ is
contained if and only if more than half of the judges accept it. To illustrate the discursive
dilemma, consider the following example by List and Pettit (2002).

Example 2.22 (discursive dilemma). In the discursive dilemma, three judges have to
decide whether a contract was valid (c), whether there was a breach of contract (b), and
whether the defendant is liable (`), which is only the case if the contract was valid and
it was breached. The agenda is Φ = {c,¬c,b,¬b, `,¬`} where `= c∧b, and the profile
J ∈ J(Φ)3 can be seen in Table 2.9. Note that a 1 means that the corresponding issue was
accepted (i.e., a 1 for an issue ϕ in Ji means that ϕ ∈ Ji and ¬ϕ /∈ Ji), whereas a 0 indicates
that this issue was rejected (i.e., a 0 for an issue ϕ in Ji means that ϕ /∈ Ji and ¬ϕ ∈ Ji).
Even though all judges have consistent judgment sets (as required), taking the majority
decision for each issue leads to an inconsistent outcome: A majority of judges accept that
the contract was valid, that it was breached, but that the defendant is not liable.

Therefore, the majority rule—arguably the most simple and natural judgment aggregation
procedure—has a major drawback, which started the research on judgment aggregation.
See the article by Mongin (2012) for a detailed comparison between the doctrinal paradox
and the discursive dilemma.

As a way out of this dilemma, Dietrich and Mongin (2010) separate the issues into premises
and conclusions and only aggregate the judgments on the premises in the premise-based
approach (respectively, the conclusions in the conclusion-based approach). The premise-
based procedure then infers the conclusions from the premises. Dietrich and List (2007b)
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generalize the majority rule by introducing quota rules where an issue is contained in the
collective outcome if the number of judges that accept this issue is at least as high as a
given respective quota for this issue. However, as with the majority rule, this approach
does not guarantee to produce complete and at the same time consistent outcomes, unless
it is paired with the premise-based approach (resulting in the premise-based quota rules)
and certain assumptions about the agenda are made. Note that the term “uniform” denotes
that the quota is equal for all issues. In this thesis, the following definition for uniform
premise-based quota rules is used (see also Example 2.27).

Definition 2.23 (uniform premise-based quota rules). Let Φ = Φp ∪Φc be the agenda
partioned into a set of premises Φp and a set of conclusions Φc, and let Φp = Φ1∪Φ2

be partioned into sets Φ1 and Φ2 where Φ2 contains the complements of all ϕ ∈Φ1. The
uniform premise-based quota rule with quota q (denoted by UPQRq) for a quota 0≤ q < 1
maps each profile J = (J1, . . . ,Jn)∈ J(Φ)n to the collective outcome UPQRq(J) containing

• the premises ϕ ∈Φ1 that are contained in more than n ·q judgment sets J ∈ J,

• the premises ϕ ∈Φ2 that are contained in at least n · (1−q) judgment sets J ∈ J,

• and all conclusions ϕ ∈Φc that can be derived from the premises in the collective
outcome.

In contrast to this approach, List (2004) uses a slightly modified majority rule in a sequential
context where—following a given ordering of the issues in the agenda—the majority quota
for a formula only comes into play when the acceptance or rejection of an issue cannot
already be inferred by the already determined part of the collective outcome, thus ensuring
a complete and consistent outcome. Following the concept of scoring rules in voting
(see Section 2.2.1), Dietrich (2014) introduces scoring rules in judgment aggregation
that include an equivalent of Borda Count. Other counterparts of voting rules include
rules based on minimization studied by Lang et al. (2011). Furthermore, Lang and
Slavkovik (2013) investigate how the different judgment aggregation procedures relate to
the established voting rules.

The family of distance-based judgment aggregation procedures as introduced by Pigozzi
(2006) and Miller and Osherson (2009) consists of procedures that try to minimize the
distance between the collective outcome and the individual judgment sets. In a similar
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approach, Botan et al. (2021) design an egalitarian rule where the difference in satisfaction
with the collective outcome between the judges is minimized.

Another direction to circumvent the discursive dilemma is to analyze the agenda. An agenda
is called safe for a judgment aggregation procedure P if P produces a consistent outcome
regardless of the input profile. Several axioms for the agenda such as the median property
were introduced to characterize safe agendas. See the article by Endriss et al. (2012) for an
overview and a multitude of axioms regarding the safety of agendas. However, Endriss
et al. (2012) also show that for all considered axioms and procedures, it is intractable
to check whether a given agenda is safe. Endriss et al. (2015) strengthen these results
for the majority rule by showing intractability for agenda safety when parameterized by,
among others, the maximum formula size or the maximum variable degree, but also show
fixed-parameter tractability when parameterizing by the size of the agenda.

There are quite a few properties that judgment aggregation procedures can satisfy. See,
e.g., the article by Lang et al. (2017) for a list of judgment aggregation procedures
and their properties. Corresponding to Arrow’s theorem in preference aggregation (see
Section 2.2.1), Dietrich and List (2007a) show that an analogue to this theorem holds for the
field of judgment aggregation stating that a judgment aggregation procedure can only fulfill
certain (deemed reasonable) properties if it is a dictatorship. This theorem strengthens
earlier impossibility results, for example by List and Pettit (2002, 2004). Dietrich and List
(2010) further weaken the requirements posed on the judgment aggregation procedure to
be dictatorial. Following these results, there are several papers that investigate whether the
aforementioned “reasonable properties” are in fact reasonable for a judgment aggregation
procedure. A judgment aggregation procedure P satisfies neutrality if for each agenda
Φ, each profile J, and each pair of formulas ϕ,ψ ∈ Φ where ϕ ∈ J ⇔ ψ ∈ J for all
J ∈ J, it holds that ϕ ∈ P(J) if and only if ψ ∈ P(J). Intuitively, neutrality requires
that any two issues have to be treated equally. Slavkovik (2014) and Terzopoulou and
Endriss (2019a, 2020) argue that there are several cases where the axiom of neutrality
is too strong, and the latter propose weaker versions of neutrality. List (2003) suggests
to implement domain restrictions to circumvent impossibility theorems and introduces
the unidimensional alignment domain that is the judgment aggregation equivalent to the
single-crossing domain in voting.

As in voting, it is important to take the computational complexity of winner determina-
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tion into account when choosing the best judgment aggregation procedure for the given
application. Endriss et al. (2012) define the first problem for winner determination as
follows.

P-WINNER-DETERMINATION

Given: An agenda Φ, a profile J ∈ J(Φ)n, and a subset of formulas S⊆Φ.
Question: Is there a J ∈ P(J) so that S⊆ J?

Note that using the winner determination problem defined above, a winning judgment set
can be computed with a polynomial number of queries: Start with the empty set S. For
each ϕ ∈Φ, ask whether S∪{ϕ} is part of a judgment set in P(J), and set S := S∪{ϕ}
if the answer is yes. Endriss et al. (2012) then show that the winner determination for
quota rules and the premise-based rule is tractable, while the winner determination for
the distance-based procedure that returns the judgment sets from J(Φ) minimizing the
sum of Hamming distances to the profile is intractable. Here, the Hamming distance

HD(S,T ) between two complete and consistent judgment sets S and T is defined as the
number of issues ϕ ∈Φ on which both sets differ. De Haan and Slavkovik (2017) expand
the aforementioned intractability result by considering several more procedures from the
family of the distance-based procedures. Further, they show that winner determination for
scoring rules in judgment aggregation is also intractable. Lang and Slavkovik (2014) study
the computational complexity of winner determination for several majority-preserving
rules, and Endriss and de Haan (2015) show the intractability of winner determination for
several analogues of voting rules for judgment aggregation, e.g., analogues of the Kemeny
rule defined on page 11 and the Slater rule (see the article by Endriss et al. (2020) for
an overview). De Haan (2016) further studies the parameterized complexity of winner
determination for the Kemeny procedure and shows that the computational complexity
does not coincide in the respective frameworks. For the family of sequential quota rules,
Baumeister et al. (2021a) show that winner determination is intractable.

Based on the concept of iterative voting in preference aggregation (see Section 2.2.4 and
Chapter 5), Terzopoulou and Endriss (2018) introduce a model for iterative judgment
aggregation where judges can update their individual judgment sets. Further, they study
the convergence to equilibria.

40



2.3 Judgment Aggregation

Analogous to Arrow’s theorem, the Gibbard-Satterthwaite Theorem introduced in Sec-
tion 2.2.2 for voting can also be transferred to judgment aggregation. To this end, Dietrich
and List (2007c) introduce the following notion of non-manipulability.

Definition 2.24 (non-manipulability). A resolute judgment aggregation procedure P is
non-manipulable if for each agenda Φ, each set of judges N = {1, . . . ,n}, each profile
J = (J1, . . . ,Jn) ∈ J(Φ)n, each formula ϕ ∈Φ, and each judge i ∈ N, it holds that if ϕ ∈ Ji,
but ϕ /∈ P(J), then ϕ /∈ P(J′) for each J′ = (J1, . . . ,Ji−1,J′i ,Ji+1, . . . ,Jn) where J′i ∈ J(Φ).

They show that, given a certain agenda type, each resolute, non-imposing12, non-manipulable
judgment aggregation procedure that has no further restrictions on the input profile and
always returns a complete and consistent collective outcome is a dictatorship of some judge
i in the sense that P always returns the individual judgment set Ji. Furthermore, they define
the following types of preferences over judgment sets to study whether a manipulator
prefers a new outcome to the original collective outcome and therefore has an incentive to
change her judgment set. Note that these preference types are only defined over complete
and consistent judgment sets to simplify the presentation.

Definition 2.25 (preference types). Let Φ be an agenda, and let J ∈ J(Φ) be a judgment
set.

1. The set UJ of unrestricted preferences contains all possible weak orders % over
J(Φ).

2. Define the set T RJ ⊆UJ of top-respecting J-induced preferences by

T RJ = {%∈UJ | J � Y ∀Y ∈ J(Φ)\{J}}.

3. Define the set CRJ ⊆ T RJ of closeness-respecting J-induced preferences by

CRJ = {%∈UJ | X % Y ∀ X ,Y ∈ J(Φ) where X ∩ J ⊇ Y ∩ J}.

4. Finally, define the Hamming-distance J-induced preference HDJ ⊆CRJ by

HDJ = {%∈UJ | (X % Y ⇔ HD(X ,J)≤ HD(Y,J)) ∀X ,Y ∈ J(Φ)}.
12A judgment aggregation procedure P is non-imposing if for each agenda Φ and each ϕ ∈Φ, there exist

two profiles J1,J2 in the domain of P so that ϕ ∈ P(J1) and ϕ /∈ P(J2).
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b c b∧ c

J: J1 1 1 1
J2 1 0 0
J3 0 1 0

UPQR1/2 1 1 1

(a) The original profile J = (J1,J2,J3).

b c b∧ c

J′: J1 1 1 1
J2 1 0 0
J′3 0 0 0

UPQR1/2 1 0 0

(b) The manipulated profile J′ = (J1,J2,J′3).

Table 2.10: The original and the manipulated profile in Example 2.27.

Define strategy-proofness as follows.

Definition 2.26 (strategy-proofness). A resolute judgment aggregation procedure P is
strategy-proof for a preference type C if for each agenda Φ, each profile J = (J1, . . . ,Jn) ∈
J(Φ)n, each judge i, each profile J′ = (J1, . . . ,Ji−1,J′i ,Ji+1, . . . ,Jn) ∈ J(Φ)n, and each
%i∈ CJi , it holds that P(J)%i P(J′).

Analogous to the impossibility theorem for non-manipulability, Dietrich and List (2007c)
further prove that, given a certain agenda type, each resolute and non-imposing judgment
aggregation procedure that has no further restrictions on the input profile, always returns
a complete and consistent collective outcome, and is strategy-proof for preference type
C is a dictatorship of some judge i. However, as Terzopoulou and Endriss (2019b) show,
this impossibility relies on the full information model, i.e., the model where a potential
manipulator knows the complete profile of judgment sets. When the judgment sets of some
judges are unknown, most impossibility results concerning strategy-proofness do not hold
anymore.

Example 2.27 (non-manipulability and strategy-proofness). Consider the uniform premise-
based quota rule with quota q = 1/2 and the agenda and profile from Example 2.22,
i.e., Φ = {b,¬b,c,¬c,b∧ c,¬(b∧ c)} and the profile J ∈ J(Φ)3 in Table 2.10a. Define
Φp = {b,¬b,c,¬c} as the premises with Φ1 = {b,c} and define Φc = {b∧ c,¬(b∧ c)}
as the conclusions of the agenda. A respective majority accepts b and c, so that b∧ c is
also part of the collective outcome (UPQR1/2(J) = {b,c,b∧ c}). In particular, judge 3
disagrees with the collective outcome on issue b∧c. However, if she changes her judgment
to J′3 = {¬b,¬c,¬(b∧ c)} resulting in profile J′ as seen in Table 2.10b, then the collective
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outcome UPQR1/2(J′) = {b,¬c,¬(b∧ c)} agrees with J3 on issue b∧ c. Therefore, the
uniform premise-based quota rule with quota q = 1/2 is manipulable.

Now consider the same scenario and assume that judge 3 has closeness-respecting (J3-
induced) preferences. There are four complete and consistent judgment sets for Φ, namely
J1, J2, J3, and J′3. According to Definition 2.25, she prefers J3 to all other sets. Furthermore,
she prefers J′3 to J2 since J′3 ∩ J3 = {b,¬(b∧ c)} ⊇ {¬(b∧ c)} = J2 ∩ J3. The relation
between J1 and both J2 and J′3 is not fixed. Therefore,

CRJ3 = {J3 � J1 � J′3 � J2,

J3 � J′3 � J1 � J2,

J3 � J′3 � J2 � J1}

Since there is an %∈CRJ3 so that UPQR1/2(J′)� UPQR1/2(J), it follows that the uniform
premise-based quota rule with quota q = 1/2 is not strategyproof under closeness-respecting
preferences.

Again, as with preference aggregation, there exist a multitude of papers investigating the
complexity of strategic attacks in judgment aggregation. Manipulation includes manipula-
tion by a single judge as defined above as well as manipulation by a coalition of judges.
Endriss et al. (2012) study the complexity of manipulation for the premise-based procedure
where the manipulator has Hamming-distance-induced preferences, whereas Baumeister
et al. (2015b) consider the (uniform) premise based (quota) rules for the preference types in
Definition 2.25 and for the case where the manipulator wants to include a set D as a subset
of the manipulated collective outcome. Coalitional manipulation was first studied by Botan
et al. (2016). The concept of bribery is closely related to lobbying (see, e.g., the papers by
Christian et al. (2007) and Bredereck et al. (2014b) for lobbying in judgment aggregation)
and was introduced to judgment aggregation by Baumeister et al. (2015b). Baumeister et al.
(2015b,d) study the complexity of bribery for the (uniform) premise based (quota) rules
and the preference types defined above. De Haan (2017) studies manipulation and bribery
for the Kemeny procedure. Similar to control in preference aggregation, the concept
of control in judgment aggregation can include adding or deleting judges (Baumeister
et al., 2012, 2015d), bundling issues (Alon et al., 2013) and bundling judges (Baumeister
et al., 2013), adding or deleting issues (Dietrich, 2016), or changing the order of issues
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in sequential rules (Bredereck et al., 2017). See the book chapter by Baumeister et al.
(2017) for an overview of strategic behavior in judgment aggregation and see Chapter 6
for my contribution to the investigation of the complexity of strategic attacks in judgment
aggregation.

De Haan (2018) argues that the intractability results for judgment aggregation are due to
the used framework being overly expressive and proposes to use more limited languages
that yield tractability results and are still able to model certain applications. De Haan
and Slavkovik (2019) give an encoding for several procedures and problems in judgment
aggregation into answer set programming.

44



Chapter 3

Minisum and Minimax Committee Election Rules for
General Preference Types

This chapter deals with new types of ballots and new corresponding types of multiwinner
voting rules, also called committee election rules. The corresponding publication is as
follows.

Baumeister, D., Böhnlein, T., Rey, L., Schaudt, O., and Selker, A.-K. (2016). Minisum
and minimax committee election rules for general preference types. In Proceedings of

the 22nd European Conference on Artificial Intelligence, pages 1656–1657. IOS Press.
Extended Abstract

Brams et al. (2007) introduce the minimax procedure for electing a committee. The goal is
to select a committee that minimizes the maximum Hamming distance to a voter in the
given approval-based profile. They also define a corresponding minisum procedure that
aims to minimize the sum of Hamming distances to the voters’ ballots. Baumeister and
Dennisen (2015) modify these procedures to allow trichotomous ballots, complete linear
orders, and incomplete linear orders. Alcantud and Laruelle (2014) characterize a new
voting rule based on trichotomous ballots.

This chapter further extends these articles by introducing a type of ballot called `-ballot,
applying these ballots to minisum and minimax rules, and studying correspondingly
modified axiomatic properties. In an `-ballot, voters partition the candidates into ` (possibly
empty) groups and then rank these groups. This can be seen as a compromise between
dichotomous and trichotomous ballots on the one hand where voters lose the ability to
express more fine-grained relations between the candidates, and linear orders on the other
hand where voters are forced to express a strict preference between each pair of the
(possibly large) candidate set. Note that a similar type of ballot was previously introduced
by Obraztsova et al. (2015a, 2017). However, they study the ballots in a game-theoretic
approach, whereas this chapter deals with the axiomatic properties of minisum and minimax
voting rules using these kind of ballots. Furthermore, Balinski and Laraki (2011) obtain
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`-ballots in an intermediate stage of their majority judgment procedure where each judge
(who correspond to voters in this context) first assigns an integer grade in a fixed interval
to each contestant (or candidate) via a grade function, and the procedure then returns the
contestant with the best median grade of all judges.

This chapter is organized as follows. Section 3.1 introduces the concept of `-ballots and
the corresponding multiwinner rules called `-group rules, and illustrates these concepts in
a detailed example. Section 3.2 then modifies axiomatic properties for rules using ordinal
ballots to ones for rules using `-ballots, and shows which of these properties are fulfilled
by the `-group rules. Next, Section 3.3 studies the complexity of winner determination
for the new rules. Section 3.4 generalizes `-ballots to cardinal ballots that allow for two
independent values a and b for the dissatisfaction with a candidate being a member or not
a member of a committee. Finally, Section 3.5 details my contribution to the findings of
this chapter.

3.1 Minisum and Minimax `-group rules

This section introduces a new type of ballot and corresponding multiwinner rules. For a
more detailed overview on ballot types see Section 2.2, and for the basics of multiwinner
elections see Section 2.2.3. Recall that N = {1, . . . ,n} is a set of voters, C = {c1, . . . ,cm}
is a set of candidates, k ∈ N is a committee size, and F is a multiwinner voting rule.

Definition 3.1 (`-ballots). An `-ballot v for an integer ` ≥ 2 over candidate set C is a
partition of C into ` pairwise disjoint, possibly empty sets (called groups). Formally,
v = (G1, . . . ,G`) so that Gi∩G j = /0 for 1≤ i < j ≤ ` and

⋃`
i=1 Gi =C.

Note that 2-ballots correspond to approval ballots, whereas n-ballots do not correspond to
linear orders or weak orders since groups might be empty. For each group G j, j is called
the group number of G j. Intuitively, a voter prefers candidates with a low group number to
ones with a higher one, and is indifferent between candidates with the same group number.
Furthermore, let the candidates in C have a fixed ordering c1, . . . ,cm and let v(k) denote
the group number of a candidate ck in ballot v. Here, P̀ = (v1, . . . ,vn) denotes the profile
of `-ballots for a fixed ` ∈ N where vi is the ballot submitted by voter i ∈ N. A committee

election is a tuple E= (C, P̀ ,k).

46



3.1 Minisum and Minimax `-group rules

Definition 3.2 (Confirmed and potential committee members). Let E = (C, P̀ ,k) be a
committee election and let F be a multiwinner rule. A candidate c ∈ C is a confirmed

committee member for E (under F) if c ∈W for all W ∈ F(P̀ ,k), and a potential committee

member for E (under F) if there exists a W ∈ F(P̀ ,k) so that c ∈W .

In this chapter, the focus is on minimizing the dissatisfaction voters have with an elected
committee W . Let Fk(C) = {S | S ⊆ C∧ |S| = k} be the set of all committees of size k

over C. The dissatisfaction of a voter j—associated with `-ballot v j—with a committee
W ∈ Fk(C) is measured as

δ`(v j,W ) =
m

∑
i=1
|v j(i)−W (i)|,

where W (i) = 1 if ci ∈W , and W (i) = ` else. Note that δ`(v j,W ) can be interpreted as
the distance between `-ballot v j and committee W and generalizes the Hamming distance
between two vectors.

Define the following two families of multiwinner rules tailored to `-ballots and minimizing
voters’ dissatisfaction.

Definition 3.3 (minisum and minimax `-group rules). For each ` > 0, let E= (C, P̀ ,k) be
a committee election and let Fk(C) = {S | S⊆C∧|S|= k}.

• The minisum `-group rules are functions f `sum that return the committees minimizing
the total dissatisfaction of the voters with the elected committees, i.e.,

f `sum(P̀ ,k) = argmin
W∈Fk(C)

∑
v∈P̀

δ`(v,W ).

• The minimax `-group rules are functions f `max that return the committees minimizing
the dissatisfaction of the respective least satisfied voter with the elected committees,
i.e.,

f `max(P̀ ,k) = argmin
W∈Fk(C)

max
v∈P̀

δ`(v,W ).

Define ∑v∈P̀ v(i) as the minisum score of a candidate ci for profile P̀ .
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Claim 3.4. For each committee election E= (C, P̀ ,k), an alternative way to compute the

result of f `sum(P̀ ,k) is to calculate the minisum score of each candidate for P̀ and then

return the committees W ∈ Fk(C) that contain all candidates with a minisum score lower

than s, as well as contain only candidates with a minisum score lower or equal than s,

where s denotes the k-lowest minisum score of a candidate.

Proof. Assume that the claim is not true, i.e., there exists a committee election E =

(C, P̀ ,k) so that either (1) for a winning committee W , there exists a candidate c /∈W

that has a lower minisum score than a member of W , or (2) a committee satisfying the
requirements in the claim does not win.

Case (1): Let W ∈ f `sum(P̀ ,k) be a winning committee, so that there exists a ci ∈W and a
c j ∈C\W so that ∑v∈P̀ v( j)<∑v∈P̀ v(i). Consider the committee W ′=(W ∪{c j})\{ci}.

∑
v∈P̀

δ`(v,W )− ∑
v∈P̀

δ`(v,W ′)

= ∑
v∈P̀

(
v(i)−1

)
+ ∑

v∈P̀

(
`− v( j)

)
− ∑

v∈P̀

(
v( j)−1

)
− ∑

v∈P̀

(
`− v(i)

)

=2 · ∑
v∈P̀

v(i)−2 · ∑
v∈P̀

v( j)> 0 ,

i.e., the total dissatisfaction of the voters with W is greater than with W ′, a contradiction to
the fact that W is a winning committee.

Case (2): It follows from case (1) that all winning committees satisfy the requirements
in the claim statement. Assume a committee W /∈ f `sum(P̀ ,k) satisfying the requirements
does not win, whereas a committee W ′ ∈ f `sum(P̀ ,k) does. It holds that

∑
v∈P̀

(
∑

ci∈W
∧ci /∈W ′

v(i)+ ∑
ci /∈W
∧ci∈W ′

v(i)
)
= 2 ·|{c | c∈W ∧c /∈W ′}|·s= ∑

v∈P̀

(
∑

ci∈W ′
∧ci /∈W

v(i)+ ∑
ci /∈W ′
∧ci∈W

v(i)
)
,

48



3.1 Minisum and Minimax `-group rules

and therefore

∑
v∈P̀

δ`(v,W )

= ∑
v∈P̀

(
∑

ci∈W
∧ci∈W ′

(
v(i)−1

)
+ ∑

ci∈W
∧ci /∈W ′

(
v(i)−1

)
+ ∑

ci /∈W
∧ci∈W ′

(
`− v(i)

)
+ ∑

ci /∈W
∧ci /∈W ′

(
`− v(i)

))

= ∑
v∈P̀

(
∑

ci∈W
∧ci∈W ′

(
v(i)−1

)
+ ∑

ci∈W ′
∧ci /∈W

(
v(i)−1

)
+ ∑

ci /∈W ′
∧ci∈W

(
`− v(i)

)
+ ∑

ci /∈W
∧ci /∈W ′

(
`− v(i)

))

= ∑
v∈P̀

δ`(v,W ′)

This is a contradiction to the fact that W ′ is a winning committee and W is not.

Since both cases end in a contradiction, the claim is true.

The following example illustrates the minisum and minimax `-group rules.

Example 3.5 (minisum and minimax `-group rules). Let E = (C,P3,3) be a committee
election where C = {a,b,c,d} and P3 is the profile of 3-ballots over C in Table 3.1.

G1 G2 G3

P3: v1 = ( {a} {b,c} {d} )
v2 = ( {a,b,d} {} {c} )
v3 = ( {c} {a,b,d} {} )

Table 3.1: The profile P3 in Example 3.5.

Start with the minisum 3-group rule f 3
sum. The minisum scores of the candidates are the

total of the respective group numbers, see Table 3.2a. For example, candidate a is in G1 for
both voter 1 and 2, and in G2 for voter 3, adding up to a score of 1+1+2 = 4. For k = 3,
the third lowest score is 6. According to Claim 3.4, each winning committee has to contain
the candidates with a score lower than 6, namely a and b, and can only contain candidates
with a minisum score of at most 6. It follows that f 3

sum(P3,3) = {{a,b,c},{a,b,d}}.

Next, turn to the minimax 3-group rule f 3
max. Recall that the dissatisfaction of a voter j

with a given committee W is the total of v j(i)−1 for each ci ∈W and `− v j(i) for each
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a b c d

v1 : 1 2 2 3
v2 : 1 1 3 1
v3 : 2 2 1 2

∑ : 4 5 6 6

(a) Minisum scores

{a,b,c} {a,b,d} {a,c,d} {b,c,d}
v1 : 2 4 4 6
v2 : 4 0 4 4
v3 : 3 5 3 3

max : 4 5 4 6

(b) Voters’ dissatisfaction with each committee of size 3.

Table 3.2: The minisum scores of each candidate and the dissatisfaction of each voter for
the minimax 3-group in Example 3.5.

ci /∈W . See Table 3.2b for the dissatisfaction of each voter for each possible committee of
size 3.

For example, voter 1 has a dissatisfaction with committee {b,c,d} of (3− 1) + (2−
1)+ (2− 1)+ (3− 1) = 6. The winning committees are then the committees with the
lowest maximum of dissatisfaction. It follows that f 3

max(P3,3) =
{
{a,b,c},{a,c,d}

}
with

a maximum dissatisfaction of 4.

3.2 Axiomatic Properties

As pointed out in Sections 2.2.1 and 2.2.3, the choice of using a specific (multiwinner) vot-
ing rule depends heavily on the axiomatic properties the rules satisfy. This section studies
whether the minisum and minimax `-group rules satisfy some well-known properties for
singlewinner and/or multiwinner voting rules. Note that the considered properties were
originally defined for linear or weak orders, so some properties have to be specifically
adapted to `-ballots. In this section, all proofs that I did not contribute are omitted.

The first (fundamental) property is non-imposition, that–similar to the singlewinner version
defined on page 12–demands that each committee can win in some election (which also
implies that no candidates are incompatible with each other and therefore cannot be part of
the same committee). The property homogeneity asks that multiplying the given profile
does not change the election result. The multiwinner adaptations of both properties are
due to Elkind et al. (2017a).
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Definition 3.6. A multiwinner voting rule F satisfies

• non-imposition, if for each set of candidates C and and each committee W ∈ Fk(C)

of size k there is a profile P so that F(P,k) = {W}.

• homogeneity, if for each committee election E = (C,P,k) and each t ∈ N it holds
that F(tP,k) = F(P,k), where tP denotes the concatenation of t copies of P.

The families of minisum and minimax ` group rules satisfy both properties.

Theorem 3.7. For each ` ∈ N, the minisum and minimax `-group rules satisfy non-

imposition and homogeneity.

The property consistency (also called reinforcement) states that when a profile can be split
in two so that the two parts agree on some winning committees, these committees should
also win the election for the original profile. Again, this property was adapted from the
singlewinner context to multiwinner rules by Elkind et al. (2017a).

Definition 3.8. Let P1 +P2 denote the concatenation of profiles P1 and P2. A multiwinner
voting rule F satisfies consistency, if for each pair of profiles P1,P2 over the same candidate
set C and for each committee size k ≤ |C|, it holds that F(P1 +P2,k) = F(P1,k)∩F(P2,k)

whenever F(P1,k)∩F(P2,k) 6= /0.

Theorem 3.9. For each ` ∈ N, the minisum `-group rule satisfies consistency, while the

minimax `-group rule does not.

A clone of a candidate c is another candidate c′ that is very similar to c in the voter’s eyes
and will therefore be ranked close to the original candidate in the ballots. For example, a
clone of a job applicant might be another applicant with the same qualifications and age.
Ideally, adding a clone of candidate c to the election should not be detrimental to c, but
for many contexts, the cloning might lead to a split vote. Consider for example plurality
ballots, i.e., approval ballots where exactly one candidate can be approved. Some of the
voters approving c might switch to approve the clone c′ and thereby costing c votes to the
benefit of another candidate. The idea of cloning was first introduced by Tideman (1987)
who considers weak orders as ballots where clones of a candidate c are tied to or ranked
directly above or below c. In the setting of `-ballots, cloning a candidate c means adding
an additional candidate c′ to the set of candidates and placing c′ in the same group as c for
each ballot.
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Definition 3.10. A multiwinner voting rule F is independent of clones if for each commit-
tee election E= (C,P,k) and each candidate c ∈C, a candidate d ∈C that is not a potential
committee member under E cannot be a potential committee member in a committee
election when cloning c.

Note that the candidates c and d in the above definition do not have to be distinct, i.e., the
cloning of candidate c should also not be beneficial to c.

Theorem 3.11. For each `, the minisum `-group rule satisfies independence of clones,

while the minimax `-group rule does not.

Next, consider variants of monotonicity starting with committee monotonicity. This prop-
erty demands that members of winning committees should remain in winning committees
even if the committee size is increased. For example, it is not reasonable to replace candi-
dates on an interview shortlist just because an additional interview slot opened up. The
following definition of committee monotonicity is due to Elkind et al. (2017a).

Definition 3.12. A multiwinner voting rule F satisfies committee monotonicity if for
each committee election E = (C,P,k), and for each elected committee W ∈ F(P,k), the
following holds:

• If k < |C| then there exists a W ′ ∈ F(P,k+1) such that W ⊆W ′, and

• if k > 1 there exists a W ′ ∈ F(P,k−1) such that W ⊇W ′.

Theorem 3.13. For each ` ∈N, the minisum `-group rule satisfies committee monotonicity,

whereas the minimax `-group rule does not for each `≥ 2.

Proof. For an arbitrary positive integer `, let E= (C, P̀ ,k) be a committee election. The
minisum scores ∑v∈P̀ v( j) of each candidate c j ∈C are independent of the committee size
k and therefore do not change by increasing or decreasing k. Since each minisum `-group
rule picks the committees that contain the candidates with the lowest minisum score, it
satisfies committee monotonicity.

However, the minimax `-group rule does not satisfy committee monotonicity for each
`≥ 2. To prove this, consider C = {c1,c2,c3} and the following profile P̀ :
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P̀ : v1 = ({c1}, {}, . . . , {}, {c2,c3})
v2 = ({c2}, {}, . . . , {}, {c1,c3})

It holds that f `max(P̀ ,1) =
{
{c1},{c2},{c3}

}
, whereas f `max(P̀ ,2) =

{
{c1,c2}

}
. This vio-

lates the first condition of committee monotonicity since for k = 1, the winning committee
{c3} is not a subset of any winning committee for k = 2.

The following notions of monotonicity aim at ensuring that additional support for a
candidate c does not hurt the prospect of winning for c. In the example of the shortlist for
a hiring process, a candidate should not lose an already secured interview spot just because
an additional member of the hiring committee announces support for this candidate.
The original multiwinner definition for candidate monotonicity and monotonicity for
linear orders is again due to Elkind et al. (2017a) and states that an improvement of a
potential committee member c should not be detrimental to c (candidate monotonicity)
respectively to the winning committee of which c is a member (monotonicity). In the
original (singlewinner) definition of positive responsiveness for linear orders that goes
back to May (1952), an improvement of a winning candidate c in a ballot should even
lead to c being a unique winner of the election (see Definition 3.14 for a restatement for
multiwinner voting rules). However, their notion of improvement1 of a candidate is tailored
to linear orders and is therefore not suitable for `-ballots. Definition 3.14 below therefore
uses the following notion of improvement.

Given a profile P̀ = (v1, . . . ,vn) of `-ballots over candidate set C, let P′` denote the modified
profile obtained by improving candidate ci in some ballot v j, i.e., shifting ci into a better
group in v j while the rest of the ballot remains unchanged. Formally,

P′` = (v1, . . . ,v j−1,v′j,v j+1, . . . ,vn) where v′j(i)< v j(i) and v′j(g) = v j(g) for all cg 6= ci.

Note that in contrast to the case of linear orders, no candidates are shifted backwards by
improving c j. This is to preserve the spirit of the original notion where the relation between
candidates other than c j remain unchanged. For example, let C = {c1,c2,c3,c4} be the set
of candidates and consider the 2-ballots v = ({c3},{c1,c2}) and v′ = ({c1},{c2,c3}). The

1Improving a candidate c by one position in the linear order of voter i means swapping c and the candidate
in position posi(c)−1. An improvement of t > 1 steps can be carried out by improving c by one position
t times.
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ballot v′ can be obtained by swapping the candidates c1 and c3, but this has consequences
for the relation between c2 and c3.

Furthermore, it does not suffice to just require that all relative candidate relations barring
the ones with ci remain the same, but it is necessary to fix the group numbers of all
candidates but ci. In the 6-ballots

v = ({}, {c4}, {c2}, {c1}, {c3}, {}) and
v′ = ({c4}, {c1,c2}, {}, {}, {}, {c3}),

the candidate c1 is improved in v′ in relation to v, but c2 and c4 improved as well which is
counterintuitive to an improvement of c1. Additionally, the candidate c3 is even shifted
a group back without changing the relation to any other candidate including c1, which
is detrimental to c3 and again counterintuitive. For a recent adaptation of the notion of
monotonicity to approval ballots (respectively, to ballots using weak orders) see the article
by Sánchez-Fernández and Fisteus (2019) (respectively, Aziz and Lee (2020)).

Definition 3.14. A multiwinner voting rule F satisfies

• candidate monotonicity (resp., positive responsiveness), if for each committee elec-
tion E= (C,P,k) and each c ∈C, if c is a potential committee member for E under
F, then it holds that c is a potential (respectively, confirmed) committee member for
(C,P′,k), where P′ is obtained from P by improving c in some ballot v.

• monotonicity, if for each committee election E = (C,P,k), each W ∈ F(P,k), and
each c∈W , it holds that W ∈F(P′,k) for all P′ that are obtained from P by improving
c in some ballot v.

Note that monotonicity as well as positive responsiveness imply candidate monotonicity.

The following theorem shows that the minisum `-group rules satisfy the notions of mono-
tonicity defined above.

Theorem 3.15. For each ` ∈N, the minisum `-group rule satisfies monotonicity, candidate

monotonicity, and positive responsiveness.
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Proof. Start with the the property of monotonicity. Let `≥ 2 be an arbitrary integer and
assume that the minisum `-group rule does not satisfy monotonicity, i.e., there exists a
committee election E = (C, P̀ ,k), a committee W ∈ f `sum(P̀ ,k), and a candidate ci ∈W

so that W /∈ f `sum(P
′
`,k), where P′` is obtained from P̀ by improving ci in ballot v j. In

particular, that means that in the new committee election, there exists a committee W ′ that
has a lower sum of dissatisfaction of the voters with W ′ than with the original winning
committee W . Formally,

∑
v∈P̀

δ`(v,W ′)≥ ∑
v∈P̀

δ`(v,W ) and (3.1)

∑
v∈P′`

δ`(v,W ′)< ∑
v∈P′`

δ`(v,W ). (3.2)

where Equation (3.1) holds due to W ∈ f `sum(P̀ ,k) and Equation (3.2) due to W /∈ f `sum(P
′
`,k).

Recall that ci ∈W and that only the group number of ci differs in v j and v′j while the place-
ment of all other candidates remains unchanged, and all other ballots in P̀ are identical in
P′`. Consequently, for each committee S it holds that

δ`(v′j,S)−δ`(v j,S) = v′j(i)− v j(i). (3.3)

Equation (3.2) can be transformed as follows.

∑
v∈P′`

δ`(v,W ′)< ∑
v∈P′`

δ`(v,W )

⇐⇒
(

∑
v∈P′`\{v′j}

δ`(v,W ′)
)
+δ`(v′j,W

′)<
(

∑
v∈P′`\{v′j}

δ`(v,W )
)
+δ`(v′j,W )

⇐⇒
(

∑
v∈P̀ \{v j}

δ`(v,W ′)
)
+δ`(v′j,W

′)<
(

∑
v∈P̀ \{v j}

δ`(v,W )
)
+δ`(v′j,W )

⇐⇒
(

∑
v∈P̀

δ`(v,W ′)
)
+δ`(v′j,W

′)−δ`(v j,W ′)<
(

∑
v∈P̀

δ`(v,W )
)
+δ`(v′j,W )−δ`(v j,W )

⇐⇒ ∑
v∈P̀

δ`(v,W ′)− ∑
v∈P̀

δ`(v,W )< δ`(v j,W ′)−δ`(v′j,W
′)+ v′j(i)− v j(i)︸ ︷︷ ︸

due to Eq. (3.3)

⇐⇒ ∑
v∈P̀

δ`(v,W ′)− ∑
v∈P̀

δ`(v,W )

︸ ︷︷ ︸
≥0 due to Eq. (3.1)

< v j(i)− v′j(i)︸ ︷︷ ︸
due to Eq. (3.3)

+v′j(i)− v j(i) = 0  
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Due to the contradiction, it follows that the minisum `-group rule satisfies monotonicity
for each ` > 0, which also implies that the minisum `-group rule satisfies candidate
monotonicity for each ` > 0.

Next, assume that the minisum `-group rule does not satisfy positive responsiveness, i.e.,
there exists a committee election E = (C, P̀ ,k), a potential committee member c ∈W

for some W ∈ f `sum(P̀ ,k), and a committee W ′ ∈ f `sum(P
′
`,k) so that c /∈W ′, where P′` is

obtained from P̀ by improving c in ballot v j. Then W ∈ f `sum(P
′
`,k) since f `sum satisfies

monotonicity as proved above. The inequality

∑
v∈P̀

δ`(v,W ′)
(1)
< ∑

v∈P′`

δ`(v,W ′)
(2)
= ∑

v∈P′`

δ`(v,W )
(3)
< ∑

v∈P̀
δ`(v,W )

is a contradiction to the fact that W is a winning committee in the original election. Note
that (1) is due to the fact that c is not a member of W ′ and an improvement of c therefore
leads to a higher dissatisfaction of voter j with W ′. Furthermore, (2) holds since both W

and W ′ are winning committees in the new election, and (3) holds because an improvement
of c leads to a lower dissatisfaction of voter j with W . Therefore, the minisum `-group
rule satisfies positive responsiveness for all ` > 0.

Next, turn to the minimax `-group rules.

Theorem 3.16. For each ` ∈N, the minimax `-group rule satisfies candidate monotonicity.

However, for each `≥ 2, the minimax `-group rule does not satisfy positive responsiveness

and monotonicity.

Proof. First, show that for each ` > 0, the minimax `-group rule satisfies candidate
monotonicity. For each committee election E = (C, P̀ ,k), and each profile P′` that is
obtained by improving a potential committee member c ∈W , W ∈ f `max(P̀ ,k), in a ballot
in P̀ , the following holds:

The dissatisfaction of a least satisfied voter does not change or even grows for all commit-
tees W ′ ∈ Fk(C) where c /∈W ′, so that the following holds.

max
v∈P′`

δ`(v,W )≤max
v∈P̀

δ`(v,W )≤max
v∈P̀

δ`(v,W ′)≤max
v∈P′`

δ`(v,W ′)
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P̀ : v1 = ({c1}, {c2,c3}, {}, . . .)
v2 = ({c3}, {c1,c2}, {}, . . .)

P′` : v′1 = ({c1,c2}, {c3}, {}, . . .)
v2 = ({c3}, {c1,c2}, {}, . . .)

Table 3.3: Profiles P̀ and P′` in the positive responsiveness proof of Theorem 3.16.

P̀ : v1 = ({c1}, {c2,c3}, {}, . . .)
v2 = ({c2}, {c1,c3}, {}, . . .)
v3 = ({c3}, {c1,c2}, {}, . . .)

P′` : v′1 = ({c1,c2}, {c3}, {}, . . .)
v2 = ({c2}, {c1,c3}, {}, . . .)
v3 = ({c3}, {c1,c2}, {}, . . .)

Table 3.4: Profiles P̀ and P′` in the monotonicity proof of Theorem 3.16.

Since c ∈W , this means that there does not exist a committee W ′ not containing c that
has a strictly lower dissatisfaction of the least satisfied voter in the new election than all
committees containing c. It follows that c has to be a potential committee member in the
new election.

However, such a candidate c does not have to be a confirmed committee member after
an improvement, which the following example shows. Consider C = {c1,c2,c3} and the
profiles P̀ and P′` in Table 3.3, where the latter is obtained by improving c2 in the ballot
v1. It holds that f `max(P̀ ,1) = f `max(P

′
`,1) =

{
{c1},{c2},{c3}

}
, so c2 is not a confirmed

committee member in the new election despite being a potential committee member in
the original election and being improved. This proves that the minimax `-group rule does
not satisfy positive responsiveness for each `≥ 2 because the improvement of a candidate
c in a vote that is not the single vote with the minimal maximal dissatisfaction for any
committee has no effect on the election result.

Furthermore, the minimax `-group rule does not satisfy monotonicity for each ` ≥ 2.
Consider for example C = {c1,c2,c3} and the profiles P̀ and P′` in Table 3.4, where the
latter is obtained by improving c2 in the ballot v1. It holds that
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f `max(P̀ ,2) =
{
{c1,c2},{c2,c3},{c1,c3}

}
.

But the improvement of c2 in ballot v1 leads to a lower dissatisfaction of the single most
dissatisfied voter—namely the first voter—with committee {c2,c3}, while the dissatis-
faction of the most dissatisfied voter for the other winning committees does not change.
Therefore, {c1,c2} /∈ f `max(P

′
`,2) =

{
{c2,c3}

}
, although c2 ∈ {c1,c2} was improved in the

original election.

Elkind et al. (2017a) also consider the weaker notion of non-crossing monotonicity where
only improvements for c ∈W are allowed that do not change the respective relations
between all members of W . The results presented above still hold for this variant.

Next, consider Condorcet consistency. In a profile P̀ of `-ballots, a candidate ci beats a
candidate c j in a pairwise comparison if more voters prefer ci to c j than the other way
round, i.e., |{v ∈ P̀ | v(i) < v( j)}| > |{v ∈ P̀ | v( j) < v(i)}|. Recall that a Condorcet
winner c ∈C beats all other candidate in pairwise comparisons, and that a (singlewinner)
voting rule is Condorcet consistent when the Condorcet winner is the unique winner of
the election whenever it exists (see the definitions on pages 11 and 12). As in the case
of monotonicity, one can define two notions of Condorcet consistency in the multiwinner
context, namely one focusing on the candidates and one focusing on the committees. The
candidate variant is due to Felsenthal and Maoz (1992) who adapted the singlewinner
property of Condorcet consistency to resolute multiwinner voting rules by requiring that
a Condorcet winner has to be a member of the winning committee. See Definition 3.17
for a restatement of this definition for irresolute multiwinner voting rules. The committee
variant states that the committee Condorcet winner has to be the unique winning committee
of the election if it exists, where the committee Condorcet winner of size k is a committee
W ∈ Fk(C) for a set of candidates C so that each c ∈W beats each d ∈C \W in a pairwise
comparison (Gehrlein, 1985). Note that a committee Condorcet winner is unique, and that
it contains the Condorcet winner if such a candidate exists.

Definition 3.17. A multiwinner voting rule F satisfies

• Condorcet consistency, if for each committee election E = (C,P,k) where a Con-
dorcet winner c ∈C exists, c is a confirmed committee member under E.

58



3.2 Axiomatic Properties

• committee Condorcet consistency, if for each committee election E= (C,P,k) where
a committee Condorcet winner W exists, it holds that {W}= F(P,k).

Note that committee Condorcet consistency implies Condorcet consistency.

Theorem 3.18. Neither the minisum nor the minimax `-group rules are Condorcet consis-

tent or committee Condorcet consistent.

Similar to the property defined for social welfare functions on page 12, a singlewinner
voting rule is Pareto optimal (or satisfies the Pareto criterion) if only candidates that are
not dominated by another candidate can win. A candidate c dominates a candidate d if
c is preferred to d by all voters. However, this definition has to be slightly modified for
the multiwinner context. For example, a dominated candidate might have to be part of
the winning committee when there are not enough not dominated candidates left to fill
the committee (as can be the case, e.g., in a unanimous profile where all voters prefer a
candidate c to every other candidate). See, e.g., the work by Felsenthal and Maoz (1992).

Definition 3.19. Let E= (C,P,k) be a committee election. A multiwinner voting rule F

satisfies the Pareto criterion if the following holds: If a candidate ci ∈C is preferred to a
candidate c j ∈C by all voters in P, i.e., v(i)< v( j) for all v ∈ P in the context of `-ballots,
it holds that c j ∈W for some W ∈ F(P,k) implies that ci ∈W .

Theorem 3.20. For each ` ∈ N, both the minisum and the minimax `-group rules satisfy

the Pareto criterion.

Proof. Le ` be an arbitrary positive integer. Assume that the minisum `-group rule
(respectively, the minimax `-group rule) does not satisfy the Pareto criterion. Then there
exists a committee election E= (C, P̀ ,k) and candidates ci,c j ∈C, so that v(i)< v( j) ∀v∈
P̀ , but c j ∈W and ci /∈W for some W ∈ f `sum(P̀ ,k) (respectively, W ∈ f `max(P̀ ,k)). A
voter’s dissatisfaction with a committee only depends on the individual members. The
dissatisfaction of each voter v with the committee W ′ = (W ∪{ci})\{c j} is strictly less
than the dissatisfaction with W :

δ`(v,W ′)−δ`(v,W ) = v(i)−1+ `− v( j)−
(
v( j)−1+ `− v(i)

)
= 2v(i)−2v( j)< 0,
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and therefore

∑
v∈P̀

δ`(v,W ′)< ∑
v∈P̀

δ`(v,W )

(
respectively, max

v∈P̀
δ`(v,W ′)< max

v∈P̀
δ`(v,W )

)

This is a contradiction to the fact that W is a winning committee under f `sum (respec-
tively, f `max). It follows that both the minisum and the minimax `-group rules satisfy the
Pareto criterion for all ` > 0.

The following properties aim at ensuring proportionality by demanding that a committee
W wins the election when a large enough group of voters prefers the members in W to
the candidates outside W . They were introduced by Elkind et al. (2017a) and weaken an
axiom proposed by Dummett (1984). Here, they are stated in the context of `-ballots. See
the axioms of justified representation and Gehrlein stability on page 29 for similar ideas.

Definition 3.21. A multiwinner voting rule F satisfies

• solid coalitions if for each committee election E= (C, P̀ ,k) with n voters where

|
{

v ∈ P̀ | v(i)< v( j) ∀c j ∈C \{ci}
}
| ≥ n/k

for a candidate ci ∈C implies that ci is a confirmed committee member,

• consensus committee if for each committee election E= (C, P̀ ,k) with n voters and
each W ∈ Fk(C) so that each voter ranks some member of W higher than all other
candidates and each member of W is ranked higher than all other candidates by
either bn/kc or dn/ke voters, it holds that F(P̀ ,k) = {W}, and

• strong (respectively, weak) unanimity if for each committee election E= (C, P̀ ,k),
where v(i)< v( j) for all v ∈ P̀ , ci ∈W , and c j ∈C\W , it holds that {W}= F(P̀ ,k)

(respectively, W ∈ F(P̀ ,k)).

Note that committee Condorcet consistency implies strong unanimity, which implies weak
unanimity.

Theorem 3.22. For each `≥ 2, neither the minisum nor the minimax `-group rules satisfy

solid coalitions and consensus committee, but they satisfy strong unanimity.
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3.3 Computational Complexity of Winner Determination

Table 3.5 summarizes the axiomatic property results in this section. Note that the notion
of (candidate) monotonicity in the attached paper (Baumeister et al., 2016) corresponds
to candidate monotonicity as defined in Definition 3.14. The notion of (crossing and
non-crossing) monotonicity was not previously considered for `-group rules.

Property
`-group rules

minisum minimax

Non-imposition X Thm. 3.7 X Thm. 3.7
Homogeneity X Thm. 3.7 X Thm. 3.7
Consistency X Thm. 3.9 × Thm. 3.9
Independence of clones X Thm. 3.11 × Thm. 3.11
Committee monotonicity X Thm. 3.13 × Thm. 3.13
Candidate monotonicity X Thm. 3.15 X Thm. 3.16
Monotonicity X Thm. 3.15 × Thm. 3.16
Positive responsiveness X Thm. 3.15 × Thm. 3.16
Condorcet consistency × Thm. 3.18 × Thm. 3.18
Committee Condorcet consistency × Thm. 3.18 × Thm. 3.18
Pareto criterion X Thm. 3.20 X Thm. 3.20
Solid coalitions × Thm. 3.22 × Thm. 3.22
Consensus committee × Thm. 3.22 × Thm. 3.22
Unanimity strong Thm. 3.22 strong Thm. 3.22

Table 3.5: Property results for the minisum and minimax `-group rules. The respective
results hold for each applicable `.

3.3 Computational Complexity of Winner Determination

This section studies the computational complexity of winner determination for the minisum
and minimax `-group rules, starting with the minisum `-group rules. As stated in Claim 3.4,
the winning committees for f `sum can be determined by computing the minisum scores of
all candidates, which is obviously possible in polynomial time.

Theorem 3.23. For each ` ∈ N, all winning committees for the minisum `-group rule can

be computed in polynomial time.

However, this is not the case for the minimax `-group rules. Recall that 2-ballots correspond
to approval ballots. Therefore, f 2

max corresponds to the original minimax rule introduced
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by Brams et al. (2007). LeGrand (2004) shows the NP-hardness of the following problem
for `= 2.

MINIMAX-`-SCORE

Given: A committee election E= (C, P̀ ,k), and a nonnegative integer d.
Question: Is there a committee W ∈ Fk(C) such that maxv∈P̀ δ (v,W )≤ d?

Since this problem would be tractable if it were possible to compute a winning committee
for f 2

max in polynomial time, it follows that the winner determination for f 2
max is intractable

as well. Furthermore, Misra et al. (2015) show that MINIMAX-2-SCORE is W[2]-hard
when parameterized by the size of the committee k. These results can be generalized to all
values of `. However, Misra et al. (2015) also show that there exists an fpt-algorithm for
MINIMAX-2-SCORE when parameterized by d. The following theorem generalizes the
result for each `.

Theorem 3.24. For each `, MINIMAX-`-SCORE is in FPT when parameterized by d.

3.4 (a,b)-rules

The `-ballots introduced in Section 3.1 are a compromise between ordinal and cardinal
ballots in the way that voters can assign a dissatisfaction value to candidates where the
values are bound by an underlying ranking of the candidates. There are some articles
exploring cardinal preferences,2 but cardinal ballots and corresponding voting rules are
rarely considered in preference aggregation. One example is range voting for singlewin-
ner elections introduced by Smith (2000). Voters assign each candidate a real number
from the interval [−1,1] where a higher number implies a higher satisfaction with the
respective candidate, and range voting then elects the candidate(s) with the highest sum of
satisfaction.

2Ballester and Rey-Biel (2006) study a model where voters have cardinal preferences and have to translate
these to the ballots allowed for the respective voting rules. In particular, they focus on approval voting
which uses approval ballots and study whether the optimal strategy for voters with cardinal preferences
is to submit sincere ballots, i.e., ballots correspond to their underlying preferences in a certain way.
Procaccia and Rosenschein (2006) also focus on cardinal preferences and define a notion of “distortion”
that occurs when translating cardinal preferences into linear orders.
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3.4 (a,b)-rules

This section introduces (a,b)-ballots that generalize the concept of `-ballots to fully
cardinal ballots. In contrast to range voting, voters assign not only a dissatisfaction value a

for the case that a candidate is part of a committe, but also a separate, independent value b

of dissatisfaction with a candidate not being a member of a committee. This models for
example the case when candidates have different attributes and voters have a ranking for
each attribute. A possible attribute for a candidate is, e.g., the party membership. Two
independent dissatisfaction values are able to model cases where the conflicting preferences
over candidates’ attributes do not correspond to an underlying weak order.

Definition 3.25 ((a,b)-ballots). An (a,b)-ballot v j over candidate set C is a set

v j = {(ci,a
j
i ,b

j
i ) | ci ∈C, a j

i ,b
j
i ∈Q, 1≤ i≤ |C|}.

Then voter j is said to strictly prefer candidate c1 to candidate c2 if and only if

(a j
1 < a j

2 and b j
1 ≥ b j

2) or (a j
1 ≤ a j

2 and b j
1 > b j

2),

and voter j is said to be indifferent between c1 and c2 if and only if a j
1 = a j

2 and b j
1 = b j

2.

In the remaining cases, it remains unknown which candidate the voter prefers. Note
that an `-ballot is a special case of an (a,b)-ballot over the same candidate set C where
a j

i = v j(i)−1 and b j
i = `− v j(i) for each candidate ci ∈C, but any (a,b)-ballot where the

sum of both values is a constant can be interpreted as an `-ballot for a corresponding `.

Recall that Fk(C) = {S | S⊆C∧|S|= k} is the set of all committees of size k over C. The
dissatisfaction of a voter j—associated with (a,b)-ballot v j—with a committee W ∈ Fk(C)

is measured as
δ(a,b)(v j,W ) = ∑

ci∈W
a j

i + ∑
ci /∈W

b j
i .

Analogous to the minisum and minimax `-group rules, define the following multiwinner
rules using (a,b)-ballots:

Definition 3.26 (minisum and minimax (a,b)-rules). Let E= (C,P(a,b),k) be a committee
election with a profile P(a,b) of (a,b)-ballots over C and let Fk(C) = {S | S⊆C∧|S|= k}
be the set of committees of size k.
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• The minisum (a,b)-rule is a function f (a,b)sum that returns the committees minimizing
the total dissatisfaction of the voters with the elected committees, i.e.,

f (a,b)sum (P(a,b),k) = argmin
W∈Fk(C)

∑
v∈P(a,b)

δ(a,b)(v,W ).

• The minimax (a,b)-rule is a function f (a,b)max that returns the committees minimizing
the dissatisfaction of the respective least satisfied voter with the elected committees,
i.e.,

f (a,b)max (P(a,b),k) = argmin
W∈Fk(C)

max
v∈P(a,b)

δ(a,b)(v,W ).

The following example illustrates (a,b)-ballots and the corresponding multiwinner rules.

Example 3.27. (a,b)-rules Let E = (C,P(a,b),2) be a committee election where C =

{c1,c2,c3} and P(a,b) = (v1,v2) is a profile of (a,b)-ballots over C with

v1 ={(c1,3,0),(c2,2,2),(c3,1,2)},
v2 ={(c1,1,2),(c2,4,3),(c3,0,4)}.

Voter 1 strictly prefers c3 to both c1 and c2, since (a1
3 < a1

1∧b1
3 ≥ b1

1) and (a1
3 < a1

2∧b1
3 ≥

b1
2), and also strictly prefers c2 to c1. Voter 2 strictly prefers c3 to c2 and strictly prefers c1

to c2, but the ballot does not allow to draw conclusions about the voter’s preference over
c1 and c3.

Now turn to the minisum and the minimax (a,b)-rules. Recall that the dissatisfaction
of a voter j with a committee W is the total of a j

i for all ci ∈W and b j
i for all ci /∈W .

Table 3.6 shows the dissatisfaction of the voters with each committee of size 2. Therefore,
f (a,b)sum (P(a,b),2) =

{
{c2,c3}

}
and f (a,b)max (P(a,b),2) =

{
{c1,c3},{c2,c3}

}
.

The properties presented in Section 3.2 are defined for ballots that correspond to ordinal
ballots. Note that in the restricted model where (a,b)-ballots have to correspond to an
underlying weak order, the results in Section 3.2 also hold for the minisum and minimax
(a,b)-rules. However, the results for winner determination differ slightly from the results
presented in Section 3.3. My coauthors Böhnlein and Schaudt (personal communication,
2016) prove that while a winning committee for the (a,b)-minisum-rule can be computed
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{c1,c2} {c1,c3} {c2,c3}
v1 : 3+2+2 = 7 3+2+1 = 6 0+2+1 = 3
v2 : 1+4+4 = 9 1+3+0 = 4 2+4+0 = 6

∑ : 16 10 9
max : 9 6 6

Table 3.6: Dissatisfaction of voters with each committee of size 2 in Example 3.27.

in polynomial time, the auxiliary problem MINIMAX (a,b)-SCORE—the (a,b)-version
of the problem defined in Section 3.3—is W[2]-hard when parameterized by d and k.
However, when the (a,b)-ballots are restricted in a way that they correspond to `-ballots
after some normalization (where the value of ` may be different for each ballot), they show
that Theorem 3.24 also holds for the (a,b)-minimax rule.

Unfortunately, the expressiveness of the presented model demands a great deal of the
voters since the necessity to assign two values to each candidate becomes more and more
infeasible as the number of candidates grows. Depending on the application, it might
therefore be reasonable to restrict the possible values of a and b by, e.g., providing lower
and upper bounds, fixing the total sum of a voter’s a-values and of a voter’s b-values, or by
using `-ballots.

3.5 My Contribution

In joint work with my coauthors, I developed the models of `-ballots and (a,b)-ballots
and the corresponding rules and modified the properties in Section 3.2—when necessary—
for the context of `-ballots. Furthermore, I contributed the proofs to Claim 3.4 and
Theorems 3.13, 3.15, 3.16, 3.20, and 3.23. The writing of the attached article was done
jointly with my coauthors.
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Minisum and Minimax Committee Election Rules for
General Preference Types

Dorothea Baumeister1 and Toni Böhnlein2 and Lisa Rey1 and Oliver Schaudt2 and Ann-Kathrin Selker1

Abstract. In committee elections it is often assumed that voters
only (dis)approve of each candidate or that they rank all candidates,
as it is common for single-winner elections. We suggest an inter-
mediate approach, where the voters rank the candidates into a fixed
number of groups. This allows more diverse votes than approval
votes, but leaves more freedom than in a linear order. A commit-
tee is then elected by applying the minisum or minimax approach to
minimize the voters’ dissatisfaction. We study the axiomatic proper-
ties of these committee election rules as well as the complexity of
winner determination and show fixed-parameter tractability for our
minimax rules.

1 Introduction

A central point in computational social choice is the analysis of vot-
ing systems, see for example the book chapter by Zwicker [10].
Whereas the initial focus was mainly on single-winner elections, the
study of committee elections recently received considerable atten-
tion. In a committee election a winner is a subset of candidates of a
predefined size.

Most voting rules require the voters to either rank all candidates in
a strict linear order, which might be impossible given a large set of
candidates, or to divide them into two groups, i. e., approval ballots,
which might be too rough to fully express the voters’ preferences.
As an intermediate approach, we propose `-ballots. Voters group the
candidates into a fixed number of groups, where all candidates in
one group are tied. We use this type of ballot – a slight variant of the
model proposed by Obraztsova et al. [9]– to define committee elec-
tion rules that minimize the voters’ dissatisfaction and study com-
putational and axiomatic properties of these rules. To that end, we
apply the well-known minisum method where the sum of the dis-
tances to the individual votes is minimized, and the minimax method
where the maximal distance to an individual vote is minimized. Orig-
inally, the minisum and minimax methods have been applied to ap-
proval votes by Brams et al. [3]. The most relevant papers for our
study are those by Baumeister et al. [1, 2] who extended this ap-
proach to determine winning committees for different forms of votes,
namely trichotomous votes as well as complete and incomplete lin-
ear orders. Elkind et al. [5] studied axiomatic properties such as con-
sistency, monotonicity, and solid coalitions for different multiwin-
ner voting rules, including STV, Bloc, k-Borda and different vari-
ants of the Chamberlin-Courant and Monroe’s rule. We adapt some
of these properties to our setting and study them for the class of `-

1 Heinrich-Heine-Universität Düsseldorf, Germany, email: {baumeister, lrey,
selker}@cs.uni-duesseldorf.de

2 Universität zu Köln, Germany, email: boehnlein@zpr.uni-koeln.de,
schaudto@uni-koeln.de

group rules. The parameterized complexity of minimax voting rules
has been studied by Misra et al. [8] for approval votes as well as by
Liu and Guo [7] for trichotomous votes and linear and partial orders.
In both papers it is shown that, for their respective voting rules, com-
puting a winning committee is W[2]-hard when parameterized by
the size of the committee and that computing a winning committee
is fixed-parameter tractable with respect to a distance parameter.

2 Definitions

Let C = {c1, . . . ,cm} be a set of candidates and V =(v1, . . . ,vn) a pro-
file, i. e., a list of voters represented by their vote. In an `-ballot over
C, a vote is given as a list of ` pairwise disjoint sets of candidates,
which may also be empty: v = (G1, . . . ,G`) where Gi ∩G j = /0 for
1≤ i, j≤ ` and i 6= j, and

⋃
1≤i≤` Gi =C. Considering a set of candi-

dates C = {c1,c2,c3,c4}, a possible 3-ballot is ({c3,c4},{},{c1,c2})
which means that candidates c3 and c4 are preferred to all other can-
didates, and candidates c1 and c2 are the most disliked ones.

A very similar ballot model has been introduced by Obraztsova et
al. [9]. The predefined ` groups correspond to their preference levels.
In contrast to our model, they assume that the first and last group
are never empty and that at least one voter specifies no empty group.
However, these are only technical requirements that are not crucial
for our results.

A committee is a subset of C. Let Fk(C) denote the set of all com-
mittees of size k. A committee election is a triple E = (C,V,k), where
C is the set of candidates, V is a list of voters, represented by `-ballots
for some fixed constant ` over C, and k ∈ N denotes the committee
size. A committee election rule R is a function that, given a commit-
tee election, returns a set of tied winning committees.

Now we introduce the `-group voting rules discussed in this paper.
For this sake we define δ`(v,W ) = ∑c∈C |v(c)−W (c)| as the dissat-
isfaction (or distance) between a ballot v and a committee W ∈ Fk(C)
where W (c) = 1 for a candidate c ∈W , and W (c) = ` for a candidate
c /∈W , and where v(c) denotes the group number of a candidate c.
For the case of `= 2 this distance corresponds to the Hamming dis-
tance between the vote and the committee. The following two rules
elect the winning committee(s) for profiles consisting of `-ballots.

Definition 1 (minisum/minimax `-group rule) • Minisum
`-group rules are functions f `sum so that f `sum((C,V,k)) =
argminW∈Fk(C) ∑v∈V δ`(v,W ), i. e., f `sum minimizes the sum of the
voters’ dissatisfaction to the winning committees.

• Minimax `-group rules are functions f `max so that f `max((C,V,k)) =
argminW∈Fk(C) maxv∈V δ`(v,W ), i. e., f `max minimizes the dissatis-
faction of the least satisfied voter with the winning committees.



Note that the minisum/minimax voting rules defined by Baumeis-
ter and Dennisen [1] correspond to our minisum/minimax `-group
rules for `= 2,3, and m, and without allowing empty groups.

3 Results
Due to space restrictions we present only the results of our work. For
the axiomatic study, we first adapt the existing definitions for some
properties to handle the more general input type of `-ballots. Then we
can show that the minisum `-group rules satisfy nearly all properties
at hand, whereas the minimax `-group rules violate some of them.
An overview of our results is given in Table 1.

Properties `-group rules
minisum minimax

Non-imposition, Homogeneity X X
Consistency X ×
Independence of clones X ×
Committee monotonicity X ×
(Candidate) monotonicity X X
Positive responsiveness X ×
Pareto criterion X X
(Committee) Condorcet consistency × ×
Solid coalitions, Consensus committee × ×
Unanimity strong strong

Table 1: Properties for minisum and minimax `-group rules

Next, we study the complexity of computing a winning commit-
tee for minisum and minimax `-group rules. For the minisum rule
the problem can be solved in polynomial time, as it can be shown
that the candidates c with the lowest score ∑v∈V v(c) form a winning
committee.

For the study of minimax rules we need the following auxiliary
decision problem.

MINIMAX `-SCORE

Given: A committee election E = (C,V,k), and a nonnega-
tive integer d.

Question: Is there a committee W ∈ Fk(C) such that
maxv∈V δ`(v,W )≤ d?

LeGrand et al. [6] show that a problem corresponding to our MIN-
IMAX 2-SCORE is NP-hard, a result that can be generalized to ev-
ery greater value of `. On these grounds we resort to the study of
parameterized complexity. Thus, our goal is to formulate an efficient
algorithm when certain parameters of the problem are small, i. e., can
be treated as a constant.3 For approval voting Misra et al. [8] show
that the problem is W[2]-hard, when parameterized by the size of the
committee. This hardness result also applies to MINIMAX `-SCORE.
Hence, an attempt to tune an algorithm with respect to the size of the
committee is most likely going to result in failure.

As a positive result we give an algorithm that efficiently solves the
MINIMAX `-SCORE problem when the parameter d is treated as a
constant. Which proofs the following theorem.

Theorem 1 There is an algorithm solving MINIMAX `-SCORE

whose running time is in O
(
(mn+m logm)

(√
33
2 d

)d
)

. In partic-

ular, MINIMAX `-SCORE is fixed-parameter tractable when param-
eterized by d.

3 For formal definitions and background regarding parameterized complexity
we refer to the book of Downey and Fellows [4].

4 Conclusion
We have introduced different ways of expressing the voters’ pref-
erences in committee elections, namely `-ballots, an intermediate
between approval votes and linear orders. In addition to axiomatic
properties, we have studied the computational complexity of win-
ner determination. While in the minisum case computing a winning
committee under the `-group rule can be done efficiently, the case of
minimax is NP-hard, however there exists a fixed-parameter tractable
algorithm that determines a winning committee.

Note that the input type of `-ballots is only one form of a more
general vote. In our setting the differences in scores between two
groups are always equivalent and there may be situations where for
example the first two groups are of greater importance than the other
ones. So as a very general framework one could consider that each
voter reports two dissatisfaction values (a,b) to each candidate, one
for the case that the candidate is in the committee, the other one for
the case where the candidate is not in the committee.4 We call the
resulting voting rules minisum/minimax-(a,b)-rules. Obviously our
`-group rules are obtained as a special case of such (a,b)-rules, when
we restrict the input to a+ b = l for each voter. More interestingly,
we can show that under some mild restrictions the results obtained in
this paper even hold for the very general class of (a,b)-rules.

As a task for future work we propose to identify other interesting
special cases of (a,b)-rules and provide a characterization for them.
Furthermore, we want to consider different rules for these types of
input and identify which of the properties from Table 1 are satis-
fied, and especially find rules that fulfill Condorcet consistency and
committee Condorcet consistency. Closely related to the setting of
minisum and minimax elections are the systems of proportional rep-
resentation, which itself is related to the interesting concept of jus-
tified representation so a task for future research is to redefine and
study these concepts for more general types of votes.
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Chapter 4

Complexity of Shift Bribery for Iterative Voting Rules

This chapter deals with shift bribery for iterative (positional) scoring rules as defined on
page 23 and on page 10, respectively. The attached article (Maushagen et al., 2021) was
submitted to the Journal of Artificial Intelligence Research and is based on a preliminary
conference version (Maushagen et al., 2018b). An earlier version was also presented at
ISAIM’18 (Maushagen et al., 2018a).

Maushagen, C., Neveling, M., Rothe, J., and Selker, A.-K. (2021). Complexity of shift
bribery for iterative voting rules. Submitted to Journal of Artificial Intelligence Research

Summary

My coauthors and I study the computational complexity of shift bribery for the following
iterative scoring rules.

Hare (defined, e.g., in the textbook by Taylor (2005) eliminates the candidates with the
lowest plurality score.

Coombs (defined, e.g., by Levin and Nalebuff (1995)) eliminates the candidates with the
lowest veto score.

Baldwin eliminates the candidates with the lowest Borda score (Baldwin, 1926).

Nanson eliminates all candidates with lower than average Borda score (Nanson, 1882).

Iterated plurality (defined, e.g., in the textbook by Taylor (2005)) eliminates the candi-
dates that do not have the highest plurality score.

Iterated veto eliminates the candidates that do not have the highest veto score (see
Example 2.12 on page 23).
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Plurality with runoff (again defined, e.g., by Taylor (2005)) proceeds in two rounds.
In the first round, all candidates that do not have the highest plurality score are
eliminated, unless there is a unique plurality winner, then all candidates that do not
have the highest or second-highest score are eliminated.

Veto with runoff is the veto variant of plurality with runoff (see Example 2.10 on
page 19).

We show that shift bribery is NP-complete for all considered voting rules for both the
constructive and the destructive variants. Our results hold for both the unique and the
nonunique winner model: In the constructive case of the unique winner model, the attacker
wants to make the target candidate the unique winner of the election, whereas in the
nonunique winner model, the attack is successful when the target candidate is a member
of the set of winning candidates. Further, as an example we state modified proofs for
constructive shift bribery for the rules Hare and plurality with runoff that show that
the computational complexity does not change when we allow the attacker to exploit
nonmonotonicity. We conjecture that shift bribery for all our considered nonmonotonic
rules does not become tractable in this setting.

My Contribution

The writing was done jointly with my co-authors. I was responsible for Section 6 (the
complexity results for iterated veto and veto with run-off including the proofs) and Exam-
ple 2.
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Abstract
In iterative voting systems, candidates are eliminated in consecutive rounds until either a fixed number

of rounds is reached or the set of remaining candidates does not change anymore. We focus on iterative
voting systems based on the positional scoring rules plurality, veto, and Borda and study their resistance
against shift bribery attacks due to Elkind, Faliszewski, and Slinko (2009) and Kaczmarczyk and Fal-
iszewski (2016). In constructive shift bribery (Elkind et al., 2009), an attacker seeks to make a designated
candidate win the election by bribing voters to shift this candidate in their preferences; in destructive shift
bribery (Kaczmarczyk & Faliszewski, 2016), the briber’s goal is to prevent this candidate’s victory. We
show that many iterative voting systems are resistant to these types of attack, i.e., the corresponding deci-
sion problems are NP-hard. These iterative voting systems include iterated plurality as well as the voting
rules due to Hare (see, e.g., the book by Taylor, 2005), Coombs (see, e.g., the article by Levin & Nalebuff,
1995), Baldwin (1926), and Nanson (1882); variants of Hare voting are also known as single transferable
vote, instant-runoff voting, and alternative vote.

1. Introduction

One of the main themes in computational social choice (Brandt, Conitzer, Endriss, Lang, & Procaccia,
2016; Rothe, 2015) is to study the complexity of manipulative attacks on voting systems, in the hope that
proving computational hardness of such attacks may provide some sort of protection against them. Besides
manipulation (Bartholdi, Tovey, & Trick, 1989; Conitzer, Sandholm, & Lang, 2007)—also referred to as
strategic voting—and electoral control (Bartholdi, Tovey, & Trick, 1992; Hemaspaandra, Hemaspaandra,
& Rothe, 2007), much work has been done to study bribery attacks. For a comprehensive overview of the
formal models and the related complexity results, we refer to the book chapters by Conitzer and Walsh
(2016) for manipulation, by Faliszewski and Rothe (2016) for control and bribery, and by Baumeister and
Rothe (2015) for all three topics.

Bribery in voting was introduced by Faliszewski, Hemaspaandra, and Hemaspaandra (2009a, see also
the article by Faliszewski, Hemaspaandra, Hemaspaandra, & Rothe, 2009b). In their model, a briber
intends to change the outcome of an election to his or her own advantage by bribing certain voters without

∗. This paper extends the preliminary conference versions that appear in the proceedings of the 17th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS’18, see Maushagen, Neveling, Rothe, & Selker, 2018) and in the
nonarchival website proceedings of the International Symposium on Artificial Intelligence and Mathematics (ISAIM’18) by
presenting all proofs (some of which were omitted in the conference versions due to space limitations) in full detail, by
adding new results on iterated veto and veto with runoff in Theorems 11 and 12, and by adding more illustrating examples
and discussion (such as the discussion in Section 7 with new Theorems 13 and 14).

c© AI Access Foundation. All rights reserved.
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exceeding a given budget. Bribery shares some features with manipulation, as the briber (just like a
strategic voter) has to find the right preference orders that the bribed voters are then requested to change
their votes to. Bribery also shares some features with electoral control, as the briber (just like an election
chair) has to pick the right voters to bribe so as to make the cost of bribing them as inexpensive as possible
and to stay within the allowed budget.

We will focus on shift bribery, which was introduced by Faliszewski et al. (2009b) in the context of
so-called irrational voters for Copeland elections and was then studied in detail by Elkind et al. (2009) for
the constructive variant (where the briber’s goal is to make a favorite candidate win the election) and was
later studied by Kaczmarczyk and Faliszewski (2016) in the destructive variant (where the briber’s goal
is to make sure that a despised candidate does not win the election). In swap bribery, which generalizes
shift bribery, the briber has to pay for each swap of any two candidates in the votes. Shift bribery addition-
ally requires that swaps always involve the designated candidate that the briber wants to see win (in the
constructive case) or not win (in the destructive case).

A natural interpretation of swap bribery—and thus in particular of shift bribery—regards campaign
management: A campaign manager organizing a political campaign for some candidate seeks to influence
the public opinion about this candidate by legal activities such as, e.g., running targeted television ads.
Those ads might influence voters to change their opinion (and consequently their vote) of the targeted
candidate positively or negatively. Campaign managers are restricted by a budget and need to choose the
right ads to run in order to increase their candidates’ chances of winning. Shift bribery can be seen to
model campaign management in a more ethical way than general swap bribery, as campaign managers
then always target their own candidates only and thus cannot change the voters’ opinions over pairs of
other candidates.

Another natural interpretation of swap bribery regards election fraud detection: If the winner of an
election can be dethroned by only a few changes (by swapping candidates) to the votes then the election
might have been tampered with or, from a more optimistic viewpoint, small errors in the counting of the
votes might have influenced the election result. In that situation, a recounting would be required since
for a close election result only few errors in the counting are needed to elect a candidate that is not the
“true” winner of the election. This has been studied as the margin of victory (Xia, 2012; Reisch, Rothe, &
Schend, 2014), which is closely related to destructive bribery. In this context, shift bribery models a more
fine-grained search for election fraud which targets only a specific candidate.

Swap bribery generalizes the possible winner problem (Konczak & Lang, 2005; Xia & Conitzer, 2011),
which itself is a generalization of unweighted coalitional manipulation. Therefore, each of the many
hardness results known for the possible winner problem is directly inherited by the swap bribery problem.
This was the motivation for Elkind et al. (2009) to look at restricted variants of swap bribery such as shift
bribery.

Even though shift bribery possesses a number of hardness results (Elkind et al., 2009), it has also been
shown to allow exact and approximate polynomial-time algorithms in a number of cases (Elkind et al.,
2009; Elkind & Faliszewski, 2010; Schlotter, Faliszewski, & Elkind, 2017). For example, Elkind et al.
(2009) provided a 2-approximation algorithm for shift bribery when using Borda voting.1 This result was

1. In Borda with m candidates, each vote is a linear order of the candidates, the ith candidate in a vote scores m− i points, and
whoever has the most points wins. Borda is a very prominent positional scoring rule and can be described by the scoring
vector (m−1,m−2, . . . ,0). Other prominent positional scoring rules are plurality, where only the top candidates in the votes
score a point and no one else (i.e., plurality has the scoring vector (1,0, . . . ,0)), and veto (a.k.a. antiplurality), where all
except the bottom candidates in the votes score a point (i.e., veto has the scoring vector (1, . . . ,1,0)); again, whoever has the
most points wins in these rules.
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extended by Elkind and Faliszewski (2010) to all positional scoring rules; they also obtained somewhat
weaker approximations for Copeland and maximin voting. Very recently Faliszewski, Manurangsi, and
Sornat (2019) further extended this result to a polynomial-time approximation scheme. For Bucklin and
fallback voting, the shift bribery problem is even exactly solvable in polynomial time (Schlotter et al.,
2017).2 In addition, Bredereck, Chen, Faliszewski, Nichterlein, and Niedermeier (2014b) were the first
to analyze shift bribery in terms of parameterized complexity, and only recently a long-standing open
problem regarding the parameterized complexity of bribery (including shift bribery) with the number of
candidates as the parameter (see the survey by Bredereck, Chen, Faliszewski, Guo, Niedermeier, and
Woeginger (2014a) for a deeper discussion on this problem) was solved by Knop, Koutecký, and Mnich
(2017) for a multitude of voting rules. Furthermore, Bredereck, Faliszewski, Niedermeier, and Talmon
(2016b) introduced combinatorial shift bribery in which a single shift bribery action affects multiple vot-
ers and Bredereck, Faliszewski, Niedermeier, and Talmon (2016a) studied shift bribery in the context of
multiwinner elections for various committee selection rules.

While the complexity of shift bribery has been comprehensively investigated for many standard voting
rules, it has not been considered yet for iterative voting systems. To close this glaring gap, we study shift
bribery for eight iterative voting systems that are based on any one of the Borda, plurality, and veto rules
(see Footnote 1 for their definitions) and that each proceed in rounds, eliminating after each except the last
round the candidates performing worst in a certain sense:

• The system of Baldwin (1926) eliminates the candidates with the lowest Borda score and

• the system of Nanson (1882) eliminates the candidates whose scores are lower than the average
Borda score, while

• the system of Hare (see, e.g., the book by Taylor, 2005) eliminates the candidates with the lowest
plurality score,

• the system called iterated plurality (again see, e.g., the book by Taylor, 2005) eliminates the candi-
dates that do not have the highest plurality score,

• the system called iterated veto is defined analogously to iterated plurality, except based on the veto
rather than the plurality score, and

• the system of Coombs (defined, e.g., in the paper by Levin & Nalebuff, 1995) eliminates the candi-
dates with the lowest veto score.

The last two systems that we consider differ from the above iterative voting systems because they always
use exactly two rounds:

• Plurality with runoff (as defined, e.g., in the book by Taylor, 2005) eliminates the candidates that do
not have the highest plurality score, except in the case where there is a unique plurality winner—it
then eliminates all candidates that do not have the highest or second-highest plurality score; in the
second round, all remaining candidates with the highest plurality score then win.

2. Faliszewski, Reisch, Rothe, and Schend (2015) have complemented these results on Bucklin and fallback voting. In particular,
they studied a number of bribery problems for these rules, including a variant called “extension bribery,” which was previously
introduced by Baumeister, Faliszewski, Lang, and Rothe (2012) in the context of campaign management when the voters’
ballots are truncated.
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Hare Coombs Baldwin Nanson

Constructive NP-c (Thm. 1) NP-c (Thm. 3) NP-c (Thm. 5) NP-c (Thm. 7)
Destructive NP-c (Thm. 2) NP-c (Thm. 4) NP-c (Thm. 6) NP-c (Thm. 8)

Iterated Plurality Plurality with Runoff Iterated Veto Veto with Runoff

Constructive NP-c (Thm. 9) NP-c (Thm. 9) NP-c (Thm. 11) NP-c (Thm. 11)
Destructive NP-c (Thm. 10) NP-c (Thm. 10) NP-c (Thm. 12) NP-c (Thm. 12)

Table 1: Summary of complexity results for shift bribery problems

• Veto with runoff is defined analogously, except that veto scores instead of plurality scores and veto
winners instead of plurality winners are considered.

These voting systems have been thoroughly studied and are also used in the real world. Among the
systems we consider, Hare voting and variants thereof (some of which are called single transferable vote,
instant-runoff voting, or alternative vote) are most widely used, for example in Australia, India, Ireland,
New Zealand, Pakistan, the UK, and the USA.

Table 1 gives an overview of our complexity results for constructive and destructive shift bribery in
our eight voting systems,3 where the shorthand NP-c stands for “NP-complete.” Our results complement
results by Davies, Katsirelos, Narodytska, Walsh, and Xia (2014) who have shown unweighted coalitional
manipulation to be NP-complete for Baldwin and Nanson voting (even with just a single manipulator)—
and also for the underlying Borda system (with two manipulators; for the latter result, see also the paper
by Betzler, Niedermeier, and Woeginger (2011)). Davies et al. (2014) also list various appealing features
of the systems by Baldwin and Nanson, including that they have been applied in practice (namely, in
the State of Michigan in the 1920s, in the University of Melbourne from 1926 through 1982, and in the
University of Adelaide since 1968) and that (unlike Borda itself) they both are Condorcet-consistent.4

Axiomatic properties of iterative voting systems were also studied by Freeman, Brill, and Conitzer (2014)
who showed, in particular, that Hare is the only iterative voting system based on scoring rules that satisfies
the independence-of-clones property. Further, it was shown by Bartholdi and Orlin (1991) that Hare (which
is called STV in their work) is NP-hard to manipulate even with only one manipulator. This result was
complemented by Davies, Narodytska, and Walsh (2012) who showed the same result for Coombs and a
general class of iterative versions of scoring rules. For plurality with runoff, it was shown by Conitzer
et al. (2007) that unweighted coalitional manipulation is NP-hard. Finally, plurality with runoff and veto
with runoff were also studied by Erdélyi, Neveling, Reger, Rothe, Yang, and Zorn (2021) with respect to
electoral control.

This paper is organized as follows. In Section 2, we will provide the needed definitions regarding
elections and voting systems (in particular, iterative voting systems), define the shift bribery problem, and
give some background on computational complexity. We will then study the complexity of shift bribery
for Hare and Coombs elections in Section 3, for Baldwin and Nanson elections in Section 4, for iterated
plurality and plurality with runoff in Section 5, and for iterated veto and veto with runoff in Section 6.

3. As shown by Xia (2012), destructive bribery is closely related to the margin of victory, a critical robustness measure for
voting systems. Reisch et al. (2014) add to this connection by showing that the former problem can be easy while the latter
is hard.

4. A Condorcet winner is a candidate who defeats every other candidate in a pairwise comparison. Such a candidate does not
always exist. A voting rule is Condorcet-consistent if it chooses only the Condorcet winner whenever there exists one.
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Further, in Section 7 we will discuss how the nonmonotonicity property of our iterative voting systems
can be exploited in our reductions showing NP-hardness, exemplified for Hare voting and plurality with
runoff. Finally, we will conclude in Section 8 by presenting some open problems related to our work.

2. Preliminaries

Below, we provide the needed notions and notation.

Elections and voting systems. An election is specified as a pair (C,V ) with C being a set of candidates and
V a profile of the voters’ preferences over C, typically given by a list of linear orders of the candidates. A
voting system is a function that maps each election (C,V ) to a subset of C, the winner(s) of the election. An
important class of voting systems is the family of positional scoring rules whose most prominent members
are plurality, veto, and Borda count, see, e.g., the book chapters by Zwicker (2016) and Baumeister and
Rothe (2015) and also the survey by Rothe (2019) on using Borda in collective decision making.

Recall from Footnote 1 in Section 1 that, in plurality, each voter gives her top-ranked candidate one
point; in veto (a.k.a. antiplurality), each voter gives all except the bottom-ranked candidate one point; in
Borda with m candidates, each candidate in position i of the voters’ rankings scores m− i points; and the
winners in each case are those candidates scoring the most points.

Iterative voting systems. The iterative voting systems we will study are based on plurality, veto, and
Borda but, unlike those, their election winner(s) are determined in consecutive rounds. For all iterative
voting systems considered here except for plurality with runoff and veto with runoff (which will be defined
shortly afterwards), if in some round all remaining candidates have the same score (for instance, there may
be only one candidate left), then all those candidates are proclaimed winners of the election. In each
preceding round, however, all candidates with the lowest score are eliminated.5

Recall from Section 1 that the eight scoring methods we will use work as follows: The iterative voting
systems due to Hare, Coombs, and Baldwin use, respectively, plurality, veto, and Borda scores in order to
decide which candidates are the weakest and thus to be removed. The Nanson system eliminates in every
(except the last) round all candidates that have less than the average Borda score. Iterated plurality elimi-
nates all candidates that do not have the highest plurality score, and iterated veto eliminates all candidates
that do not have the highest veto score.

Unlike the above multiple-round iterative voting systems, plurality with runoff (respectively, veto with
runoff ) always proceeds in two rounds: In the first round, it eliminates all candidates that do not have the
highest plurality score (respectively, veto score), unless there is a unique plurality winner (respectively,
veto winner) in which case all candidates are eliminated except those with the highest or second-highest
plurality score (respectively, veto score); in the second round, all candidates with the highest plurality
score (respectively, veto score) win.

Shift bribery. For any given voting system E , we now define the problem E -SHIFT-BRIBERY, which is
a special case of E -SWAP-BRIBERY, introduced by Faliszewski et al. (2009b) in the context of so-called
irrational voters for Copeland and then comprehensively studied by Elkind et al. (2009). Informally stated,
given a profile of votes, a swap-bribery price function exacts a price for each swap of any two candidates
in the votes, and in shift bribery only swaps involving the designated candidate are allowed.

5. In the original sources defining these iterative voting systems as stated in the Introduction, certain tie-breaking schemes are
used whenever more than one candidate has the lowest score in some round. For the sake of convenience and uniformity,
however, we prefer eliminating them all and will therefore disregard tie-breaking issues in such a case.
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E -CONSTRUCTIVE-SHIFT-BRIBERY

Given: An election (C,V ) with n votes, a designated candidate p ∈ C, a budget B, and a list of price
functions ρ = (ρ1, . . . ,ρn).

Question: Is it possible to make p the unique E winner of the election by shifting p in the votes such that the
total price does not exceed B?

In the corresponding problem E -DESTRUCTIVE-SHIFT-BRIBERY, given the same input, we ask whether
it is possible to prevent p from being a unique winner.

These problems are here defined in the unique-winner model where a constructive (respectively, de-
structive) bribery action is considered successful only if the designated candidate can be made (respec-
tively, can be prevented from being) the only winner of the election. We also consider these problems in
the nonunique-winner model where for a constructive (respectively, destructive) bribery action to be con-
sidered successful it is required that the designated candidate is merely one among possibly several winners
(respectively, does not win at all). Note that a yes-instance of E -CONSTRUCTIVE-SHIFT-BRIBERY in the
unique-winner model is also a yes-instance of the same problem in the nonunique-winner model, whereas a
yes-instance of E -DESTRUCTIVE-SHIFT-BRIBERY in the nonunique-winner model is also a yes-instance
of the same problem in the unique-winner model; analogous statements apply to the no-instances of these
problems by swapping the unique-winner model with the nonunique-winner model. We will make use of
these facts in our proofs that all work in both winner models.

Membership in NP is obvious for all considered problems, so it will be enough to show only NP-
hardness so as to prove in fact NP-completeness.

Regarding the list of price functions ρ = (ρ1, . . . ,ρn) with ρi : N→ N, in the constructive case ρi(k)
indicates the price the briber has to pay in order to move p in vote i by k positions to the top (respectively,
to the bottom in the destructive case). For all i, we require that ρi is nondecreasing (ρi(`) ≤ ρi(`+ 1)),
ρi(0) = 0, and if p is at position r in vote i then ρi(`) = ρi(`−1) whenever `≥ r in the constructive case
(respectively, whenever `≥ |C|− r+1 in the destructive case). The latter condition ensures that p can be
shifted upward no farther than to the top (respectively, the bottom).6 When the voter i in ρi is clear from
the context, we omit the subscript and simply write ρ .

Our proofs use the following notation: A vote of the form a b c indicates that the voter ranks candidate
a on top position, then candidate b, and last candidate c. If a set S ⊆ C of candidates appears in a vote
as
−→
S , its candidates are placed in this position in lexicographical order. By

←−
S we mean the reverse of

the lexicographical order of the candidates in S. If S occurs in a vote without an arrow on top, the order
in which the candidates from S are placed here does not matter for our argument. We use · · · in a vote to
indicate that the remaining candidates may occur in any order.
Computational complexity. We assume familiarity with the standard concepts of complexity theory, in-
cluding the classes P and NP, polynomial-time many-one reducibility, and NP-hardness and -completeness.
We will use the following NP-complete problem:

EXACT-COVER-BY-3-SETS (X3C)

Given: A set X = {x1, . . . ,x3m} and a family of sets S = {S1, . . . ,Sn} such that Si ⊆ X and |Si|= 3 for all
Si ∈S .

Question: Does there exist an exact cover of X , i.e., a subset S ′ ⊆S such that |S ′|= m and
⋃

Si∈S ′ Si = X?

6. If p is in the first (respectively, the last) position of a vote, this voter cannot be bribed and we tacitly assume a price function
of ρ(t) = 0 for each t ≥ 0. We will disregard these voters when setting price functions for the other voters in our proofs.
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In instances of X3C, we assume that each x j ∈ X is contained in exactly three sets Si ∈ S ; thus
|X |= |S |. Gonzalez (1985) shows that X3C under this restriction remains NP-hard. Note that if not stated
otherwise, we will use (X ,S ) to denote an X3C instance, where X = {x1, . . . ,x3m}, S = {S1, . . . ,S3m},
and Si = {xi,1,xi,2,xi,3}. Also note that we assume xi,1 to be the x j ∈ Si with the smallest subscript and xi,3
to be the x j ∈ Si with the largest subscript.

ONE-IN-THREE-POSITIVE-3SAT

Given: A set X of boolean variables, a set S of clauses over X , each containing exactly three unnegated
literals.

Question: Does there exist a truth assignment to the variables in X such that exactly one literal is set to true
for each clause in S?

In instances of ONE-IN-THREE-POSITIVE-3SAT, we assume that each x j ∈ X is contained in exactly
three clauses. Porschen, Schmidt, Speckenmeyer, and Wotzlaw (2014) show that this restricted problems
remains NP-complete.

For more background on computational complexity, the reader is referred to, for instance, the textbooks
by Garey and Johnson (1979), Papadimitriou (1995), and Rothe (2005).

3. Hare and Coombs

We start by showing NP-hardness of shift bribery for Hare elections.

Theorem 1. In both the unique-winner and the nonunique-winner model, Hare-CONSTRUCTIVE-SHIFT-
BRIBERY is NP-hard.

Proof. NP-hardness follows by a reduction from X3C. Given an X3C instance (X ,S ), construct an
instance ((C,V ), p,B,ρ) of Hare-CONSTRUCTIVE-SHIFT-BRIBERY with candidate set C = X ∪S ∪{p},
designated candidate p, and the following list V of votes, with # denoting their number:

# vote for

1 Si xi,1
−−−−−→
X \{xi,1} · · · 1≤ i≤ 3m

1 Si xi,2
−−−−−→
X \{xi,2} · · · 1≤ i≤ 3m

1 Si xi,3
−−−−−→
X \{xi,3} · · · 1≤ i≤ 3m

4 xi
−−−−→
X \{xi}· · · 1≤ i≤ 3m

1 Si p · · · 1≤ i≤ 3m

3 p · · ·

For votes of the form Si p · · · , we use the price function ρ(1) = 1, and ρ(t) = m+1 for all t ≥ 2; and
for every other vote, we use the price function ρ with ρ(t) = m+ 1 for all t ≥ 1. Finally, set the budget
B = m. Without loss of generality, we assume that m > 1.

Note that p scores three points while the rest of the candidates score four points each, so p is eliminated
in the first round and does not win the election without bribing voters.

7
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We claim that (X ,S ) is in X3C if and only if ((C,V ), p,B,ρ) is in Hare-CONSTRUCTIVE-SHIFT-
BRIBERY, regardless of the winner model.

(⇒) Suppose that (X ,S ) is a yes-instance of X3C. Then there exists an exact cover S ′ ⊆S of size
m. We now show that it is possible for p to become a unique Hare winner of an election obtained by
shifting p in the votes without exceeding the budget B. For every Si ∈S ′, we bribe the voter with the vote
of the form Si p · · · by shifting p once, so her new vote is of the form p Si · · · ; each such bribe action costs
us only 1 from our budget, so the budget will not be exceeded. In the first round, p now has m+3 points,
every candidate from S ′ has 3 points, and every other candidate has 4 points. Therefore, all candidates
in S ′ are eliminated. In the second round, all candidates in X now gain one point from the elimination
of S ′, since it is an exact cover. Therefore, p and all candidates in X proceed to the next round and the
remaining candidates S \S ′ are eliminated. In the next round with only p and the candidates from X
remaining, p has 3m+ 3 points, while every candidate in X scores 7 points (recall that every xi ∈ X is
contained in exactly three members of S ). Since all candidates from X have been eliminated now, p is
the only remaining candidate and thus the unique Hare winner.

(⇐) Suppose that (X ,S ) is a no-instance of X3C. Then no subset S ′ ⊆S with |S ′| ≤ m covers X .
We now show that we cannot make p become a Hare winner of an election obtained by bribing voters
without exceeding budget B. Note that we can only bribe at most m voters with votes of the form Si p · · ·
without exceeding the budget. Let S ′ ⊆S be such that Si ∈S ′ exactly if the voter with the vote Si p · · ·
has been bribed. Clearly, |S ′| ≤ m and in all those votes p has been shifted once to the left, so p is now
ranked first in these votes. Therefore, p now has 3+ |S ′| points and every Si ∈S ′ scores 3 points. Since
every other candidate scores as many points as before the bribery (namely, 4 points), the candidates in S ′

are eliminated in the first round. Let X ′ = {xi ∈ X | xi /∈
⋃

S j∈S ′ S j} be the subset of candidates xi ∈ X
that are not covered by S ′. We have X ′ 6= /0 (otherwise, S ′ would have been an exact cover of X). In the
second round, unlike the candidates from X \X ′, the candidates in X ′ will not gain additional points from
eliminating the candidates in S ′. Thus, in the current situation, the candidates from X ′ and S \S ′ are
trailing behind with 4 points each and are eliminated in this round.7 Therefore, in the next round, only p
and the candidates from X \X ′ are remaining in the election. Let x` ∈ X \X ′ be the candidate from X \X ′

with the smallest subscript. Since all candidates from S are eliminated, p has 3m+ 3 points and every
candidate from X \X ′ except x` has 7 points. On the other hand, x` gains additional points from eliminating
the candidates from X ′; therefore, x` survives this round by scoring more than 7 points. In the final round
with only p and x` remaining, p is eliminated, since 3m ·7 > 3m+3.

Example 1. Let (X ,S ) be a yes-instance of X3C defined by

X = {x1, . . . ,x6} and

S = {{1,2,3},{4,5,6},{2,3,6},{2,4,5},{1,3,4},{1,5,6}}.

Construct ((C,V ), p,B,ρ) from (X ,S ) as in the proof of Theorem 1; in particular, the budget is B = 2.
If we bribe the voters with S1 p · · · and S2 p · · · so as to shift p to the top of their votes, p will be the unique
winner of the election that proceeds as follows (where the numbers in the columns below candidates give
their scores):

7. Note that in the case that |S ′| = 1, i.e., only one voter was bribed, p also gets eliminated in this round and is consequently
not a Hare winner, which is what we want to show. Therefore, we will now assume that at least two voters were bribed.
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Round p x ∈ X S1,S2 S3,S4,S5,S6

1 5 4 3 4
2 5 5 out 4
3 9 7 out out

Now consider a no-instance (X ,S ) of X3C with

X = {x1, . . . ,x6} and

S = {{1,2,4},{4,5,6},{2,3,6},{2,3,5},{1,3,4},{1,5,6}}.

If we bribe no voter, p gets eliminated in the first round and so does not win. If we bribe one voter, say
the one with vote S1 p · · · , then p gets eliminated in the second round:

Round p x1 x2, x4 x3, x5, x6 S1 Si ∈S \{S1}
1 4 4 4 4 3 4
2 4 5 5 4 out 4
3 out ≥ 28 ≥ 7 out out out

Since (X ,S ) is a no-instance of X3C, no matter which two subsets Si,S j ∈S we choose, at least one
xk is in both subsets, so p loses the direct comparison in the last round. For example, if we bribe the voters
with S1 p · · · and S2 p · · · , the election proceeds as follows:

Round p x1 x3 x4 x2,x5,x6 S1, S2 S3,S4,S5,S6

1 5 4 4 4 4 3 4
2 5 5 4 6 5 out 4
3 9 14 out 7 7 out out
4 9 42 out out out out out

This completes Example 1.

Next, we show that shift bribery is NP-hard for Hare also in the destructive case.

Theorem 2. In both the unique-winner and the nonunique-winner model, Hare-DESTRUCTIVE-SHIFT-
BRIBERY is NP-hard.

Proof. Again, we use a reduction from X3C. Construct from a given X3C instance (X ,S ) a Hare-DE-
STRUCTIVE-SHIFT-BRIBERY instance ((C,V ), p,B,ρ) as follows. Let D = {d1, . . . ,d3m} be a set of 3m
dummy candidates. The candidate set is C = X ∪S ∪D∪{p,w} with designated candidate p. The list V
of votes is constructed as follows:
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# vote for

2 Si xi,1
−−−−−→
X \{xi,1} w p · · · 1≤ i≤ 3m

2 Si xi,2
−−−−−→
X \{xi,2} w p · · · 1≤ i≤ 3m

2 Si xi,3
−−−−−→
X \{xi,3} w p · · · 1≤ i≤ 3m

7 xi
−−−−→
X \{xi} w p · · · 1≤ i≤ 3m

1 p Si · · · 1≤ i≤ 3m

12 w p · · ·
18m p · · ·

6 di Si p · · · 1≤ i≤ 3m

For votes of the form p Si · · · , we use the price function ρ(1) = 1, and ρ(t) = m+1 for all t ≥ 2; and
for every other vote, we use the price function ρ with ρ(t) = m+ 1 for all t ≥ 1. Finally, set the budget
B = m.

Without bribing, the election (C,V ) proceeds as follows:

Round p w xi ∈ X Si ∈S di ∈ D

1 21m 12 7 6 6
2 39m 12 13 out out
3 39m+12 out 13 out out

It follows that p has won the election after three rounds.
We claim that (X ,S ) is in X3C if and only if ((C,V ), p,B,ρ) is in Hare-DESTRUCTIVE-SHIFT-

BRIBERY, regardless of the winner model.

(⇒) Suppose that (X ,S ) is a yes-instance of X3C. Then there exists an exact cover S ′ ⊆S of size
m. We now show that it is possible to eliminate p from an election obtained by shifting p in the votes
without exceeding the budget B. For every Si ∈S ′, we bribe the voter with the vote of the form p Si · · ·
by shifting p once, so her new vote is of the form Si p . . . ; each such bribe action costs us only 1 from our
budget, so the budget will not be exceeded. Now the election proceeds as follows:

Round p w xi ∈ X Si ∈S ′ Si ∈S \S ′ di ∈ D

1 20m 12 7 7 6 6
2 32m 12 11 13 out out
3 32m 33m+12 out 13 out out
4 39m 39m+12 out out out out

We see that p is eliminated in the fourth round and w wins.

(⇐) Suppose that (X ,S ) is a no-instance of X3C. Then no subset S ′ ⊆S with |S ′| ≤ m covers X .
We now show that p will not be eliminated in any election obtained by bribing voters without exceeding
budget B but will in fact become the only winner. Note that we can only bribe at most m voters with
votes of the form p Si · · · without exceeding the budget. Let S ′ ⊆S be such that for every Si ∈S ′ we
have bribed the voter whose vote is p Si · · · . We can assume that |S ′| > 0. Every candidate in S ′ will
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gain an additional point and therefore survives the first round. All candidates from D and S \S ′ will be
eliminated, since p only loses at most m points.

In the second round, the remaining candidates from S will additionally gain six points from the
elimination of candidates in D and will score 13 points in this round (and in all subsequent rounds with
p still standing). If a candidate Si ∈ S was eliminated in the previous round, every xi ∈ Si gains two
additional points in this round. Partition X into sets X0, X1, X2, and X3 so that xi ∈ Xk ⇔ |{S j ∈S ′ | xi ∈
S j}| = k for k ∈ {0,1,2,3}. Note that X0, X1, X2, and X3 are disjoint and |X0| > 0, but one or two of
X1, X2, and X3 may be empty. Then xi ∈ X j scores 7+(6− 2 j) ∈ {7,9,11,13} points depending on how
many times xi is covered by S ′. Therefore, every xi ∈ X0 scores more points than w who has 12 points.
Thus there are candidates from X that survive this round and other candidates from X (more precisely,
candidates from X1, X2, or X3) who are eliminated.

In the third round, the candidate x` ∈ X with the smallest subscript who is still standing gains at least
seven points from the eliminated candidates, so that x` scores at least 16 points.8 All other candidates still
score the same number of points as in the last round. Therefore, p scores at least 20m points, w scores
still 12 points, every Si ∈S ′ scores 13 points, and every still standing candidate from X except x` scores
at most 13 points. Since w can only gain additional points when all candidates from X are eliminated
and only x` gains points from the elimination of candidates from X \ {x`} in the subsequent rounds, all
candidates X \ ({x`} ∪X0) and w are eliminated. Then all still standing candidates from X0 \ {x`} and
candidates from S ′ who each score 13 points are eliminated, which leaves p and x` in the last round. In
this round, p scores 39m+12 points and x` scores 39m points, so p solely wins the election, no matter how
we bribe voters within the budget, i.e., we have a no-instance of Hare-DESTRUCTIVE-SHIFT-BRIBERY in
both winner models.

Next, we turn to shift bribery for Coombs elections. While the idea of the reduction is similar, and
perhaps even simpler than in the previous two proofs, the proof of correctness is way more involved.

Theorem 3. In both the unique-winner and the nonunique-winner model, Coombs-CONSTRUCTIVE-
SHIFT-BRIBERY is NP-hard.

Proof. To prove NP-hardness, we now describe a reduction from X3C to Coombs-CONSTRUCTIVE-
SHIFT-BRIBERY. Given an X3C instance (X ,S ), construct an election (C,V ) with the set C = {p,w,d1,
d2,d3}∪X ∪Y of candidates, where p is the designated candidate and Y = {yi | xi ∈ X}. Construct the
following list V of votes:

# vote for

1 · · · xi,1 xi,2 xi,3 p 1≤ i≤ 3m
2m · · · p

−−−−→
Y \{yi} yi xi 1≤ i≤ 3m

2m · · · p
−→
Y w d1 d2 d3

1 · · · p
−→
Y w X d1 d2 d3

m · · · p
−→
Y w

For votes of the form · · · xi,1 xi,2 xi,3 p, we use the price function ρ(1) = ρ(2) = ρ(3) = 1, and
ρ(t) = m+1 for all t ≥ 4; and for all the remaining votes, we use the price function ρ(t) = m+1 for all
t ≥ 1. Furthermore, our budget is B = m.

8. Since this candidate x` is still in the election, x` cannot have been in X3 and thus must have had at least nine points.
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The candidates have the following veto counts: p has 3m vetoes, each xi ∈ X has 2m vetoes, w has
m vetoes, d3 has 2m+ 1 vetoes, and the remaining candidates each have 0 vetoes. Therefore, p will be
eliminated in the first round and thus does not win the election.

We claim that (X ,S ) is in X3C if and only if ((C,V ), p,B,ρ) is in Coombs-CONSTRUCTIVE-SHIFT-
BRIBERY, regardless of the winner model.

(⇒) Assume that (X ,S ) is in X3C. This means that there exists a subset S ′ ⊆S with |S ′|= m and⋃
Si∈S ′ Si = X . So we have a partition of X into three sets, X = X1∪X2∪X3, such that:

X1 = {xi ∈ Si | xi has the lowest subscript in Si ∈S ′ },
X3 = {xi ∈ Si | xi has the highest subscript in Si ∈S ′ }, and

X2 = X \ (X1∪X3).

Let Y = Y1∪Y2∪Y3 be the corresponding partition of Y .
We bribe the voters with votes of the form · · · xi,1 xi,2 xi,3 p for Si ∈S ′ so that they change their votes to

· · · p xi,1 xi,2 xi,3. Since S ′ is an exact cover of X , it follows that p now has a total of 2m vetoes, whereas
each x ∈ X3 receives an additional veto for a total of 2m+ 1. The number of vetoes for the remaining
candidates remain unchanged. If a candidate has the highest number of vetoes then she has the fewest
number of points and cannot proceed to the next round (unless all candidates have the same score). Here,
the candidates in X3 and d3 have the fewest number of points (and fewer than the other candidates) and
therefore are eliminated in the first round.

Without the candidates in X3, each candidate in X2 gets an additional veto and the candidates in Y3 each
take all but one of the vetoes of the eliminated candidates in X3. Furthermore, d2 receives the vetoes of d3.
As a consequence, in the second round the candidates in X2 and d2 have the fewest number of points (and
fewer than the remaining candidates) and are eliminated.

Similarly to the first round, vetoes from candidates in X2 and d2 are passed on to candidates in X1 and
Y1 and to d1. Thus the candidates have the following veto counts in the third round: p and each y ∈Y2∪Y3
receive 2m vetoes, w receives m vetoes, each y ∈ Y1 receives zero vetoes, and d1 and each xi ∈ X1 receive
2m+1 vetoes. Consequently, all the candidates xi ∈ X1 and d1 are eliminated in the third round, so in the
next round there are no candidates from X and no di, 1≤ i≤ 3.

It follows that w receives 2m+1 additional vetoes in the fourth round, so w has the most vetoes in this
round and is eliminated. We need 3m further rounds until p ends up as the last remaining candidate and
sole winner of the election. In each of these rounds, the candidate in Y that is still alive and has the highest
subscript has at least 2m+2m+1+m = 5m+1 vetoes, while p always has only 3m vetoes.

(⇐) Suppose that (X ,S ) is a no-instance of X3C. We will show that ((C,V ), p,B,ρ) then is a no-
instance of Coombs-CONSTRUCTIVE-SHIFT-BRIBERY in the nonunique-winner (and thus also in the
unique-winner) model. Observe that if we were going to make p a winner of the election, we would have
to bribe at least m voters with a vote of the form · · · xi,1 xi,2 xi,3 p; otherwise, p would have at least 2m+1
vetoes and would be eliminated right away in the first round. Due to our budget, on the other hand, we can
bribe no more than m (and thus would have to bribe exactly m) such voters and cannot bribe any further
voters. Let S ′ ⊆S be such that Si ∈S ′ exactly if the voter with the vote of the form · · · xi,1 xi,2 xi,3 p
has been bribed. Note that |S ′| = m and S ′ does not cover X because we have a no-instance of X3C.
Now p has only 2m vetoes and will not be eliminated in the first round.

Let X1 be the set of candidates xi ∈ Si for Si ∈S ′ with the smallest subscript in Si, let X2 be the set of
candidates xi ∈ Si for Si ∈S ′ with the second-smallest subscript in Si, and let X3 be the set of candidates
xi ∈ Si for Si ∈S ′ with the highest subscript in Si. Note that X1∪X2∪X3 6= X , since S ′ does not cover X .
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For w to have more vetoes than p, the candidates d1, d2, and d3 need to be eliminated. For that to
happen, there must be three rounds in which no other candidate has more than 2m+1 vetoes. In the round
where di, 1 ≤ i ≤ 3, is eliminated, all still standing candidates in Xi are eliminated as well. Assume there
were three rounds in which 2m+ 1 was the maximal number of vetoes for a candidate. Then d1, d2, d3,
and all candidates in X1 ∪X2 ∪X3 are eliminated. Note that those candidates that are not covered by S ′

always have only 2m vetoes and are still participating in the election. Therefore, in the next round, p and
w have 3m vetoes each, the remaining candidates from X have at most 2m+1 vetoes, and the candidates
from Y have at most 2m vetoes. So even if p survives the first rounds with the candidates d1, d2, and d3
still present, p will then surely be eliminated in the following round. If there is at least one voter who shifts
p only one or two positions upward, then p has to drop out with d1 or even before d1 drops out, because
at the latest after two rounds (with 2m+1 being the maximal number of vetoes for a candidate) p receives
another veto and thus has at least the same number of vetoes as d1.

Example 2. Let (X ,S ) be a yes-instance of X3C defined by

X = {x1, . . . ,x6} and

S = {{1,2,3},{4,5,6},{2,3,6},{2,4,5},{1,3,4},{1,5,6}}.
Construct ((C,V ), p,B,ρ) from (X ,S ) as in the proof of Theorem 3; in particular, the budget is B = 2.

If we bribe the voters that correspond to the sets in the exact cover, S1 and S2, to change their votes from
· · · x1 x2 x3 p and · · · x4 x5 x6 p to · · · p x1 x2 x3 and · · · p x4 x5 x6, then p alone wins the election that
proceeds as follows, where in order to make this example easier to follow, the numbers in the table count
the candidates’ vetoes, not their points, i.e., the candidates with the highest number in a round (row) get
eliminated:

Round p w x1,x4 x2,x5 x3,x6 y1 y2 y3 y4 y5 y6 d1 d2 d3

1 4 2 4 4 5 0 0 0 0 0 0 0 0 5
2 4 2 4 5 out 0 0 4 0 0 4 0 5 out
3 4 2 5 out out 0 4 4 0 4 4 5 out out
4 6 7 out out out 4 4 4 4 4 4 out out out
5 6 out out out out 4 4 4 4 4 11 out out out
6 6 out out out out 4 4 4 4 15 out out out out
7 6 out out out out 4 4 4 19 out out out out out
8 6 out out out out 4 4 23 out out out out out out
9 6 out out out out 4 27 out out out out out out out
10 6 out out out out 31 out out out out out out out out

It follows that p is the sole winner of the election.
Now consider a no-instance (X ,S ) with

X = {x1, . . . ,x6} and

S = {{1,2,4},{4,5,6},{2,3,6},{2,3,5},{1,3,4},{1,5,6}}.
Recall that we can bribe at most two voters. If we bribe fewer than two voters, however, p will be

eliminated in the first round. Since (X ,S ) is a no-instance of X3C, no matter which two subsets Si,S j ∈S
we choose, at least one xk is in both Si and S j. For example, if we bribe the voters that correspond to the
sets S1 and S2, changing their votes from · · · x1 x2 x4 p and · · · x4 x5 x6 p to · · · p x1 x2 x4 and · · · p x4 x5 x6,
then the election proceeds as follows:

13



MAUSHAGEN, NEVELING, ROTHE & SELKER

Round p w x1 x2,x5 x3 x4,x6 y1 y2,y5 y3 y4,y6 d1 d2 d3

1 4 2 4 4 4 5 0 0 0 0 0 0 5
2 4 2 4 5 4 out 0 0 0 4 0 5 out
3 5 2 5 out 4 out 0 4 0 4 5 out out
4 out 2 out out 4 out 4 4 0 4 out out out
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Since x4 is in both S1 and S2, p gets an additional veto in round 3 and is subsequently eliminated. The
same will happen for similar reasons in every other case.

This completes Example 2.

We now modify the previous reduction so as to work for the destructive case in Coombs elections.

Theorem 4. In both the unique-winner and the nonunique-winner model, Coombs-DESTRUCTIVE-SHIFT-
BRIBERY is NP-hard.

Proof. To prove NP-hardness, we again reduce from the NP-complete problem X3C to Coombs-DE-
STRUCTIVE-SHIFT-BRIBERY. Given an X3C instance (X ,S ) where we may assume that m > 2 for |X |=
3m, we construct a DESTRUCTIVE-SHIFT-BRIBERY instance ((C,V ), p,B,ρ) as follows. Let C =X∪S ∪
D∪{p,w,y} be the candidate set with designated candidate p and a set D = {di, j |1≤ i≤m−1,1≤ j≤ 4}
of dummy candidates. Let D = D1∪D2∪D3∪D4 be a partition of D with D j = {di, j |1≤ i≤ m−1} for
1≤ j ≤ 4. The list V of votes is then constructed as follows:

# vote for

1 · · · p Si 1≤ i≤ 3m
4m p · · · w xi,1 xi,2 xi,3 Si 1≤ i≤ 3m

4m+1 · · · p X di,1 di,2 di,3 di,4 1≤ i≤ m−1
1 p · · · y xi 1≤ i≤ 3m
3 · · · p
2 p · · · w

Unlike in the previous proofs, it is here necessary that the candidates that are represented by “· · ·” are
placed in lexicographical order. For votes of the form · · · p Si, we use the price function ρ(1) = 1, and
ρ(t) = 2m+1 for all t ≥ 2; and for all the remaining voters, we use the price function ρ(t) = 2m+1 for
all t ≥ 1. Finally, we set the budget B = 2m.

Analyzing the constructed election without bribing voters, the candidates have the following veto
counts: p has three vetoes, w has two vetoes, each x ∈ X has one veto, each Si ∈S and each d ∈ D4 has
4m+1 vetoes, and the remaining candidates each have zero vetoes. It follows that all candidates from S
and D4 are eliminated. The candidates from D4 transfer their vetoes to candidates in D3 who each have
4m+1 vetoes now; p gets 3m additional vetoes from the eliminated candidates in S ; and the remaining
12m2 vetoes (from the second group of voters) are shared among candidates from X . Since they are ordered
lexicographically in those votes, there must be one candidate from X (now and in the following rounds)
that obtains more than 4m+1 vetoes leading to the elimination of all candidates from X in the following
rounds. In each of these following rounds, the candidate who receives some of those 12m2 vetoes from a
previously eliminated candidate (starting with w) will now be eliminated, eventually leaving p as the last
standing candidate and sole winner.
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We claim that (X ,S ) is in X3C if and only if ((C,V ), p,B,ρ) is in Coombs-DESTRUCTIVE-SHIFT-
BRIBERY, regardless of the winner model.

(⇒) Assume that (X ,S ) is in X3C. This means that there exists a subset S ′ ⊆S with |S ′|= m and⋃
Si∈S ′ Si = X . So we have a partition of X into three sets, X = X1∪X2∪X3, such that:

X1 = {xi ∈ Si | xi has the lowest subscript in Si ∈S ′ },
X3 = {xi ∈ Si | xi has the highest subscript in Si ∈S ′ }, and

X2 = X \ (X1∪X3).

We bribe the voters with a vote of the form · · · p Si with Si ∈S \S ′ such that they change their vote
to · · · Si p. Now the election proceeds as follows, where we again count the vetoes and not the points:

Round p w y S ′ S \S ′ X1 X2 X3 D1 D2 D3 D4

1 2m+3 2 0 4m+1 4m 1 1 1 0 0 0 4m+1
2 3m+3 2 0 out 4m 1 1 4m+1 0 0 4m+1 out
3 3m+3 2 m out 4m 1 4m+1 out 0 4m+1 out out
4 3m+3 2 2m out 4m 4m+1 out out 4m+1 out out out
5 4m2 +2 4m2 +2 3m out 4m out out out out out out out

We see that p is eliminated in the fifth round, whereas y and some other candidates from S \S ′ are
still in the election. Hence, p does not win.

(⇐) Suppose that (X ,S ) is a no-instance of X3C. Then no subset S ′ ⊆S with |S ′| ≤ m covers X .
We now show that p will not be eliminated in an election obtained by bribing voters without exceeding
budget B but will in fact become the only winner. Note that we can only bribe at most 2m voters with votes
of the form · · · p Si without exceeding the budget. Let S ′ ⊆S be such that for every Si ∈S \S ′ we
have bribed the voter whose vote was · · · p Si and now is · · · Si p. We can assume that |S \S ′|> 0.

Every candidate in S \S ′ will gain an additional point and therefore survives the first round. All
candidates in D4 and S ′ will be eliminated in the first round. It follows that p has 3m+ 3 vetoes in the
second round. At this point, p is in each voter group other than the third voter group (with votes of the
form · · · p X di,1 di,2 di,3 di,4) either the most (groups 2, 4, and 6) or the least preferred (groups 1 and 5)
candidate; therefore, p does not receive any further vetoes before some candidate d ∈ D1 is eliminated.

We note that |S ′| ≥ m. Since S ′ is not an exact cover of X , we have at least one x ∈ X which is in
two sets S,S′ ∈S ′. Let X ′ = {x ∈ X | ∃ S,S′ ∈S ′, S 6= S′, x ∈ S∩S′}. After two further rounds in which
4m+1 is the maximum number of vetoes, the candidates d ∈ D\D1 are eliminated. If each x ∈ X ′ is still
in the election, it follows that each x ∈ X ′ has at least 4m+2 vetoes such that some candidates x ∈ X ′ will
be eliminated. It follows that in the next round w receives at least 4m+2 vetoes such that w has the most
vetoes while the candidates d ∈ D1 still have 4m+ 1 vetoes. Otherwise, if at least one candidate x ∈ X ′

is eliminated, it follows that w receives at least 4m+2 vetoes at the latest in the fourth round, while each
d ∈ D1 still has 4m+ 1 vetoes. After w is eliminated, in each following round the candidate x with the
highest subscript and later the candidate S with the highest subscript and y will be eliminated. It follows
that only p and the candidates d ∈ D1 are still in the election. In each following round, p has at most
4m2−4m+1 vetoes while the still standing candidate d ∈ D1 with the highest subscript receives at least
12m2 +7m+3 vetoes. Hence, eventually p alone wins the election.
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4. Baldwin and Nanson

We now show NP-hardness of shift bribery for Baldwin and Nanson elections. Note that our reductions
are inspired by and similar to those used by Davies et al. (2014) to show NP-hardness of the unweighted
coalitional manipulation problem for these voting systems.

For a preference profile V over a set of candidates C, let avg(V ) be the average Borda score of the
candidates in V (i.e., avg(V ) = (|C|−1)|V |/2). To conveniently construct votes, for a set of candidates C and
c1,c2 ∈C, let

W(c1,c2) = (c1 c2
−−−−−−−→
C \{c1,c2},

←−−−−−−−
C \{c1,c2} c1 c2).

Under Borda, from the two votes in W(c1,c2) candidate c1 scores |C| points, c2 scores |C|−2 points, and all
other candidates score |C|−1 points. Also, observe that if a candidate c∗ ∈C is eliminated in some round
and c∗ /∈ {c1,c2} then all other candidates lose one point due to the votes in W(c1,c2); if c∗ = c1 then c2
loses no points but all other candidates lose one point; and if c∗ = c2 then c1 loses two points and all other
candidates lose one point. Therefore, if c∗ is eliminated, the point difference caused by this elimination
with respect to the votes in W(c1,c2) remains the same for all candidates, with two exceptions: (a) If c∗ = c1
then c2 gains a point with respect to every other candidate, and (b) if c∗ = c2 then c1 loses a point with
respect to every other candidate. Furthermore, let score(C,V )(x) denote the number of points candidate x
obtains in a Borda election (C,V ), and let dist(C,V )(x,y) = score(C,V )(x)− score(C,V )(y).

We start with the complexity of shift bribery in Baldwin elections for the constructive case.

Theorem 5. In both the unique-winner and the nonunique-winner model, Baldwin-CONSTRUCTIVE-
SHIFT-BRIBERY is NP-hard.

Proof. To prove NP-hardness, we reduce the NP-complete problem X3C to Baldwin-CONSTRUCTIVE-
SHIFT-BRIBERY. From a given X3C instance (X ,S ), we construct an election (C,V ) with the set of
candidates C = {p,w,d}∪X ∪S and designated candidate p and with V consisting of two lists of votes,
V1 and V2, where V1 contains the following votes:

# votes for # votes for

1 W(S j,p) 1≤ j ≤ 3m 2 W(x j,3,S j) 1≤ j ≤ 3m
2 W(x j,1,S j) 1≤ j ≤ 3m 2 W(w,xi) 1≤ i≤ 3m
2 W(x j,2,S j) 1≤ j ≤ 3m 7 W(w,p)

The votes in V1 give the following scores to the candidates in C:

score(C,V1)(xi) = avg(V1)+4 for every xi ∈ X ,

score(C,V1)(S j) = avg(V1)−5 for every S j ∈S ,

score(C,V1)(p) = avg(V1)−3m−7,

score(C,V1)(w) = avg(V1)+6m+7,

score(C,V1)(d) = avg(V1).

Furthermore, V2 contains the following votes:

# votes for # votes

2m+1 W(d,S j) 1≤ j ≤ 3m 1 W(p,d)

2m+9 W(d,xi) 1≤ i≤ 3m 2m+14 W(d,w)
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The votes in V2 give the following scores to the candidates in C:

score(C,V2)(xi) = avg(V2)− (2m+9) for every xi ∈ X ,

score(C,V2)(S j) = avg(V2)− (2m+1) for every S j ∈S ,

score(C,V2)(p) = avg(V2)+1,

score(C,V2)(w) = avg(V2)− (2m+14),

score(C,V2)(d) = avg(V2)+12m2 +32m+13.

Let V = V1 ∪V2 and avg(V ) = avg(V1)+ avg(V2). Then we have the following Borda scores for the
complete preference profile V over C:

score(C,V )(xi) = avg(V )−2m−5 for every xi ∈ X ,

score(C,V )(S j) = avg(V )−2m−6 for every S j ∈S ,

score(C,V )(p) = avg(V )−3m−6,

score(C,V )(w) = avg(V )+4m−7,

score(C,V )(d) = avg(V )+12m2 +32m+13.

Regarding the price function, for every first vote of W(S j,p) (i.e., a vote of the form S j p
−−−−−−→
C \{S j, p}), let

ρ(1) = 1 and ρ(t) = m+1 for every t ≥ 2. For every other vote, let ρ(t) = m+1 for every t ≥ 1. Finally,
we set the budget B = m.

It is easy to see that p is eliminated in the first round in the election (C,V ) and thus does not win.
We claim that (X ,S ) is in X3C if and only if ((C,V ), p,B,ρ) is in Baldwin-CONSTRUCTIVE-SHIFT-

BRIBERY, regardless of the winner model.
(⇒) Suppose there is an exact cover S ′ ⊆ S . Then we bribe the first votes of W(S j,p) for every

S j ∈S ′ by shifting p to the left once. Note that we won’t exceed our budget, since shifting once costs
1 in those votes and |S ′| = m. After this bribery, for every S j ∈ S ′, the two votes from W(S j,p) result

in two votes that are symmetric to each other (i.e., p S j
−−−−−−→
C \{S j, p} equals the vote

←−−−−−−
C \{S j, p} S j p in

reverse order) and can thus be disregarded from now on, as all candidates gain the same number of points
from those votes and all candidates lose the same number of points if a candidate is eliminated from the
election. After those m votes have been bribed, only the scores of p and every S j ∈ S ′ change. With
score(C,V )(p) = avg(V )−2m−6 and score(C,V )(S j) = avg(V )−2m−7, all candidates in S ′ are tied for
the last place. If any S j ∈S ′ is eliminated in a round, the three candidates x j,1, x j,2, and x j,3 will lose two
points more than the candidates from S ′ \ {S j} that were in the last position before S j was eliminated.
Therefore, those three candidates from X will then be in the last position in the next round. This means
that all candidates S ′ and every xi ∈ X that is covered by S ′ will be eliminated in the subsequent rounds.
Since S ′ is an exact cover, now there is no candidate from X left. Thus the point difference between p and
w is 1 and between p and the remaining S j ∈ (S \S ′) is −6. Note that p can beat d only if no candidate
of C \ {p,d} is still participating. So in the next round, w is eliminated. From this p gains seven points
on all S j ∈ (S \S ′), so these are tied for the last place. Therefore, the remaining candidates from S
are eliminated, which leaves p and d for the next and final round, where d is eliminated and p wins the
election alone.

(⇐) Suppose there is no exact cover. It is obvious that at most m of the first votes of W(S j,p) can be
bribed without exceeding the budget. Without bribing, p is in the last place and the point difference to the
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second-to-last candidate(s) is dist(C,V )(p,S j) = m, 1 ≤ j ≤ 3m. By bribing, as explained above, p gains
m+1 points on m candidates from S , which then will be eliminated from the election. This leads to the
elimination of all xi ∈ X that are covered by the set S ′ ⊆S of candidates that were eliminated. Since
there is no exact cover, S ′ doesn’t cover X . So there are candidates X ′ ⊆ X , |X ′| ≥ 1, who were not
eliminated before, as for every candidate xi ∈ X ′ all three candidates S j ∈ (S \S ′) with xi ∈ S j are still
in the election. With the candidates C1 = {p,w,d}∪ (S \S ′)∪X ′ still standing, the point differences of
p to the other remaining candidates are as follows:

dist(C1,V )(p,d) =−2m−5−2m(2m+1)−|X ′|(2m+9)− (2m+14)< 0,

dist(C1,V )(p,w) = 1−2|X ′|< 0,

dist(C1,V )(p,xi) =−1 for every xi ∈ X ′, and

dist(C1,V )(p,S j)≤ 0 for every S j ∈S \S ′.

Therefore, p is in the last place and is eliminated and thus does not win.

The proof of the following theorem, which handles the destructive variant for Baldwin, uses a similar
idea as the proof of Theorem 5. That is why we refrain from presenting all proof details in full; a proof
sketch will suffice.

Theorem 6. In both the unique-winner and the nonunique-winner model, Baldwin-DESTRUCTIVE-SHIFT-
BRIBERY is NP-hard.

Proof Sketch. To prove NP-hardness, we reduce the NP-complete problem X3C to Baldwin-DESTRUC-
TIVE-SHIFT-BRIBERY. From a given X3C instance (X ,S ), we construct an election (C,V ), where C =
{p,w,b,d}∪X ∪S is the set of candidates, p is the designated candidate, and V consists of two lists of
votes, V1 and V2, where V1 contains the following votes:

# votes for # votes for

1 W(p,S j) 1≤ j ≤ 3m 2 W(w,xi) 1≤ i≤ 3m
2 W(S j,x j,1) 1≤ j ≤ 3m 3m+7 W(w,d)

2 W(S j,x j,2) 1≤ j ≤ 3m m+10 W(b,S j) 1≤ j ≤ 3m
2 W(S j,x j,3) 1≤ j ≤ 3m

Furthermore, V2 contains the following votes:

# votes for # votes

1 W(d,p) 6m+14 W(p,w)
2m+7 W(p,S j) 1≤ j ≤ 3m 3m2 +33m+12 W(p,b)

3m+3 W(p,xi) 1≤ i≤ 3m

Let V =V1∪V2. Then we have the following Borda scores for the complete profile V :

score(C,V )(xi) = avg(V )−3m−11 for every xi ∈ X ,

score(C,V )(S j) = avg(V )−3m−12 for every S j ∈S ,

score(C,V )(d) = avg(V )−3m−6,

score(C,V )(w) = avg(V )+3m−7,

score(C,V )(b) = avg(V )−3m−12,

score(C,V )(p) = avg(V )+18m2 +72m+25.
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Regarding the price function, for every first vote of W(p,S j) (i.e., a vote of the form p S j C\{S j, p}), let
ρ(1) = 1 and ρ(t) = m+1 for every t ≥ 2. For every other vote, let ρ(t) = m+1 for every t ≥ 1. Finally,
we set the budget B = m.

It is easy to see that p wins the election (C,V ).
We claim that (X ,S ) is in X3C if and only if ((C,V ), p,B,ρ) is in Baldwin-DESTRUCTIVE-SHIFT-

BRIBERY, regardless of the winner model.
(⇒) Suppose there is an exact cover S ′⊆S . Then we bribe the first votes of W(p,S j) for every S j ∈S ′

by shifting p to the right once. With a similar argument as in the proof of Theorem 5, d alone wins the
election, i.e., p is not among the winners.

(⇐) Suppose there is no exact cover. Then, for every S ′ ⊆S with |S ′| ≤ m, there is at least one
xi ∈ X that is not covered by S ′. It is obvious that at most m of the first votes of W(p,S j) can be bribed
without exceeding the budget. We can then show, similarly as in the proof of Theorem 5, that d will always
be eliminated before w and therefore p cannot be prevented from winning the election alone.

Finally, we turn to Nanson elections for which we again will show that shift bribery is NP-hard. The
reduction below will only use pairs of votes of the form W(c1,c2). The average Borda score for those two
votes is |C|− 1. The candidate c1 scores one point more than the average Borda score and c2 scores one
point fewer than the average Borda score. The other candidates score exactly the average Borda score. If
a candidate is eliminated in a round, the average Borda score required to survive the next round decreases
by one. Regardless of which candidate is eliminated, all remaining candidates that are not c1 or c2 lose one
point and still have exactly the average Borda score. If c2 is eliminated, c1 loses its advantage with respect
to the average Borda score and now scores exactly the average Borda score as well. If one of the other
candidates is eliminated, c1 continues to have one point more than the average Borda score. By symmetry,
this holds analogously for c2: If c1 is eliminated, c2 scores the average Borda score, and if one of the other
candidates is eliminated, c2 still has one point fewer than the average Borda score.

Theorem 7. In both the unique-winner and the nonunique-winner model, Nanson-CONSTRUCTIVE-SHIFT-
BRIBERY is NP-hard.

Proof. To prove NP-hardness, we reduce the NP-complete problem X3C to Nanson-CONSTRUCTIVE-
SHIFT-BRIBERY. Again, starting from a given X3C instance (X ,S ), we construct an election (C,V ) with
the set of candidates C = {p,w1,w2,d}∪X ∪S , where p is the designated candidate. Then we construct
two sets of votes, V1 and V2, where V1 contains the following votes:

# votes for # votes for

1 W(S j,p) 1≤ j ≤ 3m 1 W(x j,3,S j) 1≤ j ≤ 3m
1 W(xi,p) 1≤ i≤ 3m 4 W(S j,w1) 1≤ j ≤ 3m
1 W(x j,1,S j) 1≤ j ≤ 3m 15m W(w1,w2)

1 W(x j,2,S j) 1≤ j ≤ 3m 3m W(p,w1)

Furthermore, V2 contains the following votes:

# votes for

2m W(p,d)
2 W(d,S j) 1≤ j ≤ 3m
4 W(d,xi) 1≤ i≤ 3m
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Let V =V1∪V2. Then we have the following Borda scores for the complete profile V :

score(C,V )(xi) = avg(V ) for every xi ∈ X ,

score(C,V )(S j) = avg(V ) for every S j ∈S ,

score(C,V )(p) = avg(V )−m,

score(C,V )(w1) = avg(V ),

score(C,V )(w2) = avg(V )−15m,

score(C,V )(d) = avg(V )+16m.

The price function is again defined as follows. For every first vote of W(S j,p) (i.e., a vote of the form
S j p C \{S j, p}), let ρ(1) = 1 and ρ(t) = m+1 for every t ≥ 2. For every other vote, let ρ(t) = m+1 for
every t ≥ 1. Finally, we set the budget B = m.

It is easy to see that p is eliminated in the first round of the election (C,V ) and so does not win.
We claim that (X ,S ) is in X3C if and only if ((C,V ), p,B,ρ) is in Nanson-CONSTRUCTIVE-SHIFT-

BRIBERY, regardless of the winner model.

(⇒) Suppose there is an exact cover S ′ ⊆ S . Then, for every S j ∈ S ′, we bribe the first vote of
W(S j,p) by shifting p to the left once in all those votes. Note that we won’t exceed our budget, since this
bribe action costs 1 per vote and |S ′|=m. With the additional m points, p reaches the average Borda score
and is not eliminated in the first round. However, all candidates in S ′ lose one point and are eliminated.
Additionally, w2 will be eliminated as well.

In the next round, w1 will be eliminated, since she has 11m points fewer than the average Borda score
required to survive this round. Since the candidates in S ′ were eliminated in the last round and S ′ is an
exact cover, every candidate in X now has fewer points than the average Borda score and is eliminated.

In the third round, only p, d, and the candidates in S \S ′ are still standing. Therefore, the only pairs
of votes that are not symmetric are W(S j,p), twice W(d,S j) for every S j ∈ (S \S ′), and 2m pairs of W(p,d).
Since |S \S ′|= 2m, we have that p scores exactly the average Borda score and survives this round, just
as d. Every S j ∈ (S \S ′) has one point fewer than the average Borda score and is eliminated. This leaves
only p and d in the last round, which p alone wins.

(⇐) Suppose there is no exact cover. Then, for every S ′ ⊆S with |S ′| = m, there is at least one
xi ∈ X that is not covered by S ′. Note that we can only bribe the first votes of any W(S j,p) without
exceeding the budget. For p to survive the first round, we need to bribe m of those votes by shifting p to
the left once. Let S ′ ⊆S be such that S ′ contains S j exactly if the first vote of W(S j,p) has been bribed.
Then every S j ∈S ′ has a score of avg(V )−1 and p has a score of avg(V ). Therefore, in the first round,
every candidate from S ′ and w2 are eliminated from the election.

In the second round, w1 will be eliminated because of the 15m pairs of votes W(w1,w2) and the elimi-
nation of w2. Furthermore, a candidate xi ∈ X reaches the average Borda score with p and d still standing
only if all three S j ∈S with xi ∈ S j are also not yet eliminated. Since the candidates in S ′ were eliminated
in the previous round, for every S j ∈S ′, all three xi ∈ S j will be eliminated in this round. Since S ′ is
not an exact cover, there are candidates X ′ ⊆ X that survive this round. d also reaches the average Borda
score, as there are 2m candidates S \S ′ and those candidates S \S ′ survive due to w1.

In the next round, the candidates still standing are p, d, X ′, and S \S ′. Because |X ′| ≥ 1, candidate
p has |X ′| points fewer than the average Borda score and is eliminated in this round. Thus p does not
win.
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Our last result in this section shows that the destructive variant of shift bribery in Nanson elections is
intractable as well.

Theorem 8. In both the unique-winner and the nonunique-winner model, Nanson-DESTRUCTIVE-SHIFT-
BRIBERY is NP-hard.

Proof. To prove NP-hardness, we reduce the NP-complete problem X3C to Nanson-DESTRUCTIVE-
SHIFT-BRIBERY. Once more, given an X3C instance (X ,S ), we construct an election (C,V ) with the set
of candidates C = {p,w1,w2,w3,d}∪X ∪S , where p is the designated candidate and (X ,S ) is the given
X3C instance. Then we construct two sets of votes, V1 and V2, where V1 contains the following votes:

# votes for # votes for

1 W(p,S j) 1≤ j ≤ 3m 6 W(S j,w3) 1≤ j ≤ 3m
1 W(d,xi) 1≤ i≤ 3m 20m W(w1,w2)

2 W(x j,1,S j) 1≤ j ≤ 3m 19m W(w3,w1)

2 W(x j,2,S j) 1≤ j ≤ 3m 3m+1 W(w3,d)

2 W(x j,3,S j) 1≤ j ≤ 3m

Furthermore, V2 contains the following votes:

# votes for # votes

1 W(d,p) 3m+1 W(p,w3)

1 W(p,xi) 1≤ i≤ 3m

Let V =V1∪V2. Then we have the following Borda scores for the complete profile V :

score(C,V )(xi) = avg(V )+4 for every xi ∈ X ,

score(C,V )(S j) = avg(V )−1 for every S j ∈S ,

score(C,V )(d) = avg(V ),

score(C,V )(w1) = avg(V )+m,

score(C,V )(w2) = avg(V )−20m,

score(C,V )(w3) = avg(V )+m,

score(C,V )(p) = avg(V )+9m.

The price function is again defined as follows. For every first vote of W(p,S j) (i.e., a vote of the form
p S j C \{S j, p}), let ρ(1) = 1 and ρ(t) = m+1 for every t ≥ 2. For every other vote, let ρ(t) = m+1 for
every t ≥ 1. Finally, we set the budget B = m.

It is easy to see that p will only have fewer points than the average Borda score if all candidates from
S , X , and the candidate w3 are eliminated while d is still standing. Without bribing, d is eliminated in the
third round while w3 is still standing, and eventually p wins the election (C,V ).

We claim that (X ,S ) is in X3C if and only if ((C,V ), p,B,ρ) is in Nanson-DESTRUCTIVE-SHIFT-
BRIBERY, regardless of the winner model.

(⇒) Suppose there is an exact cover S ′ ⊆ S . Then, for every S j ∈ S ′, we bribe the first vote of
W(p,S j) by shifting p to the right once in all those votes. Note that we won’t exceed our budget, since this
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bribe action costs 1 per vote and |S′| = m. After those m votes have been bribed, every S j ∈S ′ gains a
point and therefore survives the first round. All other candidates S \S ′ and w2 are eliminated.

Let C1 = {p,d,w1,w3}∪X ∪S ′ be the set of candidates present in the second round. w1 loses 19m
points on the average Borda score from the elimination of w2 and is eliminated. Additionally, all candidates
of X lose four points on the average Borda score but still survive this round, as they now have exactly the
average Borda score.

Let C2 = {p,d,w3}∪X ∪S ′ be the candidates in the third round. In this round, only w3 is eliminated
because w3 lost 19m points on the average Borda score from the elimination of w1.

Let C3 = {p,d}∪X ∪S ′ be the candidates in the fourth round. The scores are as follows:

score(C3,V )(xi) = avg(V ) for every xi ∈ X ,

score(C3,V )(S j) = avg(V )−6 for every S j ∈S ′,

score(C3,V )(d) = avg(V )+3m+1,

score(C3,V )(p) = avg(V )+3m−1.

Therefore all candidates in S ′ are eliminated. In the following round, all candidates in X are elimi-
nated. This leaves only p and d in the final round in which p is eliminated and thus cannot win.

(⇐) Suppose there is no exact cover. Then, for every S ′ ⊆S with |S ′| ≤ m, there is at least one
xi ∈X that is not covered by S ′. Note that we can only bribe the first votes of any W(p,S j) without exceeding
the budget.

We now show that, even with optimal bribing, d will be eliminated in the third round and, therefore,
p alone wins the election. Within our budget, we can prevent at most m candidates from S , say S ′, of
being eliminated in the first round by bribing the corresponding vote of W(p,S j). Since S ′ cannot be an
exact cover of X , there is at least one xi ∈ X for which all S j ∈S with xi ∈ S j are eliminated. This xi is
eliminated in the second round, as it has lost six points on the average Borda score from the eliminations
of candidates in the previous round. In the third round, w3 is still participating since w2 and w1 were
only eliminated in the first and second round, respectively. Therefore, the score of d minus the average
Borda score of this round is at most −1, which means that d is eliminated in this round. Thus, there is no
candidate left that can prevent p from winning the election.

5. Iterated Plurality and Plurality with Runoff

In this section, we show hardness of shift bribery for iterated plurality and plurality with runoff, handling
both voting systems simultaneously and starting with the constructive case.

Theorem 9. In both the unique-winner and the nonunique-winner model, for iterated plurality and plu-
rality with runoff, CONSTRUCTIVE-SHIFT-BRIBERY is NP-hard.

Proof. To prove NP-hardness, we reduce X3C to CONSTRUCTIVE-SHIFT-BRIBERY for these two vot-
ing systems. Let (X ,S ) be a given X3C instance. We construct the CONSTRUCTIVE-SHIFT-BRIBERY

instance ((C,V ), p,B,ρ) as follows. Let C = {p,w}∪X ∪S ∪D be the set of candidates, where p is the
designated candidate and D = {di, j | 1≤ i≤ 3m and 1≤ j≤m−7} is a set of dummy candidates. The list
V of votes is constructed as follows:
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# vote for

1 Si p · · · 1≤ i≤ 3m
2 Si xi,1

−−−−−→
X \{xi,1}· · · 1≤ i≤ 3m

2 Si xi,2
−−−−−→
X \{xi,2}· · · 1≤ i≤ 3m

2 Si xi,3
−−−−−→
X \{xi,3} · · · 1≤ i≤ 3m

1 Si di, j
−−−−→
X \{xi} · · · 1≤ i≤ 3m, 1≤ j ≤ m−7

m xi
−−−−→
X \{xi} · · · 1≤ i≤ 3m

m di, j
−→
X · · · 1≤ i≤ 3m, 1≤ j ≤ m−7

3 w p · · ·

For voters with votes of the form Si p · · · , we use the price function ρ(1) = 1, and ρ(t) = m+ 1 for all
t ≥ 2; and for every other voter, we use the price function ρ(t) = m+1 for t ≥ 1. Finally, set the budget
B = m.

Without bribing, p has a score of zero and is eliminated immediately in both voting systems.
We claim that (X ,S ) is in X3C if and only if ((C,V ), p,B,ρ) is in CONSTRUCTIVE-SHIFT-BRIBERY

for either of the two voting systems, regardless of the winner model.

(⇒) Suppose that (X ,S ) is a yes-instance of X3C. Then there exists an exact cover S ′ ⊆ S of
size m. We now show that it is possible for p to become a unique iterated-plurality (respectively, plurality-
with-runoff) winner of an election obtained by shifting p in the votes without exceeding the budget. For
every Si ∈S ′, we bribe the voter with the vote of the form Si p · · · , so her new vote is of the form p Si · · · .
In the first round p, every xi ∈ X , every di, j ∈D, and every Si ∈S \S ′ is a plurality winner, so only these
candidates participate in the next round. In the second round, p receives three further points from the three
voters whose vote is w p · · · . Every candidate x j ∈ X receives two further points from the votes of the form
Si x j · · · with x j ∈ Si and Si ∈S ′. Every di, j with Si ∈S ′ and 1≤ j≤m−7 receives one additional point
from the voters with vote Si di, j · · · . It follows that p has the most points and therefore p is the unique
iterated-plurality (respectively, plurality-with-runoff) winner.

(⇐) Suppose that (X ,S ) is a no-instance of X3C. Then, for every S ′ ⊆S with |S ′|= m, there is at
least one candidate in X that is not covered and, therefore, at least one candidate in X occurring in at least
two sets from S ′. We show that it is not possible for p to become a winner of the election obtained from
the original election by bribing without exceeding the budget.

To become a winner of such a bribed election, it is necessary for p to get at least m points in the first
round. Due to the budget, it is also necessary to bribe m voters with a vote of the form Si p · · · with
Si ∈ S ′. It follows that p, each x ∈ X , each Si ∈ S \S ′, and each di, j ∈ D participate in the second
round. As mentioned above, at least one candidate in X receives at least four further points due to the
fact that S ′ is not a cover of X . Thus p does not win. That means that ((C,V ), p,B,ρ) is a no-instance
of CONSTRUCTIVE-SHIFT-BRIBERY for either of iterated plurality and plurality with runoff regardless of
the winner model.

We have the same result in the destructive case. This is the first proof where we use an NP-complete
problem other than X3C to show NP-hardness, namely ONE-IN-THREE-POSITIVE-3SAT, which was
also defined in Section 2.

Theorem 10. In both the unique-winner and the nonunique-winner model, for iterated plurality and plu-
rality with runoff, DESTRUCTIVE-SHIFT-BRIBERY is NP-hard.
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Proof. To prove NP-hardness, we reduce the NP-complete problem ONE-IN-THREE-POSITIVE-3SAT
to DESTRUCTIVE-SHIFT-BRIBERY for both voting systems. Let (X ,S) be a given ONE-IN-THREE-
POSITIVE-3SAT instance, where X = {x1, . . . ,x3m} and S = {S1, . . .S3m} with Si = {xi,1,xi,2,xi,3} ⊆ X
for each 1 ≤ i ≤ 3m. Without loss of generality, we can assume that m > 6. We construct the DESTRUC-
TIVE-SHIFT-BRIBERY instance for both voting systems as follows. Let C = {p,w,e, f}∪D∪Y ∪X with
D = {di, j | 1≤ i≤ 3m and 1≤ j ≤ 2m−1} and Y = {yi, j | 1≤ i≤ 3m and 1≤ j ≤ 4} and where p is the
designated candidate. The list V of votes is constructed as follows:

# votes for

1 p xi · · · 1≤ i≤ 3m
1 yi,1 xi,1 xi,2 w p · · · 1≤ i≤ 3m
1 yi,2 xi,2 xi,3 w p · · · 1≤ i≤ 3m
1 yi,3 xi,1 xi,3 w p · · · 1≤ i≤ 3m
4 yi,4 xi,1 xi,2 xi,3 p · · · 1≤ i≤ 3m
1 xi di, j p · · · 1≤ i≤ 3m, 1≤ j ≤ 2m−1

2m di, j p · · · 1≤ i≤ 3m, 1≤ j ≤ 2m−1
2m w p · · ·

2m−1 e p · · ·
m f p · · ·

For votes of the form p xi · · · we use the price function ρ(1) = 1 and p(t) = m+1 for all t ≥ 2. For
every other vote, we use the price function ρ(t) = m+1 for t ≥ 1. Finally, set the budget B = m.

Without bribing, the election proceeds as follows. In the first round, p scores 3m points, w and every
di, j ∈D scores 2m points, and each of the remaining candidates scores fewer than 2m points. In the second
round, p scores 18m−1 points, w scores 11m points, and every di, j scores 2m+1 points. It follows that p
is the unique winner for either of iterated plurality and plurality with runoff.

We claim that (X ,S) is in ONE-IN-THREE-POSITIVE-3SAT if and only if ((C,V ), p,B,ρ) is in DE-
STRUCTIVE-SHIFT-BRIBERY for either of the two voting systems, regardless of the winner model.

(⇒) Suppose that (X ,S) is a yes-instance of ONE-IN-THREE-POSITIVE-3SAT. Then there exists a
subset U ⊆ X such that for each clause S j we have |U ∩S j| = 1. We bribe the voters with the vote of the
form p xi · · · with xi ∈U so that the new vote has the form xi p · · · . It follows that p, w, every xi ∈U ,
and every di, j ∈ D reach the second round with 2m points each. In the second round, p gains 3m− 1
additional points while w gains 3m additional points. It follows that p is not a winner of the election, so
((C,V ), p,B,ρ) is a yes-instance of DESTRUCTIVE-SHIFT-BRIBERY for both voting systems, regardless
of the winner model.

(⇐) Suppose that (X ,S) is a no-instance of ONE-IN-THREE-POSITIVE-3SAT. We show that ((C,V ),
p,B,ρ) is also a no-instance of DESTRUCTIVE-SHIFT-BRIBERY for both voting systems. To ensure that
p is not the only plurality winner in the first round, it is necessary to bribe m voters with votes of the form
p xi · · · to now vote xi p · · · . Note that we can only bribe at most m such voters without exceeding the
budget. Let U ⊆ X be the set of candidates that benefit from the bribery action. It follows that p, every
di, j ∈ D, every xi ∈ U , and w can move forward to the next round with 2m points each. In this round,
the designated candidate p gains 3m−1 additional points from the votes of the form e p · · · and f p · · · ;
every candidate di, j with xi /∈U gains one additional point; every candidate xi ∈U can receive at most 18
additional points; and w is discussed separately in the following paragraph.
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To prevent the victory of p, it is necessary that w gains at least 3m points (since if w gains only
3m− 1 points, it follows that w and p move forward to the final round, where p would achieve a clear
victory). For w to gain at least one point from any one of the three votes of the form yi,1 xi,1 xi,2 w p · · · ,
yi,2 xi,2 xi,3 w p · · · , and yi,3 xi,1 xi,3 w p · · · , it is necessary that at most one candidate xi, j participates in
the second round. On the other hand, if no candidate xi, j participates in the second round, p gains four
points from the voters of the fifth line, whose vote is yi,4 xi,1 xi,2 xi,3 p · · · , i.e., this clause harms w. Only
a clause Si with |Si∩U | = 1 helps w to reduce the point difference to p. Since (X ,S) is a no-instance of
ONE-IN-THREE-POSITIVE-3SAT, there are at most 3m−2 clauses with this property.

With these clauses w can reduce the point difference to two. With the two remaining clauses the point
difference is growing. This implies that p is always a unique winner of the election, i.e., ((C,V ), p,B,ρ)
is a no-instance of DESTRUCTIVE-SHIFT-BRIBERY for both voting systems, regardless of the winner
model.

6. Iterated Veto and Veto with Runoff

In this section, we show hardness of shift bribery for iterated veto and veto with runoff, again handling
both voting systems simultaneously and starting with the constructive case.

Theorem 11. In both the unique-winner and the nonunique-winner model, for veto with runoff and iterated
veto, CONSTRUCTIVE-SHIFT-BRIBERY is NP-hard.

Proof. To prove NP-hardness, we reduce X3C to CONSTRUCTIVE-SHIFT-BRIBERY for veto with
runoff and iterated veto at the same time. Let (X ,S ) be a given X3C instance and construct the CON-
STRUCTIVE-SHIFT-BRIBERY instance ((C,V ), p,B,ρ) as follows. Let C = {p,d1,d2}∪X ∪S be the set
of candidates, where p is the designated candidate, and construct the voter preferences in V as follows:

# votes for

1 · · · Si p 1≤ i≤ 3m
2 · · · xi,1 Si 1≤ i≤ 3m
2 · · · xi,2 Si 1≤ i≤ 3m
2 · · · xi,3 Si 1≤ i≤ 3m

2m−6 · · · d2 Si 1≤ i≤ 3m
2m · · · xi 1≤ i≤ 3m
m · · · d2 xi d1 1≤ i≤ 3m

m+2 · · · d2 Si d1 1≤ i≤ 3m
2m · · · d2

1 · · · p d1

For votes of the form · · · Si p, we use the price function ρ(1) = 1, and ρ(t) = m+1 for all t ≥ 2; and
for every other voter, we use the price function ρ(t) = m+1 for t ≥ 1. Finally, set the budget B = m.

Note that for both voting rules, p is eliminated in the first round with 3m vetoes and therefore cannot
be the winner without bribing voters.

We claim that (X ,S ) is in X3C if and only if ((C,V ), p,B,ρ) is in CONSTRUCTIVE-SHIFT-BRIBERY

for either of iterated veto and veto with runoff, regardless of the winner model.

(⇒) Suppose that (X ,S ) is a yes-instance of X3C. Then there exists an exact cover S ′ ⊆S of size
m. Shift p one position forward in the votes of the form · · · Si p for each Si ∈S ′, so that the new vote has
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the form · · · p Si. It follows that p, each S ∈S \S ′, each xi for 1≤ i≤ 3m, and d2 are veto winners with
2m vetoes each and thus proceed to the second round. Since S ′ is an exact cover, each xi receives two
additional vetoes from the voters in lines 2–4 corresponding to the sets in the exact cover and m vetoes
from the voters in line 7. Furthermore, each S ∈S \S ′ receives m+ 2 vetoes from the voters in line 8,
whereas p receives m vetoes from the voters in line 1 and only one additional veto from the voter in the last
line. Since d2 gains far more than m+1 vetoes in this round, it follows that p is the unique veto winner of
the bribed election. Thus ((C,V ), p,B,ρ) is a yes-instance of CONSTRUCTIVE-SHIFT-BRIBERY for either
of iterated veto and veto with runoff, regardless of the winner model.

(⇐) Suppose that (X ,S ) is a no-instance of X3C. This means that for every S ′ ⊆ S , |S ′| ≤ m,
there is an x′ ∈ X that is not covered by any S ∈S ′.

To not be eliminated in the first round and to not exceed the budget of m, p has to lose exactly m vetoes
so as to tie with the 2m vetoes of the xi. This is only possible by bribing the voters in the first line. Let
S ′ ⊆ S , |S ′| = m, be the set that corresponds to the Si of the bribed voters. Candidates p and d2 as
well as each S ∈S \S ′ and each xi, 1 ≤ i ≤ 3m, reach the second round with 2m vetoes. However, in
the second round, the x′ ∈ X that was not covered by S ′ receives only m additional vetoes in contrast to
p who receives m+1 additional vetoes. It follows that p is not winning the election for either of the two
voting rules. That means that ((C,V ), p,B,ρ) is a no-instance of CONSTRUCTIVE-SHIFT-BRIBERY for
either of iterated veto and veto with runoff, regardless of the winner model.

We now turn to the destructive variant of shift bribery for iterated veto and veto with runoff.

Theorem 12. In both the unique-winner and the nonunique-winner model, for veto with runoff and iterated
veto, DESTRUCTIVE-SHIFT-BRIBERY is NP-hard.

Proof. To prove NP-hardness, we reduce the NP-complete problem ONE-IN-THREE-POSITIVE-3SAT
to DESTRUCTIVE-SHIFT-BRIBERY for veto with runoff and iterated veto simultaneously. Given an in-
stance (X ,S) of ONE-IN-THREE-POSITIVE-3SAT, where X = {x1, . . . ,x3m} and S = {S1, . . . ,S3m}, with
Si = {xi,1,xi,2,xi,3} ⊆ X for each 1 ≤ i ≤ 3m, we construct the election (C,V ) with candidate set C =
{p,w,d1,d2}∪X , designated candidate p, and the following list V of votes:

# votes for

1 · · · p xi 1≤ i≤ 3m
2 · · · p xi,1 xi,2 d1 1≤ i≤ 3m
2 · · · p xi,2 xi,3 d1 1≤ i≤ 3m
2 · · · p xi,1 xi,3 d1 1≤ i≤ 3m
7 · · · w xi,1 xi,2 xi,3 d1 1≤ i≤ 3m

2m · · · d2 xi 1≤ i≤ 3m
22m · · · d2 xi d1 1≤ i≤ 3m

2m · · · d2
m · · · p

2m · · · w
8m−1 · · · w d1

For every vote of the form · · · p xi, let the price function be ρ(1) = 1 and ρ(t) = m+1 for every t ≥ 2.
For every other vote, define ρ(t) = m+1 for every t ≥ 1. Finally, we set the budget B = m.

It is easy to see that p is the winner of this election for both voting rules.
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We claim that (X ,S) is in ONE-IN-THREE-POSITIVE-3SAT if and only if ((C,V ), p,B,ρ) is in DE-
STRUCTIVE-SHIFT-BRIBERY for either of veto with runoff and iterated veto, regardless of the winner
model.

(⇒) Assume that (X ,S) is in ONE-IN-THREE-POSITIVE-3SAT. Then there is a subset X ′ ⊆ X such
that for each clause Si we have |X ′∩Si| = 1. Bribe the voters with votes of the form · · · p xi with xi ∈ X ′

so that the new vote has the form · · · xi p. It follows that p, w, d2, and each xi ∈ X ′ have the fewest vetoes
(namely, 2m) and therefore proceed to the second round. In the second round, p receives 2m vetoes from
the votes in line 1 and for each of the 3m clauses two vetoes from the voters in lines 2–4 for a total of 8m
additional vetoes, whereas w only receives a total of 8m−1 vetoes. It follows that p is not a winner of the
election for either of the two voting rules.

(⇐) Let (X ,S) be a yes-instance of DESTRUCTIVE-SHIFT-BRIBERY for veto with runoff (respectively,
iterated veto), i.e., it is possible to bribe voters so that p does not win the election. Recall that it is only
possible to bribe voters in line 1 without ecxeeding the budget. In the first round, p receives m vetoes, i.e.,
the fewest vetoes of all candidates. Due to the votes in line 7, the only candidate capable of receiving fewer
vetoes than p or the same number of vetoes as p in the second round is w.9 However, this is only possible
if p receives at least 9m−1 additional vetoes since w has 10m−1 vetoes in the second round from the last
two lines alone. p receives 3m of these additional vetoes from line 1—after bribing voters so that p is in
the last position, or eliminating the xi in the first round—leaving a gap of 6m−1 vetoes. For each clause
S j such that no xi ∈ S j is present in the second round, p receives six additional vetoes (lines 2–4), whereas
w receives in this case seven additional vetoes from the voters in line 5, i.e., this widens the gap between p
and w instead of closing it. That means that for each clause S j, there has to be at least one xi ∈ S j present
in the second round, i.e., for each clause S j, a voter with a vote of the form · · · p xi with xi ∈ S j needs to
be bribed to cast a vote of the form · · · xi p to bring the respective vetoes down to 2m, the same as, e.g.,
d2. However, if at least two literals, say xi and xk, in a clause S j are present in the second round, p receives
no additional veto, which does not help to close the gap between p and w. The only possibility remaining
for p not to be a winner of the bribed election is that the bribed voters correspond to the variables set to
true in an assignment where in each clause there is exactly one literal true, i.e., we have a yes-instance of
ONE-IN-THREE-POSITIVE-3SAT.

7. Using the Nonmonotonicity Property

Informally stated, a voting rule is said to be monotonic if winners can never be turned into nonwinners by
improving their position in some votes, everything else remaining the same.10 Intuitively, that is to say that
only shifting a candidate forward (closer to the top) is beneficial, whereas shifting a candidate backward
(closer to the bottom) is not. In shift bribery under some monotonic voting rule, it thus makes only sense
for the briber to shift the designated candidate forward in the constructive case (respectively, backward in
the destructive case). However, all voting rules considered here except iterated plurality and iterated veto
are not monotonic, and in nonmonotonic voting rules, shifting the designated candidate backward in the
constructive case (respectively, forward in the destructive case) could also be beneficial for the briber.

It would therefore be interesting to find out whether the complexity of our problems changes when the
nonmonotonicity of voting rules is specifically allowed, or even required, to be exploited in shift bribery

9. Note that d1 will definitely be eliminated in the first round.
10. This definition captures just one common notion of monotonicity, the one we will be using here; but note that there are also

other notions of monotonicity for voting rules known in social choice theory.
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actions. Indeed, with slight modifications to the proofs, we can show that Hare-CONSTRUCTIVE-SHIFT-
BRIBERY and plurality-with-runoff-CONSTRUCTIVE-SHIFT-BRIBERY are still NP-hard if the designated
candidate can only be shifted backward. We conjecture that all other proofs (except the proofs for the
monotonic voting rules iterated plurality and iterated veto) can be adapted in such a way as well.

We start with constructive shift bribery in Hare elections where the only allowed bribery action is to
shift the designated candidate backward.

Theorem 13. In both the unique-winner and the nonunique-winner model, Hare-CONSTRUCTIVE-SHIFT-
BRIBERY is NP-hard even if the designated candidate can only be shifted backward.

Proof. NP-hardness again follows by a reduction from X3C. Construct from a given X3C instance
(X ,S ) an instance ((C,V ), p,B,ρ) of Hare-CONSTRUCTIVE-SHIFT-BRIBERY with candidate set C =
X∪S ∪D∪{p,w}, where D= {d1, . . . ,d3m} is a set of dummy candidates and p the designated candidate,
and the following list V of votes:

# vote for

1 Si xi,1
−−−−−→
X \{xi,1} w p · · · 1≤ i≤ 3m

1 Si xi,2
−−−−−→
X \{xi,2} w p · · · 1≤ i≤ 3m

1 Si xi,3
−−−−−→
X \{xi,3} w p · · · 1≤ i≤ 3m

4 xi
−−−−→
X \{xi} w p · · · 1≤ i≤ 3m

6 w
−→
X p · · ·

1 p Si · · · 1≤ i≤ 3m

6 p · · ·
3 di Si p w · · · 1≤ i≤ 3m

For votes of the form p Si · · · , we use the price function ρ(1) = 1, and ρ(t) = m+1 for all t ≥ 2; and
for every other vote, we use the price function ρ with ρ(t) = m+ 1 for all t ≥ 1. Finally, set the budget
B = m.

Without bribing the voters the election proceeds as follows:

Round p w x1 xi ∈ X \{x1} Si ∈S di ∈ D

1 3m+6 6 4 4 3 3
2 12m+6 6 7 7 out out
3 12m+6 out 13 7 out out
4 12m+6 out 21m+6 out out out

It follows that p is eliminated in the last round and does not win the election.
We claim that (X ,S ) is in X3C if and only if ((C,V ), p,B,ρ) is in Hare-CONSTRUCTIVE-SHIFT-

BRIBERY, regardless of the winner model, even if the designated candidate can only be shifted backward.
(⇒) Suppose that (X ,S ) is a yes-instance of X3C. Then there exists an exact cover S ′ ⊆S of size

m. We now show that it is possible for p to become a unique Hare winner of an election obtained by
shifting p in the votes without exceeding the budget B. For every Si ∈S ′, we bribe the voter with the vote
of the form p Si · · · by shifting p once, so her new vote is of the form Si p · · · ; each such bribe action costs
us only 1 from our budget, so the budget will not be exceeded. Now the election proceeds as follows:
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Round p w xi ∈ X Si ∈S ′ Si ∈S \S ′ di ∈ D

1 2m+6 6 4 4 3 3
2 8m+6 6 6 7 out out
3 26m+12 out out 7 out out

We see that p is the only candidate still standing in the fourth round and thus the only Hare winner of
the bribed election.

(⇐) Suppose that (X ,S ) is a no-instance of X3C. Then no subset S ′ ⊆S with |S ′| ≤ m covers X .
We now show that p will be eliminated in all elections obtained by bribing voters without exceeding
budget B. Note that we can only bribe at most m voters with votes of the form p Si · · · without exceeding
the budget. Let S ′ ⊆S be such that for every Si ∈S ′ we have bribed the voter whose vote is p Si · · · .
We can assume that |S ′|> 0.

Every candidate in S ′ will gain an additional point and therefore survives the first round. All candi-
dates from D and S \S ′ will be eliminated, since p only loses at most m points.

In the second round, the remaining candidates from S will gain three additional points from the
elimination of candidates in D and score seven points in this round (and in all subsequent rounds with p still
standing). If a candidate Si ∈S was eliminated in the previous round, every x j ∈ Si gains one additional
point in this round. Partition X into sets X0, X1, X2, and X3 so that xi ∈ Xk⇔ |{S j ∈S ′ | xi ∈ S j}|= k for
k ∈ {0,1,2,3}. Note that X0, X1, X2, and X3 are disjoint and |X0|> 0, but one or two of X1, X2, and X3 may
be empty. Then xi ∈ X j scores 4+(3− j) ∈ {4,5,6,7} points depending on how many times xi is covered
by S ′. Therefore, every xi ∈ X0 scores more points than w who has six points. So, there are candidates
from X that survive this round and other candidates from X (i.e., candidates from X1, X2, or X3), who are
eliminated.

In the third round, the candidate x` ∈ X with the smallest subscript who is still standing gains at least
four points from the eliminated candidates, so that she scores at least nine points now (since no candidates
from X3 are left in the election). All other candidates still score the same number of points as in the previous
round. Therefore, p scores 4|S \S ′|+6 points, w scores six points (if w was not already eliminated along
with the candidates from X1), every Si ∈S ′ scores seven points, and every still standing candidate from
X except x` scores at most seven points. Since w can only gain additional points when all candidates from
X are eliminated and only x` gains points from the elimination of w or candidates from X \ {x`} in the
subsequent rounds, all candidates X \ ({x`}∪X0) and w are eliminated. Then all still standing candidates
from X0 \{x`} and candidates from S ′ who score seven points each are eliminated, which leaves p and x`
in the last round. In this round, p scores 12m+6 points and x` scores 21m+ 6 points, so p is eliminated
from the election and does not win.

Next, we show the corresponding result for plurality with runoff.

Theorem 14. In both the unique-winner and the nonunique-winner model, plurality-with-runoff-CON-
STRUCTIVE-SHIFT-BRIBERY is NP-hard even if the designated candidate can only be shifted backward.

Proof. To prove NP-hardness, we reduce X3C to CONSTRUCTIVE-SHIFT-BRIBERY for plurality with
runoff. Let (X ,S ) be a given X3C instance, where X = {x1, . . . ,x3m} and S = {S1, . . . ,S3m}. Also,
we require that m > 3. We construct the CONSTRUCTIVE-SHIFT-BRIBERY instance ((C,V ), p,B,ρ) as
follows. Let C = {p}∪X ∪S ∪D∪Y with sets of dummy candidates D = {di, j | 1≤ i≤ 3m and 1≤ j ≤
2m2−5m−4} and Y = {yi | 1≤ i≤ 3m+1} and designated candidate p. The list V of votes is constructed
as follows:
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# vote for

1 p Si · · · 1≤ i≤ 3m
2 Si xi,1 w

−−−−−→
X \{xi,1}· · · 1≤ i≤ 3m

2 Si xi,2 w
−−−−−→
X \{xi,2}· · · 1≤ i≤ 3m

2 Si xi,3 w
−−−−−→
X \{xi,3} · · · 1≤ i≤ 3m

3m w p · · ·
1 yi p 1≤ i≤ 3m+1

m−3 Si w p 1≤ i≤ 3m
m−4 Si p w 1≤ i≤ 3m

2m xi w p 1≤ i≤ 3m
1 di, j xi w p · · · 1≤ i≤ 3m, 1≤ j ≤ 2m2−5m−4

For votes of the form p Si · · · , we use the price function ρ(1) = 1, and ρ(t) = m+1 for all t ≥ 2; and
for every other vote, we use the price function ρ(t) = m+1 for t ≥ 1. Finally, set the budget B = m.

Without bribing, only p and w reach the second and final round with 3m points each. Clearly, w alone
wins the election with only p and w present.

We claim that (X ,S ) is in X3C if and only if ((C,V ), p,B,ρ) is in CONSTRUCTIVE-SHIFT-BRIBERY

for plurality with runoff, regardless of the winner model.

(⇒) Suppose that (X ,S ) is a yes-instance of X3C. Then there exists an exact cover S ′ ⊆ S of
size m. We now show that it is possible for p to become a unique plurality-with-runoff winner of an
election obtained by shifting p in the votes without exceeding the budget. For every Si ∈S ′, we bribe the
voter with the vote of the form p Si · · · once, so her new vote is of the form Si p · · · .

In the first round, w scores 3m points; p, every xi ∈ X , and every Si ∈S ′ score 2m points each; every
Si ∈S \S ′ scores 2m−1 points; and every candidate from D and Y scores only one point. Since w is the
only plurality winner, all second-place candidates (namely, p, every xi ∈ X , and every Si ∈S ′) proceed to
the second round.

In the second round, every Si ∈ S ′ still scores the same number of points as in the first round, w
gains 2m(m−3) additional points, p gains (3m+1)+2m(m−4) additional points, and every xi ∈ X gains
(2m2−5m−4)+4 additional points. Therefore, p alone wins the election with 2m2−3m+1 points, ahead
of w and every xi ∈ X with 2m2−3m points each, and every Si ∈S ′ with 2m points each.

(⇐) Suppose that ((C,V ), p,B,ρ) is a yes-instance of Plurality-with-runoff-CONSTRUCTIVE-SHIFT-
BRIBERY. Notice that if no voters are bribed, p and w are leading in the election with 3m points each,
so they both proceed to the final round. It is easy to see that w wins against p in a one-on-one election.
To prevent w and p from being the only candidates in the second round, m voters with votes of the form
p Si · · · have to be bribed. Let S ′ ⊆ S be such that Si ∈ S ′ if the voter with vote p Si · · · has been
bribed. Then w, p, every xi ∈ X , and every Si ∈S ′ survive the first round. Since every other candidate
is deleted in the first round, p now scores 2m2− 5m+ 1 points and beats w by a margin of one point.
Moreover, p beats every Si ∈S ′ since the candidates from S ′ did not gain any additional points in this
round. Regarding the candidates from X , every xi ∈ X gains 2m2−5m−4 points and two additional points
for every S j ∈ S \S ′ with xi ∈ S j that was eliminated in the first round. Since there are exactly three
S j ∈S with xi ∈ S j, every xi ∈ X can gain six points if all those candidates were eliminated in the last
round, which would let xi overtake p by one point. In order for p to beat all xi ∈ X , at least one S j ∈S
with xi ∈ S j needs to be in S ′ and is therefore still standing in the second round. Since |S ′|= m and there
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are 3m candidates in X , p can beat every xi ∈ X (and subsequently win the election) only if S ′ is an exact
cover of X .

8. Conclusions and Open Questions

We have shown that shift bribery is NP-complete for each of the iterative voting systems of Hare, Coombs,
Baldwin, Nanson, iterated plurality, plurality with runoff, iterated veto, and veto with runoff, each for both
the constructive and the destructive case and in both the unique-winner and the nonunique-winner model.
This contrasts previous results due to Elkind et al. (2009), Elkind and Faliszewski (2010), and Schlotter
et al. (2017) showing that shift bribery can be solved efficiently by exact or approximation algorithms for
many natural voting rules that do not proceed iteratively. Indeed, the iterative nature of the voting rules we
have studied seems to be responsible for the hardness of shift bribery.

While these are interesting theoretical results complementing earlier work both on shift bribery and
on these voting systems, NP-hardness of course has its limitations in terms of providing protection against
shift bribery attacks in practice. Therefore, it would be interesting to also study shift bribery for these
voting systems in terms of approximation and parameterized complexity and to do a typical-case analy-
sis. Based on our results in this article, Zhou and Guo (2020) already obtained first results regarding the
parameterized complexity of iterative voting systems with respect to a fixed number of shifts, votes, or
candidates. Further, they have shown that the hardness of shift bribery for the Hare, Coombs, Baldwin,
and Nanson rules also holds for unit price cost functions. It would be particularly interesting to deter-
mine the role of the cost function for the hardness of shift bribery. Furthermore, it would be interesting
future work to study in detail the effect that specific tie-breaking models (such as the “parallel universes”
model (Conitzer, Rognlie, & Xia, 2009) and other models) may have on the complexity of shift bribery
problems for iterative voting rules.

A feature shared by most of the iterative voting rules we have studied is that many of them are not
monotonic. This has the somewhat counterintuitive effect that shifting the designated candidate forward in
some votes can actually hurt this candidate’s chances to win, and shifting the designated candidate back-
ward can increase these chances. We have discussed this feature in Section 7, showing that constructive
shift bribery remains NP-hard even if we are allowed to only shift the designated candidate backward in
some votes for two iterative voting systems: Hare voting and plurality with runoff. We leave the analogous
question open for the remaining iterative voting systems studied here (except, of course, for the monotonic
rules iterated plurality and iterated veto), and conjecture that they share this property. Even more interest-
ingly, we pose as an open question whether there is a nonmonotonic voting system—a natural one or an
artificially constructed one—for which unrestricted shift bribery is NP-hard but becomes efficiently solv-
able when restricted to shift bribery actions specifically exploiting their nonmonotonicity (i.e., allowing to
shift the designated candidate only backward in the constructive case, or forward in the destructive case).
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Chapter 5

Manipulation of Opinion Polls to Influence Iterative
Elections

This chapter deals with the complexity of manipulation of opinion polls by a polling agency
in the context of iterative elections. See Section 2.2.4 for a short overview on iterative
elections and opinion polls. The corresponding publication (Baumeister et al., 2020b) is as
follows.

Baumeister, D., Selker, A.-K., and Wilczynski, A. (2020b). Manipulation of opinion polls
to influence iterative elections. In Proceedings of the 19th International Conference on

Autonomous Agents and Multiagent Systems, pages 132–140. IFAAMAS

Note that a version including the omitted proofs was published in the non-archival pro-
ceedings of COMSOC’21 (Baumeister et al., 2021b).

Summary

In iterative elections, voters repeatedly update their ballots to achieve a better outcome
for them. In the model we use, the necessary information to compute a best response
stems from an underlying social network where voters can see the ballots (and updates)
of their neighbors, and from an opinion poll announced by a polling agency. Following
the work by Wilczynski (2019), we study the manipulative power of the polling agency in
iterative elections. First, we introduce a best-response variant for the voting rule veto that
significantly differs from the already known best-response definition for plurality. This
is due to the fact that under veto, changing who to veto might directly benefit a voter’s
most despised candidate since that candidate loses a veto from this voter. Second, as
an addition to the already known poll manipulation problem without a parameter, we
introduce two distance-restricted variants of poll manipulation, i.e., a poll-restricted variant
that includes an upper bound on the distance between the sincere and the manipulated poll,
and a voter-restricted variant where voters do not vote for candidates that need more than
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a given maximum number of swaps in their preferences to become their most preferred
candidates for plurality (respectively, their most despised candidate for veto). Third, we
consider destructive manipulation in the context of poll manipulation.

To this end, we study the (parameterized) computational complexity of all three problem
variants, for constructive and destructive manipulation, and for the voting rules plurality
and veto, among others parameterized by the length of the longest path in the social
network and by the allowed deviation distance. We show that all problems are NP-hard
even in an acyclic social network, and for the constructive poll-restricted poll manipulation
under plurality even when the social network does not contain any edges. Manipulation
under veto is tractable for all considered problem variants, whereas for plurality we are
only able to prove tractability in the destructive case and only for the unrestricted and the
poll-restricted variant. The other three cases remain open.

Furthermore, we design efficient heuristics to compare both voting rules and come to the
conclusion that—in our setting—manipulation is more successful under the veto rule and
that destructive manipulation is more successful than constructive manipulation.

My Contribution

The writing of the attached article was done jointly with my coauthors. I defined the
poll-restricted and voter-restricted problem variants and contributed the complete results
in Section 3, Theorem 4.1, and Proposition 4.2.
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ABSTRACT
In classical elections, voters only submit their ballot once, whereas
in iterative voting, the ballots may be changed iteratively. Following
the work by Wilczynski [20], we consider the case where a social
network represents an underlying structure between the voters,
meaning that each voter can see her neighbors’ ballots. In addition,
there is a polling agency, which publicly announces the result for
the initial vote. This paper investigates the manipulative power of
the polling agency. Previously, Wilczynski [20] studied constructive
manipulation for the plurality rule. We introduce destructive ma-
nipulation and extend the study to the veto rule. Several restricted
variants are considered with respect to their parameterized com-
plexity. The theoretical results are complemented by experiments
using different heuristics.
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1 INTRODUCTION
In the field of computational social choice there have been a lot of
studies on elections, see the book by Brandt et al. [2]. The usual
assumption is that voters once submit their ballot and then the
winner is determined. This assumption completely neglects the
reasoning about how the voters come to their individual decision.
Especially in the ages of digital democracy, opinion polls may be
executed efficiently and also repeatedly, which may lead the vot-
ers to strategically think about their ballot. We focus on iterative
elections where voters can update (i.e., manipulate) their ballots.
Following the seminal paper by Bartholdi III et al. [1], the issue of
manipulation through strategic voting has been studied intensively
in the computational social choice context. The most common, but
often criticized, assumption is that the manipulator has complete
knowledge over all ballots. There are different approaches to tackle
this issue, for example the study of incomplete information settings
like the possible winner problem introduced by Konczak and Lang
[8]. However, we assume that voters only have partial knowledge
about the other ballots. They have two sources of information. The
first one is the result of some opinion poll, while the second one is
the information they get from their neighbors in a social network.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

We then assume that every voter can update her ballot with respect
to this information. In this process, the opinion poll is critical, and
hence the polling agency has a lot of power. In this paper, we inves-
tigate the manipulative power of the polling agency with respect to
different situations. In contrast to the manipulation by the voters,
it is reasonable to assume complete information for the polling
agency, since it collects the votes.

Wilczynski [20] recently introduced the problem of constructive
manipulation, where the polling agency tries to make some distin-
guished candidate win by announcing some strategic opinion poll.
The only condition the opinion poll has to satisfy is that no voter
may directly detect the manipulation since the poll contradicts
with her actual information. Formally this is modeled through a
likelihood condition. The influence of opinion polls on the behavior
of voters has also been studied by Reijngoud and Endriss [16] and
Endriss et al. [3]. Their focus is on the strategic response of voters to
different types of information communicated by the opinion polls,
without an underlying social network, whereas we focus on the
manipulative actions of the opinion poll itself. Our work analyzes
poll manipulation in the setting of iterative voting, a widely studied
topic in social choice (see Meir [10] for a recent survey), where
voters can successively change their ballot in a strategic way. In
this context, Sina et al. [18] have previously investigated election
control in the presence of a social network. However, they focus
on manipulation by an external agent who can add or remove links
in the social network whereas we study manipulation of the initial
scores communicated by the polling agency.

Recently, many works have investigated voting where voters
are embedded in a social network. Tsang and Larson [19] analyze
the consequences, in the strategic behavior of voters, of inferring
the outcome of the election from the votes of neighbors in a so-
cial network. Alternatively, Gourvès et al. [7] study how voters
can manipulate by coalitions which come from a social network
structure. However, both works do not consider election control
questions. Our work is also related to the study of opinion diffusion
in graphs. Faliszewski et al. [4] study the effects of campaigning
for manipulating election outcomes in an opinion diffusion process
with voter clusters. In a similar context, Wilder and Vorobeychik
[21, 22] investigate the game-theoretic properties of a game where
an attacker tries to influence the election outcome by diffusing fake
news in a social network and a defender aims to limit their impact.

We extend the study byWilczynski [20] in several different ways.
First, the current results are restricted to the use of the plurality
rule, and we will also consider the veto rule. Although the rules are
very similar, the results differ for restricted cases. Second, we intro-
duce a destructive variant, where the opinion poll aims to prevent
the victory of some designated candidate by announcing a strate-
gic poll. Third, we analyze this problem for different parameters



and with respect to various distance restrictions. This is particu-
larly important when considering real-world problems. Usually,
the voters have some rough idea about how the opinion poll will
look like, so the announcement should not deviate too much from
the original outcome. We show that the corresponding decision
problems are NP-hard for acyclic networks under both plurality
and veto, and in P for empty networks under veto, whereas under
plurality, the exact complexity for empty networks depends on the
restriction model. Furthermore, we prove that all decision problems
are tractable for a small number of candidates. Additionally, we
design efficient heuristics for the manipulation of both voting rules
and compare the manipulation results in our experimental section.

2 POLL-CONFIDENT ITERATIVE MODEL
We first describe the poll-confident iterative voting model.

2.1 Basic notations
Let N = {1, . . . ,n} be a set of n agents (or voters) and M =

{x1, . . . ,xm } a set of m candidates. Each voter i has strict ordi-
nal preferences over the candidates, represented by a linear order
≻i over M . The preference profile is denoted by ≻= (≻1, . . . ,≻n ).
Let −→M (respectively,←−M) be a shorthand for x1 ≻ · · · ≻ xm (respec-
tively, xm ≻ · · · ≻ x1), and let Nx ≻y denote the set of voters who
prefer candidate x to candidate y, i.e., Nx ≻y = {i ∈ N : x ≻i y}.
The winner of the election is determined by a voting rule F . We fo-
cus on single-winner elections and use a deterministic tie-breaking
rule based on a linear order ▷ over the candidates, in case of ties.

In this article, we focus on two voting rules, namely plurality,
denoted by FP , and veto, denoted by FV . Under both voting rules,
each voter i is asked to submit a ballot bi ∈ M corresponding to a
single candidate, i.e., voter i approves candidate bi under plural-
ity, whereas voter i vetoes candidate bi under veto. A profile of
ballots is said to be truthful if each agent submits as a ballot her
most preferred candidate under plurality and her least preferred
candidate under veto. Given a profile of ballots b ∈ Mn , the score
sb(x) of each candidate x is computed as follows: sb(x) = |{i ∈
N : bi = x}|. Then the winner under plurality FP (b) maximizes
the number of approvals, i.e., FP (b) ∈ argmaxx ∈M sb(x), whereas
the winner under veto FV (b) minimizes the number of vetoes, i.e.,
FV (b) ∈ argminx ∈M sb(x). For the sake of simplicity, we may use
F (s) to denote the winner of a profile of ballots whose score func-
tion corresponds to s.

We consider a strategic game called iterative voting [10] where,
starting from an initial voting profile, agents can successively de-
viate from their current submitted ballot in order to get a better
outcome at the next election. The strategy profile at step t is de-
noted by bt . We assume that the initial profile b0 is truthful, indeed
the agents do not have any information to enable them to deviate
yet. A single voter is assumed to deviate between two consecutive
steps. In case of several voters having incentive to deviate at the
same step, one of them is arbitrarily chosen, unless a particular
turn function τ is specified for choosing the deviator. Note that the
choice of the turn function might influence the election outcome.

In the classical iterative voting setting, there is common knowl-
edge of the current strategy profile (or at least the associated scores).
For realistic reasons we consider, following Wilczynski [20], that

the voters only get partial information about the current strategy
profile which is determined by a social network and an opinion
poll and thus which can be biased. More precisely, we assume
that the agents are embedded in a social network represented by
a directed graph G = (N ,E) such that for each arc (i, j) ∈ E,
agent i is able to observe the current ballot of agent j. The so-
cial network is said to be empty if E = ∅ and acyclic if there is
no directed cycle in G. The set of agents that a given agent i can
observe is denoted by Γ(i) := {j ∈ N : (i, j) ∈ E} ∪ {i}. For a
voting profile b, the score of candidate x that agent i is able to
observe is denoted by sib(x) = |{j ∈ Γ(i) : bj = x}|. Moreover,
as a prior information, the agents know the scores of the initial
profile, given by a polling agency, through the vector of scores
∆ = (∆1, . . . ,∆m ) where ∆j stands for the score of candidate x j
which is announced by the polling agency. By abuse of notation,
we may also use ∆(x) for the announced score of candidate x . To
summarize, an instance of the poll-confident iterative voting model
is a tuple I = (N ,M,≻,G,▷,τ ).

2.2 Manipulation by voters
The manipulation moves of voters are conditioned by the infor-
mation they get, which is determined by the deviations that they
are able to observe. Each agent i has a specific belief regarding the
scores of the strategy profile at step t which is given by a believed
score vector Bti = (Bti (x1), . . . ,Bti (xm )). The voters trust the results
communicated by the polling agency, and thus B0i = ∆ for every
agent i ∈ N . The believed score vector for both the plurality and
veto rules is updated at each step as follows.

Definition 2.1 (Score Belief Update). At step t + 1, after the devi-
ation of an agent j from ballot btj = x to ballot bt+1j = y at step t ,
the score of candidate z that agent i believes is given by

Bt+1i (z) =


Bti (z) − 1 if z = x and j ∈ Γ(i)
Bti (z) + 1 if z = y and j ∈ Γ(i)
Bti (z) otherwise

According to the belief of agent i , the current believed winner at
step t is candidate F (Bti ). We assume that the voters only deviate
when they believe that they are pivotal, i.e., they believe that their
deviation changes the winner of the election.1 In such a context,
identifying the potential winners which are the candidates that an
agent can make win is essential. However, this mainly depends on
the belief of the agents.

Definition 2.2 (Potential winner). A candidate x is a potential
winner for agent i at step t , i.e., x ∈ PW t

i , if, without considering
the current ballot bti of agent i , agent i believes that one more vote
in favor of x under plurality or one more veto against another
candidate under veto, will make candidate x the new winner.

Observe that the two voting rules under consideration are not
symmetric with respect to the set of potential winners. Under plu-
rality, for a given agent, there may be several potential winners
other than the current believed winner and it seems rational that
1Introducing thresholds to relax the assumption of strict pivot, in the spirit of the
works of Meir et al. [11], Obraztsova et al. [14] or Wilczynski [20], also makes sense.
We do not make such an assumption for the sake of simplicity and to especially focus
on the impact of the social environment of the agents (social network, opinion poll).



the agent will choose to favor the candidate that she prefers. In
contrast, under veto, vetoing candidates other than the current
believed winner would not produce any direct change according to
the belief of an agent. Therefore, there is only one potential winner
other than the believed winner, i.e., the one which becomes the
new winner after one more veto for the current believed winner.
This difference strongly conditions the dynamics of deviations that
we consider for each voting rule. While best response deviations
are considered under plurality, deviations consisting of vetoing the
current believed winner are considered under veto.

Definition 2.3 (Best response deviation (plurality)). A voter i de-
viates from ballot bti to ballot bt+1i := y at step t following a best
response if y ∈ PW t

i \ {FP (Bti )} and y ≻i z for any z ∈ PW t
i \ {y}.

Definition 2.4 (Veto-winner deviation (veto)). A voter i deviates
from ballot bti to ballot bt+1i at step t following a veto-winner
deviation if bt+1i = FV (Bti ) and FV (Bt+1i ) ≻i FV (Bti ).

Both best response and veto-winner dynamics are proved to
converge under plurality and veto, respectively, when the social
network is complete, i.e., the scores of the current strategy profile
are common knowledge [9, 12, 17]. Moreover, convergence is also
satisfied when the social network is acyclic or transitive [20].

When the dynamics converges, it reaches a stable state where
no voter has an incentive to deviate according to her belief. In this
article, we are interested in the identity of the iterative winner, i.e.,
the winner of the stable state reached by the dynamics. We aim to
analyze how the polling agency can influence the outcome of the
dynamics by manipulating the scores of the initial poll which is
communicated to the voters.

2.3 Manipulation by the polling agency
In order for the polling agency not to be detected manipulating
the initial poll, it is important that the manipulated poll meets the
following criterion, first introduced by Wilczynski [20].

Definition 2.5 (Likelihood condition). A polling vector ∆ is plau-
sible if n =

∑m
j=1 ∆j and it gives for each candidate at least the

highest score that an agent can observe, i.e., ∆j ≥ maxi ∈N sib0 (x j ).
Note that checking whether a poll satisfies the likelihood condi-

tion is possible in polynomial time.
In this paper, we will study whether the polling agency is able

to influence the outcome of the iterative election via the following
decision problem for voting rule F ∈ {plurality, veto}.
F -{Constructive / Destructive}-Election-Enforcing:
Instance: Instance (N ,M,≻,G,▷,τ ), target candidate p.
Question: Can the polling agency announce a plausible poll ∆ so
that p {is / is not} the iterative winner?
In reality, the likelihood condition as shown in Definition 2.5

might be too weak and give the polling agency too much power.
Especially in cases where some organizations keep an eye on the
polling agency or where there have been recent election results, the
polling agency should not announce a poll that extremely differs
from the correct poll. The motivation is similar to the one presented
by Obraztsova and Elkind [13] for optimal manipulation in voting.
They propose to bound the manipulative action by some distance,
which makes manipulation possibly harder to detect in real-world

instances. Therefore, we introduce the following distance-restricted
problems, where the Manhattan distance between twom-vectors ∆
and ∆′ is defined as dist(∆,∆′) = ∑m

i=1 |∆i − ∆′i |.
F -Poll-Restricted-{Constr. / Destr.}-Election-Enforcing:
Instance: (N ,M,≻,G,▷,τ ), target candidate p, distance d .
Question: Can the polling agency announce a plausible poll ∆ so
that p {is / is not} the iterative winner and dist(∆, s(b0)) ≤ d?

Example 2.6. Let us consider an instance with 6 voters and 4
candidates whereG = (N , {(1, 2), (3, 4)}) and x3 ▷x2 ▷x1 ▷x4. The
preferences are as follows.

1, 2, 3 : x1 ≻ x2 ≻ x3 ≻ x4
4 : x3 ≻ x1 ≻ x4 ≻ x2

5, 6 : x1 ≻ x4 ≻ x2 ≻ x3
Under veto, the truthful winner is x1. If ∆ = s(b0), there is no

deviation: x1 is the top candidate of all voters except voter 4, but she
cannot deviate, otherwise her worst candidate x2 will be elected.
Suppose that the polling agency aims to avoid the election of x1.
By the likelihood condition, it must hold that ∆(x2) ≥ 1, ∆(x3) ≥ 1
and ∆(x4) ≥ 2. If ∆ = (0, 3, 1, 2), then voter 4 believes that x1 is the
winner and x3 a potential winner. She thinks that she can safely
deviate without making x2 elected, so she deviates for vetoing x1
and makes x2 the new winner. Voter 3 observes this deviation and
then deviates to veto x3 that she believes to be the winner. However,
x2 remains the real iterative winner. This is the only successful poll
manipulation, thus if the distance to the truthful scores is limited
to less than 4, there is no poll-restricted manipulation.

Voters and their current votes are visible for their neighbors.
Especially when candidates can be positioned on a spectrum, voters
might be inclined to vote for candidates that do not clash with their
preference order, either for ideological reasons or because they are
worried about what their friends might think of them. Therefore,
we introduce the following problem, where the distance between a
ballot submitted by agent i approving (resp., vetoing) candidate x
under FP (resp., FV ) and her truthful ballot is given by the number
of swaps between two consecutive candidates in ranking ≻i that
are necessary to put x at the top (resp., bottom) of ≻i .
F -Voter-Restricted-{Constr./Destr.}-Election-Enforcing:
Instance: (N ,M,≻,G,▷,τ ), target candidate p, distance d .
Question: Can the polling agency announce a plausible poll ∆
so that p {is / is not} the iterative winner when voters can only
submit a ballot at distance at most d from their truthful ballot?
We assume our reader to be familiar with the complexity classes

P, NP, para-NP, FPT, and the W-hierarchy, as well as the concepts
of polynomial-time many-one reducibility and fpt-reducibility (see,
e.g., Papadimitriou [15] and Flum and Grohe [5]).

The winner determination for the considered iterative elections
might exceed polynomial time, even for converging elections and
acyclic networks. However, for each of the constructed instances in
our hardness proofs, the winner determination is possible in poly-
nomial time, therefore proving the intractability of the problems
does not depend on the complexity of the winner determination.

3 MANIPULATING POLL PLURALITY SCORES
In this section, we investigate the election enforcing problem under
the plurality rule and best response dynamics. It turns out that



most of the variants of the problem are intractable, except when
the number of candidates is relatively small.

All hardness results in this section hold even when the social
network is acyclic and the turn function is constructed so that
each voter changes her vote at most once. We use the follow-
ing NP-complete decision problem to prove our first result. Hit-
ting Set asks—given a universe X = {x1, . . . ,xm }, a collection
S = {S1, . . . , Sn } of subsets over X , and a nonnegative integer k—
whether there exists a hitting set of size k , i.e., a setX ′ ⊆ X of size k
such that S ∩ X ′ , ∅ for all S ∈ S. Note that Hitting Set is also
W[2]-complete when parameterized by the size of the hitting set k .

Theorem 3.1. FP -Destr.-Election-Enforcing is NP-hard.

Sketch of proof. Let (X ,S,k) be an instance of Hitting Set
where X = {x1, . . . ,xm } and S = {S1, . . . , Sn }. Without loss of
generality, we assume that k > 3. Construct an instance of FP -
Destructive-Election-Enforcing as follows:

Let X ∪ Y ∪ {p, z} be the set of candidates, where p is the target
candidate and Y = {y0,y1, . . .ym }. The table below shows the
preferences of the voters, partitioned into parts A to F .
Part Name Preference for
A a1 : y0 ≻ p ≻ ←−X ≻ · · · ≻ z

a2 : y0 ≻ z ≻ −→X ≻ · · · ≻ p

a3 : y0 ≻ p ≻ z ≻ −→X ≻ . . .
a4 : p ≻ z ≻ −→X ≻ . . .

B bi : yi ≻ xi ≻ z ≻ p ≻ −−−−−−−→X \ {xi } ≻ . . . 1 ≤ i ≤ m
C c j p ≻ z ≻ −→X ≻ . . . 1 ≤ j ≤ n

D dj : z ≻ p ≻ −→X ≻ . . . 1 ≤ j ≤ n

E ej : p ≻ z ≻ −→X ≻ . . . 1 ≤ j ≤ k

F fi, j : xi ≻ z ≻ p ≻ −−−−−−−→X \ {xi } ≻ . . . 1 ≤ i ≤ m, 1 ≤ j ≤ n

The complete set of arcs in the social network is as follows. There
is an arc from a2 and a3 to a1, and an arc from each voter in B to a2,
a3, and a4. Each voter c j in C sees the voters in B corresponding to
the variables in Sj , and additionally has an arc to a2. All voters in
D see each voter in B and additionally the voter a3. The voters in
E each have arcs to each voter in B, C , and D, and additionally see
the voters a2 and a3. Finally, each voter fi, j has an edge to a1, a2,
and a3, and each voter fi,n has arcs to the voters fi,1 to fi,n−1.

We base the turn function on the order −→A > −→B > −→C > −→D >−→
E >
−→
F and use the order z ▷ p ▷ −→X ▷ . . . for tie-breaking.

The following table shows the correct initial poll ∆ the polling
agency should announce (line 1), and the minimum number of
points the polling agency has to give each candidate in a manipu-
lated poll due to the likelihood condition in Definition 2.5 (line 2).
All in all, the polling agency has a contingent of (only) k points.

p z x ∈ X ′ x ∈ X \ X ′ y ∈ Y
∆ n + k + 1 n n n 3/1
min n + 1 n n n 3/1
∆′ n + 1 n n + 1 n 3/1
final n + 1 n + k + 1 n + 1 n 2/≤ 1
We claim that there is a hitting set of size k , i.e., a set X ′ ⊆ X of

size k so that X ′ ∩ S , ∅ for each S ∈ S, iff the polling agency can
publish a plausible ∆′ that results in p not winning the election.
(⇒) Suppose (X ,S) is a yes-instance of Hitting Set and let

X ′ be a hitting set of size k . The polling agency can publish the
manipulated initial poll ∆′ as described in the table.

The election then proceeds as follows. Voter a2 changes her
ballot to z, whereas the remaining voters in A cannot achieve a
better outcome than the current winner p. The voters in B observe
the change from a2 to z and are now convinced that z is winning
due to tie-breaking. The k voters corresponding to an xi ∈ X ′
change their ballot to xi to give the respective xi the missing point
to win, whereas the otherm − k voters in B do not think they can
change the outcome to their advantage. The voters in C observe
the changes in A and B and—since X ′ is a hitting set—each sees (at
least) one xi gaining a point, so they react by collectively changing
their ballot to z to make z the plurality winner by tie-breaking.
The voters in D also think an xi is currently winning by one point
after observing the voters in B, and collectively switch to p. After
observing all changes made up to this point, the voters in E switch
to z—they observe p winning and losing exactly n points for a total
of n+ 1 points, z gaining n+ 1 and losing n points for a total of n+ 1
points, and the x ∈ X ′ gaining one point for a total of n + 2 points.
Finally, none of the voters in F change their ballot because they all
see z winning and are unable to reach a more favorable result.

All in all, z wins the election. The final scores can be seen in the
last line of the table.
(⇐) Suppose that each X ′ ⊆ X of size at most k is disjoint to an

S ∈ S. That means that it is not possible to convince all voters in
C to change their ballot from p to another candidate. Due to the
space constraints, we omit detailed explanations for each possible
manipulated poll. However, regardless of how the manipulated poll
is set up, p remains the winner of the election. ❑

Note that the above proof also shows that plurality election en-
forcing isW[2]-hard for both the poll-restricted and unrestricted
constructive variant as well as for the destructive variants when
parameterized by the distance between the original and the manipu-
lated initial poll. In the constructive cases, z is the target candidate.

The following theorem shows that even a highly restricted
acyclic social network is sufficient to show hardness of manipula-
tion for the restricted problem variants. We use a network where
the longest path is of length 1 and—in the voter-restricted problem
variant—where the maximum outdegree of a node is 6. Furthermore,
in the voter-restricted variant, the voters are only inclined to vote
for their two most preferred candidates.

Theorem 3.2. (1) FP -Voter-Restricted-{Constr., Destr.}-
Election-Enforcing is para-NP-hard when parameterized by the
number of swaps and the length of a longest path in the network.
(2) FP -Poll-Restricted-{Constructive, Destructive}-Election-
Enforcing is para-NP-hard when parameterized by the length of a
longest path and the maximum outdegree of the social network.

Due to space constraints, we omit the proof of this theorem.
Next, we investigate whether manipulation becomes easy if we

restrict our allowed instances even further.

Proposition 3.3. If the winner determination is possible in poly-
nomial time, then FP -{Unrestricted, Poll-Restricted, Voter-
Restricted}-{Constr., Destr.}-Election-Enforcing is in FPT when
parameterized by the number of candidatesm.

Proof. Construct plausible initial polls for each subsetM ′ ⊆ M
of them candidates in the following way. Set M ′ corresponds to



the initial set of potential winners. For each subset M∗ ⊆ M ′,
create a plausible poll ∆′ if possible so that ∆′(x) = α for x ∈ M∗,
∆′(x) = α − 1 for x ∈ M ′ \M∗, and ∆′(x) < α − 2 for x ∈ M \M ′,
where α is an integer that can differ from poll to poll. For fixedM ′
andM∗, each poll meeting these requirements will yield the same
election result regardless of the value of α and the exact scores of
the candidates inM \M ′. Note that constructing such a poll (resp.,
ascertaining that a plausible poll satisfying the requirements does
not exist) is possible in polynomial time for all problem variants,
as the value of α is bounded by the number of voters. Since we
construct at most 2m · 2m initial polls and testing whether they
fulfill our requirements and yield the desired election outcome
is possible in polynomial time for each poll, our algorithm is an
fpt-algorithm when parameterized bym. ❑

A possible further restriction for the network is an empty graph,
i.e., a network where voters only rely on the opinion poll. However,
this does not seem to simplify the constructive manipulation prob-
lem: it can be necessary to include arbitrary many candidates in
the initial set of potential winners. While we conjecture that this
problem remains NP-hard for all our considered variants for an
empty graph, we can only prove this for the poll-restricted variant,
leaving the exact complexity open for the unrestricted and voter-
restricted variants. The proof uses a reduction from anNP-complete
restricted version of the problem X3C [6], where we are given a
universe X = {x1, . . . ,x3m } and a collection S = {S1, . . . , S3m },
Sj ⊆ X , |Sj | = 3, so that each x ∈ X is contained in exactly three
sets Sj , and we ask whether there exists an exact cover S′ ⊆ S of
sizem so that the union of all sets in S′ equals X .

Theorem 3.4. FP -Poll-Restricted-Constructive-Election-
Enforcing remains NP-hard when the social network is empty.

Sketch of proof. Let (X ,S) be an instance of X3C where
X = {x1, . . . ,x3m }, S = {S1, . . . , S3m } and Sj = {x j,1,x j,2,x j,3}.
Construct an instance of FP -Poll-Restricted-Constr.-Election-
Enforcing as follows. Let X ∪ S ∪ {w,p, z} be the set of candi-
dates, where p is the target candidate. The following table shows
the preferences of the voters, partitioned into the parts A to G.
Part Name Preference for
A ai : w ≻ xi ≻ z ≻ −→S ≻ −−−−−−−→X \ {xi } ≻ p 1 ≤ i ≤ 3m
B bj,1 : x j,1 ≻ Sj ≻ z ≻ w ≻ −−−−−−−→S \ {Sj } ≻

−−−−−−−−→
X \ {x j,1} ≻ p 1 ≤ j ≤ 3m

bj,2 : x j,2 ≻ Sj ≻ z ≻ w ≻ −−−−−−−→S \ {Sj } ≻
−−−−−−−−→
X \ {x j,2} ≻ p 1 ≤ j ≤ 3m

bj,3 : x j,3 ≻ Sj ≻ z ≻ w ≻ −−−−−−−→S \ {Sj } ≻
−−−−−−−−→
X \ {x j,3} ≻ p 1 ≤ j ≤ 3m

C ci xi ≻ z ≻ w ≻ −→S ≻ −→X ≻ p 1 ≤ i ≤ 3m
D dk : p ≻ z ≻ ←−X ≻ ←−S ≻ w 1 ≤ k ≤ 5
E ek : z ≻ w ≻ −→S ≻ −→X ≻ p 1 ≤ k ≤ 3
F fk : w ≻ z ≻ −→S ≻ −→X ≻ p 1 ≤ k ≤ 4
G дj : Sj ≻ z ≻ w ≻ −−−−→S \ Sj ≻ −→X ≻ p 1 ≤ j ≤ 3m

We use the tie-breaking order z▷w ▷
−→S ▷−→X ▷p and a maximum

allowed distance between the correct and the manipulated initial
poll of 3m + 1.

Note thatw is currently winning with a score of 3m+ 4, whereas
p only has a score of 5 and cannot gain any points regardless of
the broadcasted initial poll because each voter but the ones in D
rank p last. The only way to make p win the election is therefore
convincing the voters approving ofw to approve other candidates,

but in a way so that p does not lose approvals and so that each other
candidate has a final score of at most 4 due to the tie-breaking.
(⇒) Suppose (X ,S) is a yes-instance of X3C and let S′ be the

exact cover of sizem. Assign 3m points from w in a way so that
each S ∈ S′ gains three points, and assign one point from p to z.
This results in each candidate but the S < S′ to have a score of 4 so
that the voters think z is winning the election. Then the voters in
A collectively change their ballot fromw to the respective xi and
the voters in B that correspond to the Sj ∈ S′ change their vote
to Sj . Since S′ is an exact cover, each of the x ∈ X gain and lose
exactly one point. None of the remaining voters change their ballot
because they cannot improve the election result. Therefore, in the
final result, p has kept a score of 5 whereas each other candidate
has a score of at most 4, resulting in p winning the election.
(⇐) Suppose that there does not exist an exact cover S′ of size

at mostm and recall that p cannot gain any points. Then for each
plausible initial poll, eitherw does not lose at least 3m points, there
is an x that is not covered by S′ and therefore receives a final score
of at least 5, or the voters in D collectively change their ballot from
p to another candidate, all resulting in p losing the election. We
omit the details due to space constraints. ❑

In the destructive case, the manipulation problem becomes easy,
at least for the unrestricted and poll-restricted variants. Note that
without arcs, winner determination is possible in polynomial time.

Proposition 3.5. FP -{Unrestricted, Poll-Restricted}-Destr.-
Election-Enforcing is in P when the social network is empty.

Our algorithm that solves the election enforcing instance cre-
ates plausible initial polls similar to the way of the algorithm in
Proposition 3.3, but only uses pairs of candidates (x ,y) as poten-
tial winners so that we only construct a polynomial number of
polls. Nevertheless, this suffices in an empty graph because for
each initial poll, at most half of the voters still vote for the target
candidate p. If none of the constructed initial polls yield another
winner than p, then it is not possible to make p lose the election.
However, for the voter-restricted variant, this proof does not work
anymore because we do not know how many voters will change
their ballot even when at least half of them prefer x to y. In fact,
it can be necessary to include up to all candidates in the initial
set of potential winners. Therefore, we conjecture that FP -Voter-
Restricted-Destructive-Election-Enforcing remains NP-hard
even when the social network is empty.

4 MANIPULATING POLL VETO SCORES
In this section, we investigate the problems of election enforcing for
the polling agency under the veto rule and veto-winner dynamics.
Due to the nature of the veto-winner deviations, the results differ a
bit from those under the plurality rule. In particular, for each agent
at each step, the set of potential winners other than the current
believed winner is composed of at most one candidate.

Let us denote by Vx the set of voters vetoing candidate x at the
initial truthful profile, i.e., Vx := {i ∈ N : b0i = x}. Observe that if
the number of vetoes for candidate x announced by polling vector ∆
is not sufficiently large, then the voters inVx will not deviate at step
0, because they would think that they make their worst candidate
x win by removing their veto against it, i.e., PW 0

i = {FV (∆),x}



for i ∈ Vx . Therefore, the global idea of the manipulation of the
polling agency under veto is to announce enough vetoes against
a candidate whose vetoers must deviate. Let us denote by PW the
second best candidate announced by ∆ with a score difference
of one with the announced winner (advantage w.r.t ▷ included),
i.e., PW is a potential winner for all voters i ∈ Vx such that x <
PW 0

i . The problem of enforcing the election of a given candidate
p (respectively, ensuring candidate p does not win the election) is
intractable even if the social network is relatively sparse. The proof
of the following theorem uses a social network where the longest
path is only of length 2 (respectively, of length 1 for the voter-
restricted variant). Furthermore, in the voter-restricted variant, the
voters can even only veto their two least preferred candidates.

Theorem 4.1. FV -{Unrestricted, Poll-Restricted, Voter-
Restricted}-{Constructive, Destructive}-Election-Enforcing is
para-NP-hard when parameterized by the length of the longest path
and—for the voter-restricted variant—by the number of swaps.

Sketch of proof. We first prove that FV -Destructive-Election-
Enforcing is NP-hard even when the longest path is of length 2.
The hardness of the poll-restricted variant with the same parameters
and the hardness of the constructive variants immediately follow.
We just need to set the maximum Manhattan distance between the
original and the manipulated initial poll to at least 6m + 2 and—in
the constructive variants—the target candidate to z. After the proof,
we give a slight modification for the voter-restricted variant that
reduces the length of the longest path to 1.

We reduce from X3C. Let (X ,S) be an instance of X3C where
X = {x1, . . . ,x3m } and S = {S1, . . . , S3m } so that Sj ⊆ X , |Sj | = 3,
and each x ∈ X is contained in exactly three sets S ∈ S. Construct
an instance of FV -Destructive-Election-Enforcing as follows.

Let S ∪ {p, z,d1,d2} be the set of candidates, where p is the
target candidate. The table below shows the preferences of the
voters, partitioned into parts A to G.
Part Name Preference for
A ak : d1 ≻ p ≻ · · · ≻ z ≻ d2 1 ≤ k ≤ m

am+1 : d1 ≻ z ≻ −→S ≻ p ≻ d2
B bj : · · · ≻ −−−−−−−→S \ {Sj } ≻ p ≻ z ≻ Sj 1 ≤ j ≤ 3m
C ci · · · ≻ −→S ≻ p ≻ z 1 ≤ i ≤ 3m
D dk : p ≻ · · · ≻ d2 ≻ z 1 ≤ k ≤ m
E ej : p ≻ · · · ≻ z ≻ d2 ≻ Sj 1 ≤ j ≤ 3m
F fk : p ≻ · · · ≻ z ≻ d1 ≻ d2 1 ≤ k ≤ 9m − 1
G дk : p ≻ · · · ≻ z ≻ d2 ≻ d1 1 ≤ k ≤ 10m

The social network has the following set of arcs. Each voter ci
in C has an arc to a1, am+1, and to each of the three voters in B
that correspond to the sets Sj that contain xi . Furthermore, voter
dm sees each of the other voters in D, the voters in E see a1 and
additionally e3m sees each of the other voters in E, and the voters
in F and G have an arc to each voter in A and additionally f9m−1
(resp., д10m ) has an arc to each of the other voters in F (resp. G).

We base the turn function on the order −→A > −→B > −→C > −→D >−→
E >
−→
F >
−→
G and use the order z ▷ p ▷

−→S ▷ . . . for tie-breaking.
The following table shows the correct initial poll ∆ the polling

agency should announce (line 1), and the minimum number of ve-
toes the polling agency has to give each candidate in a manipulated
poll due to the likelihood condition in Definition 2.5 (line 2).

p z S ∈ S′ S < S d1 d2
∆ 0 4m 3m + 1 3m + 1 10m 10m
min 0 m 3m 3m 10m 10m
∆′ 3m 3m 3m + 1 3m 10m 10m
final 3m 3m 3m 3m + 1 10m 9m

(⇒) Suppose (X ,S) is a yes-instance of X3C and let S′ ⊆ S be
the exact cover of sizem. The polling agency can publish the poll
∆′ described in the table. The election then proceeds as follows. All
voters think that z is the winner. Therefore, voters a1 to am in A
change their ballot to z to make p the winner of the election by tie-
breaking. Voters bj also want to hinder z from winning. However,
they only veto z in the case that Sj is part of the exact cover, because
otherwise the loss of a veto for Sj would result in Sj being the veto
winner with only 3m − 1 vetoes. Since S′ is an exact cover, each
voter inC observes z gaining two vetoes—one from a1 and one from
a voter in C—and reacts by vetoing p. This is possible because z
now has enough vetoes to not become the veto winner after losing
a veto. None of the voters in D, E, and F change their ballot. All
in all, z gains 2m vetoes from the voters in A and B and loses 3m
vetoes from the voters inC , resulting in z winning the election with
3m vetoes due to tie-breaking (see last line of the table).
(⇐) Suppose that there is no exact cover S′ of size at mostm.

Then, regardless of the initial poll, there is at least one voter in C
who does not change her veto to p so that p does not obtain the
necessary number of vetoes to lose the election. We omit the details
due to space constraints.

For the voter-restricted variant, the depicted proof obviously
works (for a maximum number of 3m + 2 swaps), but we can even
strengthen the result by tightening the parameters: Set the maxi-
mum number of swaps to 1, i.e., only allow the voters to veto their
two least preferred candidates. Delete the arcs between parts E and
A, F and A, as well as G and A. The resulting social network has a
longest path of length 1. ❑

However, the manipulation problem can be solved efficiently if
the number of candidates is small.

Proposition 4.2. If the winner determination is possible in poly-
nomial time, then FV -{Unrestricted, Poll-Restricted, Voter-
Restricted}-{Constructive, Destructive}-Election-Enforcing is
in FPT when parameterized by the number of candidatesm.

The proof works analogously to the proof of Proposition 3.3.
In contrast to plurality, manipulation is easy under veto when

the social network is empty, even in the constructive case.

Proposition 4.3. FV -Constructive-Election-Enforcing is
solvable in polynomial time when the social network is empty.

Sketch of proof. The idea of our algorithm is to communicate
a polling vector ∆ that makes the voters removing vetoes against
p, or that prevents many deviations from agents vetoing other
candidates. Since the set of potential winners other than the current
believed winner is composed of at most one candidate, we try all
the O(m2) combinations of pairs of distinct candidates (ω,y) such
that ω is the announced winner of ∆ and y is the other announced
potential winner PW . For any pair of candidates (ω,y), we create
a polling vector ∆ which fulfills the likelihood condition (Def. 2.5)
with a minimum number of vetoes, and then we add the minimum



number of vetoes in order to get ω and y the winner and PW of ∆,
respectively. The rest of available vetoes is distributed as follows:
• Case p < {ω,y}: If p is not at least the second winning candidate
in b0, then vetoes against p must be removed, so we add in ∆
the minimum number of vetoes to p in order to “authorize” Vp ,
i.e., in order to have p < PW 0

i (and thus y ∈ PW 0
i ) for every i ∈

Vp . Otherwise, we test the two options: authorize Vp or not (still
polynomial). With the remaining available vetoes, we “block”, as
much as possible, the deviation of votersVx for all other candidates
x < {ω,y} such that |Vx ∩Nω≻y |+1{p▷x } < sb∗ (p)where sb∗ (p) =
|Vp | ifVp is not authorized or sb∗ (p) = |Vp ∩Nω≻y | otherwise. The
goal is to avoid that the final score of another candidate is lower than
the final score of p. For blocking voters Vx , we add the minimum
number of vetoes to candidates other than x in order to make a
voter i ∈ Vx believe that x ∈ PW 0

i . If some available vetoes remain,
we use them to authorize as much as possible the other voters Vz
for all candidates z < {ω,y} such that |Vz ∩Nω≻y |+1{p▷z } > |Vp |,
by choosing first the candidates which maximize |Vz ∩ Ny≻ω |.
• Case y = p:Vp is already blocked, therefore no veto against p can
be removed. To become the iterative winner, p must be the second
best in b0 and the deviations must add enough vetoes against ω,
which must be FV (b0), while the deviations of Vx must be blocked
if x could have a smaller score than p. Therefore, we block Vx for
all candidates x < {ω,y} such that |Vx ∩ Nω≻y | + 1{p▷x } < |Vp |.
Then, we authorize as much as possible the other voters Vz for all
candidates z < {ω,y} such that |Vz ∩ Nω≻y | + 1{p▷z } > |Vp | by
choosing first the candidates which maximize |Vz ∩ Ny≻ω |.
• Case ω = p: The only possible deviations are vetoes against p
and no veto against p can be removed. Therefore, it must hold that
p is the actual winner, i.e., p = FV (b0), and the deviations must
be limited as much as possible. We block as many Vx as possible
for candidates x < {ω,y} by choosing first the candidates which
minimize min{minz,p (|Vz | + 1{p▷z }); |Vx ∩ Nω≻y | + 1{p▷x }} −
|Vx ∩Ny≻ω |. If at some point there are not enough available vetoes
to block another set of votersVx , then we assign the rest of available
vetoes to candidate x which maximizes this quantity. ❑

The idea of the algorithm for the destructive variant is similar.
The details are omitted due to space restrictions.

Proposition 4.4. FV -Destructive-Election-Enforcing is solv-
able in polynomial time when the social network is empty.

Note that the algorithms of Propositions 4.3 and 4.4 can be simply
adapted for taking into account restrictions in voter manipulations.
For the poll-restricted variant, the principle of the algorithms re-
mains the same. The only specific point is how a candidate y is
made a (potential) winner. Instead of starting from the minimal
vector of scores which satisfies the likelihood condition, we start
from the truthful scores. If the imposed distance is d , then we can
change a veto to one candidate from another at most ⌊d/2⌋ times.
We switch vetoes against y to other candidates x with a smaller
score with a priority to those for which Vx must be authorized to
deviate.

Corollary 4.5. FV -{Poll-Restr., Voter-Restr.}-{Constr.,
Destr.}-Election-Enforcing is in P when the network is empty.

5 REAL POLL MANIPULATION: HEURISTICS
Most of our results are complexity results stating that, in the worst
case, it may be hard for the polling agency to manipulate. How-
ever, it does not prevent manipulation to occur in practice. We thus
examine some heuristics for the unrestricted problem of election
enforcing and test them by running experiments. All our heuristics
follow the same principle: we test all pairs of distinct candidates
(ω,y) for announcing them the winner and another potential win-
ner of ∆, respectively, following a given order. The order of test
for pairs of candidates varies according to the variant of election
enforcing and the voting rule, as described below (we omit further
details due to space restrictions):
• Plurality / constructive: We refine a little the heuristic proposed
by Wilczynski [20]. The order over pairs is such that (ω,y) ≥
(ω ′,y′) where ω , p and ω ′ , p (target candidate p should not lose
points) if y = p and y′ , p, or if y = y′ = p and |Ny≻ω | ≥ |Ny≻ω′ |,
or if y , p and y′ , p and |Ny≻ω | ≤ |Ny′≻ω′ |. In such a way, we
favor configurations where p can get more points.
• Plurality / destructive: The order is such that (ω,y) ≥ (ω ′,y′) if
|Ny≻ω | ≥ |Ny′≻ω′ | where p < {y,y′} (target candidate p should
not get more points). In such a way, we favor configurations where
many voters will deviate to favor potential winner y.
• Veto / constructive: The order is such that (ω,y) ≥ (ω ′,y′) if
|Vp ∩Ny≻ω | ≥ |Vp ∩Ny′≻ω′ | where p < {ω,ω ′} (deviations should
not add more vetoes to target candidate p). In such a way, we favor
configurations where more vetoes will be removed from p.
• Veto / destructive: For a given pair (ω,y), let x be the candidate
which minimizes s∗(x) = |Vx ∩Nω≻y |. The order over pairs is such
that (ω,y) ≥ (ω ′,y′) if p < {x ,x ′} and s∗(x) ≤ s∗(x ′), or if ω = p
and ω ′ , p, or if ω = ω ′ = p and |Ny≻ω \Vp | ≥ |Ny′≻ω′ \Vp |. In
such a way, we favor configurations where a candidate x , p can
lose many vetoes, or where many voters will deviate by vetoing p.

We test our heuristics by running 1,000 instances of the poll-
confident iterative model with 50 agents and 5 candidates. The
preference rankings of the agents are drawn from the impartial
culture and the social network is supposed to be acyclic (in order
to ensure convergence, to not limit too much manipulation and
because our problems are hard for this class of graphs).

We compare the results of heuristics with the results given by the
dynamics without manipulation from the polling agency and the re-
sults given by the exact algorithm where all possible manipulations
of the polling agency that satisfy the likelihood condition are tested.
We measure the frequency of election (for the constructive variant)
of the target candidate as the iterative winner, or the frequency of
non-election (for the destructive variant) of the target candidate as
the iterative winner, according to the three different algorithms.

In order to create more challenge for the heuristics, the target
candidates for the constructive variant are “bad” candidates: the
Condorcet loser, i.e., the candidate which is beaten by all the other
candidates in pairwise comparisons (we restrict in this case to a
domain where such a candidate exists), or the Borda loser, i.e., the
candidate with the lowest Borda score,2 or the truthful loser, i.e.,
the candidate with the lowest (resp., highest) score under plural-
ity (resp., veto). In the same vein, the target candidates for the

2For computing the Borda score of candidate x , we addm − j points to x for each
voter i if x is the j th most preferred candidate of voter i .



destructive variant are “good” candidates: the Condorcet winner,
i.e., the candidate which beats all the other candidates in pairwise
comparisons (we restrict in this case to a domain where such a
candidate exists), or the Borda winner, i.e., the candidate with the
highest Borda score, or the truthful winner, i.e., the candidate with
the highest (resp., lowest) score under plurality (resp., veto).

The results concerning both variants are presented in Figure 1.
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Figure 1: F -{Constr., Destr.}-Election-Enforcing with
no poll manipulation, heuristic or exact poll manipulation
for different target candidates (truthful/Borda/Condorcet
winner/loser) under F ∈ {plurality,veto} in an acyclic social
network for n = 50 andm = 5.

It turns out that our heuristics for the destructive variant perform
very well: the frequency of non-election of the target candidate p
is very high and extremely close to the frequency with the exact
algorithm. For the constructive variant, the frequency of election
of p is very close under veto but the performance of our heuristic
is a little bit lower under plurality. Nevertheless, it is always closer
to the result of the exact algorithm than to the result where no
poll manipulation occurs. This can be explained by the structure
of the potential winners set under plurality: in our heuristic we
only choose one potential winner to announce as a challenger of
the announced winner whereas it could be cleverer to announce as
potential winners an appropriate set of candidates.

It seems that even the results with the exact algorithm differ ac-
cording to the variant of manipulation and the voting rule. In order
to have a deeper understanding of this phenomenon, we run further
experiments with the exact algorithm where the setting of simula-
tions is the same as previously, except that we vary the number of
agents from 10 to 50. The results are presented in Figure 2.

From the results given in Figure 2, two main conclusions can be
drawn: (1) the polling agency can successfully manipulate more
often for avoiding the election of a candidate than for making a
candidate elected, i.e., the frequency of election enforcing is clearly
higher for the destructive variant than for the constructive variant,
and (2) the polling agency can successfully manipulate more often
under veto than under plurality. The highest frequency of successful
manipulation occurs for the destructive variant under veto, which
seems natural regarding the nature of this voting rule under which
a ballot means a disapproval for one candidate.
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Figure 2: F -{Constr, Destr.}-Election-Enforcing
with exact poll manipulation for different target can-
didates (truthful/Borda/Condorcet winner/loser) under
F ∈ {plurality,veto}, in an acyclic social network form = 5.

6 CONCLUSIONS
We have examined the manipulative power of a polling agency
announcing preliminary results before an election. The polling
agency may manipulate with two different goals in mind: making
a given candidate elected (constructive variant) or avoiding the
election of a given candidate (destructive variant). However, the
polling agency is not totally free regarding how it can manipulate:
the announced scores should not be too far from reality to be trusted
by voters. Moreover, voters may have a local information by their
relatives in a social network, limiting the manipulative power of
the polling agency. Our results are summarized in the table below.

Manip. Variant
Plurality Veto

Acyclic network Empty network Acyclic network Empty network

Constr.

Unrestr. NP-h ([20]) ? NP-h (Th. 4.1) P (Prop. 4.3)
FPT w.r.t.m (Prop. 3.3) FPT w.r.t.m (Prop. 4.2)

Poll-restr. NP-h (Th. 3.2) NP-h (Th. 3.4) NP-h (Th. 4.1) P (Cor. 4.5)
FPT w.r.t.m (Prop. 3.3) FPT w.r.t.m (Prop. 4.2)

Voter-restr. NP-h (Th. 3.2) ? NP-h (Th. 4.1) P (Cor. 4.5)
FPT w.r.t.m (Prop. 3.3) FPT w.r.t.m (Prop. 4.2)

Destr.

Unrestr. NP-h (Th. 3.1) P (Prop. 3.5) NP-h (Th. 4.1) P (Prop. 4.4)
FPT w.r.t.m (Prop. 3.3) FPT w.r.t.m (Prop. 4.2)

Poll-restr. NP-h (Th. 3.2) P (Prop. 3.5) NP-h (Th. 4.1) P (Cor. 4.5)
FPT w.r.t.m (Prop. 3.3) FPT w.r.t.m (Prop. 4.2)

Voter-restr. NP-h (Th. 3.2) ? NP-h (Th. 4.1) P (Cor. 4.5)
FPT w.r.t.m (Prop. 3.3) FPT w.r.t.m (Prop. 4.2)

When the voters have no local information through the social
network, manipulating is easier for the polling agency, especially
under veto. Although the manipulative power of the polling agency
is mainly computationally limited in theory, we designed efficient
heuristics. They perform better for the destructive variant under
veto. More generally, it seems that the two variants of manipulation
and the two voting rules we consider are not symmetric: the polling
agency is more successful in the destructive than in the constructive
case, and manipulation is more successful under veto than under
plurality. This work can be extended in several directions. Consid-
ering more complex voting rules which require the submission of a
ranking in ballots could be a challenging perspective. Investigating
preference restrictions such as single-peaked preferences could also
make sense, as well as supposing that the polling agency only gets
partial information about the preferences of the voters.
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Chapter 6

Complexity of Control in Judgment Aggregation for
Uniform Premise-Based Quota Rules

This chapter deals with the complexity of influencing the judgment aggregation procedures
called uniform (constant) premise-based quota rules by adding, deleting, replacing, and
bundling judges. See Section 2.3 for a short introduction to judgment aggregation.

The attached article (Baumeister et al., 2020a) extends several conference versions, includ-
ing an article I coauthored (Baumeister et al., 2015d).

Baumeister, D., Erdélyi, G., Erdélyi, O. J., Rothe, J., and Selker, A.-K. (2020a). Complexity
of control in judgment aggregation for uniform premise-based quota rules. Journal of

Computer and System Sciences, 112:13–33

Summary

In the attached article, my coauthors and I introduce the notions of adding, deleting,
replacing and bundling judges in judgment aggregation. These concepts can, among others,
be found in international arbitration procedures.

There are several ways to measure the success of a control action employed by the chair.
Here, we ask whether the chair can achieve to include a given (possibly incomplete)
judgment set called desired set in the new outcome. We call this problem exact control

by control type C. Further, we use the preference types introduced by Dietrich and List
(2007c)—defined in Definition 2.25 in this thesis and adapted to incomplete desired sets
by Baumeister et al. (2015b)—to identify better outcomes for the chair. This approach is
based on the concept in preference aggregation where an attacker’s preference over the
candidates is part of the input. However, note that it is not feasible in judgment aggregation
to state an explicit preference over different judgment sets since such a preference is
exponential in the size of the agenda. Therefore, we assume that the chair’s preference
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Chapter 6 Complexity of Control for Uniform Premise-Based Quota Rules

over the outcomes belongs to the set of one of the following four preference types: For the
set of

• unrestricted preferences, we only know that the chair does not differentiate between
two different outcomes that both include the desired set;

• top-respecting preferences, we additionally know that the chair prefers outcomes
that include the desired set over outcomes that do not;

• closeness-respecting preferences, it holds that outcomes that contain a subset X of
the desired set are preferred to outcomes that only contain a strict subset of X (and
no other issues from the desired set);

• Hamming-distance preferences we know that the chair prefers outcomes that include
more issues from the desired set over outcomes with fewer.

We obtain the following results for the uniform (constant) premise-based quota rules,1

where we impose certain restrictions on the agenda’s premises and conclusions to obtain
complete and consistent versions of these judgment aggregation procedures. For the
uniform constant premise-based quota rules, possible and necessary control by adding,
deleting, and replacing judges is NP-complete for each admissible quota q and for exact
control as well as nearly all preference types. The only exception is control under unre-
stricted preferences since the uniform constant premise-based quota rules are immune to
control in this case. However, in the presence of a complete desired set, possible control un-
der unrestricted and top-respecting preferences becomes tractable, whereas the complexity
of exact control and necessary control under top-respecting preferences is unknown. We
do not consider the complexity of bundling judges because this control type does not make
sense for uniform constant premise-based quota rules. Further, note that since for control
by replacing judges the number of judges remains constant throughout the control action,
the results for control by replacing judges also hold for the case of uniform premise-based
quota rules.

1Given n judges, a quota q ∈ N, 0≤ q < n, and a partition of the agenda into premises and conclusions,
the collective outcome under the uniform constant premise-based quota rule for quota q consists of the
positive premises that more than q judges accept (and the negations of the remaining premises) as well as
the conclusions derived from the included premises. The uniform premise-based quota rules are defined
in Definition 2.23 on page 38.
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In the case of uniform premise-based quota rules, the results are similar. Possible and
necessary control by adding, deleting, and bundling judges is NP-complete for the quota
q = 1/2 and for exact control as well as nearly all preference types. The only exceptions are
again control under unrestricted preferences since the uniform premise-based quota rules
are immune to control in this case, and possible control for unrestricted and top-respecting
preferences since control is tractable in these cases. The results also hold for a complete
desired set, but apart from the immunity and the tractability results, the exact complexity
of control for different quotas remains an open problem.

My Contribution

The writing of the attached article was done jointly with my coauthors. I was responsible
for the examples (Example 2, Example 6, and Example 7), Definition 8, the results
in Section 4 (i.e., Lemmas 9–11 and Propositions 12–14), Theorem 15, Theorem 16,
Theorem 18, Theorem 19, Theorem 21, and Theorem 22.
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The task of aggregating individual judgments over logically interconnected propositions is 
called judgment aggregation. Manipulation of judgment aggregation procedures has first 
been studied by List [45] and Dietrich and List [27], and Endriss et al. [30] were the first 
to study it from a computational perspective. Baumeister et al. [7] extended their results 
on manipulation and introduced the concept of bribery in judgment aggregation, again 
focusing on algorithmic and complexity-theoretic properties. Complementing this previous 
work on strategic scenarios, we introduce the concept of control in judgment aggregation, 
making use of the preference types introduced by Dietrich and List [27] and studying the 
class of uniform premise-based quota rules for these control problems in terms of their 
computational complexity.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Judgment aggregation is a framework for collective decision making where a number of agents (called judges) aggregate 
their judgments on logically possibly interconnected propositions in order to determine a collective outcome that appropri-
ately reflects their individual judgments as a whole. The field of judgment aggregation dates back to the work of Kornhauser 
and Sager [44] who, motivated by legal issues in court proceedings, were the first to discover the doctrinal paradox, which 
we will describe in the next section (see Example 2). Since then, judgment aggregation has been studied from various per-

✩ This paper combines and extends the results regarding control for uniform premise-based quota rules from preliminary conference versions that appear 
in the proceedings of the 3rd and 4th International Conference on Algorithmic Decision Theory (ADT’13 and ADT’15) [6,13], of the 6th European Starting 
AI Researcher Symposium (STAIRS’12) [5], and of the 4th International Workshop on Computational Social Choice (COMSOC’12) [4]. Some early results were 
presented at the ESSLLI Workshop on Logical Models of Group Decision Making (ESSLLI-LMGD’13). This article extends the previous work by adding results about 
necessary/possible control by bundling judges for closeness-respecting preferences, by adding results regarding Hamming-distance-induced preferences and 
exact control for complete desired sets, by adding generic reductions for Hamming-distance-induced preferences and exact control, and by adding discussion 
and examples.
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spectives, including legal science, mathematical and philosophical logic, and—more recently—computer science, as surveyed 
by List and Puppe [47], List [46], Endriss [29], and Baumeister et al. [10,14]. In particular, judgment aggregation has recently 
evolved to become one of the emerging subfields of computational social choice, which is also concerned with voting the-
ory, coalition formation in cooperative games, fair division, matching under preferences, and other subfields (see the books 
edited by Brandt et al. [17] and Rothe [57]).

In judgment aggregation, strategic behavior has been studied to a far lesser extent than in voting so far, which is the 
main motivation for our work. Only starting with the work of List [45], Dietrich and List [27], and Endriss et al. [30]
(which subsumes and extends several conference papers) on manipulation in judgment aggregation, the focus of attention 
has recently shifted toward the study of strategic scenarios where the involved agents seek to influence the outcome of a 
judgment aggregation procedure to their advantage (for an overview, see, e.g., the book chapter by Baumeister et al. [14]). 
This line of research follows and runs parallel with the preceding work on manipulative scenarios in voting,1 carefully taking 
the differences between voting and judgment aggregation into account. In particular, Dietrich and List [27] established 
an analogue of the famous Gibbard–Satterthwaite theorem (which, informally, says that every reasonable voting rule is 
manipulable) in judgment aggregation, Endriss et al. [30] studied manipulation scenarios in judgment aggregation in terms 
of their computational complexity, and their results have been expanded by Baumeister et al. [7] (also subsuming and 
extending several previous conference papers), who in addition initiated the study of bribery in judgment aggregation, 
again focusing on the computational complexity of the associated problems. What has sorely been missing to date is a 
fundamental study of control in judgment aggregation—note that the three basic types of manipulative action studied in 
voting are manipulation, control, and bribery (as we will explain in more detail below). In a nutshell, we will study the 
computational complexity of problems formalizing control by adding, deleting, replacing, and bundling judges. In Section 3, we 
will motivate these control actions by real-world examples that can be found in European legislation.

Note that, even though judgment aggregation as well as voting procedures are often susceptible to certain kinds of influ-
ence, computational complexity can serve as a shield to protect against—or at least hinder—undesirable strategic behavior. 
In this paper, we will employ NP-hardness as such a complexity barrier to shield judgment aggregation against undesirable 
strategic behavior, just as NP-hardness has been used to protect elections against such behavior in voting (Footnote 1 col-
lects a number of related book chapters and surveys that cover a vast body of literature on NP-hardness of manipulation, 
control, and bribery problems in voting). However, one should keep in mind that since NP-hardness is a worst-case com-
plexity measure only, the protection it provides is rather limited. For example, Rothe and Schend [58] have surveyed various 
challenges to such worst-case complexity shields against manipulation and control in voting. Still, it should be the first step 
to study whether problems that formalize manipulative behavior can outright be solved in polynomial time or whether they 
are NP-hard, and this is what we do here for control in judgment aggregation.

Manipulation in voting has been introduced by Bartholdi et al. [2] to model scenarios where some voter acts strategically 
by casting an insincere vote so as to make some most preferred candidate win. Conitzer et al. [21] considered more general 
manipulation scenarios, such as weighted coalitional manipulation, and the destructive variants where the goal is to prevent 
some least preferred candidate’s victory (see, e.g., the book chapter by Conitzer and Walsh [22] for an overview of the vast 
literature on manipulation in voting). Bribery in voting is due to Faliszewski et al. [32] (see also the work of Faliszewski et 
al. [35] and, e.g., the book chapter by Faliszewski and Rothe [37] for an overview). Here, an external agent seeks to bribe the 
voters so as to make some favorite candidate win (in the constructive case) or prevent some despised candidate’s victory 
(in the destructive case). In a third central type of strategic influence, control in voting, an external agent (usually called the 
“chair”) seeks to change the structure of an election (e.g., by adding/deleting/partitioning either candidates or voters) in 
order to reach her desired outcome. Electoral control has been introduced by Bartholdi et al. [3] in the constructive variant 
and by Hemaspaandra et al. [41] in the destructive variant (again, see the book chapter by Faliszewski and Rothe [37]
for an overview). Note that control scenarios in voting are also related to certain special cases of the possible winner 
problem [11,19] and to cloning of candidates [28,59].

Subsuming and extending our preceding conference and workshop papers [4–6,13], we here introduce control in judgment 
aggregation,2 focusing on the important class of uniform premise-based quota rules due to Dietrich and List [26] that will 
be defined in Section 2.1.3 A crucial difference to control-in-voting settings is that, while the (constructive) goal in voting 
is simply to make a most preferred candidate win (according to the chair’s preferences over the candidates), we here 
have to compare several judgment sets in order to find out whether some control action has paid off for the chair. To 
compare two outcomes of a judgment aggregation procedure, we will use both Hamming-distance-induced preferences and 
certain notions of preference types induced by the chair’s desired set (so-called top-respecting and closeness-respecting 
preferences), which have been introduced by Dietrich and List [27], have been applied to manipulation and bribery by 
Baumeister et al. [7], and will be defined in Section 2.2. After giving the needed background on complexity theory in 
Section 2.3, we then will study the computational complexity of the problems associated with various control types (to be 
defined in Section 3, with some first results and observations presented in Section 4): control by adding judges in Section 5, 

1 For an overview, see, e.g., the book chapters by Conitzer and Walsh [22], Faliszewski and Rothe [37], Baumeister and Rothe [12], Brandt et al. [16], and 
Baumeister et al. [8], and the surveys by Faliszewski et al. [33,36].

2 Weighted voting games are another area where appropriate analogues of electoral control scenarios have been introduced by Rey and Rothe [54,55]
who ask how the power indices of players change when other players are added or deleted and what the complexity of the related problems is.

3 Note that de Haan [24] studied the Kemeny judgment aggregation procedure with respect to manipulation, bribery, and control.
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control by deleting judges in Section 6, control by replacing judges in Section 7, and control by bundling judges in Section 8. 
Finally, in Section 9, we will conclude by summarizing our results and stating some open question.

2. Preliminaries

We first describe the formal framework of judgment aggregation in Section 2.1, introduce the relevant preference types 
due to Dietrich and List [27] in Section 2.2, illustrating them by suitable examples, and then we will give some background 
from computational complexity in Section 2.3.

2.1. Formal framework of judgment aggregation

Throughout this article, we will utilize the judgment aggregation framework due to Endriss et al. [30] (see also the book 
chapters by Endriss [29] and Baumeister et al. [10]). Let LPS be the set of all propositional formulas that can be built from 
a set of propositional variables, PS, using the common boolean connectives, i.e., disjunction (∨), conjunction (∧), implication
(→), and equivalence (↔) as well as the constants 1 (true) and 0 (false). To avoid double negations, we use α to refer to 
the complement of α, that is, α = ¬α if α is not negated, and α = β if α = ¬β . A set � ⊆ LPS is said to be closed under 
complementation if α ∈ � for all α ∈ �, and to be closed under propositional variables if PS ⊆ �. We call a finite nonempty set 
� ⊆ LPS without doubly negated formulas that is closed under complementation an agenda, and a subset J ⊆ � a judgment 
set for �. If J is the set of propositions accepted by some judge, it is called an individual judgment set. Furthermore, J is 
called complete if α ∈ J or α ∈ J for all α ∈ �, consistent if there exists an assignment such that all formulas in J are 
satisfied, and rational if J is both complete and consistent.

Let J (�) be the set of all rational judgment sets of an agenda � and let N = {1, . . . , n} be the set of judges. We call 
J = ( J1, . . . , Jn) ∈ J (�)n the profile of the judges’ individual judgment sets. A resolute4 (judgment aggregation) procedure for 
an agenda � and a set of judges N of size n is a function F : J (�)n → 2� , where 2� denotes the power set of �. That 
means that a procedure maps a profile to a collective judgment set or (collective) outcome. We will call a procedure complete
(consistent, rational) if the collective judgment set is always complete (consistent, rational).

Unfortunately, a judgment aggregation procedure does not always yield a collective outcome with a certain property even 
if all individual judgment sets satisfy this property. For instance, the famous doctrinal paradox [44] in judgment aggregation 
says that if the majority rule5 is used, the collective judgment set can be inconsistent even if each individual judgment set 
is consistent. We will study the class of uniform premise-based quota rules as defined by Dietrich and List [26] where we 
preserve consistency (and thus avoid the doctrinal paradox) by first applying a certain quota individually to the premises, 
and then logically deriving the result for the conclusions from the result of the premises.

Let |S| be the cardinality of the set S and let |= denote the satisfaction relation.

Definition 1 (Uniform premise-based quota rule). Let the agenda � be closed under propositional variables. Subdivide � into 
the two disjoint subsets �p (the set of premises) containing exactly all literals, and �c (the set of conclusions), both closed 
under complementation.

Furthermore, subdivide �p into two disjoint subsets, �1 and �2, satisfying that ϕ ∈ �1 if and only if ϕ ∈ �2. Assign 
to each literal ϕ ∈ �1 a rational quota q, 0 ≤ q < 1, and to each literal ϕ ∈ �2 the associated quota q′ = 1 − q. A uniform 
premise-based quota rule with quota q (denoted by UPQRq) is a procedure mapping each profile J = ( J1, . . . , Jn) of individual 
judgment sets for � to the collective outcome

UPQRq(J) = �q ∪ {ψ ∈ �c | �q |= ψ},
where �q = {ϕ ∈ �1 | |{i | ϕ ∈ J i}| > nq} ∪{ϕ ∈ �2 | |{i | ϕ ∈ J i}| ≥ nq′}. Throughout the article, we will assume that all literals 
in �1 are not negated.

Since � is closed under propositional variables and �p contains exactly all literals, UPQRq is rational. The threshold for a 
literal ϕ ∈ �1 to be accepted is �nq +1�, i.e., ϕ is contained in the collective outcome if and only if it is contained in at least 
�nq + 1� individual judgment sets, whereas literals ϕ ∈ �2 need at least �nq′� affirmations to be accepted. It is possible to 
determine in polynomial time whether a given formula is an element of the collective outcome of a uniform premise-based 
quota rule. The special case of UPQR1/2 for an odd number of judges is also known as the premise-based procedure (PBP).

Example 2. To illustrate the doctrinal paradox, consider a three-person recruiting committee that wants to fill a vacancy in 
their company. However, the committee members have different opinions about an applicant. According to the company’s 

4 There are also irresolute judgment aggregation procedures (i.e., procedures that may output more than one collective judgment set), such as the 
distance-based procedures introduced by Pigozzi [53] and Miller and Osherson [49], which we won’t consider here, though.

5 The majority rule is a resolute judgment aggregation procedure that includes exactly those formulas in the collective outcome that a strict majority of 
judges have in their individual judgment sets.
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Table 1
The (uniform) premise-based quota rule avoids the doctrinal paradox.

Outstanding degree Relevant field Job offer

(a) Doctrinal paradox with the majority rule

Member 1 1 1 1
Member 2 0 1 0
Member 3 1 0 0

Majority 1 1 0

(b) Different outcome with the uniform premise-based quota rule

Member 1 1 1 1
Member 2 0 1 0
Member 3 1 0 0

UPQR1/2 1 1 1

policy, they will hire an applicant if and only if he or she has an outstanding degree in a field relevant to the company’s 
business sector. However, only the first committee member says that the applicant should be given a job offer, since both 
requirements are fulfilled. The second committee member thinks that the applicant’s degree cannot be called outstanding, 
while in the third member’s opinion the degree was obtained in a nonrelevant field. Table 1(a) shows the three individual 
judgment sets and the collective outcome according to the majority rule, denoted by a 1 for “yes” and a 0 for “no.”

The inconsistent outcome of the majority rule—i.e., the outcome where the applicant is denied the job offer, even though 
he or she is well suited for the job—can be avoided by using the (uniform) premise-based quota rule, as shown in Table 1(b).

Another way of defining quota rules is to let the quota be a fixed number instead of a portion of the judges. Obviously, 
if the number of judges is fixed, both definitions yield the same judgment aggregation rule. However, we will study control 
problems in judgment aggregation where the number of judges can vary (for example, in control by adding judges). In 
this case the two procedures can output different collective judgment sets. As a real-world example, consider a simplified 
version of a referendum. Suppose the number of “yes” votes that are needed to put through an issue is 2/3 of all registered 
voters. Obviously, this quota should not change with the number of people actually going to the polls, so this corresponds to 
a constant premise-based quota rule. In other situations, however, it is desirable that the quota does depend on the number 
of judges actually taking part. We now introduce constant premise-based quota rules in addition to the premise-based quota 
rules defined above.

Definition 3 (Uniform constant premise-based quota rule). As in Definition 1, let the agenda � be closed under propositional 
variables, and let �p denote the set of premises, �c the set of conclusions, and �1 and �2 a partition of �p satisfying that 
ϕ ∈ �1 if and only if ϕ ∈ �2. Let q ∈N0, 0 ≤ q < n. A uniform constant premise-based quota rule with quota q is defined by

UCPQRq(J) = �′
q ∪ {ψ ∈ �c | �′

q |= ψ}, where �′
q = {ϕ ∈ �1 | |{i | ϕ ∈ J i}| > q} ∪ {ϕ ∈ �2 | |{i | ϕ ∈ J i}| ≥ (n − q)}.

That is, the number of affirmations that are needed to be in the set �′
q is a fixed constant.

2.2. Types of preferences in judgment aggregation

We will study judgment aggregation problems where some external agent tries to influence a judgment aggregation 
process in order to obtain a better outcome. In order to compare two outcomes, we will use various notions of preference 
types induced by an external agent’s desired set. These notions have been introduced by Dietrich and List [27]. Formally, 
this desired set is a subset of a rational judgment set.

Let � be an agenda, X, Y ∈ J (�), and let � be a weak order over J (�), i.e., a transitive and total binary relation over 
rational judgment sets. We say that X is weakly preferred to Y whenever X � Y , and we say that X is preferred to Y , denoted 
by X � Y , whenever X � Y and ¬(Y � X). Furthermore, we define X ∼ Y by X � Y and Y � X .

Based on the notions introduced by Dietrich and List [27], Baumeister et al. [7] define the notions of top-respecting 
and closeness-respecting preferences in particular for incomplete judgment sets. They and Endriss et al. [30] also consider 
Hamming-distance-respecting preferences in the context of manipulation and bribery in judgment aggregation. We consider 
these preferences in the context of control.

Definition 4. Let � be an agenda, let U be the set of all weak orders over J (�), and let D be a possibly incomplete 
judgment set (typically, D will be the chair’s desired set). Define

1. the set UD ⊆ U of unrestricted D-induced (weak) preferences by

U D = {� ∈ U | for all X, Y ∈ J (�), X ∼ Y whenever X ∩ D = Y ∩ D};
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Table 2
Example of the uniform premise-based quota rule.

a b c ¬a ∨ b a ∧ c b ∨ c

J1 1 1 0 1 0 1
J2 0 0 0 1 0 0
J3 1 0 1 0 1 1

UPQR1/2 1 0 0 0 0 0

D 1 1 1 1

2. the set TRD ⊆ UD of top-respecting D-induced (weak) preferences by

TRD = {� ∈ U D | for all X, Y ∈ J (�), X � Y whenever X ∩ D = D and Y ∩ D �= D};
3. the set CRD ⊆ UD of closeness-respecting D-induced (weak) preferences by

CRD = {� ∈ UD | for all X, Y ∈ J (�), if X ∩ D ⊇ Y ∩ D then X � Y };
4. the set HDD ⊆ UD of Hamming-distance D-induced (weak) preferences by

HDD = {� ∈ UD | for all X, Y ∈ J (�), X � Y if and only if HD(X, D) ≤ HD(Y , D)},
where the Hamming distance HD(S, T ) of two (possibly incomplete) consistent judgment sets S and T denotes the 
number of ϕ ∈ S so that ϕ ∈ T .

Unrestricted preferences model the scenario where we know nothing about the attacker’s preferences, not even whether 
the desired set D is a subset of her most preferred outcome, which is the only thing known regarding top-respecting prefer-
ences. Regarding closeness-respecting preferences, we additionally know that judgment sets with preserved and additional 
agreements with the desired set are preferred, whereas Hamming-distance-induced preferences are complete orders where 
the total number of disagreements with the desired set is decisive of a judgment’s position in the attacker’s preference list. 
Therefore, it holds that

HDD ⊆ CRD ⊆ TRD ⊆ UD .

Definition 5. Let � be an agenda, let X and Y be rational judgment sets for �, let D be an agent’s desired set, and let 
T D ∈ {UD , TRD , CRD} be a type of D-induced (weak) preferences. We say that

1. the agent necessarily/possibly weakly prefers X to Y for type T D if X � Y for all/some � ∈ T D ,
2. the agent necessarily/possibly prefers X to Y for type T D if X � Y for all/some � ∈ T D .

Let D be the desired set of an agent. If unrestricted preferences are assumed, a new outcome X is never necessarily 
preferred to the current outcome Y ; by contrast, X is always possibly preferred to Y . If top-respecting preferences are 
assumed, X is necessarily preferred to Y if and only if D is contained in X and D is not contained in Y , and X is possibly 
preferred to Y if and only if it is not the case that Y contains all elements from D . In the case of closeness-respecting 
preferences, the agent necessarily prefers X to Y if and only if she achieves a new agreement with D while preserving the 
existing agreements. On the other hand, she possibly prefers X to Y if and only if she achieves a new agreement with D
regardless of new differences.

Note that the set of Hamming-distance D-induced preferences is a singleton. Therefore, in this case we do not differ-
entiate between possible and necessary preferences and simply say that the agent (weakly) prefers X to Y under Hamming-
distance-induced preferences exactly if the number of disagreements between X and D is lower (not higher) than the number 
of disagreements between Y and D .

Example 6. Let � = {a, ¬a, b, ¬b, c, ¬c, ¬a ∨ b, ¬(¬a ∨ b), a ∧ c, ¬(a ∧ c), b ∨ c, ¬(b ∨ c)} be an agenda that is closed under 
the set of propositional variables PS = {a, b, c}. The profile J = ( J1, J2, J3), the collective outcome UPQR1/2, and the external 
agent’s desired set D = {a, c, a ∧c, b ∨c} are shown in Table 2. Here, a 1 denotes that the corresponding formula is contained 
in the set, whereas a 0 indicates that the negation of the formula is in the set.

Note that D is a consistent judgment set, since it can be reached by setting the propositional variables a and c to true. 
Let Y = UPQR1/2(J) be the current collective outcome of the uniform premise-based procedure with quota q = 1/2 and let 
X = {a, b, ¬c, ¬a ∨ b, ¬(a ∧ c), b ∨ c} be the new outcome the external agent achieves via exerting control by replacing 
J2 with the new individual judgment set {¬a, b, ¬c, ¬a ∨ b, ¬(a ∧ c), b ∨ c} (i.e., the row for J2 in Table 2 is replaced by 
0 1 0 1 0 1 and the row for UPQR1/2, now reflecting X , is replaced by 1 1 0 1 0 1). Note that this control type as well as 
other specific control types will be formally defined in Section 3.
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• Assuming top-respecting preferences, the agent possibly prefers X to Y , since the desired set D is not contained in Y ; 
yet she does not necessarily prefer X to Y , since D is not contained in X either.

• However, if we consider closeness-respecting preferences, the agent does even necessarily (and thus also possibly) prefer 
X to Y :

X ∩ D = {a,b ∨ c} ⊃ {a} = Y ∩ D,

i.e., X preserves the existing agreements of Y with D and adds an additional agreement.
• Since the agent necessarily prefers X to Y assuming closeness-respecting preferences and since HDD ⊆ CRD , she also 

prefers X to Y assuming Hamming-distance-induced preferences. Alternatively, one can see that X and D disagree on 
two propositions, whereas Y and D disagree on three. Thus HD(X, D) < HD(Y , D), and it follows that the agent prefers 
X to Y under Hamming-distance-induced preferences.

2.3. Background on complexity theory

We assume that the reader is familiar with the complexity classes P and NP as well as with the concept of polynomial-
time many-one reducibility (denoted by ≤p

m; see, for example, the textbooks by Papadimitriou [52] and Rothe [56]).
We will use the following two NP-complete decision problems in our reductions:

Dominating-Set

Given: A graph G = (V , E) and a positive integer k.
Question: Does G have a dominating set of size at most k, i.e., a subset V ′ ⊆ V , |V ′| ≤ k, such that every vertex v ∈ V

belongs to the closed neighborhood of some v ′ ∈ V ′?

Exact-Cover-by-3-Sets (X3C)

Given: A set X and a collection C containing 3-element subsets of X .
Question: Does there exist an exact cover for X , i.e., a subcollection C ′ ⊆ C such that each element of X is a member 

of exactly one set in C ′?

3. Problem definitions, motivation, and summary of results

Looking at the example from Table 1(b), which illustrates how to avoid the doctrinal paradox by a uniform premise-based 
quota rule, a typical control scenario would be if some external agent (the “chair”) had the power to delete, say, the first two 
recruiting committee members, thus turning the result of UPQR1/2 from “yes” to “no” (denying a job offer). Starting with the 
work of Bartholdi et al. [3], many control scenarios have been studied for various voting systems (see, e.g., [31,34,35,41,42]
and the book chapters [8,12,37] for an overview). We introduce control scenarios for judgment aggregation. Specifically, we 
will consider control by adding, deleting, replacing, and bundling judges, and we will motivate these scenarios by real-world 
examples from international arbitration procedures as a method of dispute resolution. Note that we will define the decision 
problems only for uniform premise-based quota rules; the problems for the uniform constant premise-based quota rules are 
defined analogously.

3.1. Control by adding judges

This first control type is analogous to control by adding voters in elections. An example for this control setting can be 
found in the field of international arbitration, which is becoming increasingly important as an alternative dispute resolution 
method to litigations conducted by national courts. Parties of arbitration proceedings may choose to entrust a single arbitra-
tor with deciding their dispute. They might, however, also opt for the appointment of several arbitrators and thereby control 
the arbitral decision-making process by adding judges.6 Mostly they do so because they feel that due to the complicated 
nature of the matter or for some other reason, a tribunal with several arbitrators is better suited to arbitrate their case. 
Their action may also be motivated by the hope of being able to appoint an arbitrator sympathetic to their arguments.

Formally, we define the following two problems for uniform premise-based quota rules and preference type T (as defined 
in Section 2.2).

6 See, for instance, Articles 37–40 of the ICSID Convention and Rules 1–4 of the ICSID Rules of Procedure for Arbitration Proceedings [38], Articles 11–12 
of the ICC Rules of Arbitration [50], or Articles 7–10 of the UNCITRAL Arbitration Rules [51].
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UPQRq-T -Possible-Control-by-Adding-Judges

Given: An agenda �, two profiles J ∈ J (�)n and K ∈ J (�)m , a desired set D , and a positive integer k.
Question: Is there a subprofile K′ ⊆ K of size at most k such that for the new profile J′ = J ∪ K′, it holds that 

UPQRq(J′) � UPQRq(J) for some � ∈ T D ?

Concerning the related problem UPQRq-T -Necessary-Control-by-Adding-Judges, the respective condition must hold for 
all � in T D for the instance to be accepted. In the case of Hamming-distance-induced preferences, the two problems 
coincide and will be denoted simply as UPQRq-HD-Control-by-Adding-Judges.

We also consider the exact variants of our problems, in the present control scenario denoted by UPQRq-Exact-Control-

by-Adding-Judges, where we ask whether there is a subset K′ ⊆ K, |K′| ≤ k, such that D ⊆ UPQRq(J ∪ K′). In this setting, the 
chair seeks to achieve a best outcome for her desired judgment set (rather than just a “better” outcome).

3.2. Control by deleting judges

Also very natural is the problem of control by deleting judges as it is a commonly applied method in both jury trials 
and international arbitration. The empaneling procedure of a jury for a trial is basically a control process via deleting judges 
and works roughly as follows. First, a certain number of potential jurors7 is summoned at the place of trial. In the next 
stage of the selection procedure, all or part of them are subjected to the so-called “voir dire” process, i.e., a questioning by 
the trial judge and/or the attorneys aiming to obtain information about their person. Admittedly, the purpose of collecting 
this information is to determine whether they can be impartial, which is a well-justified purpose; but again, attorneys may 
use it for another reason, namely to indoctrinate prospective jurors laying a foundation for arguments they later intend 
to make. Driven by good or bad intentions, the lawyers may then challenge jurors for cause, that is, by arguing that and 
for what reason the juror in question is biased. The trial judge decides over the attorneys’ challenges for cause, moreover 
she may excuse further jurors due to social hardship. Finally, the lawyers may challenge a limited number of potential 
jurors peremptorily, i.e., without having to justify their reason for doing so. Peremptory challenges are legitimate and useful 
means of eliminating such jurors that are either presumably biased but the bias cannot be proven to the extent necessary 
for challenging them for cause, or are for some other reason undesirable. Because their use does not require any explanation, 
such challenges can also be easily abused; especially until the introduction of the Batson rule, peremptory challenges were 
often exercised in discriminatory ways, mostly on racial grounds, violating the equal protection rights of jurors. For more 
details, see the book by Jonakait [43].

Define the following problem for uniform premise-based quota rules and for type T preferences.

UPQRq-T -Possible-Control-by-Deleting-Judges

Given: An agenda �, a profile J ∈ J (�)n , a desired set D , and a positive integer k.
Question: Is there a subprofile J′ ⊆ J of size at most k such that UPQRq(J � J′) � UPQRq(J) for some � ∈ T D ?

The other variants are defined analogously to the case of adding judges.
As we can see, deleting judges/jurors is a central part of the empaneling procedure. However, when the total number of 

jurors is fixed, a new juror needs to be appointed for each deleted juror, which motivates the next scenario to be defined 
in Section 3.3.

3.3. Control by replacing judges

Control by replacing judges is used in international arbitration when the parties successfully challenge an arbitrator 
leading to her disqualification and the subsequent appointment of a substitute arbitrator. The institution of challenge is 
designed to serve as a tool for parties of arbitral proceedings to remove arbitrators posing a possible threat to the integrity 
of the proceedings. It may be based on several grounds; arbitrators are most commonly challenged because of doubts 
regarding their impartiality or independence.8 Challenges are, however, occasionally used as “black art” or “guerrilla tactics” 
with a view to achieve dishonest purposes, such as eliminating arbitrators that are likely to render an unfavorable award or 
to delay the proceedings to evade, or at least postpone, an anticipated defeat. Again, see the book by Jonakait [43] for more 
details.

Control by replacing judges can be seen as a combined action of control by deleting judges and control by adding judges. 
For a related general model in voting theory, we refer to the work of Faliszewski et al. [34] on multimode control attacks 
and of Loreggia et al. [48] on electoral control by replacing candidates or voters.

7 “Juror” here refers to what we call “judge” anywhere else, as we reserve “judge” in this context for “trial judge.”
8 For rules regarding the challenge, disqualification, and replacement of arbitrators, see Articles 56–58 of the ICSID Convention [38], Rules 9–11 of the 

ICSID Rules of Procedure for Arbitration Proceedings [38], Articles 14–15 of the ICC Rules of Arbitration [50], and Articles 12–14 of the UNCITRAL Arbitration 
Rules [51].
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Define the following problem for uniform premise-based quota rules and for type T preferences.

UPQRq-T -Possible-Control-by-Replacing-Judges

Given: An agenda �, two profiles J ∈ J (�)n and K ∈ J (�)m , a desired set D , and a positive integer k.
Question: Are there subprofiles J′ ⊆ J and K′ ⊆ K of size |J′| = |K′| ≤ k such that for the new profile S = (J � J′) ∪ K′, it 

holds that UPQRq(S) � UPQRq(J) for some � ∈ T D ?

Define the necessary, HD, and exact control problems analogously to these variants of the problems modeling control by 
adding and deleting judges.

3.4. Control by bundling judges

Control by bundling judges is remotely akin to control by partitioning voters in voting. A prominent natural example for 
control by bundling judges can be found in European legislation. Certain European legislative acts, such as Directives, give 
considerable freedom to Member States regarding the concrete implementation of these acts. Yet, in some cases uniform 
implementation is crucial, so the basic act confers implementing powers on the European Commission or the Council of the 
European Union to adopt the required implementing acts.9 The exercise of implementing powers through the Commission 
and Council is controlled by the member states through so-called comitology committees in accordance with previously 
specified rules.10 The committees are set up by the basic act in question.11 Some of these committees are concerned with 
such a broad range of issues that they are divided into subcommittees, each of which is dealing with different issues. 
When preparing implementing acts covering several issues, each subcommittee votes on the issues assigned to it, and the 
implementing act is shaped according to the decisions of the different subcommittees.12

The formal definition of control by bundling judges is as follows. In the problem definition below, we will use the 
notation

�q =
⋃

1≤i≤k

UPQRq(J|�i
p ,Ni

),

where J|�i
p ,Ni

is a profile obtained by restricting the set of judges in J to Ni ⊆ N and their respective judgment sets to the 
premises �i

p in a given partition (see the problem definition below).
The formal definition is as follows. Recall that the set �c consists of the agenda’s conclusions. Define the following 

problem for uniform premise-based quota rules and for type T preferences.

UPQRq-T -Possible-Control-by-Bundling-Judges

Given: An agenda �, where the premises are partitioned into k subsets �1
p, . . . , �k

p satisfying ϕ ∈ �i
p if and only 

if ϕ ∈ �i
p , a profile J ∈ J (�)n , and a desired set D .

Question: Does there exist a partition {N1, . . . , Nk} of the n judges such that for some �∈ T D , 
�q ∪ {ϕ ∈ �c | �q |= ϕ} � UPQRq(J)?

As in the case of adding, deleting, and replacing judges, in the related problem UPQRq-T -Necessary-Control-by-

Bundling-Judges we ask whether the respective condition holds for all � in T D . Moreover, we define UPQRq-HD-Control-

by-Bundling-Judges and UPQRq-Exact-Control-by-Bundling-Judges analogously to the corresponding problems of the 
other control types.

Example 7. Consider the same agenda �, the same individual judgment sets, and the same desired set D as in Example 6. 
Let the quota be q = 1/2 for every positive literal in the agenda. Assume that the set of premises is partitioned into �p

1 =
{a, ¬a, b, ¬b} and �

p
2 = {c, ¬c}. The Hamming distance between the current collective outcome and D is 3. But if we 

partition the set of judges into two groups, where the first judge forms the first group and the last two judges are in the 
second group, the outcome is as shown in Table 3, where the individual judgments for premises not belonging to the group 
deciding over them are marked with �1 or �0 and S denotes �1/2 ∪ {ϕ ∈ �c | �1/2 |= ϕ} as in the problem definition above. 
Recall that, in case of a tie, a negative literal is contained in the collective judgment set by convention.

After bundling the judges, the Hamming distance between the collective outcome and D has decreased to 2. Hence, this 
is a positive instance of UPQR1/2-HD-Control-by-Bundling-Judges. However, since it is not possible to bundle the judges 

9 Article 291 of the Treaty on the Functioning of the European Union.
10 Regulation (EU) No 182/2011 of the European Parliament and of the Council of 16 February 2011 laying down the rules and general principles con-

cerning mechanisms for control by Member States of the Commission’s exercise of implementing powers (Implementing Acts Regulation).
11 Recital 6 of the Preamble of the Implementing Acts Regulation.
12 One example is the Customs Code Committee, see Articles 1 (1) and 5 (7) (8) of the Rules of Procedure for the Customs Code Committee.
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Table 3
The uniform premise-based quota rule in Example 7 illustrating 
control by bundling judges.

a b c ¬a ∨ b a ∧ c b ∨ c

J1 1 1 �0 1 0 1

J2 �0 �0 0 1 0 0

J3 �1 �0 1 0 1 1

S 1 1 0 1 0 1

D 1 1 1 1

into two groups to obtain exactly D as a subset of the collective outcome, it is a negative instance of UPQR1/2-Exact-

Control-by-Bundling-Judges.

Remotely related bundling problems in judgment aggregation have been studied by Alon et al. [1]. However, their setting 
is different from ours. They consider judgment aggregation over independent variables, and only the variables are bundled 
in their bundling attacks. It is assumed that then all judges decide over all bundles by deciding uniformly for all variables 
contained in the same bundle. Furthermore, the goal in their model is to always accept all positive variables, that is, a 
complete desired set. This setting in fact covers a restriction of judgment aggregation known as optimal lobbying (see the 
papers by Christian et al. [20], Binkele-Raible et al. [15], and Bredereck et al. [18]).

3.5. Immunity, susceptibility, resistance, and vulnerability

To study the computational complexity of adding, deleting, replacing, and bundling judges, we adopt the terminology 
introduced by Bartholdi et al. [3] for control problems in voting and adapt it to judgment aggregation and the context of 
preference types.

Definition 8. Let F be a judgment aggregation procedure, let C be a given control type, and T ∈ {U, TR, CR, HD} be a given 
preference type.

1. F is said to be immune to (exact/possible/necessary) control by C (under induced preferences of type T ) if it is never possible 
for the chair to successfully control the judgment aggregation procedure via C .

2. F is said to be susceptible to (exact/possible/necessary) control by C (under induced preferences of type T ) if it is not immune 
to (exact/possible/necessary) control by C under T .

3. F is said to be vulnerable to (exact/possible/necessary) control by C (under induced preferences of type T ) if it is susceptible 
to (exact/possible/necessary) control by C under T and the corresponding decision problem is in P.

4. F is said to be resistant to (exact/possible/necessary) control by C (under induced preferences of type T ) if it is susceptible to 
(exact/possible/necessary) control by C under T and the corresponding decision problem is NP-hard.

Studying the computational complexity of decision problems such as those defined in the previous subsections (rather 
than of search problems where one seeks to actually find a successful control action) is quite common both in computational 
social choice (see, e.g., the book chapters [12,37]) and in judgment aggregation (see, e.g., the book chapters [29,10]). Note, 
however, that the complexity of a search problem can be much harder than the complexity of the corresponding decision 
problem. For instance, Hemaspaandra et al. [40] have shown that, under the plausible assumption that integer factoring is a 
hard problem, there exist voting rules for which the decision problems associated with (electoral) manipulation, (electoral) 
bribery, and some types of (electoral) control can be solved in polynomial time, yet the corresponding search problems 
cannot be solved in polynomial time. In this paper on control in judgment aggregation, we restrict ourselves to the study 
of the computational complexity of decision problems, leaving the interesting study of the corresponding search problems 
to future work.

3.6. Summary of results

Table 4 summarizes our results on the complexity of exact, possible, and necessary control by adding, deleting, and 
replacing judges for uniform constant premise-based quota rules under various preference types, both for complete and 
incomplete desired sets (abbreviated by DS).

For control by adding, deleting, and bundling judges, the results for UPQR1/2 are shown in Table 5; note that this table 
refers to uniform premise-based quota rules (and not to uniform constant premise-based quota rules, as Table 4 does).13

13 In Section 7 we will explain why uniform constant premise-based quota rules and the corresponding uniform premise-based quota rules coincide for 
control by replacing judges, and in Section 8 we will explain why it does not make sense to consider uniform constant premise-based quota rules for 
control by bundling judges.
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Table 4
Overview of results for UCPQRq-T -Possible/Necessary-Control-By-C and UCPQRq-HD/Exact-Control-By-C for C ∈ {Adding-Judges, Deleting-Judges,

Replacing-Judges} and T ∈ {U, TR, CR}. NP-c stands for “NP-complete” and a question mark indicates an open problem. Below each result we have noted in 
parentheses the theorems, lemmas, or propositions stating it.

U TR CR HD Exact

Incomplete DS Possible NP-c NP-c NP-c NP-c NP-c
(Lemma 11) (Lemma 11) (Theorem 15, 18, 21) (Lemma 9) (Lemma 10)

Necessary immune NP-c NP-c NP-c NP-c
(Proposition 14) (Proposition 12) (Theorem 15, 18, 21) (Lemma 9) (Lemma 10)

Complete DS Possible P P NP-c NP-c ?
(Proposition 13) (Proposition 13) (Theorem 15, 18, 21) (Lemma 9)

Necessary immune ? NP-c NP-c ?
(Proposition 14) (Theorem 15, 18, 21) (Lemma 9)

Table 5
Overview of results for UPQR1/2-T -Possible/Necessary-Control-By-C and UPQR1/2-HD/Exact-Control-By-C for C ∈ {Adding-Judges, Deleting-Judges,

Bundling-Judges} and T ∈ {U, TR, CR}. Again, NP-c stands for “NP-complete” and below each result we have noted in parentheses the theorems, lemmas, 
or propositions stating it.

U TR CR HD Exact

Incomplete DS Possible NP-c NP-c NP-c NP-c NP-c
(Lemma 11) (Lemma 11) (Theorem 16, 19, 22) (Lemma 9) (Lemma 10)

Necessary immune NP-c NP-c NP-c NP-c
(Proposition 14) (Proposition 12) (Theorem 16, 19, 22) (Lemma 9) (Lemma 10)

Complete DS Possible P P NP-c NP-c NP-c
(Proposition 13) (Proposition 13) (Theorem 16, 19, 22) (Lemma 9) (Theorem 17, 20, 23)

Necessary immune NP-c NP-c NP-c NP-c
(Proposition 14) (Proposition 12) (Theorem 16, 19, 22) (Lemma 9) (Theorem 17, 20, 23)

We have restricted our attention in these results to the quota q = 1/2, leaving the complexity for a general quota q open for 
most cases. However, we show that immunity in the case of necessary control and unrestricted preferences as well as the 
P results in the case of possible control and unrestricted or top-respecting preferences also hold for every admissible quota. 
Note that since the number of judges varies in these three control scenarios, it does not hold that UPQR1/2 is a special case 
of the uniform constant premise-based quota rule. Hence, hardness results cannot be directly transferred from UPQR1/2 to 
UCPQRq .

4. First results and observations

All decision problems defined in the sections above belong to NP. Note that all results in this section also hold for 
uniform constant premise-based quota rules; we will only state them for UPQR, though. Also note that we give the proofs 
for control by adding, deleting, replacing, and bundling judges at the same time.

Lemma 9. Let C be any of the control types defined in this paper and let q, 0 ≤ q < 1, be a rational quota. UPQRq-CR-Necessary-

Control-by-C ≤p
m UPQRq-HD-Control-by-C .

Proof. We start with an instance of UPQRq-CR-Necessary-Control-by-C and construct an instance of UPQRq-HD-Control-

by-C in the following way. Let J be the original profile, � the original agenda and D = {ϕ1, . . . , ϕk, ϕk+1, . . . , ϕt} the original 
desired set, where ϕi ∈ UPQRq(J) for 1 ≤ i ≤ k and ϕi /∈ UPQRq(J) for k + 1 ≤ i ≤ t . Without loss of generality, we assume 
that t > k ≥ 1, i.e., the collective outcome agrees (disagrees) with at least one formula in the desired set. To obtain the 
agenda in the new instance, extend � by the formula ψ = ϕ1 ∧ · · · ∧ ϕk and by t − 1 syntactic variations of ψ (and the 
corresponding negations). This can be seen as giving a weight of t to ψ . Furthermore, extend the profile J (and all possibly 
existing additional profiles, e.g., in the case of control by adding judges) by ψ or ¬ψ (and by the syntactic variations) in 
a consistent way. Let the new desired set D ′ be the union of the old desired set D , the formula ψ , and of all its syntactic 
variations. Note that ψ is contained in the collective outcome of the new instance.

We claim that the chair is able to achieve an additional agreement of his desired set with the new collective outcome in 
the original instance if and only if the chair is able to reduce the Hamming distance between his desired set and the new 
collective outcome in the new instance.

From left to right, assume that after exerting control of type C , the chair necessarily prefers the new outcome to the old 
one assuming closeness-respecting preferences, i.e., ϕ1, . . . , ϕk are still part of the collective outcome and there exists a ϕi , 
k + 1 ≤ i ≤ t , so that ϕi is part of the new outcome. Then—after employing the same control action in the new instance—the 
Hamming distance between D ′ and the corresponding new collective outcome is smaller than before.
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From right to left, assume that after exerting control of type C in the new instance, the Hamming distance between 
D ′ and the new collective outcome is reduced, i.e., the distance is smaller than t − k. This cannot be achieved without 
keeping ϕ1, . . . , ϕk in the new collective outcome since an additional Hamming distance of t between the desired set and 
an outcome containing ¬ψ cannot be compensated. It follows that all agreements between the desired set and the new 
collective outcome are preserved and a new agreement was added (in the new as well as in the original instance after 
employing the same control actions), so that the chair necessarily prefers the new collective outcome to the old one in the 
original instance. �

Note that the desired set in the new instance is complete if and only if the chair’s desired set in the original in-
stance is complete as well. Therefore, this result shows that, in the case of a complete desired set, NP-hardness of 
UPQRq-CR-Necessary-Control-by-C implies NP-hardness of UPQRq-HD-Control-by-C .

Next, we show that, for uniform premise-based quota rules and any of the control types considered here, exact control 
is at least as hard as necessary control for closeness-respecting preferences.

Lemma 10. Let C be any of the control types defined in this paper and let q, 0 ≤ q < 1, be a rational quota. UPQRq-CR-Necessary-

Control-by-C ≤p
m UPQRq-Exact-Control-by-C .

Proof. We start with an instance of UPQRq-CR-Necessary-Control-by-C and construct an instance of UPQRq-Exact-

Control-by-C in the following way. Let J be the original profile, � the original agenda and D = {ϕ1, . . . , ϕk, ϕk+1, . . . , ϕt}
the original desired set, where ϕi ∈ UPQRq(J) for 1 ≤ i ≤ k and ϕi /∈ UPQRq(J) for k + 1 ≤ i ≤ t . Without loss of generality, 
we again assume that t > k ≥ 1, i.e., the collective outcome agrees (disagrees) with at least one formula in the desired set. 
Extend the agenda by the formulas ψ1 = ϕ1 ∧· · ·∧ϕk and ψ2 = ϕk+1 ∨· · ·∨ϕt and the corresponding negations, and extend 
all involved profiles to the new agenda. Let D ′ = {ψ1, ψ2} be the chair’s new desired set.

We show that the chair can preserve existing agreements and achieve an additional agreement of her desired set with 
the new collective outcome in the original instance by exerting control of type C if and only if she can exert control of type 
C to include her entire desired set in the new collective outcome of the new instance.

From left to right, assume that ϕ1, . . . , ϕk (i.e., the existing agreements) and at least one of ϕi , k + 1 ≤ i ≤ t , is contained 
in the collective outcome after exerting control of type C . If the chair employs the same control action in the new instance, 
ψ1 and ψ2 are both part of the new collective outcome, so the control action is successful.

From right to left, assume that after exerting control of type C , D ′ is contained in the new collective outcome in the 
new instance. This can only be the case if ϕ1, . . . , ϕk (i.e., the existing agreements) are preserved to include ψ1 and at least 
one of ϕi , k + 1 ≤ i ≤ t , (i.e., an additional agreement) is added to the collective outcome to include ψ2. As before, after 
employing the same control action in the original instance the chair necessarily prefers the new to the old outcome under 
closeness-respecting preferences. �

In contrast to the proof of Lemma 9, the desired set in the new instance is incomplete. Therefore, the complexity of the 
special case of a complete desired set in the exact problem variant has to be considered separately.

Our next result gives a link between the exact control problem of a given type and the corresponding possible control 
problem with respect to unrestricted and top-respecting preferences.

Lemma 11. Let C be any of the control types defined in this paper and let q, 0 ≤ q < 1, be a rational quota. UPQRq-Exact-Control-

by-C ≤p
m UPQRq-T -Possible-Control-by-C for each preference type T ∈ {U, TR}.

Proof. We give the proof for both claims at the same time. Consider an instance of UPQRq-Exact-Control-by-C , where �
denotes the agenda, J the profile of judges before exerting control, and D = {ϕ1, . . . , ϕt} the chair’s desired set. Without loss 
of generality, assume that D � UPQRq(J). To create the new instance, i.e., an instance of UPQRq-U-Possible-Control-by-C
(UPQRq-TR-Possible-Control-by-C), let the agenda �′ be the union of �, the formula ψ = ϕ1 ∧ · · · ∧ ϕt , and its negation. 
Extend all involved profiles to the new agenda and let D ′ = {ψ} be the new desired set. Note that ψ is not part of the new 
instance’s collective outcome.

We claim that there is a control action of type C so that D is part of the new collective outcome in the original instance 
if and only if there is a control action of type C in the new instance so that the chair possibly prefers the new to the old 
outcome under unrestricted (top-respecting) preferences induced by D ′ .

From left to right, assume that it is possible for the chair to include D in the collective outcome, i.e., exert control of 
type C so that ϕ1, . . . , ϕt get accepted. Then, the same control action in the new instance results in ψ being part of the 
collective outcome. Note that under unrestricted as well as under top-respecting preferences, the chair possibly prefers a 
set containing her desired set to any set without this property, so the control action is successful in the new instance.

From right to left, assume that there is a control action so that the chair possibly prefers the new collective outcome of 
the new instance to the old one. Under unrestricted preferences, this is the case whenever the corresponding intersections 
of the outcomes with the desired set, i.e., with D ′ , differ from each other. Since the intersection of the old outcome with 
D ′ is empty, this is only the case when the new outcome includes ψ . Under top-respecting preferences, the chair possibly 
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prefers the new outcome to the old one if the intersections of these two sets with the desired set D ′ both do not equal D ′
and these intersections differ from each other (which is not possible here, so this case cannot occur) or the new outcome 
contains D ′ , whereas the old one does not. It follows that the chair was able to include ψ in the collective outcome. But 
then, the chair can employ the same successful control action in the original instance to include ϕ1, . . . , ϕt in the new 
collective outcome. �

Note that the above proof requires the desired set of the preference type variant to be incomplete. Note further that 
the above proof also works to show that, for any of the control types defined in this paper C , the exact control problem 
can be reduced to possible control under closeness-respecting preferences, to necessary control under top-respecting and 
closeness-respecting preferences, and to control under Hamming-distance-induced preferences.

Proposition 12. Let C be any of the control types defined in this paper and let q, 0 ≤ q < 1, be a rational quota. UPQRq-Exact-

Control-by-C and UPQRq-TR-Necessary-Control-by-C are equal in terms of complexity.

Proof. We only show one proof direction (i.e., UPQRq-Exact-Control-by-C ≤p
m UPQRq-TR-Necessary-Control-by-C); the 

reduction in the other direction works analogously. In the case that the desired set is already a part of the collective outcome 
in the instance of UPQRq-Exact-Control-by-C , construct an arbitrary no-instance for UPQRq-TR-Necessary-Control-by-C . 
Otherwise, note that in the case of necessary control under top-respecting preferences, the external agent necessarily prefers 
a judgment set X to Y only if her desired set is a subset of X , but not of Y . Therefore, the chair is able to include her desired 
set in the collective outcome after exerting control of type C if and only if there is a control action of type C so that she 
necessarily prefers the new collective outcome to the old one in the same instance under top-respecting preferences. �

Proposition 13. Let C be any of the control types defined in this paper, let T ∈ {U, TR} be a preference type, and let the desired set be 
complete. For each rational quota q, 0 ≤ q < 1, UPQRq is vulnerable to possible control by C under T .

Proof. In the case of unrestricted preferences, the chair possibly prefers every new outcome to the current outcome. Since 
her desired set is complete, she only has to check if she can change a premise so as to change the collective judgment set. 
This is possible in polynomial time for every C .

In the case of top-induced preferences, the chair possibly prefers every new outcome to the current outcome as long as 
the latter is not identical to her desired set. Therefore, it also suffices to change some premise if possible. �

Proposition 14. Let C be any of the control types defined in this paper. For each rational quota q, 0 ≤ q < 1, UPQRq is immune to 
necessary control by C under unrestricted preferences.

Proof. In the case of unrestricted preferences, there is never a new outcome that is necessarily preferred to the old outcome. 
It follows that the chair cannot exert control by C in a way that he necessarily prefers the new outcome to the old one, so 
UPQRq is immune to control by C under unrestricted preferences. �

Proposition 14 explains why we do not further consider the combination of necessary control with unrestricted pref-
erences. In the following sections, we show that possible and necessary control of type C under closeness-respecting 
preferences is NP-hard for uniform (constant) premise-based quota rules with a certain quota, even for a complete de-
sired set of the external agent.14 Lemma 10 then proves NP-hardness of the corresponding exact control problem, and 
Lemmas 9 and 11 show NP-hardness of most other problem variants.

5. Control by adding judges

In the manipulation and bribery problems studied by Endriss et al. [30] and Baumeister et al. [9], the number of judges 
participating is constant and hence uniform premise-based quota rules and uniform constant premise-based quota rules 
describe the same judgment aggregation procedures. However, this is not the case if the number of judges participating 
is not fixed as in control by adding or deleting judges. For uniform premise-based quota rules the number of affirmations 
needed to be in the collective judgment set varies with the number of judges, whereas for uniform constant premise-based 
quota rules the number of affirmations remains the same regardless of the number of judges participating. Therefore, we 
will study these problems with respect to both judgment aggregation procedures separately.

5.1. Uniform constant premise-based quota rules

We start with uniform constant premise-based quota rules.

14 Note that NP-hardness of a problem’s special case where the desired set is complete immediately implies NP-hardness of the more general problem 
with an incomplete desired set.
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Table 6
Construction for the first part of the proof of Theorem 15.

Judgment set v1 · · · vn β ψ ∨ β

J1, . . . , Jq 1 · · · 1 0 1
Jq+1 0 · · · 0 0 1

UCPQRq 0 · · · 0 0 1

D 1 · · · 1 1 1

Table 7
Construction for the second part of the proof of Theorem 15.

Judgment set v1 · · · vn β ψ ′ ∨ β

J ′
1, . . . , J ′

q 1 · · · 1 0 1
J ′

q+1 0 · · · 0 0 0

UCPQRq 0 · · · 0 0 0

D ′ 0 · · · 0 1 1

Theorem 15. For each admissible value of q, UCPQRq is resistant to necessary and possible control by adding judges under closeness-
respecting preferences, even for a complete desired set.

Proof. The proof works by a reduction from the problem Dominating-Set (recall the definition from Section 2.3). Let (G, k)

with G = (V , E) and V = {v1, . . . , vn} be a Dominating-Set instance. The neighbors of vertex vi (including vi itself) will be 
denoted by v1

i , v
2
i , . . . , v

ji
i where ji indicates the size of the closed neighborhood of vi .

For the first part of the theorem (i.e., for showing NP-hardness of UCPQRq-CR-Necessary-Control-by-Adding-Judges), we 
construct an instance of the control problem as follows. The agenda � contains the literals v1, . . . , vn , β , the formula ψ ∨β , 
where ψ = (ϕ1 ∧ · · · ∧ ϕn) ∨ (¬ϕ1 ∧ · · · ∧ ¬ϕn) and ϕi = v1

i ∨ · · · ∨ v ji
i , and all corresponding negations. The quota for every 

positive literal is q, hence q + 1 affirmations are needed to be in the collective judgment set. The profile J = ( J1, . . . , Jq+1), 
the outcome, and the chair’s desired set D can be seen in Table 6. Note that each vi , 1 ≤ i ≤ n, needs one additional 
affirmation to be contained in the collective outcome.

The chair can choose at most k judgment sets from the profile K = (K1, . . . , Kn) to add to J, where each Ki , 1 ≤ i ≤ n, 
contains ¬β , vi , ¬v j for each j �= i, 1 ≤ j ≤ n, and the corresponding conclusion. Note that all existing agreements with the 
chair’s desired set D have to be preserved and at least one new agreement with D has to arise for the chair to necessarily 
prefer the new outcome to the old one under closeness-respecting preferences.

We claim that there is a dominating set of size k for G if and only if there is a successful control action by the chair.
From left to right, let V ′ be a dominating set of size k for G . We can ensure that all formulas ϕi , 1 ≤ i ≤ n—and, 

therefore, the conclusion ψ ∨ β—evaluate to true by adding those judges with judgment sets Ki where vi ∈ V ′ . There are 
additional agreements of the new collective outcome with the desired set D (namely, the vi ∈ V ′ that are now contained 
in the collective outcome), while the already existing agreement (namely, the conclusion ψ ∨ β) has been preserved, so the 
control action was successful.

Conversely, assume that the formula ψ ∨ β and at least one vi or β evaluate to true. It is not possible to achieve this by 
having β in the collective outcome, since there are no individual judgment sets containing β . Hence, the collective outcome 
for vi , 1 ≤ i ≤ n, makes all ϕi and, therefore, the conclusion ψ ∨ β true. The maximum number of judges that can be added 
is k, and exactly one literal vi is contained in the collective judgment set for each judge from K that is added. Hence, the 
vertices vi corresponding to the judgment sets Ki from K that have been added must form a dominating set of size k for 
graph G .

We prove the second part of the theorem (i.e., NP-hardness of UCPQRq-CR-Possible-Control-by-Adding-Judges) in a 
similar way. Unlike in the first part of the proof, the chair only has to achieve an additional agreement regardless of new 
differences, as pointed out right after Definition 5. In the agenda, replace the formula ψ ∨ β with the formula ψ ′ ∨ β where 
ψ ′ = ϕ1 ∧ · · · ∧ ϕn . All required changes in the profile J′ , the outcome, and the desired set D ′ can be seen in Table 7.

To obtain the profiles K′ of judgment sets to choose from, the premises of the judgment sets in K restricted to the cor-
responding new agenda remain unchanged and the new conclusion is evaluated accordingly. As above, the chair is allowed 
to add k judgment sets. No judge accepts β , so the chair has to achieve an additional agreement with the conclusion. This 
is only possible if the chair adds the judgment sets from K′ that correspond to the vertices in a dominating set of G . It 
follows that the control action is successful if and only if G has a dominating set of size k. �

5.2. Uniform premise-based quota rules

We now turn to the results for the uniform premise-based quota rules, where we only consider UPQR1/2, which equals 
the premise-based procedure PBP whenever there are an odd number of judges but which unlike PBP is also defined for an 
even number of judges. We show resistance to control by adding judges.
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Table 8
Construction for the proof of Theorem 16.

Judgment set α0 α1 · · · α3m β ϕ ∨ β

J1 1 1 · · · 1 0 1
J2, . . . , Jm 0 1 · · · 1 0 0
Jm+1 0 0 · · · 0 0 0

UPQR1/2 0 1 · · · 1 0 0

D 0 1 · · · 1 1 1

Theorem 16. UPQR1/2 is resistant to possible and necessary control by adding judges under closeness-respecting preferences, even for 
a complete desired set.

Proof. The proof works by a reduction from X3C (recall the definition from Section 2.3). Let (X, C) be an X3C in-
stance, where X = {x1, . . . , x3m} and C = {C1, . . . , Cn}. For the first part of the theorem (i.e., for showing NP-hardness 
of UPQR1/2-CR-Possible-Control-by-Adding-Judges), let the agenda � contain the literals α0, α1, . . . , α3m, β , the formula 
ϕ ∨ β with ϕ = α0 ∧ · · · ∧ α3m , and the corresponding negations. The profile J = ( J1, . . . , Jm+1), the collective judgment set 
UPQR1/2(J), and the desired set D can be seen in Table 8.

Let K = (K1, . . . , Kn) be the profile containing the individual judgment sets to be added, where Ki = {α0, α j, ¬αl, ¬β | x j ∈
Ci, xl /∈ Ci, 1 ≤ j, l ≤ 3m}. The chair is allowed to add m judgment sets from K.

We claim that there is a profile K′ ⊆ K, |K′| ≤ m, such that the chair possibly prefers the outcome in J ∪ K′ to the one in 
J if and only if there is an exact cover for the given X3C instance.

From right to left, assume that there is an exact cover C′ ⊆ C for the given X3C instance (X, C). Then there is a profile K′
containing those judges Ki with Ci ∈ C′ . The total number of judges is then 2m + 1. The number of affirmations needed to 
be in the collective judgment set is strictly greater than m + (1/2), so m + 1 affirmations are needed. Note that α0 gets one 
affirmation from the judges in J and m affirmations from the judges in K′ . Every αi , 1 ≤ i ≤ 3m, gets m affirmations from 
the judges in J and one affirmation from a judge in K′ . Hence, ϕ ∨ β evaluates to true and the new collective outcome has 
an additional agreement with D , as desired.

From left to right, assume that there is a successful control action, i.e., the chair can achieve an additional agreement of 
the new outcome with D . Since no judge accepts β , the additional agreement can only occur for the formula ϕ ∨ β . To add 
α0, the chair has to add at least m judges for a total of 2m + 1 judges. But then every αi , 1 ≤ i ≤ 3m, needs at least one 
additional affirmation. Therefore, the sets Ci corresponding to the judges in K′ must form an exact cover for the given X3C

instance, since this is the only possibility to achieve the additional affirmations for each αi while not exceeding the allowed 
number of judges to add. This shows that UPQR1/2-CR-Possible-Control-by-Adding-Judges is NP-hard.

Concerning the proof of the second part (i.e., NP-hardness of UPQR1/2-CR-Necessary-Control-by-Adding-Judges), let the 
agenda �′ contain only α0, α1, . . . , α3m and the corresponding negations. Let J∗ and K∗ be the corresponding profiles 
restricted to �′ and let D ′ = {α0, α1, . . . , α3m} be the chair’s desired set. The only difference between the desired set and 
the collective outcome is α0. Since the chair has to preserve the initial agreements with D ′ , by a similar argumenta-
tion as above, there is a successful control action if and only if there is an exact cover for the given X3C instance. Thus 
UPQR1/2-CR-Necessary-Control-by-Adding-Judges is NP-hard. �

Note that the second proof part of Theorem 16 uses an agenda that only consists of premises and can also be used 
immediately to prove the next theorem since the only successful control action is to fully include the desired set in the 
new collective outcome. Furthermore, it is an alternative proof to show that UPQR1/2 is resistant to control by adding judges 
under Hamming-distance-induced preferences.

Theorem 17. UPQR1/2 is resistant to exact control by adding judges, even for a complete desired set.

6. Control by deleting judges

Next, we turn to control by deleting judges.

6.1. Uniform constant premise-based quota rules

Again, we start with the results for the uniform constant premise-based quota rules.

Theorem 18. For each admissible value of q, UCPQRq is resistant to necessary and possible control by deleting judges under closeness-
respecting preferences, even for a complete desired set.

Proof. We will show NP-hardness by a reduction from Dominating-Set. For a given Dominating-Set instance (G, k), we 
construct the following judgment aggregation scenarios.
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Table 9
Construction for the first part of the proof of Theorem 18.

Judgment set v1 v2 v3 · · · vn−2 vn−1 vn β γ ψ ∨ β

J1, . . . , Jq 1 1 1 · · · 1 1 1 0 1 1
Jq+1 0 0 0 · · · 0 0 0 0 1 1
L1 1 0 0 · · · 0 0 0 0 0 ?
L2 0 1 0 · · · 0 0 0 0 0 ?
L3 0 0 1 · · · 0 0 0 0 0 ?
· · · · · ·
Ln−2 0 0 0 · · · 1 0 0 0 0 ?
Ln−1 0 0 0 · · · 0 1 0 0 0 ?
Ln 0 0 0 · · · 0 0 1 0 0 ?

UCPQRq 1 1 1 · · · 1 1 1 0 1 1

D 0 0 0 · · · 0 0 0 1 1 1

Table 10
Construction for the second part of the proof of Theorem 18.

Judgment set v1 v2 v3 · · · vn−2 vn−1 vn β γ ψ ′ ∨ β

J1, . . . , Jq 1 1 1 · · · 1 1 1 0 1 0
Jq+1 0 0 0 · · · 0 0 0 0 1 1
L1 1 0 0 · · · 0 0 0 0 0 ?
L2 0 1 0 · · · 0 0 0 0 0 ?
L3 0 0 1 · · · 0 0 0 0 0 ?
· · · · · ·
Ln−2 0 0 0 · · · 1 0 0 0 0 ?
Ln−1 0 0 0 · · · 0 1 0 0 0 ?
Ln 0 0 0 · · · 0 0 1 0 0 ?

UCPQRq 1 1 1 · · · 1 1 1 0 1 0

D ′ 1 1 1 · · · 1 1 1 1 1 1

For the first part of the theorem (i.e., for showing NP-hardness of UCPQRq-CR-Necessary-Control-by-Deleting-Judges), 
let the agenda � contain the premises vi , 1 ≤ i ≤ n, β , γ , and the conclusion ψ ∨ β , where ψ = (ϕ1 ∧ · · · ∧ ϕn) ∨ (¬ϕ1 ∧
· · · ∧ ¬ϕn) and ϕi = ¬v1

i ∨ · · · ∨ ¬v ji
i (where ji denotes the size of the closed neighborhood of vi ), and all corresponding 

negations. The quota is q. Let J = T ∪ L be the profile to delete judges from, where T = ( J1, . . . , Jq+1) and L = (L1, . . . , Ln), 
as stated in Table 9 with the chair’s desired set D and the collective outcome. Note that each Li , 1 ≤ i ≤ n, accepts only the 
premise vi and evaluates the conclusion accordingly (which therefore is indicated by a question mark in Table 9).

We claim that there is a dominating set of size at most k for G if and only if there is a successful control action, 
i.e., deleting at most k judges so that the new collective outcome preserves all existing agreements with D and adds an 
additional agreement.

Let V ′ be a dominating set for G of size at most k. Then the outcome obtained by deleting those Li with vi ∈ V ′
preserves all agreements with D (because the conclusion still evaluates to true) and adds a new agreement, namely at least 
one ¬vi , 1 ≤ i ≤ n.

Conversely, assume that a successful control action is possible by deleting at most k judges. No judge accepts β , so this 
formula will never be in the collective outcome. Since the agreement with γ has to be preserved, only judges of the form 
Li , 1 ≤ i ≤ n, may be deleted. The deletion of a judge Li has the effect that vi is not in the collective outcome (hence, at 
most k different vi are not contained in the collective outcome), and since they evaluate all formulas ϕi , 1 ≤ i ≤ n to true, 
those vi must form a dominating set of size at most k for G .

For the second part of the theorem (i.e., for showing NP-hardness of UCPQRq-CR-Possible-Control-by-Deleting-Judges), 
replace the formula ψ ∨ β with the formula ψ ′ ∨ β , where ψ ′ = ϕ1 ∧ · · · ∧ ϕn ∧ γ , and adjust the profile accordingly. The 
profile, the chair’s desired set D ′ , and the collective outcome can be seen in Table 10.

The only possible additional agreement of a new collective outcome with the desired set D ′ is the conclusion, since no 
judge accepts β . Therefore, only judges from L can be deleted for γ to be contained in the new collective outcome. Again, 
there is a dominating set of size at most k for G if and only if there is a successful control action. �

6.2. Uniform premise-based quota rules

We now turn to the results for uniform premise-based quota rules, where we again consider UPQR1/2 only. Again, we will 
show resistance to control by deleting judges for the following problem variants.

Theorem 19. UPQR1/2 is resistant to possible and necessary control by deleting judges under closeness-respecting preferences, even for 
a complete desired set.
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Proof. Let (X, C) be an X3C instance, where X = {x1, . . . , x3m} and C = {C1, . . . , Cn}. We assume that each xi is contained in 
exactly three sets C j , since X3C is known to be NP-complete even under this restriction (as shown by Gonzalez [39]).

For the first part (i.e., for showing NP-hardness of UPQRq-CR-Possible-Control-by-Deleting-Judges), let � be the agenda 
containing the literals α0, α1, . . . , α3m , β , γ , the formula ϕ ∨ β with ϕ = α0 ∧ · · · ∧ α3m ∧ ¬γ , and all corresponding 
negations. Let J = T ∪ L be a profile, where T = ( J1, . . . , Jn+m) and L = (L1, . . . , Ln) for a total of 2n + m judges. For each i, 
1 ≤ i ≤ n + m, let J i contain ¬β , α j if i ≤ 3m (and ¬α j otherwise) for 1 ≤ j ≤ 3m, α0 if i ≤ n + 1 (and ¬α0 otherwise), γ
if i ≤ m (and ¬γ otherwise), and the corresponding conclusion ϕ ∨ β (respectively, ¬(ϕ ∨ β)). Furthermore, for 1 ≤ i ≤ n, 
define

Li = {¬β,γ ,¬α0,α j,¬αl,¬(ϕ ∨ β) | x j /∈ Ci, xl ∈ Ci,1 ≤ j, l ≤ 3m}.
The threshold for a premise to be included in the collective outcome is n + m/2. Since β has no affirmation, γ and every ak , 
1 ≤ k ≤ 3m, each have n + m affirmations, and since α0 has n + 1 affirmations, it follows that

UPQR1/2(J) = {¬α0,α1, . . . ,α3m,¬β,γ ,¬(ϕ ∨ β)}.
Let the chair’s desired set be D = {¬α0, α1, . . . , α3m, β, γ , ϕ ∨ β}. She is able to delete m individual judgment sets from the 
profile J. We claim that there is an exact cover for the given X3C instance if and only if there is a successful control action 
by the chair.

From left to right, assume that there is an exact cover for the given X3C instance. Delete the judges from L whose 
individual judgment sets correspond to this exact cover. The new threshold is n + 1, so γ is not contained in the collective 
outcome anymore—since it lost m affirmations for a new total of n affirmations—but each αi , 0 ≤ i ≤ 3m and therefore the 
conclusion ϕ ∨ β is part of the outcome. The chair achieves a new agreement of the desired set with the new outcome, 
namely the conclusion, so that the control action was successful.

From right to left, assume that there exists a successful control action, i.e., the chair is able to delete up to m judges so 
that the new collective outcome has a new agreement with her desired set. Since no judge accepts β , it will never be in the 
collective outcome. Therefore, the new agreement of the desired set with the new outcome has to occur in the conclusion. 
Since ϕ is a conjunction including α0, this is only possible if the chair manages to include α0 in the new collective outcome, 
even though α0 is not part of the chair’s desired set. To include α0, the chair has to delete m judges to lower the acceptance 
threshold to n + 1. These judges’ individual judgment sets have to contain γ , so that γ loses m affirmations and is not 
contained in the collective outcome anymore, and cannot contain α0 in order for α0 to have the needed number of n + 1
affirmations to be part of the outcome. Therefore, the judges’ sets have to be deleted from L. The αi , 1 ≤ i ≤ 3m, are only 
allowed to lose m − 1 affirmations so that they are still contained in the new collective outcome. If some xi is not contained 
in one of the sets C j that match the individual judgment sets of the deleted judges, the corresponding αi loses too many 
affirmations and is thus rejected in the new collective outcome. The control action is successful (i.e., ϕ ∨ β is contained in 
the new collective outcome) if and only if the sets C j corresponding to the deleted individual judgment sets form an exact 
cover of X . This shows that UPQR1/2-CR-Possible-Control-by-Deleting-Judges is NP-hard.

To prove the second part (i.e., NP-hardness of UPQRq-CR-Necessary-Control-by-Replacing-Judges), we create a new 
agenda �′ from � by removing β , ϕ ∨ β , and the corresponding negations, and by adding the formula ψ = (¬α0 ∧ γ ) ∨
(α0 ∧ ¬γ ) and its negation. Let J∗ = T∗ ∪ L∗ be the resulting profile that is obtained by restricting T and L to �′ and by 
adding the corresponding conclusions to all J i and L j . Then it holds that

UPQR1/2(J∗) = {¬α0,α1, . . . ,α3m, γ ,ψ}.
Let D ′ = {α0, α1, . . . , α3m, ¬γ , ψ} be the chair’s desired set and let the chair be able to delete m judgment sets.

We claim that there is an exact cover for the given X3C instance if and only if there is a successful control action by 
the chair, i.e., it is possible for the chair to delete at most m judges so that the new collective outcome has an additional 
agreement with his desired set while preserving the existing agreements.

From left to right, delete the judges from L∗ that correspond to the exact cover. As argued above, it follows that the new 
collective outcome contains ¬γ , each αi , 0 ≤ i ≤ 3m, and therefore also the conclusion ψ , i.e., the new collective outcome 
is identical to the desired set and the control action was successful.

From right to left, assume that there is a successful control action. To preserve the agreements on the conclusion, the 
chair has to change the collective outcome in regard to α0 as well as γ . Again, the chair has to delete exactly m judgment 
sets (for α0 to meet the acceptance threshold), can only delete judgment sets from L∗ (to ensure that α0 is accepted in the 
new collective outcome, but γ is not), and, therefore, can preserve the agreements concerning the αi if and only if the sets 
C j corresponding to the deleted individual judgment sets form an exact cover of X . Thus UPQR1/2-CR-Necessary-Control-

by-Deleting-Judges is NP-hard. �

We already proved the following theorem in the second part of the proof of Theorem 19, since in this proof the chair 
has to make sure that the new collective outcome is identical to his desired set.

Theorem 20. UPQR1/2 is resistant to exact control by deleting judges, even for a complete desired set.
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Table 11
Construction for the first part of the proof of Theorem 21.

Judgment set v1 · · · vn β γ ψ ∨ β

(a) Rational quota q with 0 ≤ q < 1/2

J1, . . . , J�m·q� 1 · · · 1 0 1 1
J�m·q�+1 0 · · · 0 0 1 0
J�m·q�+2, . . . , Jm 0 · · · 0 0 0 0

UPQRq 0 · · · 0 0 1 0

D 0 · · · 0 1 1 1

Judgment set v1 · · · vn β γ ψ ′ ∨ ¬β

(b) Rational quota q with 1/2 ≤ q < 1
J ′

1, . . . , J ′
�m·(1−q)�−1 0 · · · 0 1 0 1

J ′
�m·(1−q)� 1 · · · 1 1 0 0

J ′�m·(1−q)�+1, . . . , J ′
m 1 · · · 1 1 1 0

UPQRq 1 · · · 1 1 0 0

D ′ 1 · · · 1 0 0 1

7. Control by replacing judges for uniform premise-based quota rules

Turning now to control by replacing judges, note that—in contrast to the problems of control by adding and deleting 
judges—the number of judges here is constant. Thus there is no difference between uniform constant premise-based quota 
rules and the corresponding uniform premise-based quota rules. The following result thus establishes resistance for both 
classes of rules at one fell swoop; we will state it only for UPQRq .

Theorem 21. For each rational quota q, 0 ≤ q < 1, UPQRq is resistant to possible and necessary control by replacing judges under 
closeness-respecting preferences, even for a complete desired set.

Proof. The proof works by a reduction from the problem Dominating-Set. Let (G, k) with G = (V , E) and V = {v1, . . . , vn}
be a Dominating-Set instance. The neighbors of vertex vi (including vi itself) will be denoted by v1

i , v
2
i , . . . , v

ji
i , where ji

indicates the size of the closed neighborhood of vi .
For the first part of the theorem (i.e., for showing NP-hardness of UPQRq-CR-Possible-Control-by-Replacing-Judges), 

first assume that the quota q is lower than 1/2. We construct an instance of the control problem as follows. The agenda 
� contains the literals v1, . . . , vn , β , γ , the formula ψ ∨ β , where ψ = ϕ1 ∧ · · · ∧ ϕn ∧ γ and ϕi = v1

i ∨ · · · ∨ v ji
i , and all 

corresponding negations. The profile J = T1 ∪ T2 (T1 = ( J1, . . . , J�m·q�+1), T2 = ( J�m·q�+2, . . . , Jm)) with m = 2k + 1 judges, 
the outcome, and the chair’s desired set D can be seen in Table 11(a).

The chair can choose at most k judgment sets from the profile K = (K1, . . . , Kn) with Ki = {¬β, ¬γ , vi, ¬v j, ¬(ψ ∨
β) | 1 ≤ j ≤ n, i �= j} to replace judgment sets in J.

We claim that there is a dominating set of size at most k for G if and only if there is a successful control action.
From left to right, replace arbitrary judges in T2 with the judges from K whose individual judgment sets correspond to 

the dominating set. This control action results in a new agreement of the desired set with the new collective outcome, since 
the vi corresponding to the dominating set now meet the acceptance threshold and therefore the conclusion evaluates to 
true.

From right to left, assume that there is a successful control action that achieves a new agreement of the desired set with 
the new collective outcome. The formula β will never be contained in the outcome because no judge accepts it. In order 
to achieve the desired additional agreement between the new outcome and D , the chair has to get the conclusion—and, 
therefore, ψ—be accepted. Each vi needs at least one additional affirmation to be contained in the new outcome. Note that 
only judgment sets in T2 can be replaced (or else γ would lose an affirmation, would not be contained in the collective 
outcome anymore, and thus ψ cannot be evaluated to true). Since ψ ∨ β is contained in the new outcome if and only if the 
accepted vi form a dominating set, and since only k judgment sets can be replaced, the control action is successful under 
closeness-respecting preferences if and only if G has a dominating set of size k. This completes the proof of NP-hardness of 
UPQRq-CR-Possible-Control-by-Replacing-Judges for the case of q < 1/2.

In the case of a quota q greater than or equal to 1/2, the agenda changes slightly. Instead of the formula ψ ∨ β and its 
negation the new agenda �′ contains the formula ψ ′ ∨ ¬β with ψ ′ = ϕ′

1 ∧ · · · ∧ ϕ′
n ∧ ¬γ and ϕ′

i = ¬v1
i ∨ · · · ∨ ¬v ji

i , and its 
negation, ¬(ψ ′ ∨ ¬β). The profile J′ = T′

1 ∪ T′
2 (T′

1 = ( J ′
1, . . . , J

′
�m·(1−q)�), T

′
2 = ( J ′

�m·(1−q)�+1, . . . , J
′
m)) with m = 2k + 1 judges, 

the outcome, and the chair’s desired set D ′ can be seen in Table 11(b).
Let K′ = (K ′

1, . . . , K
′
n) be a profile, where

K ′
i = {β,γ ,¬vi, v j,¬(ψ ′ ∨ ¬β) | 1 ≤ j ≤ n, i �= j}
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Table 12
Construction for the second part of the proof of Theorem 21.

Judgment set v1 · · · vn γ 	

(a) Rational quota q with 0 ≤ q < 1/2

J∗
1, . . . , J∗�m·q� 1 · · · 1 1 1

J∗�m·q�+1 0 · · · 0 1 1

J∗�m·q�+2, . . . , J∗
m 0 · · · 0 0 1

UPQRq 0 · · · 0 1 1

D∗ 1 · · · 1 1 1

Judgment set v1 · · · vn γ 	′

(b) Rational quota q with 1/2 ≤ q < 1

J ′ ∗
1 , . . . , J ′ ∗

�m·(1−q)�−1 0 · · · 0 0 1

J ′ ∗
�m·(1−q)� 1 · · · 1 0 1

J ′ ∗
�m·(1−q)�+1, . . . J ′ ∗

m 1 · · · 1 1 1

UPQRq 1 · · · 1 0 1

D ′ ∗ 0 · · · 0 0 1

for 1 ≤ i ≤ n. Again, the chair is able to replace k judgment sets from J′ with k judgment sets from K′ . A formula needs at 
least �m(1 − q)� rejections in order to not be accepted. Since every judge accepts β , its negation will never be contained 
in the collective outcome. Thus the chair has to get ψ ′ accepted so as to achieve the desired additional agreement of the 
new outcome with D ′ . The argumentation then follows from the first case: Since ψ ′ is true if and only if the rejected vi
form a dominating set and since the k replaceable judgment sets must be from T′

2 , the control action is successful under 
closeness-respecting preferences if and only if G has a dominating set of size k.

We prove the second part of the theorem (i.e., NP-hardness of UPQRq-CR-Necessary-Control-by-Replacing-Judges) in a 
similar way. Unlike in the first part of the proof, the chair now has to necessarily prefer the new outcome to the current 
one. That means that all existing agreements have to be preserved. Remove β from the former agenda � (respectively, 
�′) and replace all appearances of ψ (respectively, ψ ′) with the formula 	 = ψ ∨ (¬v1 ∧ · · · ∧ ¬vn) (respectively, 	′ =
ψ ′ ∨ (v1 ∧ · · · ∧ vn)). All required changes in the resulting profiles J∗ = T∗

1 ∪ T∗
2 (respectively, J′ ∗ = T′ ∗

1 ∪ T′ ∗
2 ), the outcome, 

and the desired set D∗ (respectively, D ′ ∗) can be seen in Table 12(a) (respectively, in Table 12(b)).
To obtain the profiles K∗ (respectively, K′ ∗) of judgment sets to choose from, the premises of the judgment sets in 

K (respectively, K′) restricted to the corresponding new agenda remain unchanged and the new conclusion is evaluated 
accordingly. As above, the chair is allowed to replace k judgment sets.

We claim that there is a dominating set of size k for G if and only if the chair achieves an additional agreement of her 
desired set with the new collective outcome while preserving all existing agreements.

From left to right, replace arbitrary judges in T∗
2 (respectively, T′ ∗

2 ) with the judges from K∗ (respectively, K′ ∗) that 
correspond to a dominating set in G . This results in additional agreements of the desired set with the new collective 
outcome—namely the vi (respectively, ¬vi) from the dominating set that gain the needed additional affirmation—while 
preserving the agreements with γ and the conclusion, i.e., this action is a successful control action by the chair.

From right to left, assume that there is a successful control action by the chair. The chair has to change some premise 
different from γ in order to achieve a new agreement. But after this action the second part of 	 (respectively, 	′) is not 
satisfied anymore. In order to preserve the agreement of the outcome with her desired set regarding the conclusion, the 
chair has to replace some judgment sets from T∗

2 (respectively, T′ ∗
2 ) with the judgment sets from K∗ (respectively, K′ ∗) that 

correspond to the vertices in a dominating set of G . It follows that the control action is successful if and only if G has a 
dominating set of size k. �

8. Control by bundling judges for uniform premise-based quota rules

Finally, we consider control by bundling judges. Note that UPQRq-Control-by-Bundling-Judges is somewhat similar 
to UPQRq-Control-by-Deleting-Judges. We will exploit this in the following proof. Note that it does not make sense to 
consider uniform constant premise-based quota rules for control by bundling judges: If we have a constant number of 
judges and then partition the group of judges, bundling them to smaller groups, it would not be reasonable to have the 
original constant number of judges carry over to the smaller groups.

Theorem 22. UPQR1/2 is resistant to possible and necessary control by bundling judges under closeness-respecting preferences, even 
for a complete desired set.

Proof. The proofs will be by a reduction from the related problem UPQR1/2-Exact-Control-by-Deleting-Judges. We are 
given an agenda � = �p ∪ �c ,15 a profile J ∈ J (�)n , and a positive integer k as a bound on the number of judges that may 
be deleted. The quota 1/2 holds for every positive literal in the agenda. Let D be the desired set. Note that we can assume 
that D is complete since we showed in Theorem 20 that this restriction does not change the NP-hardness of the problem. 
Without loss of generality, we assume that n ≥ k + 2.

We begin by showing that UPQR1/2-CR-Necessary-Control-by-Bundling-Judges is NP-hard. Let 
∧

X denote the conjunc-
tion of each formula in the set X . First, we construct an agenda �′ = � ∪ {α, ¬α} ∪ {ϕ, ¬ϕ, ψ, ¬ψ}, where α is a newly 

15 Recall that �p denotes the set of premises and �c the set of conclusions of �.
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introduced premise, ϕ = (
∧

UPQR1/2(J)) ∨ α), and ψ = (
∧

D) ∨ ¬α. The profile S ∈ J (�′)n+k+1 of the bundling instance 
contains the original n judgment sets of J extended by ¬α and the corresponding new conclusions, and k + 1 new individ-
ual judgment sets that each contain γ ∈ �p if and only if γ ∈ D , they each contain α, and the conclusions are evaluated 
accordingly. The premises are divided into the following two subsets: The first one consists of �p , and the second one is 
{α, ¬α}. The set of the k + 1 new judges will be denoted by N ′ . The desired set is D ′ = D ∪ {α, ϕ, ψ}. We show that it is 
possible to obtain the desired set D by deleting at most k judges from J if and only if the judges from S can be bundled 
into two groups such that an additional agreement between D ′ and the new outcome can be achieved without losing an 
existing agreement.

From left to right, assume that there is a subset T′ ⊆ J, |T′| ≤ k, such that UPQR1/2(J � T′) = D . Then the judges can be 
bundled as follows. The k +1 new judges and the judges corresponding to T′ decide over α. Obviously the resulting outcome 
is identical to D ′ , so the constructed instance is a positive one for UPQR1/2-CR-Necessary-Control-by-Bundling-Judges.

From right to left, assume that the judges in the bundling instance can be bundled into N1 and N2 such that the 
collective outcome changes, but does preserve all existing agreements. This is only possible by adding α to the outcome 
because of the formula ϕ . However, to preserve the agreement with ψ , it holds that UPQR1/2(S|�p ,N1 ) = D . Note that this 
implies that the chair obtains a new outcome identical to her desired set. Since α is contained in the collective judgment 
set and since there are only k + 1 judges having α in their individual judgment set, at most k of the initial judges can 
be in N2. Due to the uniform premise-based procedure, it is enough to show that in the case of UPQR1/2(S|�p ,N1 ) = D , we 
have UPQR1/2(S|�p ,N1�N ′ ) = D . But this holds trivially, since for all judges from N ′ we have that γ ∈ �p is contained in the 
individual judgment set if and only if γ ∈ D .

The proof that UPQR1/2-CR-Possible-Control-by-Bundling-Judges is NP-hard uses the following agenda. Add the 
premises α and β , the conclusion ϕ′ = (

∧
D ∧ α) ∨ β , as well as the corresponding negations to � and adapt the profile of 

the proof’s first part to the new agenda by adding α or ¬α as before and adding ¬β and the corresponding evaluation of 
ϕ′ to each individual judgment. The premises are divided into the following two subsets: The first one consists of �p , and 
the second one is {α, ¬α, β, ¬β}. Let D ′′ = UPQR1/2(J) ∪ {¬α, β, ϕ′} be the chair’s desired set in the bundling instance. D ′′
only differs from the collective outcome in β and ϕ′ , i.e., the desired set contains β and ϕ′ , whereas the collective outcome 
does not. Since the chair cannot achieve to add β to the collective outcome, she has to obtain an agreement with ϕ′ to 
possibly prefer the new outcome to the old one. This shows that it is possible to obtain the desired set D by deleting at 
most k judges from J if and only if the judges from the new profile can be bundled into two groups such that both 

∧
D

and α are contained in the outcome. �

The first part of the proof of Theorem 22 already proves the next theorem.

Theorem 23. UPQR1/2 is resistant to exact control by bundling judges, even for a complete desired set.

9. Conclusions and open questions

We have introduced four fundamental control scenarios in judgment aggregation, inspired by the corresponding notions 
of electoral control that have been intensively studied in voting (see, e.g., [3,8,31,34,35,37,41,42]). We studied the complexity 
of control by adding, deleting, and replacing judges for the uniform constant premise-based quota rule. In the case of control 
by replacing judges this rule coincides with the uniform premise-based quota rule. The only open question remaining is the 
complexity of exact control when the chair’s desired set is complete.16

Since it is not clear how to reasonably define the problem of control by bundling judges for uniform constant premise-
based quota rules (see the remark right before Theorem 23), we only considered the uniform premise-based quota rules in 
this control scenario.

In this article, we have focused on classical computational complexity. However, as noted in the Introduction, a worst-
case complexity measure like NP-hardness has its limitations, and it would therefore be interesting to study, for instance, the 
typical-case complexity of the problems considered here (see, e.g., the survey by Rothe and Schend [58] for such approaches 
to manipulation and control problems in voting).

Another interesting future research question is whether our hardness results also hold in restricted cases, e.g., when the 
number of judges or issues are small, and in particular to see whether they are fixed-parameter tractable or hard in terms 
of parameterized complexity—an approach applied, for example, by de Haan [23] to judgment aggregation. We have started 
looking at special cases by considering problems restricted to complete desired sets, and we even obtained some results 
when the agenda only consists of premises, as mentioned after these results. Relatedly, all our results transfer to the case 
where the desired set only consists of conclusions.17

16 Note that the problem of exact control is equivalent to necessary control under top-respecting preferences in terms of complexity (Proposition 12).
17 Proof sketch: We can slightly modify the proofs by adding the conclusion α ∨ δ for each premise α that occurs in the desired set, where δ is a newly 

introduced premise that each judge rejects, and replace each occurrence of α in the desired set with α ∨ δ. The resulting desired set consists only of 
conclusions and each control action in this modified instance is successful if and only if the same control action is successful in the instance presented in 
our proofs.
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The control scenarios we introduced here all take influence on the set of judges. Finally, another interesting direction for 
future research is to extend the study of control in judgment aggregation to actions on the agenda (see, e.g., the manuscript 
of Dietrich [25]), or to actions on the aggregation rule itself.
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Chapter 7

Conclusions and Future Work

This thesis covers several topics in the field of computational social choice. The goal is
to further the understanding of axiomatic and complexity theoretic properties of decision
making procedures.

First, in Chapter 3, my coauthors and I studied a new type of ballot called `-ballot
that combines the concept of ordinal and cardinal preferences, and defined two types
of committee election rules tailored to these type of ballots. Our proposed minisum
and minimax rules were designed to minimize the dissatisfaction that voters have with
the winning committee. We then modified several existing properties of single- and
multiwinner voting rules to fit our type of ballots and rules and studied the axiomatic
properties of the minisum and minimax rules. Further, we were able to show that although
the winner determination is NP-hard for the minimax rules, an auxiliary problem asking
whether there exists a committee with a voter’s maximum dissatisfaction of at most d is
fixed-parameter tractable when parameterized by d. As an outlook, we proposed a type of
ballot called (a,b)-ballot that is based on cardinal preferences and allows more flexibility
for voters to express their underlying preferences. In contrast to existing cardinal-based
ballots, here, voters can express their dissatisfaction for a candidate being in a winning
committee (a) as well as not being in a winning committee (b), without the restriction that
those two values need to be related (e.g., always add up to a fixed constant). Future work
includes a characterization of our rules in the context of `-group rules. Furthermore, it
would be interesting to define fairness criteria to evaluate the outcome’s quality for the
voters. In regard to (a,b)-ballots, experiments are needed to determine optimal bounds
for the values and study whether the added expressiveness of the model leads to a higher
satisfaction of the voters with the election outcome. It would also be interesting to define a
cardinal-based variant of the Chamberlin-Courant rules as introduced in Definition 2.14,
or to focus on representation in this context, for example by modifying the axiom justified

representation (Definition 2.16) to allow for cardinal ballots.

My respective coauthors and I were also able to identify several barriers to strategic
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Chapter 7 Conclusions and Future Work

behavior in voting and judgment aggregation. In Chapter 4, we closed a gap by showing
that shift bribery is also hard for several iterative scoring rules, i.e., scoring rules that
proceed in rounds where in each round, candidates are eliminated. By allowing the
campaign manager to exploit the nonmonotonicity of most of our considered rules, we
further showed by using Hare and plurality with runoff as an example that this hardness
does not result from restricting the briber to shift the designated candidate forwards in the
constructive case (respectively, backwards in the destructive case). Based on our results,
Zhou and Guo (2020) started the study of parameterized complexity for the iterative scoring
rules considered in this thesis for the parameters number of voters, number of candidates,
and budget. For future work, we propose to extend the study of parameterized complexity
and to investigate the effect of exploiting nonmonotonicity in-depth. We conjecture that the
complexity of shift bribery for all nonmonotonic rules considered by us remains unchanged,
but it would be interesting to identify a rule for which shift bribery becomes tractable in
these circumstances. Furthermore, domain restrictions as defined on page 13 might also
lead to a complexity shift for iterative scoring rules.

For iterative voting, i.e., voting where voters are allowed to update their ballots repeatedly,
we studied the manipulative power of the polling agency that announces a dishonest
opinion poll to reach a desired outcome of the election. Chapter 5 extended the research
on manipulation by the polling agency by introducing a best-response model for the
voting rule veto, by studying destructive manipulation, by conducting experiments on
efficient heuristics, and most importantly by introducing distance-based problem variants
and providing parameterized tractability and intractability results. In particular, we showed
that manipulation is para-NP-hard for all considered problems even for very restricted
underlying social networks. However, we were able to show that all considered problem
variants for veto are tractable when the social network contains no edges, which can be seen
as a case where voters are not influenced by their neighbors. Here, future work includes
completing the complexity results for plurality in the case of a social network without
edges and further the study of parameterized complexity for more natural parameters, for
example parameters that describe the underlying social network. We also propose to define
best-response dynamics for voting rules that require more complex ballots than plurality
and veto and experimentally study how these dynamics affect the quality of the outcome
and the possibilities to manipulate by the polling agency. Currently, the polling agency
has complete information over the voters’ preferences, the voters have no memory and are
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myopic, they only deviate in the rare cases that they are pivotal, voters trust the polling
agency, and they communicate truthfully to their neighbors which candidate they currently
vote for. It would therefore be interesting to incorporate changes regarding these aspects
into the model.

Finally, in Chapter 6, my coauthors and I introduced control in judgment aggregation.
We defined the concepts of control by adding, deleting, replacing, and bundling judges,
and proved that these types of control are intractable for the uniform (constant) premise-
based quota rules and for several types of the chair’s preferences. Our results hold for
each rational quota in the case of the uniform constant premise-based quota rules, and
for the quota q = 1/2 in the case of the uniform premise-based quota rules. Future work
includes completing the classical complexity results for all quotas, studying parameterized
complexity in our context, and considering new rules. The question whether restricted
domains such as the domain of unidimensionally aligned profiles, a variant of the single-
crossing domain in preference aggregation, have an impact of the complexity of control
in judgment aggregation is also still an open problem. Further, it would be interesting to
define new types of control in judgment aggregation, especially types that influence the
agenda or the aggregation rule itself instead of the set of judges.
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Barberà, S., Bossert, W., and Pattanaik, P. K. (2004). Ranking sets of objects. In Handbook

of Utility Theory, pages 893–977. Springer.
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Baumeister, D., Erdélyi, G., Erdélyi, O., and Rothe, J. (2013). Computational aspects
of manipulation and control in judgment aggregation. In Proceedings of the 3rd Inter-

national Conference on Algorithmic Decision Theory, pages 71–85. Springer-Verlag
Lecture Notes in Artificial Intelligence #8176.
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Desweiteren erkläre ich, dass ich eine Dissertation in der vorliegenden oder in ähnlicher
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