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In caverns deep and dark and cold
Where shadows do with shadows mate
Where ancient books dream dreams untold
Of being trees before their fate
Where coal begets bright diamond-stone
And mercy is an unknown thing
There in the deep sits on his throne
The one is called the Shadow-King.

Right in his grasp, under his guard
There is a chest, so big and dark.
You try to look, but you are blind
Right as a voice cuts through your mind:

”This chest you see here on my side”,
The voice is dark and cold and deep
Just as the shadows here do creep,
”Is filled with secrets urged to hide,
With all the world could ever know
And wonders you could not comprise.”
The voice is rumbling in your head,
This presence fills you up with dread,
Your body tingles, you wanna leave,
But cannot move, not even breathe.
”But I will give you for your eyes
One tiny piece to make you grow”.

Just for a blink you saw a light,
Your mind is cleared and shines so bright
And were the chest was short before,
there stands now just a simple door.

You wished to know just so much more,
So couldn’t help yourself and then
You started rushing through the door
Before it closes once again.
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oder in ähnlicher Form noch bei keiner anderen Institution eingereicht habe.

Teile dieser Arbeit wurden bereits in den folgenden Schriften veröffentlicht
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Abstract

This thesis deals with hedonic games and abstract argumentation, both lively
research fields that belong to the areas of multiagent systems and artificial
intelligence. Hedonic games is a specialized subfield of coalition formation,
which is concerned with questions regarding the grouping of agents. More
specifically, coalition formation is about when, how, and why agents work
together and what it needs that these so-called coalitions do not break up
again. This includes the modeling of utilities for the agents, as well as thresh-
olds and other means that specify when agents might have an incentive to
leave their current coalition. This field is also influenced by other areas of
computer science and artificial intelligence, as, for example, computational
social choice with notions of manipulation and control. In hedonic games,
we assume that agents are only concerned about their own coalition and its
members. Hence, we do not need a specific utility notion, as we assume the
agents to provide a preference ranking over all possible coalitions including
themselves.

Our work includes research on hedonic games in two ways. First, we study
the computational complexity of a special case for hedonic games in which
agents only express sets of friends and enemies, but not total rankings; we
narrow existing gaps in complexity regarding the existence of the strict core
in these games with the help of closely related graph problems. Second, we
introduce a new model for hedonic games that allows for a compact, yet
quite expressive representation. Sadly, our model suffers from a problem of
incomparable coalitions. We address this issue on the one hand with the
help of possibility and necessity notions, and on the other through means of
comparability functions that work similar to the Borda-scoring vectors from
social choice theory.

In detail, we will show that in the first case with enemy-oriented pref-
erences, it is at least DP-hard to decide whether the strict core of a given
hedonic game is nonempty, and that its complexity cannot rise above the
second level of the boolean hierarchy. The same holds for the encountered
graph problem of deciding whether an undirected graph contains a wonder-
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fully stable partition. For the second case, we will provide a comprehensive
analysis of the model’s properties, as well as one possibility of how to extend
the resulting incomplete preference over coalitions for each player in form of
the polarized responsive extension principle. Our analysis also includes a clas-
sification of the computational complexity of the verification and existence
problems for several stability concepts including the (strict) core, Nash sta-
bility, perfectness, Pareto optimality and more. This includes hardness and
completeness results for NP and Σp

2, but also feasibility results in both cases,
i.e., for the notions of possibility and necessity, as well as for Borda-induced
hedonic games.

Abstract argumentation takes a different view on agents’ behavior. It be-
longs to the intersection of social sciences and computer science, and uses an
abstraction approach on topics from argumentation theory. In argumentation
theory, scientists try to precisely analyze the behavior of human agents in
debates and discussions. Abstract argumentation takes a more distant view
and assumes the agents to not only be human, but arbitrary, and also ab-
stracts from the internal structure of given arguments. Instead, arguments
are seen as nodes in a network, and the connection between nodes represents
their correlation, which is derived in an earlier step that is no longer of in-
terest. In past research it turned out that focusing on conflicting behavior
instead of allowing for multiple or complex interactions between arguments
is enough to express a wide range of situations. The goal in this model is to
find so-called extensions, i.e., subsets of the arguments, that satisfy certain
criteria, such as having no internal conflicts or being able to defend against
incoming attacks.

Here, we focus on an expansion of the basic model such that we can deal
with situations in which complete information over all given arguments and
their interactions is not given beforehand. That is, we introduce another set
of arguments and attacks for which it is not clear from the start whether
they will be part of the debate or not. We then use notions of possibility and
necessity to deal with this high degree of uncertainty and analyze this model
in terms of computational complexity. More specifically, we will show that
the verification problem for argumentation frameworks can be extended to
fit to the new model, and that its computational complexity can rise up to
Σp

2-completeness. However, this increase only happens in situations in which
we have to deal with alternating quantifiers. In all other cases we can find
shortcuts that allow for a faster solution to the problem.

Both parts of this work illuminate different views on the behavior of
agents. When focusing on an abstract level of indirect interaction as in he-
donic games, we can concentrate more on the bigger picture instead of the
overwhelming density of argumentative approaches. However, on the side of
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abstract argumentation, we directly use this comprehensive information re-
garding a specific argumentation process to directly elicit a solution, while
abstracting from external influences. Both views are needed to correctly and
completely model all possible actions of any kind of agent. This thesis takes
another step on this agenda.
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CHAPTER 1
Introduction

The term ’agent’ is used in computer science as a placeholder for a possi-
bly heterogeneous group of entities. When talking about agents, one could
talk about voters or candidates in elections, computers in distributed sys-
tems, judges in a court, players of a game, or something completely different.
Given the fact that many formal models of computer science are derived from
such real-world applications, but are also valuable in many other real-world
situations, it is understandable why ’agents’ are a central point of interest
in research. However, an arguably big flaw is the often taken assumption
that agents are acting rational and that they are describable in some self-
contained mathematical model. Agents in such models are predictable and
the worlds these models describe are assumed to be known completely. There
are a lot of good reasons for these assumptions and the easiest might be that
it is currently not possible to model every aspect of the behavior of agents in
open world scenarios. Anticipating the content of this thesis, we will proba-
bly not break out of this shell anytime in the near future. However, trying
to shatter the bonds of these restrictions is one of the most important and
prominent tasks of modern-day research.

In this work, we join the idea of giving agents more freedom in their ac-
tions. Our main field of interest is the question of how agents form, join and
leave groups, communicate, exchange information and ’argue’ about every
day topics. More importantly, we investigate how to get a formal look on such
situations, not only, but also to get a better understanding of the behavior of
human agents. Our approach is to take close-world models and extend them
to meaningful models with more freedom for agents, based on interesting sit-
uations that arise in the real world. One major goal is to achieve results that
somehow can be translated back to the real world such that they can be used
to improve in turn the future outcome of these interesting situations that we
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2 CHAPTER 1. INTRODUCTION

discovered earlier. We do this with the help of the interlapping research fields
of computational social choice, game theory, and abstract argumentation.

Computational social choice, a field being part of the union of the social
sciences and computer science, consists of the analysis of problems that arise
if we want to computationally aggregate opinions into a collective decision. It
contains topics such as voting, fair division, judgment aggregation, and oth-
ers. The common ground is the idea of collecting a priori formalized opinions
from agents, and digest these opinions into a commonly acceptable collective
opinion. An example for this would be an election, in which an authority col-
lects the preferences of the voters over a given set of candidates, and identifies
with the help of these votes a winner. For more information on computational
social choice, we refer the reader to [18], a book that serveys computational
social choice from past to present, and to [31], a relatively new book that
serves as an excelent introductory book to the matter of computation social
choice.

Games theory is a subfield of both, computer science and mathematics,
fueled by problems that arose from economics and related studies. Scientists
tried to explain the behavior of economic agents such as salespersons or
markets, with the help of mathematical models and game-like simulations.
In game theory, agents are often called players, and one tries to estimate the
strategic behavior of two such players in conflicting situations, if, for example,
both players try to maximize their profit in a simple negotiation process.
Here, profit is often referred to as the ’utility’ a player can get, which itself is
not specified any further (except for the assumption that the utility results
in a natural number and higher numbers means higher utility). The field of
game theory became increasingly popular in 1944 due to von Neumann and
Morgenstern [68] as result of the increasing interest in mathematics during
the second world war. In 1950, Nash finished his seminal work [45] regarding
non-cooperative games, i.e., mathematical models to analyze the strategic
behavior of individual agents who are trying to win over an opponent in
game-like situations. In contrast to this, in cooperative games agents profit
from forming coalitions, i.e., acting cooperatively. In such cooperative games
we can now distinguish between games with or without transferable utility.
The former describes cooperative games in which agents can directly transfer
utility to other members of their coalition without restrictions. In the latter,
one focuses mainly on the coalitions itself, and the utility of an agent is
directly derived from the grouping of all agents. A common assumption is
that the utility of an agent only depends on the coalition that she is a member
of but not on how the rest of the players group together. Such games are
called hedonic games and are commonly investigated for different notions
of stability, such as core or Nash stability. A common ground of the most
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stability notions is the idea of agents not having an incentive to leave her
current coalition. An early application of such hedonic games is the stable
marriage problem due to Gale and Shapley [32]. The idea has been developed
further to be of use for matching students to residency programs as of Roth
and Peranson [59], to study the composition of teams as by Alcalde and
Revilla [1] or distributed task allocation due to Saad et al. [63], among many
other applications.

Abstract argumentation, on the other hand, is a relatively young branch
of the scientific environment, where researchers use mathematical methods to
shed light on the highly complicated field of argumentation. Considering the
age of the field, going back to the idea of democracy of the ancient Greece and
the need to analyze speech regarding its influencing effects, it is surprising
that a formal, mathematical analysis of this field did not become increasingly
popular before 1995 through Dung [29]. Before that time, mainly scientists
from philosophy or social, political or legal sciences saw an incentive to do
research in the field of argumentation. It is hard to determine the beginning
of modern scientific analysis of the field of argumentation, but one might
see the deeper philosophical analysis of rhetoric in the early 19th century by
Whately [73] as an important turning point. At this time, argumentation was
defined as the question-answer dialog of two agents with controversial posi-
tions. Another strong candidate for the origin of argumentation being part
of modern science originates in legal sciences. An important task here is to
determine which party has the burden of proof (Walton [72]), i.e., the respon-
sibility to prove (or disprove) a presumption. In a simplified legal proceeding,
this burden of proof would alternate between prosecutor and defendant until
one party is not able to repel it successfully, and therefore, lose the court
proceedings.

Argumentation processes have been recorded in many different ways,
ranging from simply listing the arguments (possibly in two lists, one for pro,
one for contra arguments), to using complex tools such as argumentation
maps as by Rinner [58]. To provide a simple model for mathematical analy-
sis, Dung assumed in his seminal work [29] that the internal information of
arguments can be used to derive conflicting links, so-called attacks, between
them. Then, he could abstract from the internal structure of the given discus-
sion, and therefore simplify it. Now, one could use this simplified discussion to
compute winning subsets of the arguments, i.e., subsets that do not conflict
and fulfill a priori defined properties, such as the ability to defend its mem-
bers from incoming attacks. He would then call those subsets extensions and
pronounce them to be solutions of the discussion. His work has staggering in-
fluence on the field of argumentation until today, and led to a high number of
papers building on his idea, such as argumentation frameworks with recursive
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attacks [7], abstract dialectical frameworks [19, 20], bipolar argumentation
frameworks [3], value-based argumentation [16, 28], preference-based argu-
mentation [2], extended argumentation framworks [43, 44], and probabilistic
argumentation frameworks [41].

As all three fields, computational social choice, game theory, and abstract
argumentation were born from the interest to analyze problems from sociol-
ogy, economics, politics, law or philosophy with the help of formal methods,
it is understandable that scientists from all fields exchange methods to im-
prove the quality of their research, or even establish new branches such as
argument games [69, 37].

Outline

Chapter 2 provides the general background of the investigated topics, i.e.,
preliminary information on online participation, computational complexity,
hedonic games, and abstract argumentation. To give a deeper understanding,
we anticipate some of the definitions of the attached papers and present more
detailed explanations beforehand to compensate for the limited space in the
papers.

In Chapters 3, 4, 5, and 6, we summarize and include the papers that
have been part of this Ph.D. project, as well as give a detailed overview over
the contribution of the author of this dissertation to each included paper.
Our work described in Chapter 3 is on the topic of classical hedonic games,
for which we investigated open gaps in computational complexity regard-
ing strict core stability in enemy-oriented hedonic games, as well as related
problems. In Chapter 4 we introduce a new idea on how to represent hedonic
games compactly, that merges two existing approaches. We also investigate
this model in terms of their computational complexity for several stability
concepts. This model is then extended in Chapter 5 with the help of com-
parability functions that suit as a tool to close the gap between the partial
rankings that our new model contains, and total rankings that are needed
for hedonic games. Again, we did a comprehensive complexity analysis of
this model. Finally, in Chapter 6, we use abstract argumentation to analyze
the behavior of agents. Our contribution is a new model that is capable of
displaying incomplete information on both, the arguments and the attacks,
of a classical argumentation framework. In Chapter 7 we conclude our results
and make a note on future work.



CHAPTER 2
Background

2.1 Online Participation

Online participation is a widely used term for all processes in which people
take part of an collaborative decision or discussion with the help of the in-
ternet. Decisions derived from this participation process often have advising
character for the authority that started the process, but in some situations
such decisions might be obligatory. Such processes are often started by gov-
ernments that ask for opinions of their citizens on manifold situations, e.g.,
how to distribute a specific budget, where potholes can be found, additional
zebra crossings are needed, or when more bus lines are necessary. Citizens
then usually contribute by writing comments in which they, e.g., point to
specific spots in the city that they think should be dealt with. In the past,
those participation processes were only used by a minority of people, as they
required citizens to personally come to the town hall, write a letter, or con-
tribute by other means. With the growing possibilities of the internet, such
processes became more and more flexible and authorities started online par-
ticipation processes to receive more and better feedback. It turned out that
some of these processes have been really successful, while others seem to be
attracting almost no one. To shed light on the reasons for this unpredictable
behavior is a major topic in current research.

Simultaneously, a second problem arose, namely the problem of how to
find a ’common sense’, or an ’aggregated opinion’ of the participating users
to get to a consensus. Having in mind that such processes might be used by
governments with possibly thousands of people attending, one quickly loses
track of the discussions and suggestions that users make. Therefore, we need
an automated tool to analyze such discussion and find those suggestions that
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6 CHAPTER 2. BACKGROUND

withstand the critical debate and arose as the ’strongest’. On the other hand,
we might not want to know what the single strongest suggestion is, or the
strongest suggestions are, but instead want to get a general idea on how the
discussion went, what parts were the most debatable ones and what seemed
to be easily agreed on. And last but not least, all those decisions have to
be transparent for the user, such that she can always follow up on how her
opinion had been taken into consideration.

To answer these questions, the graduate school ’Online Participation’
was founded by the North Rhine-Westphalian Ministry for Innovation, Sci-
ence, and Research. Involved in this graduate school are the faculties of Law,
Mathematics and Natural Sciences, Arts and Humanities, and Business Ad-
ministration and Economics. Currently, fifteen Ph.D. students are members
of this graduate school, including four associated members. One major goal
is to do intra- and interdisciplinary research on the topic of civic participa-
tion, to lighten up the possibilities and limits of enabling citizens to have
direct impact on political and administrative decisions. From the perspective
of theoretical computer science, we have the goal to provide a strong and
scalable mathematical foundation for all emerging problems. It turned out,
that creating one expressive model to cover all aspects one could encounter
would be infeasible. Hence, we had to stick to the idea of using several differ-
ent models to cover the most important aspects and analyze them separately.
We refer the reader to https://www.fortschrittskolleg.de/en/ for more
information on the graduate school Online Participation.

Dialog-Based Argumentation System

The Dialog-Based Argumentation System is a platform for distributed users
to discuss a common topic. It was created by Krauthoff et al. [39] at the
Heinrich-Heine-Universität in Düsseldorf, Germany, and designed to improve
certain flaws of existing platforms for deliberation or argumentation. It’s in-
triguing approach is to simulate a time-shifted dialog of the users, guided by
the system to lead the user to the most interesting parts of the discussion.
While this guiding algorithm needs to be designed carefully in terms of trans-
parency, it opens up for a broad spectrum of possibilities, such as guiding
the user to parts of the discussion that she seems to be most interested in,
that needs more discussion from an authorities point of view, or simply to
resolve conflicts. Some of the results of this thesis can be incorporated into
the design of the guiding algorithm, for example, to locate arguments that
prevent the existence of particular solutions. First steps in this direction have
already been done by Neugebauer [46].

https://www.fortschrittskolleg.de/en/
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2.2 Computational Complexity

To understand computational complexity, we first have to understand com-
plexity theory. In complexity theory we basically try to partition all mathe-
matically describable problems into certain groups. Each group only contains
those problems that are ’equally complex’ to solve. At first sight, there is no
direct restriction on what kind of problems we could investigate. However,
we focus on problems that can be fully expressed with the help of formal
methods or mathematical models. This usually leads away from problems
expressible by natural language to problems derived by mathematical ab-
straction. These problems are then put into groups, i.e., collections or simply
sets of equally hard problems. Where exactly the border of these groups is
drawn, and what ’equally hard’ means, depends on the focus of the analysis.
An interesting example could be, that we simply put all riddles of the known
world into two sets. The first set contains all riddles that can be solved by
every single member of the group of people that contains only the upper 5%
of the most intelligent people on earth. The other set contains all riddles
that can be solved by at least one of all remaining people. Admittedly, this
example is highly unrealistic, as it is probably not only impossible to create
a trustworthy ranking of the intelligence of all human beings but also to ask
them all to try to solve a riddle. However, this setting raises interesting ques-
tions: First, what set will be larger, the one that contains riddles that have
to be solved by the generally more intelligent group of people, in which, how-
ever, no one is allowed to fail in finding a solution; or the one that contains
those riddles that can be solved by at least one of the less intelligent people?
Second, is one set contained in the other, or can we at least determine if
there are riddles, that belong to both sets, and if the answer is yes, which
are those? Can we maybe also find a rule or a common ground that easily
identifies the riddles of each set? Third, what are the hardest riddles of each
set, and what makes them so hard to solve?

The computational part of computational complexity results in the idea
of using computing devices, such as Turing machines or computers as mea-
surements for the complexity of given problems. As measure, we usually use
the running time or consumed space of the device in dependence of the size
of the input. To structure the infinitely large number of problems, we sort
these a priori into different types. To explain this matter further, we take a
look at the classical traveling salesman problem, that describes the problem
of a salesperson who wants to visit all cities of the country by using only al-
ready existing roads and without visiting one city twice. Given this problem,
we can easily extract four types of problems, that all get the same input (a
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map of the country including the location of the cities and roads between
them), but different outputs: First, one can ask whether there is at least
one solution to the given input. Second, we might want to know one route
that solves the given instance of the problem. Third, it could be of interest to
count the number of possible solutions. And fourth, the salesperson probably
wants to know the shortest path. The first problem type is called decision
problem, as we only try to decide the given problem instance, without the
need to specifically output a solution. The second is called function problem,
in which we want to compute one solving solution, if it exists. The third type
is named counting problem, as we want to count the number of the solutions,
but, similar to decision problems, not output a specific one. And the fourth
type we call optimization problem, as we want to output an optimal solution.
Please note, that the fourth type uniquely uses implicit information of the
input, namely the distance between the cities

It is easy to see that some of these types of problems are connected in
some way. For example, if we know the answer of a counting problem, we
can immediately answer the respective decision problem as well. However,
knowing the answer to the decision problem has only immediate consequences
to the answer of the counting problem if the answer is ’no’, as a ’yes’-answer
only implies the existence of at least one solution, but not the exact number of
solutions. Another connection can be found between the function version and
the decision version of a problem. Assume, that we already know a solution
to the problem, we trivially also know that there exists at least one solution.
However, knowing that there has to be a solution does no easily help us with
finding it. A similar connection exists between the optimization version and
the decision version, as knowing an optimal solution not only tells us that
there is at least one solution but also that there is no ’better’ one.

Despite these relatively easy connections, different types of problems are
often connected even if their input is not exactly the same. To understand
this, we need to explain the second dimension of the distinction of complexity
classes, the measure. We already mentioned, that we want to measure the
difficulty of a problem by the use of different measurements. The two most
prominent measures are the running time and the consumed space, and for
the sake of simplicity, we assume that we use Turing machines1 as computing
device and the running time as a measure. Now we can define different com-
plexity classes by assigning to each of these classes a mathematical function,
such as a root, polynomial, or exponential function, a faculty, a logarithmic
function, or else. Here, we are not interested in the exact growth rate of the

1We assume the reader to be familiar with the basic computing concept of Turing
machines. For more information, see the book by Rothe [60].
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given function, but only in its asymptotic growth, i.e., for this matter the
functions f(x) = 2x + 5 and g(x) = x are equivalent. As we now have iden-
tified each complexity class with an asymptotic growth rate, we can have a
look at a fixed problem to decide to which class it belongs. Therefore, we
assume that we have a Turing machine that solves this fixed problem for all
inputs, then we can compute a function that describes its asymptotic run-
ning time on worst case inputs. This Turing machine now serves as a witness
for the given problem and proves the membership of this problem in exactly
that complexity class that is represented by the asymptotic running time of
the function that describes the running time of the Turing machine.

As we now have all the information we need, we can turn back to the
different problem types and the idea that they are connected even if their
inputs are different. Assume, for example, a special kind of decision prob-
lem, namely verification problems. Here, the input consists of two parts, the
original input and another object. The question is whether we can verify
something for that object on the original input. Let us again have a look
at the traveling salesman problem. The first part of the input is the map of
the country including the location of the cities and the roads between them.
The second part could be a route that the salesperson thinks to be a pos-
sible solution for the problem. Now, we can ask whether this route solves
the problem, therefore verifying it as a solution. This seems to be an easy
task, and indeed, this verification version of the traveling salesman problem
is solvable by a Turing machine that runs in polynomial time with respect
to the input. As polynomial time is usually considered to be an acceptable
running time, we can say that this verification problem is easy to solve. Now,
one could try to use this result to find an optimal solution to the problem,
thus solving the optimization version of the problem, by iteratively applying
the Turing machine for the verification version of the problem to all possible
routes. Even though this definitively provides a solution to the optimiza-
tion version, its running time would be too high, as the number of possible
routes grows exponentially in the size of the input map, therefore resulting
in an asymptotic worst case running time that is exponential in the input
size. As even small exponential functions grow extremely fast if the input
is sufficiently large enough, an exponential running time is considered to be
infeasible. However, there are problems for which this naive approach works
in the sense that the resulting Turing machine has a running time that is at
most polynomial.

Another crucial part of computational complexity is the notion of hard-
ness. Until now, we only discussed membership in a certain complexity class.
However, as our introductory example already suggested, we are also inter-
ested in the question, what the toughest problems of a given class are. For
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this, we make use of the notion of hardness. We call a problem hard for a
complexity class, if it is provably at least as difficult as every problem in
that class.2 To make this proof easier, we usually do not compare all possible
problems in that class with our designated one, but instead show that even
one of the hardest problems of that class is not harder than our problem. To
compare the difficulty of two problems, we use different notions of reducibil-
ity, and for exemplary reasons, we stick to the following idea: Assume, we
could find for a problem of a fixed complexity class an easy way, e.g., an
algorithm3 running in polynomial time, to transform every instance4 of that
problem into an instance of a second problem that we want to prove being
hard for the given complexity class. Then we know, that the second problem
is at least as hard to solve as the first one, because if we could solve an in-
stance of the first problem, we could apply our transformation resulting in a
solution, respectively an answer to the second problem. Such a transforma-
tion is called a reduction from the first to the second problem. Now assume
further, that we can find such a reduction from a problem that we know to
be one of the hardest problems of the investigated complexity class. In that
case we would have been able to show that our designated problem is at least
as hard as every other problem in that class. The only issue that remains is
to find a problem to start with, i.e., a problem that is provably one of the
hardest problems of a complexity class. Luckily that was already done in the
past for most of the known classes, resulting in a flood of papers that prove
huge numbers of problems to be among the hardest of their classes.

In this work, we only investigate decision problems building on the classes
P, NP, and coNP, and use the basic notions of hardness and completeness
(based on polynomial-time many-one reducibility, ≤p

m). As the formal defini-
tion of these classes and notions is not the main focus of this work, we refer
the reader to the books by Papadimitriou [48], Rothe [60], and Arora and
Barak [4] for more information, and assume from now on that the reader is
familiar with those terms.

A class that is defined with the help of the class NP is DP, a class intro-
duced by Papadimitriou and Yannakakis [49]. DP is the second level of the
boolean hierarchy over NP (see the articles by Cai et al. [21, 22] for a concise

2Please note, that we do not require that every input for a problem is hard to solve
(which is, nevertheless, unrealistic, as there always is at least one trivial case). Instead, we
need one worst case input that is difficult to solve.

3An algorithm is a specification of how to solve a class of problems, e.g. how to perform
calculations, process data or answer reasoning tasks. A Turing machine is, for example, a
generally accepted attempt to formalize the intuitive idea of an algorithm.

4An instance of a fixed problem is a tuple that contains all parts of the input that are
specified in the problem’s definition.



2.2. COMPUTATIONAL COMPLEXITY 11

analysis of the boolean hierarchy). For natural complete problems of DP but
also for other levels of the boolean hierarchy, see the survey by Riege and
Rothe [57] and, more recently, the work of Nguyen et al. [47] and of Reisch
et al. [53], both in the field of computational social choice. DP is defined
as the class of problems that can be described as the intersection of an NP
problem with a coNP problem. Equivalently, any problem in DP can also be
defined as the difference of two NP problems. It is known (and easy to see
by its definition), that DP is a superset of NP ∪ coNP.

Another class building on the basic complexity classes is PNP[log], intro-
duced by Papadimitriou and Zachos [50]. It was defined as the class of prob-
lems that can be solved in polynomial time by asking O(log n) sequential
Turing queries to an NP oracle5. Problems of this class can also be solved
by asking a polynomial number of parallel Turing queries to an NP oracle,
and vice versa. This equivalence was shown independently by Hemachan-
dra [33] and Köbler, Schöning, and Wagner [38], and the class of problems
with the latter structure is known as PNP

‖ . PNP[log] = PNP
‖ , belongs to the

Θp
2 level of the polynomial hierarchy. Structural research of this class goes

back to Köbler, Schöning, and Wagner [38], Hemachandra [33], Wagner [71],
Beigel, Hemachandra, and Wechsung [15], and Beigel [14]. Several authors
also focus on proving completeness of natural problems in it, for example,
versions of classical graph problems as Clique, Colorability, Indepen-
tent Set, Vertex Cover or Traveling Salesman as by Wagner [70],
versions of the famous Satisfiability problem (also Wagner [70]), and the
winner problems for the voting systems by Dodgson, Young, and Kemeny,
due to Hemaspaandra, Hemaspaandra, and Rothe [34], Rothe, Spakowski,
and Vogel [61], and Hemaspaandra, Spakowski, and Vogel [36]. We also refer
the reader to the survey by Hemaspaandra, Hemaspaandra, and Rothe [35]
for more interesting research on that topic.

The second level of the polynomial hierarchy (see the work by Stock-
meyer [66], and Meyer and Stockmeyer [42]) is named Σp

2 = NPNP. It is
defined for decision problems for which yes-instances, i.e., problem instances
for which the answer to the respective question can be answered with ’yes’,
can be verified in nondeterministic polynomial time with access to an NP
oracle. Natural complete problems of the polynomial hierarchy, especially of
Σp

2, have been surveyed by Schaefer and Umans [64, 65]. Recent results on
the complexity of core stability in hedonic games are due to Woeginger [75]
(see also his survey [74]). It holds that P ⊆ NP ∪ coNP ⊆ DP ⊆ Θp

2 ⊆ Σp
2,

and none of these inclusions is known to be strict.

5See the book by Rothe [60] for more information on the Bachmann-Landau notation
and oracle access.
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2.3 Hedonic Games

Taking the real world as an example, people tend to form groups to perform
certain tasks or answer specific questions. The size, structure, cohesion, and
goal of these groups depend on each situation and can vary from small groups
of two people with equal rights that stay together for a lifetime to form a
bond from which both benefit (as, for example, in relationships) to large
groups of thousands of people that belong to a clear hierarchy in which
individual members leave and new members join frequently with the aim to
earn money (as, for example, in large companies). The mathematical term
for these groups, coalitions, originates from political parties and the forming
of clusters of similar political attitude. Today, we use this term as a general
notion for all kinds of grouping agents, even if the agents are not of human
nature.

The first studies on coalitions and their behavior cannot be dated exactly.
However, we can say that the greek democratic society constituted a huge
demand of research on this topic. It was this era of great philosophers that
started and accelerated many different kinds of scientific fields, and this also
happened to the fields of game theory and coalition formation. Until today
the demand of research on this topic is rising, which led to the founding of
subfields and interconnection fields and the interchangeable use of methods
their methods an idea. The field of hedonic games is one of these children
that was born in the need of more comprehensive and accurate research for
a very specific problem.

In coalition formation in general, we are mainly interested in the coalition
formation process, i.e., in the understanding of when and why agents join or
leave coalitions, and whether we can reach some kind of equilibrium, i.e.,
a situation in which no one wants to deviate from their current coalition.
Special for hedonic games is the assumption, that agents are only interested
in the coalition that they (could) belong to, but not how other agents group
together. Formally, an agent expresses this interest in the context of hedonic
games with a preference ranking over all possible coalitions that she could
belong to; no other input is given. However, for some analysis this input is
too large, as each of these rankings consists of a list of a major subset of the
power set over the agents, which is exponential in the number of the agents.
Therefore, researchers invented several so-called encodings to represent hedo-
nic games more compactly without significantly decreasing their expressivity.
The idea is to let agents only express a smaller part of their preference rela-
tion, for example, only the other agents instead of coalitions (which is called
singleton encoding in the literature), and then extend this information to
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total ranking over coalitions, recreating a hedonic game. Naturally, not every
hedonic game is representable by every encoding as compact representations
always lead to information loss. However, depending on the domain, the idea
of using encodings is extremely valuable.

One major goal in hedonic games is to make presumptions about the sta-
bility of coalition structures, i.e., collections of several coalitions that together
contain all agents of the investigated game. For the stability notion, a wide
range of meaningful ideas has been studied in the literature, ranging from
very basic notions as individual rationality, which secures that every player6

ends in a coalition that she prefers to being alone, to more complex notions
that incorporate the idea that no individual should have an incentive to leave
her current coalition (e.g., Nash stability), or that no group of players wants
to deviate (e.g., (strict) core stability).

2.3.1 Preliminary Definitions

A hedonic game consists of a finite set N = {1, . . . , n} of players and a
profile �= (�1, . . . ,�n) of preference relations, where �i denotes player i’s
preference relation. Each such preference relation �i defines a weak prefer-
ence order over all coalitions (i.e., subsets of players) that contain player i.
By Ni we denote all coalitions of N that contain player i. For two coalitions
A,B ∈ Ni, we say that i weakly prefers A to B if A �i B. Additionally,
we say i prefers A to B (denoted by A �i B) if A �i B, but not B �i A,
and i is indifferent between A and B (denoted by A ∼i B) if A �i B and
B �i A

7. A coalition structure Γ for a given game is a partition of N into
disjoint coalitions, and for each player i ∈ N , Γi denotes the unique coalition
containing i, i.e., Γi = Ni ∩ Γ.

Example 2.1 Assume a situation, in which three players have to decide over
how they want to cooperate to deal with a given task. For the sake of this
example of hedonic games, the task itself is not of interest for us, as we are
only interested in the coalition formation process. We further assume, that
the three players have a specific opinion over the coalitions they could be part
of. This could, for example, lead to the hedonic game H = (N,�), where
N = {1, 2, 3} is the set of the three players 1, 2 and 3, and �= (�1,�2,�3)
is a profile of one preference relation for each player. A possible preference

6In game theory, agents are commonly called players. In this work, we use both terms
interchangeably.

7In some literature, the term i strictly prefers A to B is used for the notion A �i B,
while i prefers A to B, the version without adjective, is used for A �i B. Also, A ∼i B is
often called equally preferred.
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profile is, for example,

�1: {1, 2} �1 {1} �1 {1, 3} ∼1 {1, 2, 3},
�2: {1, 2} �2 {2} ∼2 {1, 2, 3} �2 {2, 3},
�3: {1, 2, 3} �3 {2, 3} �3 {1, 3} �3 {3}.

This profile implies, that player 1 prefers being together with player 2 than
being alone, while she seems to dislike any constellation in which she has to
be together with player 3. Player 2 also prefers to work together with 1, but
strictly refuses to be paired with 3. However, a group of all three, meaning
that she is not alone with 3, is somewhat ok for her. Player 3 prefers any
coalition in which he does not have to be alone, and, more specifically, prefers
2 to 1 if he has to chose. His most preferred option is, however, the grand
coalition.

Since the number of coalitions in a player’s preference relation is expo-
nential in the number of players, it is reasonable to consider compactly rep-
resented hedonic games (as already mentioned in the preface); see the next
section for an overview of various possible encodings, as well as the survey
of Woeginger [74].

In this thesis, we tackle two questions regarding hedonic games. In Chap-
ter 3, we have a look at so-called enemy-oriented preferences as introduced by
Dimitrov et al. [26]. In their setting, every player i ∈ N reports a set of friends
and a set of enemies, and this information is extended to a total ranking over
all possible coalitions containing player i in two versions, one with focus on
the friends, and one with focus on the enemies. We approach the question on
how hard it is to decide whether a given hedonic game with enemy-oriented
preferences has a strictly core stable coalition structure. Chapters 4 and 5
are about a new compact encoding for hedonic games that is more expressive
than many known encodings, including friend- or enemy-oriented hedonic
games. We then analyze this new model in regards to axiomatic properties
and computational complexity.

2.3.2 Representations of Hedonic Games

For a concise representation of a hedonic game, the players should express
their preferences in a compact manner. On the other hand, they should be
able to express their opinion as precise as possible. Therefore, a high number
of suggestions has been made in the literature. In chapters 4 and 5 we will
give a new representation that unites some of the advantages of existing ideas.
Below, we will list some of the known representations of hedonic games.
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We start with a very powerful class of hedonic games that was intro-
duced by Banerjee et al. [6]. An additively separable hedonic game (ASHG)
is given by a pair (N,w), where N = {1, . . . , n} is a set of players and
w = (w1, . . . , wn) is a collection of value functions, one for each player.
Each of these value functions wi : N → R assign real values to each player
(with wi(i) = 0 for every i ∈ N). Then, each player i’s preferences over all
A,B ∈ Ni is computed by

A �i B ⇐⇒
∑

j∈A

wi(j) ≥
∑

j∈B

wi(j),

yielding the corresponding hedonic game (N,�).

Example 2.2 We continue with Example 2.1 and will show, that some, but
not all preference relations can be expressed by the compact representation
using the value functions of additively separable hedonic games. Therefore, we
define an additively separable hedonic game Has = (N,w) using the following
values that define the value functions:

1 2 3
w1 : 0 3 −6
w2 : 5 0 −5
w3 : 4 7 0

It is important to notice that for large numbers of players, this representation
is much more compact than listing all possible subsets of Ni for each player i
as in Example 2.1. However, this compact representation is not as expressive
as the original representation is. This can easily be seen in the above example
by deriving the real preferences from the information that the above values
give us. Even though this results in the same preferences for player 2 and
3 as in Example 2.1, the preference relation of player 1 is different, namely
{1, 2} �1 {1} �1 {1, 2, 3} �1 {1, 3}. We can even prove that it is not possible
the find a value function for player 1 that represents the preference relation
{1, 2} �1 {1} �1 {1, 3} ∼1 {1, 2, 3} from Example 2.1: {1, 2} �1 {1} indi-
cates, that player 2 has to get a value strictly larger than zero in player 1’s
value function, while this no longer allows the indifference {1, 3} ∼1 {1, 2, 3}
to be derived for any value for 3. Therefore, we have shown that the original
representation of hedonic games is strictly more expressive than the additively
separable encoding.

Another impactful representation is due to Dimitrov et al. [26]. It is based
on so-called friend- and enemy-oriented preference extensions and provides
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a subclass of additively separable hedonic games. We distinguish between
friend-oriented hedonic games (FHG) and enemy-oriented hedonic games
(EHG), and in both each player has to partition the other players into a
set of friends and a set of enemies. Then, their preferences over two coali-
tions are then determined by the number of friends and enemies in these
coalitions. Formally, every player i reports in both versions a set Fi ⊆ N ,
including herself, as her set of friends. Ei = N \ Fi is then her automatically
derived set of enemies. Let A,B ∈ Ni, then, under friend-oriented prefer-
ences, A �i B if |A ∩ Fi| > |B ∩ Fi| (stating that A contains more friends
than B) or if |A ∩ Fi| = |B ∩ Fi| and |A ∩ Ei| ≤ |B ∩ Ei| (stating, that
if the number of friends is equal, A contains at most as many enemies as
B). For enemy-oriented preferences, we have A �i B if |A ∩ Ei| < |B ∩ Ei|
(stating that A contains less enemies than B) or if |A ∩ Ei| = |B ∩ Ei| and
|A∩Fi| ≥ |B∩Fi| (stating that if the number of enemies is equal, A contains
at least as many friends as B).

Example 2.3 We will again take Example 2.1 as a reference. A friend-
or enemy-oriented hedonic game is given by Hfe = (N,F ), while F =
(F1, F2, F3) is a profile of the sets of friends of every player. Let, for ex-
ample, F1 = {1, 2}, F2 = {1, 2}, and F3 = {1, 2, 3}, then, the sets of enemies
are automatically derived via Ei = N \ Fi, therefore resulting in E1 = {3},
E2 = {3}, and E3 = ∅. As in Example 2.2, this representation is extremely
compact, but less expressive than standard hedonic games. The latter follows
immediately from the fact, that the friend- or enemy-oriented enncodings are
a special case of the additively separable encoding. Simply set wi(j) = |N | for
every j ∈ Fi \ {i} and wi(j) = −1 for every j ∈ Ei in the friend-oriented
case, and wi(j) = −|N | for every j ∈ Ei and wi(j) = 1 for every j ∈ Fi \ {i}
in the enemy-oriented case.

In friend-oriented hedonic games, we focus on the number of friends in
every coalition. The number of enemies is only taken into account if the
number of friends is the same in the two compared coalitions. This results in
the following preference relations:

�1: {1, 2} �1 {1, 2, 3} �1 {1} �1 {1, 3}
�2: {1, 2} �2 {1, 2, 3} �2 {2} �2 {2, 3}
�3: {1, 2, 3} �3 {1, 3} ∼3 {2, 3} �3 {3}

In the enemy-oriented case, we only focus on the number of enemies, and the
number of friends only matters in ties. This results in the following preference
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relations:

�1: {1, 2} �1 {1} �1 {1, 2, 3} �1 {1, 3}
�2: {1, 2} �2 {2} �2 {1, 2, 3} �2 {2, 3}
�3: {1, 2, 3} �3 {1, 3} ∼3 {2, 3} �3 {3}

A different approach is taken by Cechlárová and Romero-Medina [25] (see
also Cechlárová and Hajduková [23, 24]), who suggest the singleton encoding,
i.e., each player i ∈ N only has to provide a small part of her usual preference
relation �i that is equivalent to a ranking over all players. Formally, we
assume in such singleton encoded hedonic games (SHG), that every player
i ∈ N reports a preference relation �sg

i over N8. This relation over N is
formally equivalent to a total preference relation over {{i, j} | j ∈ N}, which
itself corresponds to a partial, i.e., not total, preference relation over Ni.
Then, this relation �sg

i over N is extended to a total relation over Ni the
following way: For any coalition A ∈ Ni, let Bi(A) be any best player j ∈ A
from i’s view, i.e., j �sg

i k for each k ∈ A; and letWi(A) be any worst player
j ∈ Ar {i} from i’s view, i.e., k �sg

i j for each k ∈ A. (For the special case
of A = {i}, let Wi(A) = i.) Now, for any A,B ∈ Ni, we say A is B-preferred
by i over B (stating A �i B in the best player case) if Bi(A) �sg

i Bi(B) or
if Bi(A) ∼sg

i Bi(B) and |A| ≤ |B|, and we say A is W-preferred by i over B
(stating A �i B in the worst player case) if Wi(A) �sg

i Wi(B)9.

Example 2.4 Let Hsg = (N,�sg
i ) be a hedonic game with singleton encoding

and N = {1, 2, 3}. Then, we receive a similar hedonic game to the one from
Example 2.1 by letting

�sg
1 : 2 �sg

1 1 �sg
1 3,

�sg
2 : 1 �sg

2 2 �sg
2 3,

�sg
3 : 2 �sg

3 1 �sg
3 3.

With focus on the best player, this extends to the preference relations

�1: {1, 2} �1 {1, 2, 3} �1 {1} �1 {1, 3},
�2: {1, 2} �2 {1, 2, 3} �2 {2} �2 {2, 3},
�3: {2, 3} �3 {1, 2, 3} �3 {1, 3} �3 {3},

8We use the superscript sg to refer to a preference relation over N , in contrast to the
notion without superscript that refers to a preference relation over Ni.

9Please note, that in [25] the definitions are slightly different. However, our definition
is equivalent



18 CHAPTER 2. BACKGROUND

and the worst player case results in

�1: {1, 2} �1 {1} �1 {1, 3} ∼1 {1, 2, 3},
�2: {1, 2} �2 {2} �2 {2, 3} ∼2 {1, 2, 3},
�3: {2, 3} �3 {1, 3} ∼3 {1, 2, 3} �3 {3}.

Again, we can prove that this singleton encoding is strictly less expressive than
standard hedonic games. In the best player case this can easily be proven
equivalently to our argumentation in Example 2.2: The original preference
relation of player 1 from Example 2.1 , namely {1, 2} �1 {1} �1 {1, 3} ∼1

{1, 2, 3}, cannot be derived from any singleton encoded preference relation
�sg

1 , as {1, 2} �1 {1} �1 {1, 3} is only achievable via the preferences 2 �sg
1

1 �sg
1 3 or 2 �sg

1 1 ∼sg
1 3, which stands in conflict with {1, 3} ∼1 {1, 2, 3}. For

the worst player case we have to focus on player 2 with her preference relation
{1, 2} �2 {2} ∼2 {1, 2, 3} �2 {2, 3} in Example 2.1: The partial preference
{1, 2} �2 {2} indicates 1 �sg

2 2 and the partial preference {2} �2 {2, 3}
indicates 2 �sg

2 3. In total we must have 1 �sg
2 2 �sg

2 3, which does not lead
to the partial preference {2} ∼2 {1, 2, 3} of player 2’s preference relation from
Example 2.1.

2.3.3 Stability Concepts

An important solution concept for the study of hedonic games is the notion of
stability of a coalition structure. There are several known so-called stability
concepts, and we can divide them into three major groups: One group that
deals with avoiding a player to deviate to another (possibly empty) existing
coalition (in the following all concepts from perfectness to contractual indi-
vidual stability), another group that has the goal that there is no blocking
coalition, i.e., no group of players that want to deviate together (e.g., (strict)
core stability or Pareto optimality), and a third group that takes a global car-
dinal approach of securing some kind of stability (e.g., (strict) popularity).
For more explanations on the general concept of stability in hedonic games,
we refer the reader to the article by Bogomolnaia and Jackson [17] and to
the book chapter of Aziz and Savani [5]. For the interested reader, we refer to
the work of Banerjee et al. [6] for interesting properties and natural restric-
tions of hedonic games. In the following definition, we give a brief overview
over well-known stability concepts. Please note, that the last concept was
introduced in our work [40].
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Definition 2.5 Let (N,�) be a hedonic game. A coalition structure Γ is
called

• perfect if each player i weakly prefers Γi to every other coalition con-
taining i;

• individually rational if each player i ∈ N weakly prefers Γi to being
alone in {i};

• Nash stable if for each player i ∈ N and for each coalition C ∈ Γ∪{∅},
Γi �i C ∪ {i} (that is, no player wants to join another coalition);

• individually stable if for each player i ∈ N and for each coalition C ∈
Γ∪{∅}, it holds that Γi �i C ∪{i}, or there exists a player j ∈ C such
that C �j C ∪{i} (that is, no player can join another coalition without
making some player in the new coalition objecting to this switch);

• contractually individually stable if for each player i ∈ N and for each
coalition C ∈ Γ∪{∅}, it holds that Γi �i C∪{i}, or there exists a player
j ∈ C such that C �j C ∪ {i}, or there exists a player k ∈ Γi r {i}
such that Γi �k Γi r {i} (that is, no player can join another coalition
without making some player in the new coalition or in the old coalition
objecting to this switch);

• core stable if for each coalition C ⊆ N , there exists a player i ∈ C such
that Γi �i C (that is, no coalition C ⊆ N blocks Γ);

• strictly core stable if for each coalition C ⊆ N , there exists a player
i ∈ C such that Γi �i C, or for each player i ∈ C, we have Γi ∼i C
(that is, no coalition C ⊆ N weakly blocks Γ);

• Pareto optimal if for each coalition structure ∆, there exists a player i ∈
N such that Γi �i ∆i, or for each player j ∈ N , we have Γj ∼j ∆j

(that is, no other coalition structure ∆ Pareto-dominates Γ);

• popular if for each coalition structure ∆, the number of players i with
Γi �i ∆i is at least as large as the number of players j with ∆j �j Γj;

• strictly popular if for each coalition structure ∆, the number of players i
with Γi �i ∆i is strictly larger than the number of players j with ∆j �j

Γj;

Example 2.6 To better understand the different stability concepts for hedo-
nic games, we take a look at the game H from Example 2.1, where we have
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the three players 1, 2, and 3, and the preference profile �= (�1,�2,�3) with
the individual preferences

�1: {1, 2} �1 {1} �1 {1, 3} ∼1 {1, 2, 3},
�2: {1, 2} �2 {2} ∼2 {1, 2, 3} �2 {2, 3}, and

�3: {1, 2, 3} �3 {2, 3} �3 {1, 3} �3 {3}.

It seems reasonable to consider the coalition structure Γ = {{1, 2}, {3}}, as
both, player 1 and player 2, prefer Γ1 = Γ2 = {1, 2} to all other possible coali-
tions. We will now investigate Γ in regards to the stability concepts defined
above:

• Perfectness: Γ is not perfect, as player 3 does not prefer Γ3 = {3}
to every other coalition from N3. In fact, there cannot exist a perfect
coalition structure in this example, as never both, {1, 2} and {1, 2, 3},
can be part of a coalition structure.

• Individual rationality: Γ is individually rational, as player 1 and 2 pre-
fer Γ1 = Γ2 to being alone, and player 3 obviously is indifferent between
Γ3 and {3}, as both coalitions are the same.

• Nash stability: Γ is not Nash stable, as player 3 would prefer to join
{1, 2}. In fact, there cannot exist a perfect coalition structure in this
example, as player 1 and 2 both prefer being in a coalition without 3,
while player 3 always wants to join 1 or 2 or both.

• Individual stability: Γ is individually stable, as 1 and 2 are already in
their most preferred coalition, and 3 cannot join {1, 2}, as both other
players would be worse off with the grand coalition.

• Contractual individual stability: Γ is, with the same argumentation as
used for individual stability, contractually individually stable.

• Core stability: Γ is core stable, as there cannot exist a blocking coalition
containing player 1 or 2, as they both already are in their most preferred
coalition. The only remaining possibility for a blocking coalition is {3},
which is already part of Γ.

• Strict core stability: Γ is, with the same argumentation as used for core
stability and the fact that all involved rankings are strict, strictly core
stable.
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• Pareto optimality: Γ is Pareto optimal, as for all coalition structures
∆ that do not contain {1, 2} both, player 1 and 2, prefer their coalition
{1, 2} in Γ to any possible coalition ∆1, respectively ∆2, and for all
coalition structures ∆ that contain {1, 2}, player 3 must be alone, which
leads to Γ = ∆.

• Popularity: Γ is popular, as for all coalition structures ∆ that do not
contain {1, 2}, two out of three players (namely player 1 and player 2)
prefer their coalition in Γ to their coalition in ∆, and for all coalition
structures ∆ that contain {1, 2}, player 3 must be alone, which leads to
Γ = ∆.

• Strict popularity: Γ is, with the same argumentation as used for popu-
larity and the fact that all involved rankings are strict, strictly popular.

Example 2.6 indicates a connection between these stability concepts (ex-
cept for (strict) popularity, which is as a cardinal approach not connected to
the other, ordinal ideas). A perfect coalition structure is, for example, also
Nash stability and a member of the strict core. All connections are illus-
trated in Figure 2.1, in which an arrow symbolizes an implication. If there
is no arrow between two concepts, this does not mean that it is impossible
for a single coalition structure to fulfill both criteria at the same time. In
fact, there are hedonic games in which a single coalition structure fulfills all
concepts simultaneously.

Perfect

Nash stable Strictly
core stable

Individually
stable Core stable Pareto optimal

Contractually
individually

stable

Individually
rational

Figure 2.1: Relations among various stability concepts for hedonic games
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2.3.4 Computational Results

Natural decision problems from the field of hedonic games are usually tied
to a specific stability concept and a specific encoding. However, many papers
focus on a specific encoding and investigate it under several stability concepts.
Therefore, the name of the most prominent decision problems only specify the
investigated stability concept, but not the used encoding, as it usually is clear
from the context. One of the most basic problems is the verification problem,
which asks for a given hedonic game and a coalition structure whether the
coalition structure satisfies the stability concept γ:

γ-Verification

Given: A hedonic game H and a coalition structure Γ.

Question: Does Γ satisfy γ?

Obviously, this decision problem can be investigated for each mentioned
encoding separately simply by restricting the hedonic game of the input to be
of a fixed encoding. The same holds true for the following decision problems,
which asks whether a given hedonic game has at least one coalition structure
that satisfies the fixed stability concept γ:

γ-Existence

Given: A hedonic game H.

Question: Does there exist a coalition structure that satisfies γ?

We know that if for a stability concept γ the problem γ-Verification
is in P, then γ-Existence belongs to NP by simply guessing a coalition
structure and verifying it in polynomial time with the algorithm for the veri-
fication problem. The difficulty of the respective problems range from trivial
(for instance, for friend- or enemy-oriented hedonic games, in which there al-
ways exists a core stable coalition structure) to Σp

2-completeness (for instance,
for core stability in additively-separable hedonic games). For an overview of
known results we refer to the comprehensive survey by Woeginger [74].

2.4 Abstract Argumentation

Two people communicating in a such a way that one tries to convince the
other of some opinion, is already an exquisite example for the basic idea of the
field of argumentation, which is naturally part of every society. The founding
of argumentation theory, a field that tries to formally capture the ideas of
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persuasion and discussion, probably goes hand in hand with the peak stage
of philosophy in the Greek society, and is until today a highly interesting
field for researchers from the whole scientific spectrum. Many scientists from
mathematics and computer science are mainly interested in the abstract and
computational part of argumentation theory, and therefore, call the respec-
tive subfield abstract argumentation. In abstract argumentation we try to
explain chosen parts of a discussion process with the help of mathematical
models and a formal analysis.

In 1995 Phan Minh Dung [29] revolutionized the idea of analyzing dis-
cussions just by abstraction from the content of the given arguments. If, for
example, in some family the father says ”I don’t want dogs, because they are
dirty” this would just translate to a placeholder argument with its variable
name a. However, Dung suggest to use the inside and its internal structure
to derive an attack relation between arguments. Let us assume, the daughter
answers with ”But I want a dog, because they are so cute and fluffy”, then,
in Dung’s setting, we could just call this argument b and derive a mutual
attack between those two arguments a and b, as they exclude each other, i.e.,
we cannot expect both to be part of a suitable solution of the discussion.

In the next step, Dung proposed to define semantics, i.e., collections of
properties that can be fulfilled by subsets of the argument set, with the
goal to identify arguments that are, in some sense, stronger than others,
such that they can be accepted, while others have to be rejected. The most
basic property—already mentioned in the above example—is called conflict-
freeness, and it is fulfilled by any subset of the arguments that only contains
arguments that do not attack another element of that subset. All other prop-
erties extend conflict-freeness and describe more elaborated concepts.

Abstract argumentation is a field that is far from being completed, and
is therefore highly interesting. However, how deep and complicated research
in this field may get, the basic notions are extremely simple. We will ex-
plain those basic notions together with some fundamental connections in the
following paragraph.

2.4.1 Preliminary Definitions

In this section, we give formalizations of the basic notions of abstract argu-
mentation. While we adopt some notation from the book chapter by Dunne
and Wooldridge [30], the underlying concepts are due to Dung [29]. For sev-
eral more explanations and ideas regarding abstract argumentation, we refer
the reader to the book of Rahwan and Simari [52].
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Definition 2.7 An argumentation framework AF consists of a set of argu-
ments A and binary relation R ⊆ A × A, thus, forming a pair 〈A,R〉. We
say that a attacks b if (a, b) ∈ R.

A graph is a pair of a set of vertices V and a set of directed edges E on
these vertices V . Therefore, an argumentation framework can be visualized
easily and directly via a graph GAF = (V,E), by identifying arguments with
vertices and attacks with directed edges, i.e., V = A and E = R, as in the
following example:

Example 2.8 Let us assume a simple argumentation with three arguments:
The two abstract arguments from our introductory example regarding a family
discussing the necessity of getting a dog, and a third argument c from the
mother telling her husband, that ”I will take care of the additional dirt.” This
results in the argumentation framework AF = 〈A,R〉 with A = {a, b, c} and
R = {(a, b), (b, a), (c, a)}. Then, Figure 2.2 displays the graph representation
of the argumentation framework.

a b

c

Figure 2.2: A simple argumentation framework

Dung has, as already mentioned, introduced in his seminal paper [29]
semantics, which have been defined to evaluate the acceptability status of
sets of arguments. The following definition contains his ideas, that became
fundamental for the analysis of abstract argumentation.

Definition 2.9 Let AF = 〈A,R〉 be an argumentation framework. A set
S ⊆ A is called

• conflict-free if ∀a, b ∈ S it holds that (a, b) /∈ R, i.e., no argument in S
attacks an argument in S,

• admissible if S is conflict-free and ∀b ∈ A, a ∈ S and (b, a) ∈ R it holds
that ∃c ∈ S with (c, b) ∈ R, i.e., every argument in S is defended by
an argument in S against incoming attacks,
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• preferred if S is admissible and @S ′ ⊆ A with S ′ is admissible and
S ⊂ S ′, i.e., S is a maximal (with respect to set inclusion) admissible
set,

• stable if S is conflict-free and ∀b ∈ A \ S it holds that ∃a ∈ S with
(a, b) ∈ R, i.e., every argument outside of S is attacked by an argument
inside of S,

• complete if S is admissible and, ∀a ∈ A, if a is defended by an argument
in S it holds that a ∈ S, i.e., all arguments that are successfully defended
by arguments in S also belong to S, and

• grounded if S = F ∗AF (∅), where FAF : 2A → 2A is the characteristic
function of AF , defined by

FAF (S) = {a ∈ A | a is defended by an argument of S}, and

F ∗AF (∅) is the least fixed point of F ∗AF .

Since the characteristic function is monotonic with respect to set inclusion
if applied to admissible sets, i.e., S ⊆ FAF (S), there always is a least fixed
point, therefore securing the existence of a (unique) grounded set. Admissi-
bility and completeness can also be defined via the characteristic function: If
a subset of the arguments S is conflict-free and S ⊆ FAF (S) holds, then it
is admissible, and if S = FAF (S) holds, then it is complete. The latter also
states, that the complete sets of an argumentation framework are exactly
the fixed points of FAF—in particular this implies, that the grounded set is
complete. Dung [29] also proved several other correlations between semantics,
that can be easily verified with the help of the characteristic function. Among
others, he showed that every admissible set is a subset of a preferred set, that
there always is at least one (maybe empty) preferred set, that every stable
set is preferred, and every preferred set is complete. It is not hard to prove
that a preferred or grounded set does not have to be stable, and it is easy to
show that each of the above defined semantics secures conflict-freeness and
admissibility. Figure 2.3 displays all relations among these semantics. The
arrow from st to pr indicates, for example, that all sets of arguments that
are stable must also be preferred, and so on. If there is no arrow between two
semantics this does not mean, that it is impossible for a subset to fulfill both
semantics. It is, for example, possible that one single argument set fulfills all
semantics simultaneously.

Dung [29] also uses the notion of extensions of an argumentation frame-
work as a term for those sets that fulfill the criteria of a semantics. This
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Stable Grounded

Preferred Complete Admissible Conflict-free

Figure 2.3: Relations among various semantics for sets of arguments

means, that an argument set is called an s-extension, if it fulfills the criteria
of the semantics s. However, Dung does not consider conflict-freeness and
admissibility to be semantics, as those are basic requirements in his eyes. As
a result, he also does not call conflict-free or admissible sets ”extensions”.
However, for convenience, we might do this sometimes.

Example 2.10 Example 2.8 has exactly four conflict-free extensions, namely
all three singletons {a}, {b}, and {c} and the pair {b, c}. No argument set that
contains argument a and another arbitrary argument can be conflict-free, as
a attacks b and is attacked by b and c. Among those conflict-free extensions,
all but {a} are also admissible, as they directly defend any incoming attack,
if one exists. Please note, that it especially is okay that in {b} the incoming
attack (a, b) ∈ R is defended by b itself through (b, a) ∈ R. In this example
exists only one preferred extension, one complete extension, and one stable
extension, which all coincide with the unique grounded extension {b, c}.

2.4.2 Computational Results

In the field of abstract argumentation we can naturally find decision prob-
lems from many common complexity classes. Here, complexity does not only
depend on the problem’s structure, but also mainly on the investigated se-
mantics. Let us have a look at the definition of standard decision problems
for abstract argumentation. The probably most basic one gets an argumen-
tation framework and a subset of the arguments as input, and the question
is whether the given subset is an extension for the a priori fixed semantics s:

s-Verification

Given: An argumentation framework 〈A,R〉 and a subset S ⊆
A.

Question: Is S an s extension of AF?

In this work, more specifically in Chapter 6, we only focus on the six
semantics from the previous paragraph, and for better readability we write
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cf for conflict-freeness, ad for admissibility, pr for preferredness, st for
stability, cp for completeness, and gr for groundedness.

Dunne and Wooldridge [30] surveyed several decision problems, including
the verification problem from above, and they also mention known complexity
results. This includes the membership of s-Verification in P for all men-
tioned semantics except for pr, for which the respective decision problem is
coNP-complete, shown by Dimopoulos and Torres [27]. The complexity of
other problems mentioned in [30] go up to Πp

2-completeness, suggesting that
abstract argumentation bears very hard problems. In Chapter 6, we naturally
extend the basic model of argumentation frameworks and investigate corre-
sponding versions of the verification problem, and also obtain, among others,
hardness results for the classes of the second level of the boolean hierarchy.
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CHAPTER 3
Toward the Complexity of the
Existence of Wonderfully Stable
Partitions and Strictly Core
Stable Coalition Structures in
Enemy-Oriented Hedonic Games

Summary

In this paper we discuss the computational complexity of several decision
problems based on hedonic games in the restricting case that each agent i
does not provide complete preferences over all possible coalitions, but instead
a single subset Fi of the agents N that she would call her friends, including
herself. This subset contains all players of the game that she would like to
cooperate with. All other agents belong to Ei = N \Fi, the set of the enemies
of agent i. Then, we use an extension principle to extend this information to
a preference ranking of all possible coalitions containing player i, therefore
creating a classical hedonic game. This representation of a hedonic game is
very compact, yet not fully expressive, as there are hedonic games that are
not representable this way. In this paper, we concentrate on the extension
principle that focuses on the number of enemies in the coalitions; resulting
games are called enemy-oriented hedonic games. It is a special case of the
additive separable representation. We have chosen this representation for this
paper, as the literature does not provide sufficient results for the investigated
decision problems, i.e., the question of the existence of a strict core stable

29
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coalition structure in the given hedonic game.
Woeginger [74] already suggested upper and lower bounds for some of the

investigated decision problems, as well a connection of strict core stability
in enemy-oriented hedonic games and the purely graph theoretic concept of
wonderfully stable partitions in undirected graphs. The connection is made by
identifying the vertices with the players and the arcs with all the symmetric
friendship relations, which origins in the fact that, when investigating the
strict core in enemy-oriented hedonic games, only mutual friendships matter.
In our paper we continue his research on this connection and also on upper
and lower bounds, and are able to tighten the bounds for both major decision
problems up to the fact that it remains to show hardness for DP to establish
hardness for Θp

2.

Contribution and Preceding Versions

The idea, model, and writing was done jointly with my coauthors, as well as
Lemma 1, Property 1 and the quantifier representations of the investigated
decision problems, Theorems 1, 2, 5, 6 and the proof of Theorem 3. Theo-
rems 4, 7 and 9, and Proposition 1 is part of my contribution. This paper
merges and extends the preliminary papers [54] and [55].

Publication - Rey, Rothe, Schadrack, and
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A. Rey, J. Rothe, H. Schadrack, and L. Schend. Toward the complexity of the
existence of wonderfully stable partitions and strictly core stable coalition
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Chalkiadakis et al. [9]) where players form coalitions in order to manage certain tasks as a
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tives in order to elect mutually desirable alternatives by aggregating their preferences. In a
hedonic game, the alternatives are groups (coalitions) of players and players “vote” on coali-
tions they want to join by expressing their preferences. Hedonic games have been studied
from a computational perspective, for example by Dimitrov et al. [11], Sung and Dimitrov
[32], Aziz et al. [1] and Woeginger [37]. In his survey, Woeginger [36] gives an overview of
several core stability concepts in hedonic games and their analysis.

We in particular focus on the concepts of wonderfully stable partitions and strictly core
stable coalition structures that have been considered in this survey. A partition of the vertices
of an undirected graph is called wonderfully stable if each vertex is assigned to a clique
of largest size that contains the vertex. In the context of hedonic games, this notion can be
interpreted to express the following scenario. If the players are represented by the vertices
in a graph and there is an undirected edge between two vertices if and only if the two
related players like each other, then—under so-called enemy-oriented preferences [11]—
a largest clique corresponds to the coalition that is most preferred by each player in the
coalition, among those coalitions not containing any enemies. A wonderfully stable partition
for this graph hence corresponds to a coalition structure where each player ends up in her
most preferred coalition among those without enemies. In the same domain, intuitively, a
coalition structure is (strictly) core stable if no group of players has an incentive to form a
different coalition, thus breaking away from the given coalition structure.

1.1 Related work and our contribution

Besides enemy-oriented preferences, there are several other ways to represent a hedonic
game compactly. Additively separable hedonic games, for example, are represented by
numerical values for each player evaluating each other player; preferences of a player over
coalitions are derived from the particular sum of values of this player for the players in a
coalition. It is known that, for additively separable hedonic games, the problem as to whether
a given coalition structure is core stable is NP-complete [32], and the corresponding problem
of whether such a coalition structure exists in a given game was first shown to be NP-hard
by Sung and Dimitrov [33], even for the case of symmetric additive preferences (see the
work of Aziz et al. [1]), and was finally shown to be �

p

2 -complete by Woeginger [37]. For
friend-oriented preferences—defined similarly to enemy-oriented preferences—it is known
that there always exists a core-stable partition [11]. Under enemy-oriented preferences, there
always exists a core stable coalition structure in a given game [11], and deciding whether
a given coalition structure is core stable or strictly core stable is strongly NP-complete
[32, 36].

Let WSPE be the problem of deciding whether there exists a wonderfully stable parti-
tion in a given graph, and let SCSCS be the problem of deciding whether there exists a
strictly core stable coalition structure in a given enemy-oriented hedonic game. The exact
complexity of these problems is unknown so far. Woeginger [36] points out that these inter-
esting open issues might be difficult to solve. The best known upper bounds are �

p

2 for
WSPE and �

p

2 for SCSCS (where �
p

2 and �
p

2 are levels of the polynomial hierarchy), and
Woeginger [36] conjectures that they are complete for these classes.

Raising the known lower bounds, we establish DP-hardness for both problems, where DP
is the second level of the boolean hierarchy over NP. This is a first step toward classifying
these two problems in terms of their complexity. We also provide arguments for why they
cannot be complete for any level of the boolean hierarchy higher than the second level
(unless this hierarchy collapses, which is considered unlikely). Moreover, we show that
proving coDP-hardness for them would already suffice to establish their �

p

2 -hardness.
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2 Preliminaries

In this section, we introduce the concept of hedonic game, describe links between
such games and appropriate graph-theoretic concepts, define the corresponding stability
concepts, and give the needed background from complexity theory.

2.1 Hedonic games

A hedonic game consists of a finite set N = {1, . . . , n} of players and a profile �= (�1,

. . . , �n) of preference relations, where �i denotes player i’s preference relation. Each such
preference relation�i defines a weak preference order over all coalitions (i.e., subsets ofN )
that contain player i. Let A and B be coalitions containing i. We say that i weakly prefers
A to B if A �i B, and we say i prefers A to B (denoted by A �i B) if A �i B, but not
B �i A.

Since the number of coalitions in a player’s preference order is exponential in the number
of players, it is reasonable to consider compactly represented hedonic games; see the survey
of Woeginger [36] for an overview of various possible encodings. We consider so-called
enemy-oriented preferences as introduced by Dimitrov et al. [11]. In their setting, every
player i ∈ N has a set of friends and a set of enemies, and that is all that is needed to
represent i’s preferences over all coalitions.

Definition 1 For a set N = {1, . . . , n} of players, define the enemy-oriented preference
profile �= (�1, . . . , �n) of a hedonic game G = (N,�) as follows. Let i ∈ N be a player
with friends Fi ⊆ N (including i herself) and enemies Ei = N � Fi , and let A,B ⊆ N be
two coalitions that both contain i.

1. We say i weakly prefers A to B under enemy-oriented preferences (denoted by A �i B)
if |A∩Ei | < |B ∩Ei | (i.e., i has fewer enemies in A than in B), or |A∩Ei | = |B ∩Ei |
and |A ∩ Fi | ≥ |B ∩ Fi | (i.e., i has the same number of enemies in A and in B, but at
least as many friends in A as in B).

2. We say i prefers A to B under enemy-oriented preferences if A �i B.

In the following, we often omit the phrase “under enemy-oriented preferences” and
simply say that a player prefers or weakly prefers one coalition to another.

An enemy-oriented hedonic game can be represented by an undirected1 graph G, where
the set N = {1, . . . , n} of players corresponds to the vertex set V = {v1, . . . , vn} of G, and
for each i, j ∈ N , i �= j , there is an edge {vi, vj } in G if and only if i and j are friends. A
clique in G is a subset C ⊆ V such that each two distinct vertices in C are connected by an
edge. For each vertex v of G, let ωG(v) denote the clique number of v in G, which is the
size of a largest clique in G that contains v.

A coalition structure for a hedonic game G = (N,�) is a partition � = {C1, . . . , Ck} of
the players into k ≥ 1 coalitions C1, . . . , Ck ⊆ N (i.e.,

⋃k
i=1 Ci = N and Ci ∩ Cj = ∅ for

i �= j ). For a coalition structure �, we denote the coalition that contains player i by �(i).
In the associated graph G, a coalition structure corresponds to a partition � of the vertices
of G, and we denote the set in � that contains a vertex vi by �(vi).

1As Woeginger [36] points out, in the context of stability only symmetric friendship relations matter in the
enemy-oriented scenario, so we assume that a player j ∈ N is player i’s friend if and only if i is j ’s friend.
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2.2 Stability concepts

We consider the following stability concepts for hedonic games (see the survey by
Woeginger [36] for more details).

Definition 2 1. A coalition C ⊆ N blocks a coalition structure � if each player i ∈ C

prefers C to �(i) (i.e., C �i �(i)).
2. A coalition structure � is core stable if there is no nonempty coalition C ⊆ N that

blocks �.
3. A coalition C ⊆ N weakly blocks a coalition structure � if each player i ∈ C weakly

prefers C to �(i) (i.e., C �i �(i)), and at least one player j ∈ C prefers C to �(j)

(i.e., C �j �(j)).
4. A coalition structure � is strictly core stable if there is no coalition C ⊆ N that weakly

blocks �.

Example 1 Consider the hedonic game ({1, 2, 3, 4},�) with four players that have enemy-
oriented preferences, given by their sets of friends F1 = {1, 2, 3}, F2 = {1, 2, 3}, F3 =
{1, 2, 3, 4}, and F4 = {3, 4}. Figure 1a shows the graph G corresponding to this game. Now
consider the coalition structure � = {{1, 2, 3}, {4}} that is illustrated by the dashed lines in
Fig. 1b. � is a strictly core stable coalition structure: Players 1 and 2 are in their unique most
preferred coalition; thus they cannot be part of any weakly blocking coalition for �. Coali-
tion {3, 4} does not block � because of player 3 who prefers her coalition �(3) = {1, 2, 3}
to {3, 4}, since both coalitions have the same number of 3’s enemies (namely, none—kind-
hearted 3 is enemies with no one) but the former contains more of 3’s friends. Finally, both
player 3 and player 4 do not prefer to be alone under enemy-oriented preferences. That
is, coalition {3} does not weakly block � because of �(3) = {1, 2, 3} �3 {3}, and coali-
tion {4} does not weakly block � because for its only member, player 4, it is not true that
{4} �4 {4} = �(4) (even though, of course, {4} �4 {4} = �(4) does hold).

Note that in a hedonic game with enemy-oriented preferences, a core stable coalition
structure always corresponds to a partition into cliques in the associated graph. Recall from
Section 1 that the concept of wonderfully stable partition in hedonic games has a purely
graph-theoretic interpretation:

Definition 3 Given a graph G = (V ,E), a partition � of the vertex set of G is called
wonderfully stable if each P ∈ � is a clique and |�(v)| = ωG(v) for each vertex v ∈ V .

Adopting the notation from core stability in hedonic games, we say that a clique P ⊆ V

blocks a partition � into cliques if there exists a vertex v ∈ P with ωG(v) > |�(v)|.

(a) (b)

Fig. 1 Graph G corresponding to a game with a strictly core stable coalition structure
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(a) (b)

Fig. 2 Graph G that does not have a wonderfully stable partition

By definition of clique number, ωG(v) ≥ |�(v)| for each vertex v ∈ V , since �(v) is a
clique that contains v. Furthermore, note that the problem of whether there exists a partition
into a limited number of cliques in a graph is NP-hard (see, e.g., the book by Garey and
Johnson [12]). If, however, the number of cliques is not limited, a partition into cliques can
easily be found.

Example 2 Recall graph G from Fig. 1, which corresponds to the hedonic game defined
in Example 1. We can see that the vertices 1,2, and 3 each have a clique number of 3,
and vertex 4 has a clique number of 2. Figure 2 shows two possible partitions into cliques,
�1 = {{1, 2, 3}, {4}} and �2 = {{1, 2}, {3, 4}}. Neither of them is wonderfully stable. In
�1, which is shown in Fig. 2a, vertex 4 forms a 1-clique in partition �1 and is thus blocking
it. In �2, on the other hand, we have that the vertices 1, 2, and 3 each are in a 2-clique
(see Fig. 2b), and the 2-cliques {1, 2} and {3, 4} both block the partition �2. The boldfaced
vertices in Fig. 2 indicate that these vertices are not in a maximum-size clique containing
them.

Now consider graph G′ and the partition � into cliques indicated by the dashed lines,
both shown in Fig. 3. This partition is wonderfully stable since every vertex is in a clique of
maximum size.

The following lemma provides a relation between strictly core stable coalition structures
and wonderfully stable partitions.

Lemma 1 Let G = (V ,E) be the graph representing an enemy-oriented hedonic game G.
Let � be a partition of V and let � be the corresponding coalition structure in G.

Fig. 3 Graph G′ that has a
wonderfully stable partition �

1

2 5

4

3
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1. If � is a wonderfully stable partition for G, then � is a strictly core stable coalition
structure for G.

2. If there is an integer c ∈ N such that ωG(v) = c for all vertices v ∈ V and � is a strictly
core stable coalition structure for G, then � is a wonderfully stable partition for G.

Proof The first implication holds by definition: If a coalition C weakly blocks a coalition
structure that corresponds to a partition into cliques, C has to be a clique with a larger
cardinality and hence blocks the partition.

Second, assume that there is a blocking clique C for �, i.e., there exists some vertex vi ∈
C with ωG(vi) > |�(vi)|. Since ωG(vi) = c, there is a clique D with C ⊆ D and |D| = c.
Now, the corresponding coalition D̃ = {i | vi ∈ D} is a weakly blocking coalition for �,
because D̃ �i �(i) and D̃ �j �(j) for each j ∈ D̃, which follows from the fact that the
number of friends in �(i) is at most c − 1 and the number of friends in �(j) is at most c,
respectively.

Note the following useful property that holds by definition for graphs consisting of
several independent components.

Property 1 Let G be the graph representing an enemy-oriented hedonic game G and let G

consist of k independent components Gi , 1 ≤ i ≤ k, corresponding to games Gi . There
exists a wonderfully stable partition � for G (respectively, a strictly core stable coalition
structure � for G) if and only if there exist wonderfully stable partitions �i for all com-
ponents Gi of G (respectively, strictly core stable coalition structures �i for all games Gi),
1 ≤ i ≤ k.

We will analyze the following decision problems.

Strictly Core Stable Coalition Structure (SCSCS)
Given: A hedonic game G = (N, �) with enemy-oriented preferences.
Question: Does there exist a strictly core stable coalition structure in G?

Wonderfully Stable Partition Existence (WSPE)
Given: A graph G = (V , E).
Question: Does there exist a wonderfully stable partition of V for G?

Wonderfully Stable Partition Verification (WSPV)
Given: A graph G = (V , E) and a partition � of V into cliques.
Question: Does there exist a clique P ⊆ V that blocks �?

Just as the (existence and verification) core stability problems considered by Woeginger
[36], the latter two problems are, by definition, related to each other. The verification prob-
lem can be characterized by an existential quantifier, and the existence problem can be
characterized by an existential quantifier followed by a universal quantifier:

(G,�) ∈ WSPV ⇐⇒ (∃P) [P blocks �], (1)

G ∈ WSPE ⇐⇒ (∃�) (∀P) [¬(P blocks �)]. (2)

2.3 Complexity theory

We assume the reader is familiar with the basic notions of complexity theory, such as the
complexity classes P, NP, and coNP and the notions of hardness and completeness (based
on the polynomial-time many-one reducibility, ≤p

m).
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DP was introduced by Papadimitriou and Yannakakis [23] as the class of differences
of any two NP problems; DP is also known as the second level of the boolean hierarchy
over NP [7, 8]. For natural complete problems in the levels of the boolean hierarchy, and
especially in DP, see the survey by Riege and Rothe [27] and, more recently, the work of
Nguyen et al. [22] on social welfare optimization in multiagent resource allocation and of
Reisch et al. [26] on the margin of victory in Schulze, cup, and Copeland elections.

PNP[log] was introduced by Papadimitriou and Zachos [24] as the class of problems that
can be solved in polynomial time by asking O(log n) sequential Turing queries to an NP
oracle. This class is also known as capturing “parallel access to NP” (denoted by PNP‖ ) where

polynomially many oracle queries may be asked in parallel; the equality of PNP[log] and PNP‖
has been shown independently by Hemachandra [13] and Köbler et al. [20]. PNP[log] con-
stitutes the �

p

2 level of the polynomial hierarchy and has been studied by many authors.
While some of the earlier papers explore the properties of this class and its relation to
other complexity classes [3, 4, 13, 20, 34, 35], both the early and more recent work focuses
on proving completeness of natural problems in it, including various graph and satisfia-
bility problems [34], the problems of whether certain heuristics can find constant-factor
approximations for certain NP-complete graph problems [14, 18], the winner problems for
Dodgson, Young, and Kemeny elections [15, 17, 28] (see also the survey by Hemaspaandra
et al. [16]), and minimal upward or downward covering sets [2].

�
p

2 = NPNP is the second level of the polynomial hierarchy [21, 31]. Natural complete
problems in the levels of the polynomial hierarchy, and especially in�

p

2 , have been surveyed
by Schaefer and Umans [29, 30]. Recent �p

2 -completeness results on the complexity of core
stability in hedonic games are due to Woeginger [37] (see also his survey [36]). It holds that
P ⊆ NP ⊆ DP ⊆ �

p

2 ⊆ �
p

2 , and none of these inclusions is known to be strict.
The following two lemmas are due to Wagner [34] and provide sufficient conditions for

proving lower bounds for DP and �
p

2 . They will be applied in the proofs of Theorem 4 and
Proposition 1, respectively.

Lemma 2 (Wagner [34]) Let A be some NP-hard problem, and let B be any set. If there
exists a polynomial-time computable function f such that, for any two instances x1 and x2
of A for which x2 ∈ A implies that x1 ∈ A, we have

|{i|xi ∈ A}| is odd ⇐⇒ f (x1, x2) ∈ B, (3)

then B is DP-hard.

Lemma 3 (Wagner [34]) Let A be some NP-hard problem, and let B be any set. If there
exists a polynomial-time computable function f such that, for all k ≥ 1 and any 2k instances
x1, . . . , x2k of A for which xj ∈ A implies that xi ∈ A for i < j , we have

|{i|xi ∈ A}| is odd ⇐⇒ f (x1, x2, . . . , x2k) ∈ B, (4)

then B is �
p

2 -hard.

3 Hardness of WSPV, WSPE, and SCSCS

We now turn to the main results of this paper, proving hardness results for the prob-
lems WSPV, WSPE, and SCSCS, first for the general problems and then for WSPE and
SCSCS restricted to special graph classes. We start with the existence and verification
problems for wonderfully stable partitions.
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3.1 General hardness results for WSPV and WSPE

Just as for the core stability problems, the verification problem for wonderfully stable parti-
tions, WSPV, belongs to NP due to the characterization stated in (1), since it can be tested
in polynomial time whether a given subset of vertices is a clique and, if so, whether it blocks
a given partition. Consequently, due to (2), the existence problem, WSPE, belongs to �

p

2 .
As a (potentially) better upper bound, Woeginger [36] shows membership of WSPE in �

p

2
and conjectures that WSPE is �

p

2 -hard.
Let us first consider WSPV. To pinpoint its complexity, we make use of the same proof

technique that Sung and Dimitrov [32] used for the core stability problem in hedonic games
with enemy-oriented preferences.

Theorem 1 WSPV is NP-complete.

Proof NP membership is obvious, as stated above. NP-hardness is shown via a reduction
from CLIQUE as in the work of Sung and Dimitrov [32]. Given an instance of CLIQUE

(which, for an undirected graph G = (V ,E) and a positive integer k, asks whether G has a
clique of size at least k), we construct the following graph G′ = (V ′, E′). The vertex set V ′
is obtained from V by adding, for each v ∈ V , k − 2 vertices. We connect each of the k − 2
new vertices and v to form a clique of size k − 1, for each v ∈ V . The edge set E′ consists
of these new edges and all edges in E. Let � be the partition into |V | cliques such that
each (k − 1)-clique as constructed above forms one part. This can obviously be achieved in
polynomial time. We claim that there is a clique of size k in G if and only if there exists a
clique P ⊆ V ′ that blocks � in G′.

Only if: If there is a clique P of size k in G, the same clique can be found in G′. The
vertices v ∈ P thus have a clique number ωG′(v) of at least k. Since the size of all cliques
in � is k − 1, there exists a vertex v in the clique P with ωG′(v) > |�(v)|; therefore, P

blocks � in G′.
If: If there is no clique of size k in G, there is no clique of size k in G′, either, and

ωG′(v) = k−1 holds for each v ∈ V ′. Furthermore, |�(v)| = k−1, for each v ∈ V ′. Thus,
there is no blocking clique for � in G′.

We now turn to the problem WSPE, seeking to raise its lower bound step by step. We
start by showing coNP-hardness; the construction presented in this proof will be used later
on in the proof of Theorem 4.

Theorem 2 WSPE is coNP-hard.

Proof Again, we reduce from CLIQUE, but this time to the complement of WSPE. Given
an instance (G, k) of CLIQUE, with G = (V ,E), we construct the same graph G′ as in
the proof of Theorem 1 as an instance for the complement of WSPE. We may assume that
k ≥ 3; otherwise, we could test in polynomial time whether E is empty or not and reduce
to an appropriate trivial instance. We now show that there is a clique of size k in G if and
only if there is no wonderfully stable partition for G′.

Only if: If there is a clique P of size k in G, the same clique can be found in G′. As in
the proof of Theorem 1, P blocks the partition that consists of the |V | cliques of size k − 1
constructed in the reduction. On the other hand, if a partition contains P , then each of the
(k − 1)-cliques mentioned above blocks this partition, since the new vertices are now in a
clique of size at most k − 2, but their clique number is k − 1.
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If: If there is no clique of size k in G, the partition as in the proof of Theorem 1 is
wonderfully stable, since there is no blocking clique.

Next, we show that WSPE is also NP-hard, which was already mentioned without proof
by Woeginger [36]. Thus, it is unlikely that the problem is in either NP or coNP (otherwise,
the polynomial hierarchy would collapse). For completeness and since it will also be used
in the upcoming proof of Theorem 4, we provide a proof of this result.

Theorem 3 (Woeginger [36]) WSPE is NP-hard.

Proof We show NP-hardness via a reduction from the well-known NP-hard problem
EXACT COVER BY THREE-SETS (see, e.g., [12]), which we refer to as X3C. The input of
this problem is a base set B = {b1, . . . , b3k}, k > 0, and a collection S = {S1, . . . , Sm}
of 3-element subsets of B, and the question is whether B can be exactly covered by k sets
from S . Given an X3C instance (B,S ), we may assume that each element of B occurs at
most three times in any of the sets in S (see the book by Garey and Johnson [12]). Further-
more, we can assume that each element occurs at least once; otherwise, we could reduce to
a trivial no-instance of WSPE.

Construct the following graph G = (V ,E) from (B,S ). For each Si ∈ S , add three
vertices to V that are connected to each other as a 3-clique. Label the three vertices with
the three elements of Si . For each element b ∈ B, consider the following three cases. First,
if b occurs only once in a set of S , no changes are made. Second, if b occurs twice, the
subgraph in Fig. 4a is inserted between the two vertices labeled with b. Third, if b occurs
three times, the subgraph in Fig. 4b is inserted between the three vertices labeled with b.
Since it is easy to determine how often an element of B occurs in a set of S and the number
of new vertices is limited by 7|B|, G can be constructed in polynomial time.

We now show that there is an exact cover of B by sets in S if and only if there is a
wonderfully stable partition for G.

Only if: If there exists an exact cover of B by k = |B|/3 sets in S , include the 3-
cliques corresponding to these sets into the partition � that shall be wonderfully stable. The
remaining vertices (those from the inserted connecting subgraphs, and those corresponding
to the Si that are not part of the exact cover) are distributed as follows. Again, consider the
three cases of occurrence: If an element b occurs only once, the only vertex labeled with
b is already in a clique in �. If an element b occurs twice, one vertex labeled b remains.

b b

(a) Two vertices

b b

b

(b) Three vertices

Fig. 4 Construction between vertices labeled b ∈ B
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This vertex forms a 3-clique with the two connecting vertices as in Fig. 4a. Put this 3-clique
into �. If an element b occurs three times, two vertices with the same label remain. From
the structure of the connecting subgraph as in Fig. 4b, the two vertices connected to the
vertex that is already in a part of the partition, form a 3-clique with the vertex in the middle.
The other two pairs of vertices again form 3-cliques with the remaining vertices labeled b.
If these three cliques are added to �, the partition is complete. It remains to show that �

is wonderfully stable. Since each part of � is a clique of size 3 and each vertex in G has
clique number 3, the conditions for a wonderfully stable partition are satisfied.

If: If there exists a wonderfully stable partition � in G, all cliques in � have size 3, since
by construction each vertex v ∈ V has a clique number ωG(v) = 3. Since the connecting
subgraphs from Figs. 4a and 4b are constructed such that exactly one labeled vertex is not
part of a 3-clique, we have that, for each element b ∈ B, the one corresponding vertex has
to be part of another 3-clique that does not contain an unlabeled vertex. Thus, there exist
exactly |B|/3 cliques that consist of three labeled vertices, corresponding to sets in S in
which each element of B occurs exactly once. That is, there exists an exact cover of B

in S .

In order to prove DP-hardness of WSPE, we make use of Property 1 and Wagner’s
sufficient condition stated in Lemma 2, applying the constructions presented in the proofs
of Theorems 2 and 3.

Theorem 4 WSPE is DP-hard.

Proof Again, consider the NP-hard problem X3C. Given two instances of X3C, (B1,S1)

and (B2,S2), where (B2,S2) ∈ X3C implies (B1,S1) ∈ X3C, we construct the fol-
lowing graph G = (V ,E). G consists of two disconnected subgraphs G1 = (V1, E1) and
G2 = (V2, E2), that is, G = (V1 ∪ V2, E1 ∪ E2). G1 is obtained from (B1,S1) by the con-
struction given in the proof of Theorem 3. G2 is built in two steps. First, the X3C instance
(B2,S2) is transformed into an instance of CLIQUE: For each set Si ∈ S , create a vertex vi .
If two sets Si and Sj are disjoint, connect the corresponding vertices by an edge {vi, vj }. Let
k = |B|/3. In the second step, add k−2 vertices for each vertex corresponding to a set of S ,
and edges as in the proof of Theorem 2. This construction can obviously be done in polyno-
mial time. Note that, again, the proof only works for k ≥ 3. If k ≤ 2, reduce to an approriate
trivial WSPE instance. We claim that (B1,S1) ∈ X3C and (B2,S2) /∈ X3C if and only if
there exists a wonderfully stable partition for G. Note that, since (B2,S2) ∈ X3C implies
(B1,S1) ∈ X3C, this is enough to establish equivalence (3) in Lemma 2.

Only if: Suppose (B1,S1) ∈ X3C and (B2,S2) �∈ X3C. Since (B1,S1) is in X3C, G1
has a wonderfully stable partition by the proof of Theorem 3. Since additionally (B2,S2) /∈
X3C, there are no k = |B|/3 pairwise disjoint sets in S , thus there is no clique of size
k in G. By the proof of Theorem 2, G2 then also has a wonderfully stable partition. Since
G1 and G2 are not connected, that is, the clique number of each vertex remains unchanged
(ωG(v) = ωG1(v) if v ∈ V1, and ωG(v) = ωG2(v) if v ∈ V2), and since there are no
additional vertices in G, G has a wonderfully stable partition as well.

If: We prove the contrapositive, i.e., if (B1,S1) �∈ X3C or (B2,S2) ∈ X3C, then
there is no wonderfully stable partition for G. Indeed, if (B1,S1) �∈ X3C, then by the
proof of Theorem 3, there is no wonderfully stable partition for G1. On the other hand,
if (B2,S2) ∈ X3C, there exists an exact cover of B in S , that is, there are k = |B|/3
pairwise disjoint sets in S . By construction, these sets are represented by k vertices in G2,
each connected to one another, thus forming a k-clique. By the proof of Theorem 2, it
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follows that there is no wonderfully stable partition for G2. By construction, since there is
no wonderfully stable partition for G1 or G2, there is no wonderfully stable partition for G

either.
By Lemma 2, WSPE is DP-hard.

3.2 General hardness results for SCSCS

We now turn to SCSCS, first showing its coNP-hardness by a reduction from CLIQUE to
the complement of SCSCS.

Theorem 5 SCSCS is coNP-hard.

Proof Let (G, k) be a CLIQUE instance with a graph G = (V ,E) and an integer k ≥ 4.
Construct an SCSCS instance represented by the graph G′ = (V ′, E′). Let V ′ = V ∪ V1 ∪
V2, where V1 contains k − 2 new vertices for each of the vertices v ∈ V and V2 contains
k − 3 new vertices for each v ∈ V , so |V ′| = |V | + |V |(2k − 5). Every vertex v ∈ V is
connected to its k − 2 associated vertices from V1, any two of which are also connected by
an edge, thus forming a (k − 1)-clique with “their” vertex v. Moreover, the k − 3 vertices
from V2 associated with v are connected to one of the vertices from V1 in the (k − 1)-clique
containing v, and they are also connected among each other, thus forming a (k − 2)-clique
with the single vertex v′ from V1 they are connected to. E′ contains all edges from E and
the additional edges described above. See Fig. 5 for an illustration.

We claim that G has a clique of size at least k if and only if there is no strictly core stable
coalition structure in the game G ′ represented by G′.

Only if: Assuming that there is a clique P of size k in G, this clique also exists in G′.
Every possible strictly core stable coalition structure � has to contain a coalition corre-
sponding to a clique P ′ at least as large as P , since otherwise the coalition corresponding
to P would block �. Consider an arbitrary vertex v ∈ P ′ and the vertices from V1 ∪V2 con-
nected to v. The player corresponding to the single vertex v′ from V1 that is connected to v

and vertices in V2 can form a coalition of size k − 2 with the players corresponding to v′’s
neighbors either in V1 or in V2. In both cases, the one coalition with the player correspond-
ing to v′ that is not contained in � weakly blocks �: While the player corresponding to v′
is indifferent, the other players strictly prefer to be in a coalition with her. Thus, there can
be no strictly core stable coalition structure for the game represented by G′. Note that this
argument does not work for the nonstrict core.

If: Assuming that there is no clique of size k in G, there is no such clique in G′ either.
Construct a strictly core stable coalition structure � for G ′ by letting each player correspond-
ing to v ∈ V form a coalition with the players corresponding to v’s neighbors in V1, and
letting the players corresponding to the vertices from V2 form a coalition with the players
corresponding to their k − 4 neighbors from V2.

Fig. 5 Construction of
G′ = (V ′, E′) from G = (V , E):
Connecting vertices from V1 and
V2 to v ∈ V for k = 5 v v
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Recalling Lemma 1, we know that in graphs where all vertices have the same fixed clique
number, every wonderfully stable partition � of G corresponds to a strictly core stable
coalition structure in the game represented by G, and vice versa. Hence, NP-hardness for
SCSCS straightforwardly follows from the proof of Theorem 3, which states NP-hardness
for WSPE.

Theorem 6 SCSCS is NP-hard.

Proof Use the reduction from the proof of Theorem 3 to construct a graph from a given
X3C instance (B,S). In this graph, all vertices have the same clique number, so with
Lemma 1 we have that (B,S) ∈ X3C if and only if the game represented by G has a strictly
core stable coalition structure.

By using Wagner’s sufficient condition from Lemma 2, DP-hardness of SCSCS can
now be shown. We state this result without proof and refer to the proof of Theorem 4.
The construction can be transferred directly to SCSCS by using the reduction showing
CLIQUE ≤p

m SCSCS (see the proof of Theorem 5) to construct G2 from a given X3C
instance.

Theorem 7 SCSCS is DP-hard.

3.3 A result for a special graph class

Consider the class of graphs where all vertices have the same fixed clique number k. We
can show NP membership of WSPE restricted to instances of this graph class (denoted
by k-WSPE; note that k is not given as part of the input to k-WSPE; rather, it is a fixed
constant, i.e., we study the problems 1-WSPE, 2-WSPE, etc. separately). Together with
a lower bound that follows from the construction for proving Theorem 3, this gives NP-
completeness.

Theorem 8 For each k ≥ 3, k-WSPE is NP-complete.

Proof By assumption, all vertices in the given graph G have the same clique number k.
The graph has to have � · k vertices for � ∈ N; otherwise, a wonderfully stable partition
could never be found. Thus, the problem of deciding whether G has a wonderfully stable
partition is equivalent to the problem of deciding whether there is a clique cover of size �

for G, which is an NP-complete problem [19]. Therefore, NP membership of k-WSPE is
shown by nondeterministically guessing a partition of the vertices into � sets and, for each
partition guessed, testing whether these sets are cliques.

For the lower bound, it follows from Theorem 3 that WSPE on graphs with a fixed
clique number of k = 3 is NP-hard. We can extend this NP-hardness to any fixed clique
number k ≥ 3 by reducing k-WSPE to (k + 1)-WSPE. We may assume that an instance
for k-WSPE has � · k vertices (otherwise, we reduce to a trivial no-instance). Given such a
graph, we construct an instance of (k+1)-WSPE by adding � vertices to the original graph.
We connect each new vertex to each original vertex and leave the new vertices unconnected
among each other. It is easy to see that there is a wonderfully stable partition into � k-cliques
in the original graph if and only if there is a wonderfully stable partition into � cliques of
size k + 1 each in the constructed graph.
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Since by Lemma 1 the problems WSPE and SCSCS are equivalent for graphs in this
class, NP-completeness can also be shown for the SCSCS problem restricted to instances
with a fixed clique number, k-SCSCS, k ≥ 3.

Corollary 1 For each k ≥ 3, k-SCSCS is NP-complete.

4 Conclusions and future work

We have shown that it is NP-complete to verify whether a given partition into cliques in
a given graph can be blocked by some clique (thus preventing this partition from being
wonderfully stable), and that it is DP-hard to decide whether or not a given graph has a
wonderfully stable partition into cliques. Wonderful stability can be translated to a stability
concept for enemy-oriented hedonic games. For a weaker stability concept in such games,
strict core stability, we have also shown DP-hardness for the existence problem. In the
case of friend-oriented preferences, the verification problem for core stability is an open
question, suspected to be decidable in polynomial time by Woeginger [36]. Friend-oriented
preferences, however, do not possess the property that a partition into cliques cannot be
blocked by incomplete subgraphs in the corresponding graphs.2 Therefore, wonderfully sta-
ble partitions carry over to hedonic games only for enemy-oriented preferences which we
have focused on.

The main results of this paper (raising the lower bounds for WSPE and SCSCS to
DP-hardness) should only be seen as a first step toward classifying them in terms of their
complexity. We will now discuss possible ways toward showing �

p

2 -hardness for them (as
conjectured by Woeginger [36]) and will then conclude this paper by presenting a chal-
lenge: For showing �

p

2 -hardness of these two problems, it would be enough to prove them
coDP-hard.

4.1 Toward �
p
2-Hardness of WSPE and SCSCS

Chang and Kadin [10] define the following property: A problem A has ANDω functions3

if there exists a polynomial-time computable function f such that for all n ∈ N and for all
instances x1, x2, . . . , xn for A, it holds that xi ∈ A for each i, 1 ≤ i ≤ n, if and only if
f (x1, x2, . . . , xn) ∈ A.

Lemma 4 (Chang and Kadin [10]) 1. If a problem is NP-complete, it has ANDω functions.
2. If a problem is DP-complete, it has ANDω functions.
3. If a problem is complete for any class of the boolean hierarchy higher than the second

level, it cannot have ANDω functions, unless the boolean hierarchy collapses to the
second level.

2. If a problem is �
p

2 -complete, it has ANDω functions.

Note that WSPE has ANDω functions by Property 1. By Lemma 4(3), we thus can
conclude that WSPE cannot be complete for any level of the boolean hierarchy higher

2Note that even games with a nonsymmetric friendship relation might allow stable partitions.
3Note that this is a different ω than the clique number, used here for consistency with the literature. Which
ω is meant will always be clear from the context.
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than the second level: WSPE is either complete for DP or �
p

2 (or is something completely
different). A similar statement applies to SCSCS.

In this section, we discuss a way for how to approach the as yet open issues of showing
that WSPE and SCSCS are �

p

2 -hard. To apply Lemma 3, the idea would be to generalize
the construction for showing their DP-hardness (see Theorems 4 and 7), which we will
elaborate on exemplarily for WSPE. From 2k given instances x1, . . . , x2k of an NP-hard
problemA such as X3C, we construct a WSPE instance as a graphGwith k+1 independent
components Gi , 1 ≤ i ≤ k + 1. Then again, we can use Property 1 to conclude that G

has a wonderfully stable partition if and only if each Gi has one. The single components
Gi are constructed in the following way: The first one, G1, is constructed from the first A

instance x1, the last one,Gk+1, is constructed from the lastA instance x2k , and the remaining
k − 1 components Gi, 2 ≤ i ≤ k, are constructed from pairs (x2i−2, x2i−1) of A instances
(see Fig. 6 for an illustration). For the thus constructed subgraphs, we need the following
properties to hold.

Property 2 Let x1, . . . , x2k be given instances of an NP-hard problem A. Construct graphs
G1, . . . , Gk+1 as follows:

1. Construct G1 from x1 such that x1 ∈ A ⇐⇒ G1 ∈ WSPE.
2. Construct Gi , 2 ≤ i ≤ k, from x2i−2 and x2i−1 such that (x2i−2, x2i−1 ∈

A) or (x2i−2, x2i−1 �∈ A) ⇐⇒ Gi ∈ WSPE.
3. Construct Gk+1 from x2k such that x2k ∈ A ⇐⇒ Gk+1 �∈ WSPE.

Proposition 1 Let A be an NP-hard problem and let x1, . . . , x2k be any 2k instances of
A such that xj ∈ A implies xi ∈ A for i < j . If G1, . . . , Gk+1 are graphs that can
be constructed from x1, . . . , x2k in polynomial time such that Property 2 is satisfied, then
WSPE is �

p

2 -hard.

Proof Let f be a polynomial-time computable function such that f (x1, . . . , x2k) = G,
where G is the graph consisting of k+1 independent components G1, . . . , Gk+1 that satisfy
Property 2. To apply Lemma 3, we have to show equivalence (4) stated in that lemma:

|{xi |xi ∈ A, 1 ≤ i ≤ 2k}| is odd ⇐⇒ G ∈ WSPE.

Fig. 6 Illustration of the reduction using Lemma 3. The last rows show possible cases of yes/no-instances
due to the relation between the xi , “+” denotes a yes-instance, and “−” denotes a no-instance
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Only if: Assume that |{xi |xi ∈ A, 1 ≤ i ≤ 2k}| is odd. Since xj ∈ A implies that xi ∈ A

for i < j , neither x1 �∈ A nor x2k ∈ A can hold.4 By Property 2, we have that both G1 and
Gk+1 have a wonderfully stable partition. Since x1 ∈ A and x2k �∈ A, there exists an index
s (which we call the separation index) such that xi ∈ A for i ≤ s, and xi �∈ A for i > s.
Again, since xj ∈ A implies that xi ∈ A for i < j , only the following three cases can occur
for each pair (x2i−2, x2i−1) of the remaining instances:

Case 1: both x2i−2 and x2i−1 are in A,
Case 2: neither x2i−2 nor x2i−1 are in A, or
Case 3: x2i−2 is in A, yet x2i−1 is not.

Case 3 implies that the separation index is of the form s = 2i−2 for some i (see the third
row of Fig. 6), which leads to a contradiction, since that would mean that there is an even
number of yes-instances. So all pairs have to be of the form stated in Case 1 or Case 2 (see
the second row of Fig. 6). By Property 2, each component Gi , 2 ≤ i ≤ k, has a wonderfully
stable partition and so has G.

If: Assume that G has a wonderfully stable partition. This implies that every component
Gi , 1 ≤ i ≤ k + 1, does as well. By Property 2, we have that x1 ∈ A, x2k /∈ A, and for all
pairs (x2i−2, x2i−1), 2 ≤ i ≤ k, either both x2i−2 and x2i−1 are in A, or neither x2i−2 nor
x2i−1 are in A. In total, we have an odd number of yes-instances among x1, . . . , x2k .

By Lemma 3, WSPE is �
p

2 -hard.

4.2 Challenge

With the reduction presented in the DP-hardness proof for WSPE (see Theorem 4), the
subgraphs G1 and Gk+1 can be constructed from given X3C instances such that the first
and the third statement of Property 2 hold. To complete the �

p

2 -hardness proof, we would
have to construct the remaining subgraphs G2, . . . , Gk so as to satisfy the second statement
of Property 2.

Looking closely at this statement and letting the NP-complete set A from Lemma 3 be
3-SAT, we are searching for a polynomial-time reduction f such that for two given 3-SAT
instances, ϕ1 and ϕ2, we have:

(ϕ1, ϕ2 ∈ 3-SAT) or (ϕ1, ϕ2 /∈ 3-SAT) ⇐⇒ f (ϕ1, ϕ2) ∈ WSPE. (5)

Papadimitriou and Yannakakis [23] introduced the well-known DP-complete problem
SAT-UNSAT: Given two boolean formulas in 3-CNF, ϕ1 and ϕ2, is it true that ϕ1 is satis-
fiable (i.e., ϕ1 ∈ 3-SAT) and ϕ2 is not satisfiable (i.e., ϕ2 �∈ 3-SAT)? We may assume that
ϕ2 ∈ 3-SAT implies ϕ1 ∈ 3-SAT. By Lemma 2, this restriction of SAT-UNSAT is also
DP-complete. Then (5) simplifies to:

(ϕ1, ϕ2) �∈ SAT-UNSAT ⇐⇒ f (ϕ1, ϕ2) ∈ WSPE

It follows that in order to prove �
p

2 -hardness—and thus �
p

2 -completeness—of WSPE, it
suffices to show coDP-hardness of WSPE. To summarize, we have shown the following
result.

Theorem 9 WSPE is �
p

2 -complete if and only if it is coDP-hard.

4Indeed, looking at the top and the bottom row of Fig. 6, we see that if either x2k ∈ A or x1 �∈ A, then either
all x1, . . . , x2k would be in A or none of them, contradicting the assumption that |{xi |xi ∈ A, 1 ≤ i ≤ 2k}|
is odd.
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Essentially the same argument works for SCSCS as well: For proving a �
p

2 -hardness
lower bound, it would suffice to establish a coDP-hardness lower bound. Whether one can
show coDP-hardness for WSPE and SCSCS is left as an open problem.
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CHAPTER 4
Representing and Solving Hedo-
nic Games with Ordinal Prefer-
ences and Thresholds

Summary

Different representations of hedonic games have different advantages and dis-
advantages, and it often boils down to weighting the compactness of the rep-
resentation against its expressiveness. Common representations, such as the
additive encoding or singleton encoding, are very compact, but lack the abil-
ity to represent hedonic games as soon as qualitative user inputs should be
taken into account. On the other side of the spectrum are the most expressive
representations, which are, however, not compact, such that a single prefer-
ence order often already needs exponential space in the number of agents. In
this paper, we merge two compact approaches, namely the singleton encod-
ing and the friends-and-enemies encoding, and create an encoding that still
is compact, i.e., it only needs polynomial space in the number of agents to
specify a complete hedonic game, but also much more expressive than any of
the two original encoding itself. The former, the singleton encoding, allows
agents to rank only other agents, but not the entire coalitions containing her.
A preference order over all such coalitions is then derived by only looking
at the best (resp. worst) ranked agent in a given coalition. The friends-and-
enemies encoding has already been discussed in Chapter 3, and basically
works by counting the number of friends and/or enemies in the coalitions.

In the resulting encoding, called weak ranking with double threshold in the
paper, every agent i first puts the other agents into three groups, her friends
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A+
i , her enemies A−i , and neutral agents A0

i , i.e., agents that she does not care
about. Then, she ranks her friends and enemies, leading to a compact repre-
sentation of her opinion over the other agents. The resulting hedonic game,
i.e., a hedonic game in which every agent’s opinion is represented by a weak
ranking with double threshold, is called FEN-hedonic game. This representa-
tion, however, has one disadvantage: It cannot be easily extended to a rank-
ing over the coalitions containing i. To cover this disadvantage, we take two
steps. First, we use a polarized version of the so called responsive extension
principle, which results in an incomplete ranking over all coalitions contain-
ing agent i. Second, we use the principles of two modularities that describe
whether there is a way to fill the open gaps in the rankings in such a way that
the desired outcome is achieved, versus whether each such completion leads
to the desired outcome. Such terms are often referred to as ’possibility’ and
’necessity’, leading to two versions of each investigated decision problems.
One Example would be Possible-γ-Verification, which asks, for a given
coalition structure in a hedonic game and a fixed stability concept γ, whether
there is at least one possible way to extend the incomplete rankings, such
that the coalition structure is stable in regards to the given stability concept
γ and the resulting game. In contrast to this, Necessary-γ-Verification
asks, whether the given coalition structure is stable regarding γ in all ways
to extend the incomplete rankings.

Hence, the following paper contains an analysis of the verification and
existence decision problems, both in the possible and necessary case, and
for the stability concepts of perfectness, individual rationality, (contractual)
individual stability, Nash stability, as well as some additional analysis re-
garding (strict) core stability, Pareto optimality, and (strict) popularity. It
offers several hardness results up to the class of NP, but also leaves open
gaps in complexity for future work. Please note, that Paragraph 5.2 of [40]
displays an earlier version of our research regarding Borda-like comparability
functions. This research is represented in more detail in Chapter 5.

Contribution

The idea, model, and writing was done jointly with my coauthors. Addition-
ally, I contributed research regarding the analysis of FEN-hedonic games that
did not make it into the paper but will be featured in an upcoming version.
These results are based on properties introduced by Peters and Elkind in [51]
that will also be used in Chapter 5. This includes axiomatic properties lead
to NP-completeness results for individual stability and Nash stability, and to
NP-hardness results for core stability. For a detailed analysis of my contri-
bution regarding Borda-like comparability functions, please see Chapter 5.
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ABSTRACT
We propose a new representation setting for hedonic games, where
each agent partitions the set of other agents into friends, enemies,
and neutral agents, with friends and enemies being ranked. Under
the assumption that preferences are monotonic (respectively, anti-
monotonic) with respect to the addition of friends (respectively, en-
emies), we propose a bipolar extension of the Bossong–Schweigert
extension principle, and use this principle to derive the (partial)
preferences of agents over coalitions. Then, for a number of solu-
tion concepts, we characterize partitions that necessarily (respec-
tively, possibly) satisfy them, and identify the computational com-
plexity of the associated decision problems. Alternatively, we sug-
gest cardinal comparability functions in order to extend to com-
plete preference orders consistent with the generalized Bossong–
Schweigert order.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems; J.4 [Computer Applications]: Social and Be-
havioral Sciences—Economics

General Terms
Economics, Theory

Keywords
Computational Social Choice, Coalition Formation, Game Theory

1. INTRODUCTION
Hedonic games are strategic games where agents, from a set

A, are free to form coalitions. Each agent has a preference rela-
tion over the set of all coalitions containing her; various solution
concepts—such as individual rationality, Nash stability, individual

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

contractual stability, core stability, and so on—have been proposed
and studied. However, an important bottleneck is how the agents’
preferences over all coalitions that contain them are expressed. As
there are exponentially many coalitions containing agent i, it is un-
reasonable to expect that agent i should express explicitly a ranking
(or a utility function) over all these coalitions. This issue is often
addressed by assuming that only a small part of the preference re-
lation is expressed by the agent, and that this small part is then ex-
tended into a complete preference relation over coalitions. Various
assumptions about the nature of the input (what the agents express)
and the preference extension have been made in the literature (for
a survey, see Woeginger [23]):

1. The individually rational encoding [4]: Each agent ranks
only the coalitions she prefers to herself being alone.

2. The additive encoding [21, 22, 3, 24]: Each agent gives a
valuation (positive or negative) of each other agent; prefer-
ences are additively separable, and the extension principle is
that the valuation of a set of agents, for agent i, is the sum
of the valuations i gives to the agents in the set (and then the
preference relation is derived from this valuation function).

3. The “friends and enemies” encoding [15, 21]: Each agent
partitions the set of other agents into two sets (her friends
and her enemies); under the friend-oriented preference ex-
tension, coalition X is preferred to coalition Y if X contains
more friends than Y , or as many friends as Y and fewer ene-
mies than Y ; under the enemy-oriented preference extension,
X is preferred to Y if X contains fewer enemies than Y , or as
many enemies as Y and more friends than Y .

4. The singleton encoding [12, 10, 11]: Each agent ranks only
single agents; under the optimistic (respectively, pessimistic)
extension, X is preferred to Y if the best (respectively, worst)
agent in X is preferred to the best (respectively, worst) agent
in Y .

5. The anonymous encoding [4, 13]: Each agent specifies only a
preference relation over the number of agents in her coalition
(and does not care about the identities of these agents).
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6. Hedonic coalition nets [16]: Each agent specifies her utility
function over the set of all coalitions via (more or less) a set
of weighted logical formulas.

7. Fractional hedonic games [2]: Each agent assigns a value
to each other agent (and 0 to herself); an agent’s utility of a
coalition is the average value she assigns to the members of
the coalition. A coalition X is preferred to Y if the utility of
X is greater than that of Y .

Naturally, compact representation either does not avoid exponen-
tial-size representations in the worst case (Case 1 and, to a lesser
extent, Case 6), or comes with a loss of expressivity, corresponding
to a demanding domain restriction, such as separable preferences
(Cases 2 and 4), anonymous preferences (Case 5), or other domain
restrictions that do not bear a specific name (Case 3).

In Cases 2 and 6, preferences are expressed numerically: Agents
do explicitly express numbers. In all other cases, they are expressed
ordinally. Advantages of ordinal preferences in social choice have
been discussed many times and we want to stick here to ordinality.
We do not want to make the very demanding anonymity assump-
tion, which does not allow to distinguish between agents. The in-
dividually rational encoding is not compact in general. So there re-
main only the “friends and enemies” and singleton encodings. The
problem with “friends and enemies” is that an agent cannot express
preferences inside the friend set nor inside the enemy set: Pref-
erences over individual agents are dichotomous (but preferences
between coalitions are not, because they depend on the number of
friends and enemies). The problem with the singleton encoding is
that having simply a rank �i for each agent i does not tell us which
agents i would like to see in her coalitions and which agents she
would like not to: For instance, if �1 is 2�1 3�1 4, we know that
1 prefers 2 to 3 and 3 to 4, but nothing tells us whether 1 prefers to
be with 2 (respectively, 3 and 4) to being alone, that is, if the abso-
lute desirability of 2,3, and 4 is positive or negative (of course, if it
is negative for 3, it is also negative for 4, etc.). So, both ways are
insufficiently informative: Specifying only a partition into positive
and negative agents (“friends” and “enemies”) does not tell which
of her friends i prefers to which other agents, and which of her en-
emies she wants to avoid most. On the other hand, specifying a
ranking over agents does not say which agents i prefers to be with
rather than being alone. Here we propose a model that integrates
the models of Cases 1, 3, and 4: Each agent i first subdivides the
other agents into three groups, her friends, her enemies, and an in-
termediate type of agents on which she has neither a positive nor
a negative opinion and then specifies a ranking of her friends and
enemies. Based on this representation, we consider a natural exten-
sion to a player’s preference, the generalized Bossong–Schweigert
extension (see [8, 14]), which is a partial order over coalitions con-
taining the player. A related model can be found in the context
of matching theory: Responsive preferences are studied in bipar-
tite many-to-one matching markets and consider the comparison of
one participant to another,1 although not in distinction of friends or
enemies (see, e.g., [19, 20]). In the following, we consider differ-
ent ways of how to deal with incomparabilities within these partial
orders. A first approach is to leave incomparabilities open and de-
fine notions such as “possible” and “necessary” stability concepts.
A second approach is to define comparability functions in order to
determine the relation between incomparable coalitions that extend

1In the context of many-to-one matching markets, an agent on
the one side has responsive preferences over assignments of the
agents on the other side if, for any two assignments that differ in
only one agent, the assignment containing the most preferred agent
is preferred.

the generalized Bossong–Schweigert extension to a total preference
order for each player. Questions of interest include appropriate
characterizations of stability concepts and a computational study
of the related problems.

2. PRELIMINARIES
Generally, a hedonic game is a tuple (A,P) consisting of a set

of players (or agents) A = {1,2, . . . ,n} and a profile of prefer-
ence relations P=(�1,�2, . . . ,�n) defining for each player a weak
preference order over all possible coalitions C ⊆ A containing the
player herself. For two coalitions C,D⊆A, both containing player i,
we say that i weakly prefers C to D if C �i D; i prefers C to D, de-
noted by C �i D, if C �i D, but not D �i C; and i is indifferent
between C and D, denoted by C ∼i D, if both C �i D, and D�i C.
A coalition structure Γ for a given game (A,P) is a partition of A
into disjoint coalitions, and for each player i ∈ A, Γ(i) denotes the
unique coalition in Γ containing i.

An important solution concept for the study of hedonic games
is the notion of stability of a coalition structure. There are several
known such stability concepts [7, 3, 1]. In this paper we focus on
concepts that deal with avoiding a player to deviate to another (pos-
sibly empty) existing coalition. Relatedly, other commonly studied
concepts consider group deviations, such as core stability with the
goal that there is no blocking coalition. A third group of stability
concepts, such as Pareto optimality and popularity, is based on a re-
lation comparing different coalition structures. Further restrictions
of games as well as properties can be found amongst others in [5].

A coalition structure Γ is called

• perfect if each player i weakly prefers Γ(i) to every other
coalition containing i,

• individually rational if each player i ∈ A weakly prefers Γ(i)
to being alone in {i},
• Nash stable if for each player i∈ A, Γ(i)�i A′∪{i} holds for

each coalition A′ ∈ Γ∪ /0,

• individually stable if for each player i∈ A and for each coali-
tion A′ ∈ Γ∪ /0, it holds that Γ(i)�i A′∪{i} or there exists a
player j ∈ A′ such that A′ � j A′∪{i},
• contractually individually stable if for each player i ∈ A and

for each coalition A′ ∈ Γ∪ /0, it holds that Γ(i)�i A′∪{i}, or
there exists a player j ∈ A′ such that A′ � j A′ ∪{i}, or there
exists a player j′ ∈ Γ(i) such that Γ(i)� j′ Γ(i)r{i}.

3. DERIVING PREFERENCES OVER COALI-
TIONS FROM PREFERENCES OVER SIN-
GLE FRIENDS AND ENEMIES

We define a new representation of preferences combining ordi-
nal rankings with friend and enemy sets. We suggest deriving a
player’s preference over coalitions by generalizing the Bossong–
Schweigert extension principle.

3.1 Ordinal Preferences with Thresholds

DEFINITION 1. Let A = {1,2, . . . ,n} be a set of agents. For
each i ∈ A, a weak ranking with double threshold for agent i, de-
noted by �+0−

i , consists of a partition of Ar{i} into three sets:

• A+
i (i’s friends), together with a weak order �+

i over A+
i ,

• A−i (i’s enemies), together with a weak order �−i over A−i ,
and
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• A0
i (the neutral agents, i.e., the agents i does not care about).

We also write �+0−
i as (�+

i | j1 · · · jk |�−i ) for A0
i = { j1, . . . , jk}.

Not having an order of the neutral agents can be interpreted as
being indifferent about them all: ja ∼i jb for all ja, jb ∈A0

i . Agent i
strictly prefers all her friends to her neutral agents, and those to her
enemies. The weak order induced by �+0−

i is therefore defined via
f �i j, for each f ∈ A+

i and j ∈ A0
i , j1 ∼i j2 ∼i · · · ∼i jk, and j�i e,

for each j ∈ A0
i and e ∈ A−i .

EXAMPLE 2. Let A = {1,2, . . . ,11}. Then,

�+0−
1 = (2�1 3∼1 4 |567 |8�1 9∼1 10�1 11)

means that 1 likes 2, 3, and 4 (and prefers 2 to both 3 and 4, and
is indifferent between 3 and 4); 1 does not care about 5, 6, and
7 (and is indifferent between them); and 1 does not like 8, 9, 10,
and 11 (but still prefers 8 to 9 and 10, is indifferent between 9 and
10, and prefers 9 and 10 to 11). The weak order �1 induced by
�+0−

1 is 2�1 3 ∼1 4�1 5 ∼1 6 ∼1 7�1 8�1 9 ∼1 10�1 11. Note
that here the preference between a friend and a neutral player is
strict, because we assume below that a coalition containing a friend
instead of a neutral player is preferred. Analogously, the preference
between a neutral player and an enemy is strict, because a player
does not care about having a neutral player in a coalition but is
less happy with having an enemy in the coalition instead.

3.2 Generalizing Bossong–Schweigert Exten-
sions

DEFINITION 3. Let �+0−
i be a weak ranking with double thresh-

old for agent i. The extended order�+0−
i is defined as follows: For

every X ,Y ⊆ A, X �+0−
i Y if and only if the following two condi-

tions hold:

1. There is an injective function σ from Y ∩A+
i to X ∩A+

i such
that for every y ∈ Y ∩A+

i , we have σ(y)�i y.

2. There is an injective function θ from X ∩A−i to Y ∩A−i such
that for every x ∈ X ∩A−i , we have x�i θ(x).

Finally, X �+0−
i Y if and only if X �+0−

i Y and not (Y �+0−
i X).

Intuitively speaking, for a fixed coalition C adding a further friend
makes the coalition strictly more valuable while adding an enemy
causes the opposite. When exchanging two friends, the valua-
tion of the coalition changes depending on the relation between
the exchanged players (the same holds when two enemies are ex-
changed). When both a friend and an enemy are added or are both
removed, the original and the new coalition are incomparable with
respect to the Bossong–Schweigert extension principle.

Thus, to construct the generalized Bossong–Schweigert exten-
sion (GBS-extension, for short) for a player i, we start with the
coalition containing i and her set of friends (which is the most pre-
ferred coalition) and then construct all directly comparable coali-
tions by adding enemies, removing friends, or exchanging enemies
or friends. For each newly obtained coalition we repeat this pro-
cedure until we reach the least preferred coalition containing all of
i’s enemies. Note that the elements of A0

i are disregarded as their
adding to or removing from a coalition does not change the value
of a coalition. The following examples illustrate the just presented
extension principle.

EXAMPLE 4. For A = {1,2, . . . ,6}, consider

�+0−
1 = (2�1 3∼1 4 | |5�1 6).

The graph in Figure 1 shows the generalized Bossong–Schweigert
extension of this preference, where an arc from coalition X to coali-
tion Y implies that X �+0−

1 Y . Hence, any path leading from X ′ to
Y ′ implies X ′ �+0−

1 Y ′, whereas coalitions that are not connected
by a path, such as {1,2,3} and {1,2,3,4,5}, are incomparable.

{1,2,3,4}

{1,2,3} ∼1 {1,2,4}

{1,2} {1,3,4}

{1,3} ∼1 {1,4}

{1}

{1,2,3,4,5}

{1,2,3,5} ∼1 {1,2,4,5}

{1,2,5} {1,3,4,5}

{1,3,5} ∼1 {1,4,5}

{1,5}

{1,2,3,4,6}

{1,2,3,6} ∼1 {1,2,4,6}

{1,2,6} {1,3,4,6}

{1,3,6} ∼1 {1,4,6}

{1,6}

{1,2,3,4,5,6}

{1,2,3,5,6} ∼1 {1,2,4,5,6}

{1,2,5,6} {1,3,4,5,6}

{1,3,5,6} ∼1 {1,4,5,6}

{1,5,6}

Figure 1: The generalized Bossong–Schweigert extension of
�+0−

1 = (2�1 3∼1 4 | |5�1 6).

Note that if there were additional players j > 6 in A considered
as neutral by player 1, the general picture would be the same with
indifferences at each level, for any C ⊆ {2, . . . ,6}, between each
{1}∪C∪N for N ⊆ Ar{1, . . . ,6}.

EXAMPLE 5. Consider A = {1,2,3,4,5} and the first players’
preference �+0−

1 =(2�1 3 | | 4�1 5). The graph in Figure 2 shows
the generalized Bossong–Schweigert extension of this preference
using the same notation as in Example 4.

Using the generalized Bossong–Schweigert extension principle,
we can extend the given preferences of the players to a prefer-
ence over the possible coalitions. However, this preference over
the coalitions might be incomplete; there are coalitions that remain
incomparable. We consider two possibilities to deal with these in-
comparabilities: Leave them open and consider every possible ex-
tension that does not conflict with transitivity; alternatively, deter-
mine the relation between incomparable coalitions by adapting the
Borda scoring rule, which is well-known from voting theory.
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{1,2,3}

{1,2}

{1,3}

{1}

{1,2,3,4}

{1,2,4}

{1,3,4}

{1,4}

{1,2,3,5}

{1,2,5}

{1,3,5}

{1,5}

{1,2,3,4,5}

{1,2,4,5}

{1,3,4,5}

{1,4,5}

Figure 2: The generalized Bossong–Schweigert order of
�+0−

1 = (2�1 3 | |4�1 5).

Intuitively, the relation between two coalitions C and D (C �i D,
D�i C, C ∼i D, or undecided) from player i’s point of view can be
determined by the following characterizations. These characteriza-
tions are inspired by Bouveret et al. [9] who show characterizations
for the original Bossong–Schweigert order in the context of fair di-
vision.

PROPOSITION 6. 1. Let �+0−
i be a weak ranking with dou-

ble threshold for agent i, and let C and C′ be two coali-
tions containing i. Consider the orders f1 �i f2 �i · · ·�i fµ
with { f1, f2, . . . , fµ}=C∩A+

i and f ′1 �i f ′2 �i · · ·�i f ′µ ′ with
{ f ′1, f ′2, . . . , f ′µ ′} = C′ ∩A+

i , as well as e1 �i e2 �i · · ·�i eν

with {e1,e2, . . . ,eν}=C∩A−i and e′1 �i e′2 �i · · ·�i e′ν ′ with
{e′1,e′2, . . . ,e′ν ′}=C′∩A−i . Then, C �+0−

i C′ if and only if

(a) µ ≥ µ ′ and ν ≤ ν ′,
(b) for each k, 1≤ k ≤ µ ′, it holds that fk �i f ′k, and
(c) for each `, 1≤ `≤ ν , it holds that eν−`+1 �i e′ν ′−`+1.

2. Say that wi : A→ R is compatible with �+0−
i if and only if

• for each j ∈ A+
i , we have wi( j)> 0;

• for each j ∈ A−i , we have wi( j)< 0;

• for each j ∈ A0
i , we have wi( j) = 0; and

• for all j,k ∈ A+
i ∪ A−i , we have j �i k if and only if

wi( j)> wi(k).

Then, C �+0−
i C′ if and only if for any wi compatible with

�+0−
i , we have ∑ j∈C wi( j)> ∑ j′∈C′ wi( j′).

PROOF. 1. Obviously, if (a) to (c) hold, the two injective
functions σ : C′ ∩A+

i →C∩A+
i , and θ : C∩A−i →C′ ∩A−i

mapping f ′k 7→ fk for each k, 1 ≤ k ≤ µ ′, and eν−`+1 7→
e′ν ′−`+1 for each `, 1≤ `≤ ν , satisfy σ( f ′k)�i f ′k and eν−`+1
�i θ(eν−`+1), for the same range of k and `. On the other
hand, if there are two injective functions with the desired re-
quirements, (a) holds. If there was a k with f ′k �i fk (or an
` with e′ν ′−`+1 �i eν−`+1), this would imply σ( f ′k) = f j for
a j < k (or θ(eν−`+1) = e′ν− j+1 with j > `, respectively).
This, however, implies that either a requirement is violated
for f ′1 (or eν ), or that σ (or θ ) is not injective, a contradic-
tion.

2. Assume that C�+0−
i C′, that is, C�+0−

i C′ and not C′ �+0−
i

C. For the set of friends A+
i , with F =C∩A+

i and F ′ =C′∩
A+

i , it follows that there is an injective function σ : F ′ → F
such that for each y ∈ F ′, we have σ(y)�i y. Hence, for each
compatible wi, wi(σ(y))≥ wi(y). Thus, since σ is injective,

∑
j∈F

wi( j) ≥ ∑
j∈σ(F ′)⊆F

wi( j) = ∑
j′∈F ′

wi(σ( j′))

≥ ∑
j′∈F ′

wi( j′). (1)

Similarly, for A−i , with E =C∩A−i and E ′ =C′∩A−i , and θ
injective, it holds that

0 ≥ ∑
j∈E

wi( j)≥ ∑
j∈E

wi(θ( j)) = ∑
j′∈θ(E)⊆E ′

wi( j′)

≥ ∑
j′∈E ′

wi( j′). (2)

Since C′ �+0−
i C does not hold, at least one of the inequal-

ities (1) and (2) is strict, since one preference (σ( j′)�i j′

or j�i θ( j)) or one inclusion (σ(F ′) ⊂ F or θ(E) ⊂ E ′) is
strict. For each player j ∈ A0

i , we have wi( j) = 0; therefore,
in total,

∑
j∈C

w j > ∑
j′∈C′

w j′ . (3)

Now assume that for each compatible wi, (3) holds. Thus,

∑
j∈F

wi( j)− ∑
j′∈E ′

wi( j′)> ∑
j′∈F ′

wi( j′)− ∑
j∈E

wi( j).

Assume there were no injective function mapping from each
summand from the right-hand side to one at least as large
on the left hand side; then, there exists an assignment to the
values of wi compatible with �+0−

i that does not satisfy the
inequality, a contradiction. Hence, such a function must ex-
ist, and this function induces the mappings σ and θ , showing
C �+0−

i C′. Additionally, because the inequality is strict in
(3), C′ �+0−

i C does not hold, which completes the proof.
This completes the proof. q

4. POSSIBLE/NECESSARY STABILITY
As we have seen above, the generalized Bossong–Schweigert ex-

tension can leave uncertainties between two coalitions in a player’s
preference order.

DEFINITION 7. A complete preference relation�i over all coali-
tions containing i extends �+0−

i if and only if it contains it; that is,
if C�+0−

i D implies C�i D for all coalitions C,D. Let Ext(�+0−
i )

be the set of all complete preference relations extending �+0−
i .

Now we can define games where each player has friends, ene-
mies, and neutral co-players, and preferences over the former two
sets such that we can derive each player’s preference relation as
introduced in the previous section.

DEFINITION 8. An FEN-hedonic game is a tuple H = 〈A,
�+0−

1 , . . . ,�+0−
n 〉, where A = {1,2, . . . ,n} is a set of players, and

�+0−
i gives the ordinal preferences with thresholds of player i ∈ A

as defined in Definition 1.
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DEFINITION 9. Let α be a stability concept for hedonic games,
〈A,�+0−

1 , . . . ,�+0−
n 〉 be an FEN-hedonic game and Γ be a coali-

tion structure. Γ satisfies possible α if and only if there exists a pro-
file 〈�1, . . . ,�n〉 in ×n

i=1Ext(�+0−
i ) such that 〈A,�1, . . . ,�n〉 sat-

isfies α . Γ satisfies necessary α if and only if for each 〈�1, . . . ,�n〉
in ×n

i=1Ext(�+0−
i ), 〈A,�1, . . . ,�n〉 satisfies α .

EXAMPLE 10. Let A= {1,2,3}, �+0−
1 = (2�1 3 | | ), �+0−

2 =

(3 | | 1), and �+0−
3 = (1 | 2 | ).

The generalized Bossong–Schweigert orders are

{1,2,3} �+0−
1 {1,2} �+0−

1 {1,3} �+0−
1 {1}

for player 1,

{2,3}

{2}
�+0−

2

{1,2,3}
�+0−

2

{1,2}
�+0−

2 �+0−
2

for player 2, and for player 3

{1,3} ∼+0−
3 {1,2,3} �+0−

3 {3} ∼+0−
3 {2,3}.

So, two preferences are already complete, and there are three com-
plete preferences extending�+0−

2 , one setting {2}�2 {1,2,3}, an-
other setting {2}∼2 {1,2,3}, and the third setting {1,2,3}�2 {2},
leaving all other relations the same.

4.1 Properties and Characterizations
Observe first that there always exists a necessarily individually

rational coalition structure (namely, the coalition structure where
every agent is alone).

PROPOSITION 11. Consider an FEN-hedonic game 〈A,�+0−
1 ,

. . . ,�+0−
n 〉.

1. A coalition structure Γ is (necessarily and possibly) perfect if
and only if for each player i, A+

i ⊆ Γ(i) and A−i ∩Γ(i) = /0.2

2. A coalition structure Γ is possibly individually rational if and
only if for each i ∈ A, Γ(i) contains at least a friend of i’s or
only neutral agents.

3. A coalition structure Γ is necessarily individually rational if
and only if for each i ∈ A, Γ(i) does not contain any enemies
of i’s.

4. A coalition structure Γ is necessarily individually stable if
and only if it is necessarily individually rational and no player
i can join a coalition that she would possibly prefer and the
members of which do not see her as an enemy.

PROOF. 1. A coalition structure is perfect if and only if each
player is in one of her favorite coalitions, that is, each player
is together with all her friends and no enemies.

2. For each i ∈ A, i necessarily prefers {i} to Γ(i) if and only if
Γ(i) contains no friend and at least one enemy of i’s.

3. For each i ∈ A, i possibly prefers {i} to Γ(i) if and only if
Γ(i) contains an enemy of i′s.

2As a consequence, a possibly perfect coalition structure in an
FEN-hedonic game is always necessarily perfect.

4. Note that a player j possibly prefers a coalition C to C∪{i}
if and only if j necessarily prefers C to C∪{i} if and only
if i is an enemy of j’s. Assume that Γ is necessarily individ-
ually stable. Then, for each i ∈ A , if i prefers to move to
another (possibly empty) coalition C in Γ, there is a player
in C that prefers player i not being in the coalition. If C is
empty, there is no such player, thus, Γ has to be individually
rational. Hence, C is nonempty and there has to be a player
in C that sees i as an enemy. Now assume that Γ is not in-
dividually stable, that is, there is a player i and a coalition
C ∈ Γ∪{ /0} such that i prefers C∪{i} to Γ(i) and, for each
j ∈ C, C ∪ {i} � j C. If C = /0, then Γ is not individually
rational. Otherwise, each j does not see i as an enemy.

This completes the proof. q

Note that a similar characterization holds for contractually indi-
vidual stability, where additionally to the conditions of individual
stability, it is required that no j in Γ(i) considers i a friend.

EXAMPLE 12. Consider the FEN-hedonic game from Exam-
ple 10. Observe that there does not exist a (possibly) perfect coali-
tion structure. While {{1,2,3}} is possibly Nash stable, there does
not exist a necessarily Nash stable coalition structure, as in each of
five cases, player 1 or player 2, at least possibly, wants to move to
another coalition. Coalition structure {{1,2,3}} is possibly indi-
vidually rational, but not necessarily due to player 2; {{1,2},{3}}
is not possibly individually rational; the other three coalition struc-
tures are necessarily individual rational.

For {{1,3},{2}} it holds that player 2 possibly wants to move
to {1,3} and 1 and 2 do not see 2 as an enemy, thus necessary
individual stability is not satisfied. Also, since in {2} there is no
other player who considers 2 a friend, contractually individual sta-
bility is not satisfied either. Observe that this coalition structure is,
however, possibly individually stable.

Coalition structure {{1},{2,3}} is not necessarily individually
stable, as player 3 wants to move to {1,3} where 1 welcomes him.
Player 2, however, considers 3 a friend, thus, as 2 does not want to
move, and 1 is considered an enemy by 2 when moving to {2,3},
this coalition structure is contractually individually stable.

4.2 Complexity of Possible and Necessary Sta-
bility Problems

We are interested in axiomatic properties and characterizations
of stability concepts in FEN-hedonic games. However, for some
concepts no general statements can be made as to whether there
exists a coalition structure satisfying a stability concept α (possi-
bly or necessarily). In these cases we ask how hard it is to decide
whether for a given FEN-hedonic game a given coalition structure
possibly or necessarily satisfies α , and to decide whether there ex-
ists a coalition structure in a given FEN-hedonic game that possibly
or necessarily satisfies α . Similar questions are often analyzed in
the context of hedonic games [24, 3, 18]. Here, we redefine the
verification and existence problems to the notions of possible and
necessary existence.

Note that two interpretations of necessary existence can be dis-
tinguished, the first one asking whether there always exists a coali-
tion structure that satisfies α , while the second one is asking whether
a particular coalition structure necessarily satisfies α . Intuitively
this distinction makes sense, since in the first case the setting might
provide a central authority with partial knowledge of the agents’
preferences and require the knowledge that whatever the possible
preferences are, there is always some coalition structure satisfying
α; in the second case, the choice of coalition structure is indepen-
dent of the agents’ possible preferences.
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EXAMPLE 13. For example, consider the following game with
three players, A = {1,2,3}, with �+0−

1 = (2 | 3 | ), �+0−
2 =

(1 | 3 | ), and �+0−
3 = (1 | | 2). We obtain the following gener-

alized Bossong–Schweigert orders: {1,2} ∼1 {1,2,3} �1 {1} ∼1
{1,3}, {1,2} ∼2 {1,2,3} �2 {2} ∼2 {2,3}, and {1,3} �3 {3} �3
{2,3} and {1,3} �3 {1,2,3} �3 {2,3}, while 3 is undecided be-
tween {3} and {1,2,3}. Any coalition structure in which players 1
and 2 are not in the same coalition cannot possibly be Nash stable.
On the one hand, {{1,2},{3}} is Nash stable if and only if an ex-
tension provides {3} �3 {1,2,3}. On the other hand, {{1,2,3}} is
Nash stable if and only if {1,2,3} �3 {3} in an extension. Thus,
for every extension, there certainly exists a Nash stable coalition
structure. However, there is no necessarily Nash stable coalition
structure.

Here, we focus on the second interpretation. Possible existence
is unambiguous, asking whether there is some coalition structure
satisfying α for some extension.

PROPOSITION 14. All problems regarding perfection are in P.

PROOF. Verfication of whether a coalition structure is possibly
and necessarily perfect is easy by Proposition 11.

Existence can be decided by, e.g., the following algorithm: Start
with player 1 and let Γ(1) := {1}∪A+

1 . Sequentially, for each i ∈
Γ(1), add A+

i to Γ(1) until there are no further possible changes.
Check whether, for each i ∈ Γ(1), A−i ∩Γ(1) = /0. If not, output
“there is no perfect coalition structure”; if so, start over with Ar
Γ(1). It might be the case that a friend cannot be added, because he
is already assigned to another coalition. If he is on his own, add him
anyway; otherwise, output “there is no perfect coalition structure.”
Continue until each player is allocated to a coalition. Then, output
“there is a perfect coalition structure.”

Note that this algorithm works in polynomial time. q

All problems regarding individual rationality are in P by the char-
acterizations in Proposition 11 and the observation preceding it.

Proposition 11 does not provide a characterization of Nash sta-
bility. Nevertheless, it can be verified in polynomial time whether
a given coalition structure in a given FEN-hedonic game is neces-
sarily Nash stable.

LEMMA 15. The verification problem for possible Nash stabil-
ity is in P.

PROOF. Given an FEN-hedonic game and a coalition structure Γ,
verify the following steps for each i ∈ A: For each (of at most n
coalitions) C ∈ Γ∪{ /0}, C 6= Γ(i), determine the relation between
Γ(i) and C∪{i}. This can be done in polynomial time by Propo-
sition 6.1. If C∪{i} �i Γ(i), output “Γ is not Nash stable.” If the
relation is undecided, output “Γ is possibly not Nash stable.” Other-
wise, if this is not true for any player or coalition in Γ∪{ /0}, output
“Γ is necessarily Nash stable.” q

By the characterizations in Proposition 11, similar algorithms
work for individual and contractually individual stability. Note that
this cannot easily be transferred to possible Nash stability, since
resolving an undecided relation might influence another relation
for the same player.

THEOREM 16. The problem of whether there exists a possibly
Nash stable coalition structure in a given FEN-hedonic game is
NP-complete.

PROOF. The problem belongs to NP, since it is enough to check
whether there exists a coalition structure of A and an extension per-
suing the GBS-extension such that for each player i ∈ A and each

coalition C ∈ Γ, Γ(i) �i C∪{i}. The latter can be tested in time
polynomial in n = ‖A‖, since there are at most n coalitions in Γ
and the relation between two coalitions from a common player’s
perspective can be decided in polynomial time by Proposition 6.1.

NP-hardness can be shown via a polynomial-time many-one re-
duction from EXACT-COVER-BY-THREE-SETS (X3C, see [17]):
Given a set R with 3m elements and a family S of subsets s ⊆ R
with ‖s‖ = 3, is there an exact cover of R in S , that is, is there a
subset S ⊆S such that ∪s∈Ss = R and ‖S‖ = m? Without loss of
generality it can be assumed that m ≥ 2 and each element in R oc-
curs at most three times in a set in S . Given such an X3C instance,
we construct the following game. This construction is inspired by
the construction of the proof that it is NP-hard to decide whether
there exists a Nash stable coalition structure in an additively separa-
ble hedonic game [22, Theorem 3]. Here, however, several adjust-
ments have to be made in order to guarantee necessary preferences
over coalitions.3 Let

A = {αi | 1≤ i≤ 3m−1}∪{βr | r ∈ R}
∪{ζs,k | s ∈S ,1≤ k ≤ 3m−2}

and let the players’ preferences be defined as follows, where in
player i’s preference and for a set X = {a1,a2, . . . ,ax}, X∼ denotes
a1 ∼i a2 ∼i · · · ∼i ax

• �+0−
αi

=
(
αi+1

∣∣ {α j : i 6= j 6= i+1}∼
∣∣ {other players}∼

)
,

for each i, 1≤ i≤ 3m−2,

�+0−
α3m−1

=
( ∣∣ {α j : j 6= 3m−1}∼

∣∣ {other players}∼
)
,

• �+0−
βr

=
(
{αi : 1≤ i≤ 3m−1}∼�βr

⋃
r∈s Qs∼

�βr
{βr′ : r′ 6= r}∼

∣∣ ∣∣ {other players}∼
)
, for each r ∈ R,

• �+0−
ζs,k

=
(
ζs,k+1

∣∣ {ζs,k′ : k 6= k′ 6= k+1}∪{βr : r ∈ s}∼
| {other players}∼), for each s∈S , and k, 1≤ k≤ 3m−3,

�+0−
ζs,3m−2

=
( ∣∣ {ζs,k′ : k′ 6= 3m−2}∪{βr : r ∈ s}∼

| {other players}∼), for each s ∈S

where Qs = {ζs,k | 1≤ k ≤ 3m−2} for each s ∈S . Moreover, let
Ps = {βr | r ∈ s}∪Qs. This profile can be constructed in polyno-
mial time, since there are n≤ 3m+3m+3m · (3m−2) players, and
each player’s preference can be written in linear time in n.

We now show that (R,S ) is a positive instance for X3C if and
only if there exists a possibly Nash stable coalition structure in the
GBS-extension of the constructed game.

Only if: Assume there exists a solution S for (R,S ). Consider
the coalition structure

Γ = {{αi | 1≤ i≤ 3m−1}}∪{Ps | s ∈ S}∪{Qs | s /∈ S}.
3Consider, e.g., a coalition {i, f ,e} where player i has a posi-

tive value for f , and a negative value for e. In comparison to {i}
this coalition is preferred by player i if f has a greater absolute
value than e in the additively separable representation, is consid-
ered indifferent if f and e have the same absolute value, and is less
preferred otherwise. If we do not provide values but ordinal prefer-
ences and thresholds and consider f as a friend and e as an enemy
of i’s, {i, f ,e} and {i} are incomparable from i’s perspective; thus,
all three scenarios are possible in an extension persuing GBS.
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By a close look at all possibly empty coalitions in Γ it can be seen
that no αi, 1≤ i≤ 3m−1, and no ζs,k, s∈S , 1≤ k≤ 3m−2, wants
to move, and each βr, r ∈ R, possibly does not want wo move, thus,
Γ is possibly Nash stable.

If: Assume there is a possibly Nash stable coalition structure
Γ. Ruling out, one by one, coalitions that cannot be contained
in Γ, it can be shown that for each r ∈ R, there exists an s ∈ S
such that Γ(βr) = Ps, which means that there is an exact cover of R
in S . q

By similar, but not trivially the same methods we can show that
the problem of necessary Nash stable existence is NP-complete.

5. CHALLENGES
In order to give a prospect to future work we provide initial

thoughts on further stability concepts as well as comparability func-
tions in order to deal with incomparabilities.

5.1 Further Stability Concepts
So far we have focused on single-player deviations. In this sec-

tion, we give a prospect to other stability concepts such as group de-
viations, Pareto optimality, and popularity. A coalition structure Γ
is called core stable if for each coalition A′⊆A, there exists a player
i ∈ A′ such that Γ(i)�i A′. A coalition structure Γ is called Pareto-
optimal if for each coalition structure ∆, there exists a player i ∈ A
such that Γ(i) �i ∆(i), or for each player j ∈ A, Γ( j) ∼ j ∆( j). A
coalition structure Γ is called popular if for each coalition struc-
ture ∆, the number of players i with Γ(i)�i ∆(i) is at least as large
as the number of players j with ∆( j) � j Γ( j). We furthermore in-
troduce the notion of strict popularity. A coalition structure Γ is
called strictly popular if it beats each other coalition structure ∆ in
pairwise comparison,4 that is,

‖{i ∈ A | Γ(i)�i ∆(i)}‖> ‖{ j ∈ A | ∆( j)� j Γ( j)}‖.
For each extension there exists a Pareto-optimal coalition struc-

ture (perhaps a different one for different extensions). Observe that
if there exists a necessarily strictly popular coalition structure, it is
unique, whereas there can be more than one possibly strictly popu-
lar coalition structure.

If there exists a necessarily strictly popular coalition structure, it
is necessarily Pareto optimal. If there exist possibly strictly pop-
ular coalition structures, each of them is possibly Pareto-optimal.
A necessarily strictly popular coalition structure does not need to
be possibly individually rational. Even if the possible core is non-
empty, a necessarily strictly popular coalition structure does not
need to be possibly core stable. The same holds for the concepts of
Nash stability, individual stability, contractual individual stability,
and strict core stability. If there exists a unique perfect partition, it
is necessarily the unique necessarily strictly popular coalition struc-
ture.

With techniques related to those in the proof of Theorem 16, we
can show that the questions of whether a given coalition structure
is possibly strictly popular or popular or Pareto-optimal are coNP-
hard, necessarily strictly popular or popular or Pareto-optimal are
coNP-complete, and it is coNP-hard to decide whether there exists
a strictly popular coalition structure, for both, the possible and the
necessary case.

Moreover, coNP-hardness of the problems of whether a given
coalition structure is core stable or strictly core stable can be shown

4This notion is adapted from the voting-theoretic term of Con-
dorcet winner: Such a candidate wins an election if and only if she
beats each other candidate in pairwise comparison.

with help of the reduction from CLIQUE to the core stability veri-
fication problem in the enemy-based representation [21]. Note that
this representation is a special case of the representation with or-
dinal preferences and thresholds, where there are no neutral agents
and only indifferences between all friends and between all enemies
in a player’s preference. Furthermore, note that the enemy-based-
extension [15] is a possible extension in ×n

i=1Ext(�+0−
i ). While

a “clique” of friends is necessarily preferred by all members to a
coalition containing fewer friends or even more enemies, there is
not necessarily a blocking coalition in the construction if there is
no such clique (for example, there is no blocking coalition in the
enemy-based extension).

5.2 Breaking Incomparabilities with Borda-
Like Scoring Vectors

In this section, we present a mechanism for determining the re-
lation between coalitions that are not comparable via the ordering
that the Bossong–Schweigert extension induces.

Every player has to evaluate a total preference order over all pos-
sible coalitions she might be part of, so we define a so-called com-
parability function (short CF) for a fixed player, say i ∈ A. One
possibility to do so is to use scoring vectors that assign values to
the players in Ar {i} depending on the position they have in the
weak ranking with double threshold of player i. In particular, for
the notions presented in Definition 1, we define the following vari-
ants of Borda-like scoring vectors.

We define scoring vectors wi : A → Z assigning points to the
players in the sets of friends, neutral agents, and enemies of agent i,
according to their positions in ranking �+0−

i , compatible with �+0−
i

as in Proposition 6. In more detail, we propose the following possi-
bilities, distinguishing between an “optimistic” and a “pessimistic”
case (see also the optimistic and pessimistic scoring model for mod-
ified Borda voting, due to Baumeister et al. [6]), and for each we
have a regular and a strong variant. Recall that we have n agents in
total. Suppose that i’s friends, A+

i , are ordered as follows: �+
i =

A+
i,1 �

+
i A+

i,2 �
+
i · · ·�+

i A+
i,`, where each A+

i, j contains some agents i
is indifferent about. Similarly, suppose that i’s enemies, A−i , are or-
dered as follows: �−i =A−i,1�

−
i A−i,2�

−
i · · ·�−i A−i,m, where each A−i, j

contains agents i is indifferent about. Here, we do not explicitly de-
fine all 16 combinations of (strictly) friend/enemy-optimistic/pessi-
mistic scoring vectors. For instance, consider the cases of a strongly
friend-optimistic and a strongly enemy-pessimistic setting.

DEFINITION 17. Let A be a set of players and �+0−
i be player

i’s preference relation. Let wi : A→ Z, compatible with �+0−
i ,

assign n points to each agent in A+
i,1, n−1 points to each agent in

A+
i,2, . . . , and n− `+ 1 points to each agent in A+

i,`. Moreover, let
each agent in A−i,m get −n points, each agent in A−i,m−1 get −n+ 1
points, . . . , and each agent in A−i,1 get−(n−m+1) points. Then, we
call wi strongly friend-optimistic and strongly enemy-pessimistic.

We now define a numerical comparability function that captures
the notion of Borda-like scoring.

DEFINITION 18. For each fixed agent i ∈ A and for every fixed
choice of scoring vectors wi, the Borda-like CF

f i
Borda : {C ⊆ A | i ∈C}→ Z

maps every coalition C containing i to the sum of the scores the
agents in C obtain from wi. The value of a coalition C⊆A is defined
as FBorda(C) = ∑i∈C f i

Borda(C).
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{1,2,3,4} {1,2,3} ∼ {1,2,4} {1,2,3,4,5}
v1 16 11 11

Table 1: Values of some coalitions in player 1’s view for the
scoring vector v1 = (∗,6,5,5,−5,−6)

EXAMPLE 19. Let A = {1,2,3,4,5,6} and the preference with
thresholds from Example 2: �+0−

1 = (2�1 3∼1 4 | |5�1 6). Fig-
ure 1 shows the graph corresponding to the Bossong–Schweigert
extension of this preference. For six agents and �+0−

1 , the scor-
ing vector in the strongly friend-optimistic and strongly enemy-
pessimistic setting is v1 = (∗,6,5,5,−5,−6).

Table 1 shows the scores of some of the coalitions from agent 1’s
view with scoring vector v1.

To determine the overall value of all coalitions, the individual
scores of the other five agents have to be determined as well.

The following observation follows directly from the definitions
above.

OBSERVATION 20. For each player i ∈ A, the comparability
function f i

Borda preserves those rankings that are induced by the
Bossong–Schweigert extension.

Furthermore, a game that is induced by comparability function
FBorda (as an extension) is additively separable.

This observation allows us to use known results for the complex-
ity of the various stability problems in general additive separable
hedonic games (ASHGs, for short), which have been studied in-
tensely (see, e.g., the work by Aziz et al. [3] for a comprehensive
overview). Upper bounds can be transferred directly from known
results for general ASHGs. Whether the known lower bounds also
hold for our special games, however, has to be checked separately.
For certain settings of scoring vectors (often all 16 combinations at
once), we were able to adapt known hardness proofs for some of
the stability concepts to our setting. Although the cardinaliziation
of the ordinal preferences might suggest that verification and exis-
tence of a stability concept become more tractable. However, for
the strongly friend-pessimistic and strongly friend-optimistic case,
we obtain the same complexity results as for Nash stability: ver-
ification is decidable in P, existence NP-complete. The problem
of whether there exists a core stable coalition structure in a given
FEN-hedonic game is even Σp

2 -complete.

6. CONCLUSIONS AND FUTURE WORK
In this paper we introduce a new representation of preferences

in hedonic games using the Bossong–Schweigert principle to ex-
tend the players’ preferences over the other players to preferences
over the coalitions. This generalized Bossong–Schweigert exten-
sion principle to positive and negative items (here called friends
and enemies), and neutral items, is new and it is original in itself,
independently of its use in hedonic games.

We have then looked at several stability concepts in hedonic
games with such preferences. The problem of remaining incom-
parabilities is tackled in two ways: Firstly, by letting these incom-
parabilities unresolved and introducing known stability concepts
with respect to notions of necessity and possibility, and secondly
by introducing a comparability function based on Borda-like scor-
ing vectors.

For both approaches we analyze for the induced games the com-
plexity of the existence and verification of well-known stability
concepts. So far, with the help of these solution concepts we can

verify if a coalition structure is a “good” solution, compare two
coalition structures, and decide, whether there even exists such a
coalition structure—sometimes at great cost in terms of complex-
ity.

Besides completing the analysis initiated here (such as consider-
ing other solution concepts and solving remaining open problems),
we suggest for future work introducing the notion of partition cor-
respondences with the purpose to actually identify “good” coalition
structures as an output. In contrast to the original idea of hedonic
games where coalitions form in a decentralized manner, here a cen-
tral correspondence is used, in order to decide which coalitions will
work together. This might, for example, be the case in a setting
where the head of a department has to divide a group of employees
into teams. The teams should be stable, in the sense that the team
members are as happy as possible with their group to create a good
working atmosphere.
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CHAPTER 5
Borda-induced Hedonic Games
with Friends, Enemies, and Neu-
tral Players

Summary

In contrast to the approach of using the two modularities ’possibility’ and
’necessity’ from the previous chapter, we tackle the problem of how to deter-
mine meaningful outcomes with the help of ideas from social choice theory. In
particular, we use the idea of scoring vectors that originate in voting theory.
A scoring vector is an ordered n-dimensional vector with natural numbers as
elements, used to derive points from votes over candidates in a voting sce-
nario. More specifically, we use the idea of the Borda scoring vector, which
is a strictly declining scoring vector. In the following paper we will use the
principles of these Borda scoring vectors once we have to dissolve incompara-
bilities between coalitions. To this end, we define eight principles, four for the
part of the weak rankings with double threshold that describe the friends,
and one for the part that describes the enemies of the players. Those prin-
ciples deviate in the way they promote friends and enemies, with the help
of different scores assigned to different positions in the rankings. In the end,
one can simply add up such scores to receive a total score of a coalition for
a fixed player, which afterwards can be compared to the coalitions that were
not comparable beforehand. The following paper continues with an analysis
of the verification and existence decision problems for Borda-induced hedo-
nic games in regards to the stability concepts of perfectness, (contractual)
individual stability, Nash stability, and (strict) core stability.
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1. Introduction

In a hedonic game, each player has preferences over the coali-
tions she can join, and a central question is which coalition struc-
ture will form and remain stable. Among the well-known stability
concepts we will study for hedonic games are Nash stability, indi-
vidual stability, contractual individual stability, and core stability.
However, a critical issue is how to represent the players’ prefer-
ences over all coalitions containing them. For each of n players,
there are 2n−1 coalitions containing this player, so listing them
all explicitly to express one’s preferences does not make sense.
This issue has been addressed in previous work, for example,
by assuming that just a small part of the preference relation is
expressed by each player, which then is extended to a complete
preference relation over coalitions via some appropriate extension
principle.

The literature on hedonic games (see, e.g., the recent book
chapters by Aziz and Savani, 2016 and Elkind and Rothe, 2015 or

* Corresponding author.
E-mail address: rothe@cs.uni-duesseldorf.de (J. Rothe).
URLs: http://ccc.cs.uni-duesseldorf.de/∼rothe (J. Rothe),

https://ccc.cs.uni-duesseldorf.de/∼schadrack (H. Schadrack),
https://ccc.cs.uni-duesseldorf.de/∼schend (L. Schend).

the survey by Woeginger, 2013a) contains various assumptions
about what kind of input the players are required to specify (and,
if appropriate, what kind of preference extension is to be used).
For example, Ballester (2004) proposed the individually rational
encoding where players give their preferences only over those
coalitions they prefer to being alone, and also the anonymous en-
coding (see also Darmann et al., 2012) where players’ preferences
depend only on the number of players in their coalition (and not
on who these players are). Both these encodings are ordinal.1
Some representations make use of logical formulas, such as the
hedonic coalition nets (a cardinal encoding proposed by Elkind and
Wooldridge, 2009 where players specify their utilities for coali-
tions via a set of weighted logical formulas), or the boolean hedonic
games (a dichotomous encoding proposed and studied by Aziz et
al., 2016b and Peters, 2016 where players partition the coalitions
containing them into two classes, preferring one to the other while
being indifferent between the coalitions inside each class).

Other encodings of hedonic games are based on requiring each
player to specify a ranking or a numerical evaluation of single

1 The advantages of representing preferences ordinally have been extensively
discussed both in social choice theory (see, e.g., the work of Caragiannis and
Procaccia, 2011) and,more recently, in fair division (see, e.g., thework of Baumeister
et al., 2017 and Nguyen et al., 2018).

https://doi.org/10.1016/j.mathsocsci.2018.08.003
0165-4896/© 2018 Elsevier B.V. All rights reserved.
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players only, which is then extended to rank or evaluate coalitions
of players via some extension principle. For example, the single-
ton encoding due to Cechlárová and Romero-Medina (2001) (see
also Cechlárová andHajduková, 2003, 2004) is an ordinal approach
that extends the ranking of players to preferences over coalitions
in an optimistic or a pessimistic way (see Section 2.1 for the formal
definition). Thewell-studied additive encoding (Sung andDimitrov,
2007, 2010; Aziz et al., 2013b; Woeginger, 2013b) and the more
recent notion of fractional hedonic game (Aziz et al., 2014; Bilò et
al., 2014, 2015) are cardinal approaches that require each player to
assign numerical values to players fromwhich appropriate utilities
for coalitions are derived. And the friends-and-enemies encoding
due toDimitrov et al. (2006) (see also Sung andDimitrov, 2007; Rey
et al., 2016; Nguyen et al., 2016) is a dichotomous approach where
players partition the other players into a set of their friends and a
set of their enemies: Under the friend-oriented preference extension,
coalition C is preferred to coalition D if the player has more friends
in C than in D, or has the same number of friends in C and D but
fewer enemies in C than in D, whereas under the enemy-oriented
preference extension, C is preferred to D if the player has fewer
enemies in C than inD, or has the samenumber of enemies in C and
D but more friends in C than in D. All these encodings of hedonic
games have their advantages and their disadvantages; for example,
the individual rational encoding may still be exponential-size in
the worst case, while the singleton encoding as well as additive
and fractional hedonic games require some domain restriction and
so are not fully expressive.

A downside of the friends-and-enemies encoding, on the other
hand, is that players cannot express ordinal preferences inside
their sets of friends or enemies. For instance, if player 1 considers
3 to be a friend and 2 and 4 to be enemies, it is clear that 1
prefers being with 3 to being with either of 2 or 4, but we do
not know which of 2 and 4 is despised more by 1. Such a ranking
of players is provided by the singleton encoding; however, this
ranking does not allow a player to distinguish between friends
(whom she would like to join in a coalition) and enemies (whom
she would like to avoid in a coalition). For instance, if player 1
ranks her fellow players 3, 2, and 4 in this order, it is clear that 1
would rather be together with 3 than with 2 and would also prefer
being with 2 to being with 4, but we do not knowwhether 1 would
like to join any of them or would rather stay alone. To avoid both
shortcomings, our approach (originally proposed in the conference
predecessor Lang et al., 2015 of this paper) is to combine the
singleton encoding with the friends-and-enemies encoding: First,
each player partitions the other players into three groups – her
friends, her enemies, and her neutral players (whom she does not
care about) – and then specifies a ranking of her friends and a
ranking of her enemies. We refer to these as FEN-hedonic games.
To obtain preferences over coalitions of players in such games, we
then apply a natural generalization of the responsive extension prin-
ciple (sometimes referred to as the Bossong–Schweigert extension
principleBossong and Schweigert, 2006, see alsoDelort et al., 2011),
which gives a partial order over coalitions containing the player at
hand.We call this generalization the polarized responsive extension.

Responsive preferences have been studied, for example, in the
context of bipartite many-to-one matching markets (see, e.g., the
work of Roth, 1985 and Roth and Sotomayor, 1992) where par-
ticipants are compared with one another, even though not by
distinguishing friends from enemies. In this context, each agent
on the one side has responsive preferences over assignments of
the agents on the other side if the assignment containing the most
preferred agent is preferred for any two assignments that differ in
only one player. Responsive preferences have also been studied
for allocation problems, in particular in the context of strategy-
proofness (see, e.g., Ehlers and Klaus, 2003; Hatfield, 2009; Nguyen
et al., 2018; Aziz et al., 2016a). Informally, under responsive pref-
erences, a set X of items is preferred to another set Y of items if X

contains an additional item or if some item in Y is replaced in X by
a better item.

One issue with the polarized responsive preferences in FEN-
hedonic games is that coalitions in these partial orders can be
incomparable (see also the conference version Lang et al., 2015
for details). Our approach to deal with this issue is to define com-
parability functions in order to determine the relation between
incomparable coalitions, focusing on Borda-induced FEN-hedonic
games.2 We then study, for various common stability concepts,
the existence and the verification problem for Borda-induced FEN-
hedonic games in terms of their computational complexity. To this
end, we will apply useful metatheorems due to Peters and Elkind
(2015), which allows us to close some of the complexity gaps that
have been left open in the conference version of this paper (Lang
et al., 2015).

Interestingly, as described by Woeginger (2012) in detail, the
extensively studied stable matching and stable roommates prob-
lems can be seen as special cases of hedonic games where all
coalitions are restricted to be of size two. The players present their
(additive) preferences simply by ranking the other players. More
precisely, in an instance of the stablematching problem, we have the
samenumber ofmale and female players, themale players rank the
female players and vice versa, and the goal is to find a stablematch-
ing between themen andwomen, i.e., a partition intoman–woman
pairs that is not blocked by any pair of a man m and a woman w:
(m, w) would be blocking a partition if m would prefer w to his
current partner andw would preferm to her current partner in the
partition. On the other hand, in an instance of the stable roommate
problem, we have an even number of (unisex) players, so everyone
can be paired with everyone else, and stability again is defined
via nonexistence of blocking pairs. Known (complexity) results
about these two problems depend on the underlying preferences
that can be strict (no ties in the players’ rankings) or not and can
be complete or not. For complete preferences, stable matchings
always exist and can be found in polynomial time, no matter
whether they are strict (Gale and Shapley, 1962) or not (Irving,
1994). For strict, incomplete preferences, by slightly modifying the
famous Gale–Shapley algorithm (Gale and Shapley, 1962) one can
show that stable matchings still always exist and can be found in
polynomial time. However, a stable matching may not be perfect:
There might be matched pairs and, in addition, some singletons
with players who could not be assigned an appropriate partner.3
For themost general case (incomplete preferenceswith ties), stable
matchings still always exist and can be found in polynomial time,
but deciding whether there exists a perfect stable matching is NP-
complete (Manlove et al., 2002), even if every player ranks no
more than three acceptable partners (Irving et al., 2009). Regarding
the stable roommate problem, Irving’s algorithm (Irving, 1985)
can be used to decide in polynomial time whether there exists a
stable matching whenever we have strict preferences, no matter
whether they are complete or not. However, with ties allowed,
Ronn (1990) showed that the stable roommate problem is NP-
complete (see also the work of Irving and Manlove, 2002). Our
study of Borda-induced FEN-hedonic games is remotely related to
the classical stable matching and stable roommates problems, but
our approach is more general as we allow coalitions of arbitrary
size. As is common in the study of hedonic games, we allow ties
in the preferences (more to the point, our model is based on the

2 Borda scoring (Borda, 1781), originally proposed for elections, has also been
used, for example, in fair division (Brams et al., 2003; Brams and King, 2005;
Bouveret et al., 2010; Baumeister et al., 2017; Nguyen et al., 2017; Kuckuck and
Rothe, 2018).
3 Interestingly, Gale and Sotomayor (1985) show that in each stable matching,

the same set of men and women are paired up, leaving the same (complementary)
set of men and women single.
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players’ ‘‘weak rankings with double threshold’’ as explained in
Definition 1, and these weak rankings are complete).

This paper is organized as follows. In Section 2, we will in-
troduce the needed notions of hedonic games and will give
some background on complexity theory. In Section 3, we will
first describe FEN-hedonic games and the polarized responsive
extension principle and then present the metatheorems due to
Peters and Elkind (2015) that we will use later on. To deal with
incomparabilities that can result from the polarized responsive
extension principle, we will introduce and study Borda-induced
FEN-hedonic games in Section 4, andwewill study their properties
in Section 5 and the computational complexity of the related
problems in Section 6. We conclude in Section 7 with stating some
open problems and directions of future research.

2. Preliminaries

Weprovide somebackground from the theory of hedonic games
in Section 2.1 and from complexity theory in Section 2.2.

2.1. Hedonic games

A hedonic game (A, ⪰) has a set of players, A = {1, 2, . . . , n},4
and a profile of the players’ preferences, ⪰= (⪰1, ⪰2, . . . ,⪰n),
each ⪰i a weak preference order over all possible coalitions C ⊆ A
including this player. More formally, denoting the set of coalitions
containing player i ∈ A by Ai and letting C,D ∈ Ai be two
coalitions, we say that i weakly prefers C to D if C ⪰i D; we say
that i prefers C to D (and write C ≻i D) if C ⪰i D but not D ⪰i C;
and we say that i is indifferent between C and D (and write C ∼i D)
if both C ⪰i D and D ⪰i C . Given a hedonic game (A, ⪰), a coalition
structure is a partition Γ of A into coalitions, and Γ (i) is the unique
coalition in Γ containing player i ∈ A.

Since each player expresses preferences over 2n−1 coalitions,
the question arises how one can represent hedonic games com-
pactly. Below we list some of the known representations from the
literature that will be used to describe our new model.

In an additively separable hedonic game, due to Banerjee et
al. (2001), each player assigns some real value to each player,
i.e., there is a value function wi : A → R for each i ∈ A. The
players’ preferences in the profile ⪰= (⪰1, ⪰2, . . . ,⪰n) can then
be derived by setting B ⪰i C if and only if

∑
j∈Bwi(j) ≥

∑
j∈Cwi(j)

for each i ∈ A and for any two coalitions B, C ∈ Ai.
The friend- and enemy-oriented preference extensions are due

to Dimitrov et al. (2006). Every player i ∈ A partitions the other
players into a set Fi ⊆ A∖ {i} of friends and a set Ei = A∖ (Fi ∪ {i})
of enemies. LetB, C ∈ Ai. In the friend-oriented preference extension,
i weakly prefers B to C (B ⪰i C) if and only if B either contains
more of i’s friends than C or, if B and C have the same number of i’s
friends, B has at most as many enemies of i’s as C , i.e., ∥B ∩ Fi∥ >
∥C ∩ Fi∥∨ (∥B∩ Fi∥ = ∥C ∩ Fi∥∧∥B∩Ei∥ ≤ ∥C ∩Ei∥). Analogously,
in the enemy-oriented preference extension, i weakly prefers B to C
(B ⪰i C) if and only if B either contains fewer of i’s enemies than C
or, if B and C have the same number of i’s enemies, B has at least as
many of i’s friends as C , i.e., ∥B∩ Ei∥ < ∥C ∩ Ei∥∨ (∥B∩ Ei∥ = ∥C ∩

Ei∥∧∥B∩Fi∥ ≥ ∥C∩Fi∥). Both friend- and enemy-oriented hedonic
games are additively separable, by letting each player assign the
value ∥A∥ to her friends and the value −1 to her enemies in the
friend-oriented case, and by letting each player assign the value 1
to her friends and the value −∥A∥ to her enemies in the enemy-
oriented case.

In the singleton encoding, due to Cechlárová and Romero-
Medina (2001) (see also Cechlárová and Hajduková, 2003, 2004),
each player i ∈ A reports a complete ranking⊵i over all players. For

4 We sometimes may give the players names other than numbers.

each coalition B ∈ Ai, Bi(B) denotes any best player in B according
to i’s ranking (i.e., a player j ∈ B such that j ⊵i k for each k ∈ B),
and Wi(B) denotes any worst player in B according to i’s ranking
(i.e., Wi(B) = i if B = {i}, and otherwise a player j ∈ B ∖ {i} such
that k ⊵i j for each k ∈ B). For any B, C ∈ Ai, B is B-preferred by i
over C if Bi(B) ▷i Bi(C) or (Bi(B) ∼i Bi(C) and ∥B∥ < ∥C∥), and B
is W -preferred by i over C if Wi(B) ▷i Wi(C).

We will focus on well-known notions of stability for coalition
structures in hedonic games (Bogomolnaia and Jackson, 2002; Aziz
et al., 2013b) (see Aziz and Savani, 2016; Elkind and Rothe, 2015
for a survey) that are based either on avoiding that a single player
has an incentive to deviate to another (possibly empty) existing
coalition (e.g., Nash stability), or on avoiding groups of players
having an incentive to deviate from the current coalition structure
(e.g., core stability). For other restrictions of games and other
properties, we refer, e.g., to the work of Banerjee et al. (2001) and
Aziz et al. (2013a). We say a coalition structure Γ is

1. perfect if every player i weakly prefers Γ (i) to every other
coalition i is contained in;

2. individually rational if every player i ∈ Aweakly prefers Γ (i)
to {i};

3. Nash stable if no player wants to move to another (possibly
empty) coalition inΓ (i.e.,Γ (i) ⪰i C∪{i} for every player i ∈

A and for every coalition C ∈ Γ ∪ {∅});
4. individually stable if no player prefers another (possibly

empty) coalition in Γ or can move to another such coalition
without some player in the new coalition objecting to it
(i.e., for every player i ∈ A and for every coalition C ∈

Γ ∪ {∅}, Γ (i) ⪰i C ∪ {i} or there is some player j ∈ C with
C ≻j C ∪ {i});

5. contractually individually stable if no player prefers another
(possibly empty) coalition in Γ or can move to another
such coalition without some player in the new or in the old
coalition objecting to it (i.e., for every player i ∈ A and for
every coalition C ∈ Γ ∪ {∅}, we have Γ (i) ⪰i C ∪ {i} or
C ≻j C ∪ {i} for some player j ∈ C or Γ (i) ≻k Γ (i) ∖ {i} for
some player k ∈ Γ (i) ∖ {i});

6. core stable if no coalition blocks Γ (i.e., for every coalition
C ⊆ A, Γ (i) ⪰i C for some player i ∈ C);

7. strictly core stable if no coalition weakly blocks Γ (i.e., for
every coalition C ⊆ A, Γ (i) ≻i C for some player i ∈ C or
Γ (i) ∼i C for each player i ∈ C);

2.2. Complexity theory

For a stability conceptγ as defined above,we study the question
of how hard it is to decide whether a given solution for a given
game is γ -stable (the verification problem) and how hard it is to
decide whether there exists a γ -stable outcome in a given game
(the existence problem). We denote the verification problem for
γ by γ -Verification and define it formally as follows: Given a
hedonic game H and a coalition structure Γ , is Γ stable in H in the
sense of γ ? The existence problem for γ , γ -Existence, is defined
as: Given a hedonic game H , does there exist a coalition structure
that is stable in H in the sense of γ ?

We assume the reader to be familiarwith the basics of complex-
ity theory, such as the complexity classes P, NP, and coNP and the
notions of (polynomial-timemany-one) reducibility, hardness, and
completeness. It is easy to see that membership of γ -Verification
in P implies membership of γ -Existence in NP: Guess a coalition
structure and verify whether it satisfies γ . However, other direct
connections between these two problems are not known to hold
(see the survey by Woeginger, 2013a for further discussion).

In Section 6,wewill study these problems in terms of their com-
plexity for several stability concepts in FEN-hedonic games, using
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reductions from the following well-known NP-complete problems
(see, e.g., Garey and Johnson, 1979):

In Exact-Cover-by-Three-Sets (X3C), we are given a set B =

{b1, b2, . . . , b3m}, m > 1, and a collection S = {S1, S2, . . . , Sn} of
subsets Si ⊆ B such that ∥Si∥ = 3 for each i, 1 ≤ i ≤ n, and we
ask whether there is a subcollection S ′

⊆ S that exactly covers B
(i.e., each element of B occurs in exactly one set in S ′). Note that
X3C is NP-complete even if each element in a set from S ′ occurs in
at most three sets in S (see Garey and Johnson, 1979).

In Clique, we are given an undirected graph G = (V , E) and a
positive integer k, and we ask whether G has a clique (i.e., a subset
V ′

⊆ V such that there is an edge between any two vertices in V ′)
of size at least k.

We will also study problems in the second level of the polyno-
mial hierarchy, 6

p
2 = NPNP. Meyer and Stockmeyer (1972) (see

also Stockmeyer, 1976) characterized this class by two alternating,
polynomially length-bounded quantifiers: B ∈ 6

p
2 if and only if

there are a set C ∈ P and a polynomial p such that for each input x,

x ∈ B ⇐⇒ (∃y : |y| ≤ p(|x|)) (∀z : |z| ≤ p(|x|)) [(x, y, z) ∈ C],

where the length of a string s is denoted by |s|.
Stockmeyer (1976) showed 6

p
2-completeness of the following

problem, which we will also use in Section 6: In 2-Quantified-3-
DNF-SAT, we are given two sets, X = {x1, x2, . . . , xn} and Y =

{y1, y2, . . . , yn}, of boolean variables and a boolean formulaϕ(X, Y )
over X ∪ Y in disjunctive normal form, with exactly three literals
per disjunct.We askwhether there exists a truth assignment τX for
the variables in X such that for every truth assignment τY for the
variables in Y the formula ϕ evaluates to true under τX and τY .

3. Groundwork: FEN-hedonic games and some sufficient con-
ditions for hardness of stability

In Section 3.1, wewill present themodel of FEN-hedonic games
that we introduced in Lang et al. (2015) and illustrate the relevant
notions by examples, and in Section 3.2 we will state some useful
results from thework of Peters andElkind (2015) to be applied later
on.

3.1. FEN-hedonic games and the polarized responsive extension prin-
ciple

Let us first give a rough, high-level outline of how we proceed
to define FEN-hedonic-games. First, similarly to the singleton en-
coding, to hedonic games with W -preferences, and to the friend-
and enemy-oriented encoding (formally defined in Section 2), we
assume that each player i ∈ A expresses her preferences over the
other players, and we denote these preferences by ⊵+0−

i . We then
lift these preferences over players to preferences over coalitions,
denoted by ⪰

+0−
i for each i ∈ A, by generalizing the responsive

extension principle as formally defined below. Note that ⪰
+0−
i can

be incomplete because there might be pairs of coalitions for which
⪰

+0−
i does not tell which of them is preferred by player i. Finally,

we will define the set Ext
(
⪰

+0−
i

)
of possible complete extensions

of ⪰
+0−
i , and the collection of ⪰i ∈ Ext

(
⪰

+0−
i

)
for each i ∈ A

will then define the class of FEN-hedonic games. More concretely,
we assume that each player considers each other player as either
a friend, or a neutral player, or an enemy, where the friends and
enemies are to be ranked (with indifferences allowed) and the
player is indifferent about the neutral players. This is formalized
as follows.

Definition 1. Every player i ∈ A = {1, 2, . . . , n} provides a weak
ranking with double threshold, denoted by ⊵+0−

i , by partitioning
A ∖ {i} into three sets: the set A+

i of i’s friends, along with a
weak order ⊵+

i over A+

i , the set A0
i of neutral players for i (i.e., i

is indifferent about them: j ∼i k for all j, k ∈ A0
i ), and the set A−

i of
i’s enemies, along with a weak order ⊵−

i over A−

i . We write ⊵+0−
i

as (⊵+

i | A0
i | ⊵−

i ).
In addition, we assume that every player i (strictly) prefers

her friends to her neutral players and her neutral players to her
enemies. Define the weak order ⊵i induced by ⊵+0−

i as follows: ⊵i
coincides with ⊵+

i on A+

i ; f ▷i j for each f ∈ A+

i and j ∈ A0
i ;

j1 ∼i j2 ∼i · · · ∼i jk for A0
i = {j1, j2, . . . , jk}; j ▷i e for each j ∈ A0

i
and e ∈ A−

i ; and ⊵i coincides with ⊵−

i on A−

i .
A FEN-hedonic game is a pairH = (A, (⊵+0−

1 , . . . ,⊵+0−
n )), where

A = {1, 2, . . . , n} is a set of players, and ⊵+0−
i gives the weak

ranking with double threshold of player i ∈ A.

Notation: If a player i is indifferent about all players in a set
X = {a1, a2, . . . , ax} ⊆ A ∖ {i}, we write X∼i as a shorthand for
a1 ∼i a2 ∼i · · · ∼i ax. When i is clear from context, we sometimes
omit the subscript i and simply write X∼ instead of X∼i . Whenever
a player i has no friends or no enemies, we will slightly abuse
notation and denote the empty preference ⊵+

i or ⊵−

i by ∅.

Example 2. Let A = {1, 2, . . . , 11}. Then the weak ranking with
double threshold

⊵+0−
1 = (2 ∼1 3 ▷1 5 | {10, 11} | 6 ▷1 7 ▷1 8 ▷1 4 ▷1 9)

means that player 1 likes 2, 3, and 5 (and is indifferent between 2
and 3, but prefers both to 5); 1 does not care about 10 and 11 (and
is indifferent between them); and 1 does not like 4, 6, 7, 8, and 9
(but still prefers 6 to 7, 7 to 8, 8 to 4, and 4 to 9). The weak order⊵1
induced by ⊵+0−

1 is 2 ∼1 3 ▷1 5 ▷1 10 ∼1 11 ▷1 6 ▷1 7 ▷1 8 ▷1
4 ▷1 9.

Using a bipolar variant of the responsive extension principle,
which is sometimes referred to as theBossong–Schweigert extension
principle (Bossong and Schweigert, 2006; Delort et al., 2011), we
now define a player i’s preferences over coalitions she is contained
in. This polarized responsive extension induced by i’s weak ranking
with double threshold ⊵+0−

i is a partial order over coalitions con-
taining i.

Definition 3. Let ⊵+0−
i be player i’s weak ranking with double

threshold. Define the extended order ⪰
+0−
i as follows. For any two

coalitions X, Y ∈ Ai, iweakly prefers X to Y (X ⪰
+0−
i Y ) if and only

if

1. there is an injective function σ : Y ∩ A+

i → X ∩ A+

i such that
σ (y) ⊵i y for each y ∈ Y ∩ A+

i , and
2. there is an injective function θ : X ∩ A−

i → Y ∩ A−

i such that
x ⊵i θ (x) for each x ∈ X ∩ A−

i .

Further, we write X ≻
+0−
i Y if and only if X ⪰

+0−
i Y and not

Y ⪰
+0−
i X , and we write X ∼

+0− Y if and only if X ⪰
+0− Y and

Y ⪰
+0− X .

Intuitively speaking, adding friends to a coalition makes it
strictly more valuable, whereas adding enemies makes it strictly
less valuable. Replacing a friend in a coalition by another friend
that i prefers increases its value, and similarly so when replacing
an enemy by another enemy that i prefers. However, when both
a friend and an enemy are added to a coalition or when both are
removed, the two coalitions are incomparable with respect to the
responsive extension principle.

To construct the polarized responsive extension for a player i,
we start with the coalition consisting of i and all her friends –
this is i’s most preferred coalition. We then construct all directly
comparable coalitions by adding enemies, removing friends, or
exchanging enemies or friends. For each newly obtained coalition,
we repeat this procedure until we reach i’s least preferred coalition
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consisting of i and all of her enemies. We may safely disregard the
neutral players (elements of A0

i ) in this process because adding or
removing them to or from a coalition does not change i’s value of
the coalition. To illustrate, we give some examples.

Example 4. Let A = {1, 2, . . . , 6}. Player 1’s weak ranking with
double threshold is given by ⊵+0−

1 = (2 ∼1 3 ▷1 5 | ∅ | 6 ▷1 4).
The polarized responsive extension of 1’s preference is shown by
the graph in Fig. 1, where an arc from coalition X to coalition Y
means that X ≻

+0−
1 Y . Therefore, each path from X ′ to Y ′ implies

X ′
≻

+0−
1 Y ′ (e.g., {1, 2, 3} ≻

+0−
1 {1, 2, 4, 5}), yet coalitions that

are not connected by a path (e.g., {1, 2, 3} and {1, 2, 3, 5, 6}) are
incomparable.

Inspired by the work of Aziz et al. (2015) and of Bouveret et al.
(2010) that establishes characterizations for the original respon-
sive order in the context of fair division, we now provide some
characterization of C ⪰

+0−
i D for any two coalitions C and D, from

player i’s perspective.

Proposition 5. Let ⊵+0−
i be a weak ranking with double threshold

for player i, and let C and D be any two coalitions containing i. Define
wi : A → R to be compatible with ⊵+0−

i if (a) for each j ∈ A+

i , we
have wi(j) > 0; (b) for each j ∈ A−

i , we have wi(j) < 0; (c) for each
j ∈ A0

i , we have wi(j) = 0; and (d) for all j, k ∈ A+

i ∪ A−

i , we have
j ▷i k if and only if wi(j) > wi(k). Then C ⪰

+0−
i D if and only if∑

j∈Cwi(j) ≥
∑

j∈Dwi(j) for each wi compatible with ⊵+0−
i .

Proof. Assume that C ⪰
+0−
i D. For the set of friends A+

i , we have
σ : D ∩ A+

i → C ∩ A+

i such that for each y ∈ D ∩ A+

i , we
have σ (y) ⊵i y. Hence, for each compatible wi, wi(σ (y)) ≥ wi(y).
Thus, since σ is injective,

∑
j∈C∩A+

i
wi(j) ≥

∑
j∈σ (D∩A+

i )⊆C∩A+

i
wi(j) =∑

j∈D∩A+

i
wi(σ (j)) ≥

∑
j∈D∩A+

i
wi(j). Similarly, for A−

i and injective
mapping θ : C ∩ A−

i → D ∩ A−

i , it holds that 0 ≥
∑

j∈C∩A−

i
wi(j) ≥∑

j∈C∩A−

i
wi(θ (j)) =

∑
k∈θ (C∩A−

i )⊆D∩A−

i
wi(k) ≥

∑
j∈D∩A−

i
wi(j). For

each player j ∈ A0
i , we have wi(j) = 0; therefore, in total,∑

j∈Cwi(j) ≥
∑

j∈Dwi(j).
Now assume that

∑
j∈Cwi(j) ≥

∑
j∈Dwi(j) holds for each com-

patible wi. Thus∑
j∈C∩A+

i

wi(j) −

∑
j∈D∩A−

i

wi(j) ≥

∑
j∈D∩A+

i

wi(j) −

∑
j∈C∩A−

i

wi(j). (1)

Assume there were no injective function mapping from each sum-
mand from the right-hand side to one at least as large on the left
hand side. Then there exists an assignment to the values ofwi com-
patible with ⊵+0−

i that does not satisfy the above inequality (1), a
contradiction. □

Since the preference relations ⪰
+0−
i can be incomplete, we

consider their extensions to complete relations, each preserving
the already defined comparisons.

Definition 6. A complete preference relation ⪰i over Ai, extends
⪰

+0−
i if it contains it: For all C,D ∈ Ai C ≻

+0−
i D implies C ≻i D,

and C ∼
+0−
i D implies C ∼i D. Let Ext

(
⪰

+0−
i

)
be the set of all

complete preference relations extending ⪰
+0−
i .

We will see that weak rankings with double threshold can have
various complete extensions.

Example 7. Let (A, (⊵+0−
1 , . . . ,⊵+0−

4 )) be a FEN-hedonic gamewith
players A = {1, 2, 3, 4} and the following weak rankings with
double threshold:⊵+0−

1 = (∅ | ∅ | 2 ▷1 3 ∼1 4),⊵+0−
2 = (1 | ∅ | 3 ∼2

4), ⊵+0−
3 = (2 | {1, 4} | ∅), and ⊵+0−

4 = (1 ▷4 2 | {3} | ∅). This gives
the following polarized responsive order for

• player 1: {1} ≻
+0−
1 {1, 2} ≻

+0−
1 {1, 3} ∼

+0−
1 {1, 4} ≻

+0−
1

{1, 2, 3} ∼
+0−
1 {1, 2, 4} ≻

+0−
1 {1, 3, 4} ≻

+0−
1 {1, 2, 3, 4},

• player 2 (using the same notation as in Example 4):

{1, 2}

{2} {1, 2, 3} ∼
+0−
2 {1, 2, 4}

{2, 3} ∼
+0−
2 {2, 4} {1, 2, 3, 4}

{2, 3, 4},

• player 3: {2, 3} ∼
+0−
3 {1, 2, 3} ∼

+0−
3 {2, 3, 4} ∼

+0−
3

{1, 2, 3, 4} ≻
+0−
3 {3} ∼

+0−
3 {1, 3} ∼

+0−
3 {3, 4} ∼

+0−
3

{1, 3, 4}, and
• player 4: {1, 2, 4} ∼

+0−
4 {1, 2, 3, 4} ≻

+0−
4 {1, 4} ∼

+0−
4

{1, 3, 4} ≻
+0−
4 {2, 4} ∼

+0−
4 {2, 3, 4} ≻

+0−
4 {4} ∼

+0−
4 {3, 4}.

Note that three preferences (namely, ⪰+0−
1 , ⪰+0−

3 , and ⪰
+0−
4 )

are already complete. There are eleven complete preferences ex-
tending ⪰

+0−
2 , obtained by specifying the relation between {2}

and {1, 2, 3} ∼
+0−
2 {1, 2, 4}, {2, 3} ∼

+0−
2 {2, 4} and {1, 2, 3, 4},

and {2} and {1, 2, 3, 4}. Setting {2} ≻2 {1, 2, 3} ∼2 {1, 2, 4} or
{2} ∼2 {1, 2, 3} ∼2 {1, 2, 4} also implies {2} ≻2 {1, 2, 3, 4}; then,
we can still freely choose between {2, 3} ∼2 {2, 4} ≻2 {1, 2, 3, 4},
{2, 3} ∼2 {2, 4} ∼2 {1, 2, 3, 4}, or {1, 2, 3, 4} ≻2 {2, 3} ∼2 {2, 4},
which gives six possible complete preferences extending ⪰

+0−
2 .

On the other hand, if {1, 2, 3} ∼2 {1, 2, 4} ≻2 {2}, we are not
restricted regarding our decision on the relation between {2, 3} ∼2
{2, 4} and {1, 2, 3, 4}. However, if {1, 2, 3, 4} ≻2 {2, 3} ∼2 {2, 4},
the relation between {2} and {1, 2, 3, 4} is not yet determined and
leaves us with three additional choices. Therefore, we have three
instead of one possible complete preferences extending ⪰

+0−
2 in

the latter case plus two for the first two other possibilities regard-
ing {2, 3} ∼2 {2, 4} and {1, 2, 3, 4}, resulting in five additional
complete preferences extending ⪰

+0−
2 . Overall, by adding up all

those possibilities, we have eleven valid complete preferences
extending ⪰

+0−
2 .

3.2. Some useful results on hardness of stability obtained from prop-
erties of preference extensions

Peters and Elkind (2015) established some useful links between
the properties of players’ preferences in hedonic games and NP-
hardness of a number of problems related to whether there exist
stable coalition structures in these games. They assume that each
player i ∈ A reports a ranking ⊵i over A that is used to partition
A ∖ {i} into a set of enemies, A−

i = {j ̸= i | i ▷i j}, and a set of
friends; note that their notion of ‘‘i’s friends’’ also includes what
we call ‘‘i’s neutral players’’: A+

i ∪ A0
i = {j ̸= i | j ⊵i i}. They

also assume that each ranking ⊵i of players can be extended to
a preference ⪰i over coalitions. Moreover, they assume that each
player is allowed to have arbitrary orderings of size-2 coalitions;
we refer to this property as arbitrary ordering of players.5 Finally,
they assume that the preference profile ⪰ = (⪰1, . . . ,⪰n) of the
hedonic game (A, ⪰) can be obtained from ⊵ = (⊵1, . . . ,⊵n) in
deterministic polynomial time; we will say that this hedonic game
is induced by ⊵.

Peters and Elkind (2015) define the following properties of pref-
erence extensions, which can be used to obtain hardness results for
certain stability problems.

5 It is easy to see that the class of all possible preference extensions for FEN-
hedonic games allows to order the players arbitrarily.
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Fig. 1. The polarized responsive extension of ⊵+0−
1 = (2 ∼1 3 ▷1 5 | ∅ | 6 ▷1 4).

Definition 8 (Peters and Elkind, 2015). Let a, b ∈ N. A hedonic
game (A, ⪰) (with n players and preferences induced by a profile
⊵ = (⊵1, . . . ,⊵n) of rankings over players) is said to be

(a) consistent on pairs if for all i ∈ A and for all j, k ∈ A+

i ∪A0
i ∪{i},

it holds that {i, j} ⪰i {i, k} if and only if j ⊵i k;
(b) a-b-toxic if for all i ∈ A and for each S ⊆ A, it holds that

{i} ⪰i S if ∥S ∩ (A+

i ∪ A0
i )∥ = a but ∥S ∩ A−

i ∥ ≥ b;
(c) strictly a-b-toxic if for all i ∈ A and for each S ⊆ A, it holds

that {i} ≻i S if ∥S ∩ (A+

i ∪ A0
i )∥ = a but ∥S ∩ A−

i ∥ ≥ b; and
(d) weakly a-b-toxic if for all i ∈ A and for each S ⊆ A, it holds

that {i, j} ≻i S for all j ∈ A+

i ∪ A0
i if ∥S ∩ (A+

i ∪ A0
i )∥ = a but

∥S ∩ A−

i ∥ ≥ b.

A class of hedonic games fulfills any one of these properties if
for each set of n players and every profile ⊵ = (⊵1, . . . ,⊵n) of
rankings over players, there is a hedonic game (A, ⪰) in this class
that is induced by ⊵ and satisfies this property.

The following lemma, proven in the appendix, shows how these
properties are related to each other.

Lemma 9.

(a) Strict a-b-toxicity implies a-b-toxicity.
(b) Strict a-b-toxicity together with consistency on pairs implies

weak a-b-toxicity.
(c) a-b-toxicity implies a-c-toxicity for all c > b. The same holds

for strict and weak toxicity.

Wewill alsomake use of the following results due to Peters and
Elkind (2015). Some notation is needed first: A profile ⊵ = (⊵1
, . . . ,⊵n) of preference orderings on A is said to be strict if each ⊵i
is antisymmetric (i.e., if j ⊵i k and k ⊵i j, then j = k), and it is said
to bemutual if j ∈ A+

i ∪ A0
i is equivalent to i ∈ A+

j ∪ A0
j .

Theorem 10 (Peters and Elkind, 2015). For each class of hedonic
games that allows arbitrary ordering of players, it holds that

1. Core-Stability-Existence is NP-hard if for every n and every
profile ⊵ = (⊵1, . . . ,⊵n) of mutual preferences, where each
player has at most three friends, the class contains an induced

hedonic game that is consistent on pairs, 0-1-toxic, weakly 1-1-
toxic, and weakly 2-2-toxic.

2. Nash-Stability-Existence and Individual-Stability-
Existence are NP-complete if for every n and every profile ⊵ =

(⊵1, . . . ,⊵n) of strict, mutual preferences, where each player
has at most three friends, the class contains an induced hedonic
game that is consistent on pairs, strictly 0-1-toxic, strictly 1-1-
toxic, and strictly 2-5-toxic.

Lemma 11, again to be proven in the appendix, will be applied
later on.

Lemma11. Every hedonic gamewith preferences derived froma FEN-
hedonic game is consistent on pairs and strictly 0-1-toxic.

4. The model of Borda-induced FEN-hedonic games

We have seen that in FEN-hedonic games the preference re-
lation ⪰

+0−
i can be incomplete in the sense that there might be

pairs of coalitions that are incomparable. We now propose an ap-
proachof handling these incomparabilities by introducing a class of
preference extensions of ⪰+0−

i in the sense of Definition 6. That is,
the relations we want to define have to be complete (all coalitions
have to be comparable) and, furthermore, those relations already
defined by ⪰

+0−
i have to be preserved. To achieve the former

we introduce so-called comparability functions that are inspired
by voting theory: Based on player i’s preferences over the other
players given in ⊵+0−

i , we determine values that i assigns to the
other players and aggregate these values to compute the values of
coalitions in Ai.

Proposition 5 gives a characterization of how such compara-
bility functions can be defined such that those relations that are
already determined by ⪰

+0−
i are preserved. Based on this char-

acterization, we define our comparability function as a function
wi : A → Z with wi(i) = 0. Clearly, wi(j) = 0 has to hold for all
j ∈ A0

i . Using terminology from voting theory, we define so-called
scoring vectors

fi ∈ Z
∥A+

i ∥

>0 , ei ∈ Z
∥A−

i ∥

<0
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Table 1
Values that are derived from different choices for fi and ei when there are only indifferences within ⊵+

i and ⊵−

i .

sfo fo sfp fp seo eo sep ep

Value n ∥A+

i ∥ 1 n − ∥A+

i ∥ + 1 −1 −(n − ∥A−

i ∥ + 1) −n −∥A−

i ∥

assigning positive integer values to i’s friends and negative integer
values to i’s enemies, and we will focus here on using Borda-like
scoring vectors. Inspired by the work of Baumeister et al. (2012)
regarding modified Borda voting, we introduce several variants
capturing the notions of ‘‘optimistic’’ and ‘‘pessimistic’’ assess-
ments of friend or enemy relations.

Let ⊵+0−
i be the weak ranking with double threshold of player

i ∈ Awith the following ordering of i’s friends and enemies:

• ⊵+

i = A+

i,1 ▷+

i A+

i,2 ▷+

i · · · ▷+

i A+

i,ℓ, where each A+

i,j, 1 ≤ j ≤ ℓ,
contains friends player i is indifferent about, and

• ⊵−

i = A−

i,1 ▷−

i A−

i,2 ▷−

i · · · ▷−

i A−

i,m, where each A−

i,j, 1 ≤ j ≤

m, contains enemies i is indifferent about.

Using this notation, we define the following variants of our
Borda-like scoring vectors.

1. fi can be one of the following four vectors:

(a) Strongly friend-optimistic (sfo): Each player in A+

i,1 gets
n points, each player in A+

i,2 gets n − 1 points, . . . , and
each player in A+

i,ℓ gets n − ℓ + 1 points.
(b) Friend-optimistic (fo): Each player in A+

i,1 gets ∥A+

i ∥

points, each player in A+

i,2 gets ∥A+

i ∥−1 points, . . . , and
each player in A+

i,ℓ gets ∥A+

i ∥ − ℓ + 1 points.
(c) Strongly friend-pessimistic (sfp): Each player inA+

i,ℓ gets
1 point, each player in A+

i,ℓ−1 gets 2 points, . . . , and each
player in A+

i,1 gets ℓ points.
(d) Friend-pessimistic (fp): Each player in A+

i,ℓ gets n −

∥A+

i ∥+1 points, each player in A+

i,ℓ−1 gets n−∥A+

i ∥+2
points, . . . , and each player in A+

i,1 gets n − ∥A+

i ∥ + ℓ
points.

2. ei can be one of the following four vectors:

(a) Strongly enemy-optimistic (seo): Each player in A−

i,1
gets −1 point, each player in A−

i,2 gets −2 points, . . . ,
and each player in A−

i,m gets −m points.
(b) Enemy-optimistic (eo): Each player in A−

i,1 gets −(n −

∥A−

i ∥+1) points, each player in A−

i,2 gets−(n−∥A−

i ∥+

2) points, . . . , and each player in A−

i,m gets−(n−∥A−

i ∥+

m) points.
(c) Strongly Enemy-pessimistic (sep): Each player in A−

i,m
gets−npoints, eachplayer inA−

i,m−1 gets−n+1points,
. . . , and each player in A−

i,1 gets −(n − m + 1) points.
(d) Enemy-pessimistic (ep): Each player in A−

i,m gets−∥A−

i ∥

points, each player in A−

i,m−1 gets−∥A−

i ∥+1 points, . . . ,
and each player in A−

i,1 gets −(∥A−

i ∥ − m + 1) points.

Each pair of scoring vectors (fi, ei) ∈ {sfo, fo, sfp, fp} × {seo,
eo, sep, ep} defines a particular way of how the scores a player i
assigns to the other players are derived from ⊵+0−

i . The intuition
behind these definitions and why it is reasonable to distinguish
each of the four cases can be best seen assuming that player i is
indifferent between all of her friends and all of her enemies. With
the above notation, it holds that ℓ = 1 and m = 1 and the values
shown in Table 1 are assigned to i’s friends and enemies depending
on the choice of fi and ei, respectively.

We see that in the friend-optimistic case a larger friend set
implies higher values for the friends contained in it, while the
opposite is the case in the friend-pessimistic case. The same holds

Table 2
Values player 2 assigns to the players 1, 3, and 4 and the coalitions {2, 3} and
{1, 2, 3, 4} for different choices of fi and ei .

fi ei w2(j) f 2Borda(C)

j = 1 j = 3 j = 4 C = {2, 3} C = {1, 2, 3, 4}

fo seo 1 −1 −1 −1 −1
fo eo 1 −3 −3 −3 −5
sfo seo 4 −1 −1 −1 2

for the comparison between the enemy-pessimistic and enemy-
optimistic case with the difference that in the former case a larger
enemy set reduces the enemies’ scores and in the latter case a
larger enemy set implies higher values.

On the other hand, when there are no indifferences within ⊵+

i ,
for fi ∈ {sfo, fp} and fi ∈ {sfp, fo}, the two scoring vectors from
one set yield the same scores for player i’s friends. The same holds
for ei ∈ {seo, ep} and ei ∈ {eo, sep}, whenever there are no
indifferences in ⊵−

i . Concluding, it can be seen that each of the 16
different variations of scoring vectors is a legitimate option and
the choice only depends on the weight each friend- or enemy-
relation is supposed to have. A central organizer would have to
weigh the friend- and enemy-relations against each other in the
given scenario so as to make the appropriate choice.

Analogously to the definition of positional scoring rules and
having Proposition 5 in mind, we define the value of a coalition
from player i’s view as the sum of the values she assigns to the
players in the coalition.

Definition 12. Let i ∈ A be a player. For a fixed choice of scoring
vectors fi and ei defining the scoring function wi, we define the
Borda-like comparability function (CF)

f iBorda : Ai → Z, C ↦→

∑
j∈C∖{i}

wi(j),

to be a function mapping every coalition C containing i to the sum
of the scores the players in C ∖ {i} obtained from wi.

With this notion of comparability functions, we can derive
a complete preference relation from given weak rankings with
double threshold; we call this relation Borda-induced and define
it in Definition 13 formally.

Definition 13. For a FEN-hedonic game (A, (⊵+0−
1 , . . . ,⊵+0−

n ))
with n players and a fixed choice of fi and ei, let f iBorda be the Borda-
like CF.

For two coalitions C,D ∈ Ai it holds that

• C ⪰
B
i D if and only if f iBorda(C) ≥ f iBorda(D),

• C ≻
B
i D if and only if f iBorda(C) > f iBorda(D), and

• C ∼
B
i D if and only if f iBorda(C) = f iBorda(D).

Example 14. Recall the FEN-hedonic game from Example 7 with
A = {1, 2, 3, 4} and ⊵+0−

1 = (∅ | ∅ | 2 ▷1 3 ∼1 4), ⊵+0−
2 =

(1 | ∅ | 3 ∼2 4), ⊵+0−
3 = (2 | {1, 4} | ∅), and ⊵+0−

4 = (1 ▷4
2 | {3} | ∅). Fromplayer 2’s view, the coalitions {2, 3} and {1, 2, 3, 4}
are incomparable with respect to ⪰

+0−
2 . Table 2 shows the values

player 2 assigns to her co-players 1, 3, and 4 for different choices
of scoring vectors fi and ei and the resulting values of the two
mentioned coalitions.

We see that each of the three choices of fi and ei results
in a different relation: While 2 is indifferent for fi = fo and
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ei = seo ({2, 3} ∼
B
2 {1, 2, 3, 4}), she weakly prefers being

solely with 3 to being in {1, 2, 3, 4} when fi = fo and ei = eo
({2, 3} ≻

B
2 {1, 2, 3, 4}), but for fi = sfo and ei = seo it holds that

{1, 2, 3, 4} ≻
B
2 {2, 3}.

From the definition of fBorda and Proposition 5 it follows that
⪰

B
i is indeed a preference extension of ⪰

+0−
i . We state this fact in

Proposition 15 without proof.

Proposition 15. Let (A, (⊵+0−
1 , . . . ,⊵+0−

n )) be a FEN-hedonic game
with n players. It holds that ⪰

B
i ∈ Ext

(
⪰

+0−
i

)
for each fixed choice

of fi and ei, i ∈ {1, . . . , n}.

Finally, we can define Borda-induced FEN-hedonic games.

Definition 16. Let (A, (⊵+0−
1 , . . . ,⊵+0−

n )) be a FEN-hedonic game
with n players. For a fixed choice of scoring vectors fi and ei
for i ∈ {1, . . . , n}, we define with H = (A, (⪰B

1, . . . ,⪰
B
n)) the

Borda-induced FEN-hedonic game, where ⪰
B
i are the Borda-induced

preference extensions of ⊵+0−
i for i ∈ A.

Thus Borda-induced FEN-hedonic games are a class of FEN-
hedonic games with preference extensions defined by the scoring
vectors fi and ei, and each fixed pair of (fi, ei) defines a subclass
thereof.

5. Properties of Borda-induced FEN-hedonic games

We now give an overview of some useful properties that the
class of Borda-induced preference extensions fulfills. These prop-
erties will allow us to derive several of the complexity results that
will be stated in Section 6.

First we analyze the connection of Borda-induced FEN-hedonic
games to other classes of hedonic games. By definition, the pref-
erences ⪰

B are additively separable, thus by setting wi = f iBorda
for each player i ∈ A, we can represent every Borda-induced FEN-
hedonic game as an additively separable hedonic game (recall the
formal definition from Section 2).

Observation 17. Every Borda-induced FEN-hedonic game is an addi-
tively separable hedonic game.

Note that this inclusion is strict: While for each Borda-induced
FEN-hedonic game, there is an additively separable hedonic game
with the same values, not every set of values can be derived from
given weak rankings with double threshold.

When analyzing the complexity of stability for Borda-induced
FEN-hedonic games, a first step is to check whether the results due
to Peters and Elkind (2015), which we presented in Section 3.2,
are applicable. We already noted that Borda-induced FEN-hedonic
games allow an arbitrary ordering of players. From Lemma 11 we
also know that they are consistent on pairs and strictly 0-1-toxic.

We startwith three negative results presented in Proposition 18
through 20, which show that for certain choices of scoring vectors
the resulting classes of Borda-induced FEN-hedonic games do not
satisfy certain variants of a-b-toxicity.

Proposition 18. When scoring vectors (fi, ei) can be chosen from
{sfo, fo, sfp, fp} × {seo, ep} or {sfo, fp} × {sep, eo}, the resulting
subclass of Borda-induced FEN-hedonic games is not 1-1-toxic (and
thus not strictly 1-1-toxic).

Proof. To show the above claim for each combination of the given
scoring vectors, we have to find a profile of weak rankings with
double threshold for which there is no derived hedonic game that
fulfills the properties. Let A = {1, 2, 3, 4} be the set of players

Table 3
Values that players 1 and 2 assign to their co-players in the proof of Proposition 18.

fi Player 1 Player 2 ei
2 3 4 1 3 4

sfo∗ 4∗
−1 3∗ 4 −1 −2 seo

fo 2 −4 1 1 −3 −4 eo
sfp 2 −4∗ 1 1 −3 −4 sep∗

fp 4 −1 3 4 −1 −2 ep

and suppose we have the following weak rankings with double
threshold:

⊵+0−
1 = (2 ▷ 4 | ∅ | 3), ⊵+0−

2 = (1 | ∅ | 3 ▷ 4),
⊵+0−

3 =⊵+0−
4 = (∅ | A ∖ {i} | ∅).

The values players 1 and 2 assign to their co-players for different
choices of scoring vectors are given in Table 3: The first row
determines player 1’s and player 2’s view, respectively. That is,
the values player 1 assigns can be found in the twelve entries in
the left part of the table and the values player 2 assigns in the
twelve entries in the right part of the table. The entries in boldface
in the second row denote the co-players of player 1 and player 2,
respectively.

Let us, exemplarily, focus on the left part of the table, that is,
player 1’s view. She can assign values to players 2, 3, and 4 and
these are given in boldface in the left part of the second row. The
respective column below each of these players gives the value that
player 1 assigns to her. Since each co-player of 1 is either a friend
(thus the value is determined by the choice of fi) or an enemy (the
value is determined by the choice of ei), the four rows suffice to
display all possible values player 1 can assign to each of her co-
players.

For example, when fi = sfo and ei = sep, player 1 assigns
player 2 a value of 4, player 3 a value of −4, and player 4 a value of
3 (these values and the choice of scoring vectors are marked with
an asterisk in the table).

For the coalition S = {1, 2, 3} and an arbitrary choice of
(fi, ei) ∈ {seo, ep} × {sfo, fo, sfp, fp}, we have that f 1Borda(S) >

0 = f 1Borda({1}), which is equivalent to S ≻1 {1}. For the same
coalition and the scoring vectors from {sep, eo} × {sfo, fp}, we
obtain the same contradiction from player 2’s view and we have
shown that for these pairs of scoring vectors, (strict) 1-1-toxicity is
not fulfilled. □

Proposition 19. The subclass of Borda-induced FEN-hedonic games
when scoring vectors (fi, ei) can be chosen from {fp, fo, sfo} ×

{seo, ep} is not weakly 1-1-toxic.

Proof. Recall the game defined in the proof of Proposition 18. It
holds for each of the above specified choices of scoring vectors
that f 1Borda({1, 4}) = 1 = f 1Borda({1, 2, 3}), which contradicts the
condition for weak 1-1-toxicity. □

Recall from Section 3.2 that a profile of preference orderings on
A is said to bemutual if j ∈ A+

i ∪ A0
i if and only if i ∈ A+

j ∪ A0
j .

Proposition 20. When scoring vectors (fi, ei) can be chosen from
{sfo, fp} × {eo}, the subclass of Borda-induced FEN-hedonic games
is neither weakly 2-2-toxic, nor 2-2-toxic, nor strictly 2-2-toxic, not
even when the profile of orderings is mutual and every player has at
most three players that are no enemies.

Proof. We have to find a Borda-induced FEN-hedonic game with
mutual rankings for at most three players being no enemies, such
that every derived hedonic game is not weakly 2-2-toxic, nor 2-2-
toxic, nor strictly 2-2-toxic. In particular, it is enough to find one
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such ranking that violates these properties. Due to the structure
of our following counterexamples, two slightly different examples
are sufficient to disprove the three properties for each combination
of scoring vectors.

For n = 8 players, say A = {a, b, c, d, e, f , g, i}, let ⊵i = a ∼i
b ▷i ∅ ▷i c ∼i d ∼i e ∼i f ∼i g be player i’s weak order induced by
her weak ranking with double threshold (where the other players’
preferences are arbitrary as long as they each are not enemies
with at most three and the resulting preference profile is mutual).
Consider coalition S = {a, b, c, d, i}. Then ∥S ∩ (A+

i ∪ A0
i )∥ = 2

and ∥S ∩ A−

i ∥ = 2. We have to show that f iBorda(S) ≥ f iBorda({i, j})
for all j ∈ A+

i ∪ A0
i , which directly disproves weak 2-2-toxicity.

This is also enough to disprove 2-2-toxicity and strict 2-2-toxicity,
as f iBorda({i, j}) > f iBorda({i}) holds for all j ∈ A+

i ∪ A0
i . For the first

combination, sfo with eo, we have

f iBorda(S) = wi(a) + wi(b) + wi(c) + wi(d)
= 2n − 2(n − ∥A−

i ∥ + 1)
= 16 − 8
= 8 = f iBorda({i, j}),

which is exactly what we wanted to show. For fp with eo, we just
need to add one more enemy to ⊵+0−

i , which is tied with all the
other enemies of i, such that the resulting scores are the same as
above. Hence, for both combinations, none of the three properties
hold. □

These results imply that for these choices of scoring vectors we
cannot apply the results due to Peters and Elkind (2015) and we
have to provide specific hardness proofs in Section 6. The following
results, on the other hand, will be very useful in Section 6.

Proposition 21. Let (A, (⊵+0−
1 , . . . ,⊵+0−

n )) be a FEN-hedonic game
with n players in which every player is enemies with all but at most
three other players, and (fi, ei) ∈ {fo, sfp} × {eo} for all i ∈

{1, . . . , n}. For each x ∈ {1, 2, 3}, every Borda-induced FEN-hedonic
game (A, (⪰B

1, . . . ,⪰
B
n)) is strictly x-x-toxic (and therefore x-x-toxic

and weakly x-x-toxic as well) and strictly 2-5-toxic.

Proof. Let (A, (⊵+0−
1 , . . . ,⊵+0−

n )) be a FEN-hedonic game with
∥A+

i ∪ A0
i ∥ ≤ 3 for all players i, let i ∈ A be a player, and let S ⊆ A

be a subset of the players with i ∈ S. We have to show that if

∥S ∩ (A+

i ∪ A0
i )∥ = x (2)

and ∥S ∩ A−

i ∥ ≥ x, then {i} ≻
B
i S. First, we can safely assume, that

∥S ∩ A−

i ∥ = x, (3)

as adding more enemies to S makes S strictly less attractive for i.
Second, we can again assume that

S ∩ A−

i ⊆ A−

i,1, (4)

as for eo (and all other scoring vectors), the score only gets lower
if S ∩ A−

i ⊆ A−

i,t for any t with 1 < t ≤ m, resulting in S being less
preferred by i. Last, for any p ∈ A+

i ∪ A0
i ,

wi(p) ≤ ∥A+

i ∥ (5)

is another safe assumption that can be made, as this is the single
highest weight a friend can contribute to S for both fo and sfp.

To show {i} ≻
B
i S, we need to show f iBorda(S) < f iBorda({i}). The

following equations are correct for both combinations, i.e., for eo
with fo as well as for eowith sfp. It holds that

f iBorda(S) =

∑
j∈S∩A+

i

wi(j) +

∑
j∈S∩A−

i

wi(j)

≤

∑
j∈S∩A+

i

∥A+

i ∥ +

∑
j∈S∩A−

i

−(n − ∥A−

i ∥ + 1)

due to (4) and (5)
= x∥A+

i ∥ − x(n − ∥A−

i ∥ + 1)
due to (2) and (3)

= x(−n + ∥A+

i ∥ + ∥A−

i ∥ − 1)

= x(−∥A0
i ∥ − 1 − 1)

due to n = ∥A+

i ∥ + ∥A0
i ∥ + ∥A−

i ∥ + 1

≤ − 2x < 0 = f iBorda({i}).

Together with Lemmas 9(a), 9(b), and 11, this implies the desired
properties. □

6. Complexity results for stability in Borda-induced FEN-
hedonic games

In this section we present the results we obtained regarding
the complexity of those verification and existence problems we
defined in Section 2 when the considered game is from the class
of Borda-induced FEN-hedonic games. Table 4 gives an overview of
our results. Unless it ismentioned otherwise in the table, all results
hold for each choice of scoring vectors.

We start with the complexity results for the verification prob-
lems. Recalling from Observation 17 that every Borda-induced
FEN-hedonic game is also additively separable, we can transfer
known upper bounds for these games to our new subclass. For the
verification problem, these results are summarized in the follow-
ing corollary.

Corollary 22. For Borda-induced FEN-hedonic games the problem
γ -Verification is in P for each of the stability concepts γ ∈ {per-
fectness, individual stability, contractually individual stability, Nash
stability}.

While the verification problems regarding individual deviations
are tractable, we will see that verifying whether a given coalition
structure in a Borda-induced FEN-hedonic game is core stable
or strictly core stable are far more complicated tasks. The proof
for Theorem 23 is inspired by the result for games with enemy-
oriented preferences presented by Sung and Dimitrov (2007).

Theorem 23. For Borda-induced FEN-hedonic games with each
choice of fi and ei, the problems Core-Stability-Verification and
Strict-Core-Stability-Verification are coNP-complete.

Proof. The upper bound follows from the result for additively
separable hedonic games due to Sung andDimitrov (2007) andAziz
et al. (2013b) and Observation 17.

To prove coNP-hardness, we reduce from the complement of
the Clique problem, denoted by Clique. To do so, let (G, k) be a
Clique instance, where G = (V ,H) is an undirected graph with
vertex set V = {v1, v2, . . . , vn} and edge set H = {h1, h2, . . . , hm}.
We construct the Borda-induced FEN-hedonic game (A, ⪰B) with
n + n(k − 2) players in A = {v1, v2, . . . , vn} ∪ Q , where Q is
a profile of n(k − 2) players Q =

⋃n
i=1Qi with the sets Qi =

{qi,1, qi,2, . . . , qi,(k−2)}. Let N(v) denote the neighborhood of vertex
v ∈ V .

The profile of extensions ⪰
B can be derived from the players’

profile of weak rankings with double threshold ⊵+0− as displayed
in Table 5 (note that when a set of players appears in a preference,
the players in the set are unranked and the subscripts ∼ are
dropped).

The players corresponding to the vertices in G are mutual
friends if and only if they are connected by an edge, and each of
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Table 4
Overview of complexity results regarding stability for Borda-induced FEN-hedonic games.

Stability Verification Reference Existence Reference

Perfectness P Corollary 22 P Corollary 24
Individual stability P Corollary 22 NP-completea Theorem 29
Contractual individual stability P Corollary 22 P Corollary 24
Nash stability P Corollary 22 NP-completea Theorem 28
Core stability coNP-complete Theorem 23 6

p
2-completeb Theorem 31

Strict core stability coNP-complete Theorem 23 coNP-hard, ∈ 6
p
2 Theorem 30

a For {sfp} × {seo, eo, sep, ep}, (fo, eo).
b For {sfp} × {seo, ep}.

Table 5
Weak rankings with double threshold of the players in the proof of Theorem 23.

For each . . . player ⊵+ A0 ⊵−

i ∈ {1, . . . , n} vi N(vi) ∪ Qi A ∖ (N(vi) ∪ {vi} ∪ Qi) ∅

i ∈ {1, . . . , n}, qi,j ∅ {vi} ∪ (Qi ∖ {qi,j}) A ∖ ({vi} ∪ Qi)j ∈ {1, . . . , k − 2}

these players has k−1 friends in Qi that are no friends of the other
vi-players. For each i ∈ {1, . . . , n}, the players in Qi are indifferent
regarding their corresponding player vi and the players that are in
the same Qi. The remaining players in the game are their enemies,
so these players do not consider anyone to be their friend.

Let Γ = (Γ1, Γ2, . . . , Γn) with Γi = {vi} ∪ Qi be the coalition
structure. The vi-players give their coalition in Γ ℓ(k − 2) points,
while ℓ ≥ 1 depends on the scoring vector fi used for the set of
friends. All players qi,j ∈ Q give their coalition a score of zero (and
this is independent of the choice of fi and ei). Note that adding any
other player to Γ (qi,j) turns the score of the coalition from player
qi,j’s view to a negative value.

We claim that G has a clique of size at most k − 1 if and only if
Γ is (strictly) core stable.

Only if: Assume that the largest clique in G is of size k − 1.
Since the players in Q do not have friends, they already reach a
best possible scorewith their given coalition. For aweakly blocking
coalition P ⊆ A to exist, it has to contain at least one player from
V preferring P to her original coalition. This can only happen if P
consists of a set of players fromV forming a clique. Since the largest
clique in V is of size at most k − 1, the players in the clique would
assign this coalition a score of ℓ(k − 2), which is exactly the score
each vi assigns the coalitionΓ (vi). Thus there is noweakly blocking
coalition, which directly implies that there is neither a blocking
one.

If:We show the contraposition. Assume that there was a clique
V ′ of size k in G. Then the players corresponding to the vertices in
this clique form a blocking coalition (and thus a weakly blocking
one) since every player in the clique gives the coalition V ′ a score
of ℓ(k − 1), which is larger than the score of the coalition they are
assigned to in Γ . □

Nowwe turn to the existence problems and startwith the upper
bounds for all problems for which Observation 17 can be applied.
For perfectness and contractually individual stability, this results
in the following corollary.

Corollary 24. For Borda-induced FEN-hedonic games with each
choice of fi and ei, the problems Perfectness-Existence and
Contractually-Individual-Stability-Existence are in P.

For the remaining stability problems, we have a higher com-
putational complexity and will now further analyze their lower
bounds. To do so, we will make use of known hardness proofs
for the class of additively separable hedonic games and show that
these can be transferred to proofs suitable for Borda-induced FEN-
hedonic games if the following two properties are fulfilled by the
game constructed in the original hardness proof: The values that

the players assign to each other have to be integers and they are
not allowed to be symmetric.

Whenever these conditions aremet, we can construct an equiv-
alent Borda-induced FEN-hedonic game when the scoring vectors
fi = sfp and ei = seo are used. We will further specify the notion
of equivalence of two games in Lemma 27.

Construction 25 illustrates how a Borda-induced FEN-hedonic
game can be derived from an arbitrary additively separable hedo-
nic game fulfilling the two conditions above.

Construction 25. Let H = (A, w) be an additively separable hedonic
game, where the integer values wpi : A ∖ {pi} → Rpi that the
players pi ∈ A assign to the other players are not symmetric and
where Rpi ⊆ Z denotes the range of values that pi assigns. We
construct a Borda-induced FEN-hedonic game H ′

= (A′, ⪰B) with
fi = sfp and ei = seo. Let A′

= A ∪ D be the set of players in H ′,
where A are the players in the original game H and we have a set
of z = max{

⋃
pi∈A

Rpi} + |min{
⋃

pi∈A
Rpi}| − 2 padding players in

D = {d1, d2, . . . , dz}.
We first explain how theweak rankingswith double threshold have

to be constructed for the players in A. To this end, let player pi ∈ A be a
player in the original game, and define the sets Ak

pi = {pj ∈ A ∖ {pi} |

wpi (pj) = k} for k ∈ Rpi . We know that
⋃

s∈RA
s
pi = A ∖ {pi}. We

separate the strictly negative values in Rpi (denoted by R+) from the
strictly positive ones (denoted by R−), where we omit the index pi for
R+ and R− for the sake of readability. Thus Rpi = R+

∪ R−
∪ {0}. For

each pi ∈ A, we define the set of pi’s friends by A+
pi =

⋃
s∈R+As

pi , the
set of pi’s enemies by A−

pi =
⋃

s∈R−As
pi , and the set of neutral players

for pi is A0
pi .

Assuming that the elements in R+
= {r1, r2, . . . , r∥R+∥} and R−

=

{r ′

1, r
′

2, . . . , r
′

∥R−∥
} are ordered descendingly,we can define⊵+

pi and⊵
−
pi

as follows (note again that we omit the index pi in both ⊵+
pi and ⊵−

pi

when it is clear from the context). Let D1, . . . ,Dr
∥R+∥ , D̂1, . . . , D̂

r ′
∥R−∥

⊆ D be r∥R+∥ + r ′

∥R−∥
suitably sized, pairwise disjoint subsets of the

padding players such that:

∥D1
∥ = r1 − r2 − 1, ∥D2

∥ = r2 − r3 − 1, . . . ,

∥Dr
∥R+∥∥ = r∥R+∥ − 1,

∥D̂1
∥ = − r ′

1 − 1, ∥D̂2
∥ = −r ′

1 + r ′

2 − 1, . . . ,

∥D̂
r ′
∥R−∥∥ = −r ′

∥R−∥
− 1,

and for each such subset Dj
= {ds, ds+1, . . . , dt} let D

j
▷ be a shorthand

for the ranking ds ▷ ds+1 ▷ · · · ▷ dt (and analogously so for D̂j
▷),

where again the subscript pi is omitted on ▷. Let D′ be the set of
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Table 6
Values of the players in H .

pi wpi (pj) A2 A1 A−4

pj
p1 p2 p3 p4 p5

p1 * 2 2 −4 1 {p2, p3} {p5} {p4}
p2 2 * −4 −4 −4 {p1} ∅ {p3, p4, p5}
p3 −4 −4 * −4 −4 ∅ ∅ {p1, p2, p4, p5}
p4 1 1 1 * 1 ∅ {p1, p2, p3, p5} ∅

p5 2 2 2 2 * {p1, p2, p3, p4} ∅ ∅

Table 7
Constructed preferences from Example 26.

Player ⊵+ A0 ⊵−

p1 p2 ∼ p3 ▷ p5 ∅ d1 ▷ d2 ▷ d3 ▷ p4 ▷ d4
p2 p1 ▷ d1 ∅ d2 ▷ d3 ▷ d4 ▷ p3 ∼ p4 ∼ p5
p3 ∅ ∅ d1 ▷ d2 ▷ d3 ▷ p1 ∼ p2 ∼ p4 ∼ p5 ▷ d4
p4 p1 ∼ p2 ∼ p3 ∼ p5 ∅ d1 ∼ d2 ∼ d3 ∼ d4
p5 p1 ∼ p2 ∼ p3 ∼ p4 ▷ d1 ∅ d2 ∼ d3 ∼ d4

remaining padding players for pi. Then we define

⊵+

pi : Ar1
∼

▷ D1
▷ ▷ Ar2

∼
▷ D2

▷ ▷ · · · ▷ A
r
∥R+∥

∼ ▷ D
r
∥R+∥

▷ and

⊵−

pi : D̂1
▷ ▷ A

r ′1
∼ ▷ D̂2

▷ ▷ A
r ′2
∼ ▷ · · · ▷ D̂

r ′
∥R−∥

▷ ▷ A
r ′
∥R−∥

∼ ▷ D′

∼
.

Note that whenever ∥R+
∥ = 1 or ∥R−

∥ = 1 holds for a player pi,
we have R+

= {r1} and R−
= {r ′

1}, so Ar
∥R+∥ = Ar1 = A+

pi and

A
r ′
∥R−∥ = Ar ′1 = A−

pi , and ⊵+
pi and ⊵−

pi are defined by the last part of
the above description, namely, for Dr

∥R+∥ = Dr1 with r1 − 1 padding
players and for D̂

r ′
∥R−∥ = D̂r ′1 with −r ′

1 − 1 padding players, we have

⊵+

pi : Ar1
∼

▷ Dr1
▷ and

⊵−

pi : D̂
r ′1
▷ ▷ A

r ′1
∼ ▷ D′

∼
.

The padding players have no friends and no neutral players but
only enemies, that is, for d ∈ D, we define A+

d = ∅ = A0
d and

A−
= A′ ∖ {d}, and we let them be indifferent between their enemies:

⊵+0−
d = (∅ | ∅ | (A′ ∖ {d})∼).

We illustrate the construction in the following example.

Example 26. Let H = (A, w) be a hedonic game with the set
of players A = {p1, p2, p3, p4, p5} and the values wpi (pj) for all
players pi, pj ∈ A given in Table 6, together with the resulting
sets A−4, A1, and A2.

We need 2 + 4 − 2 = 4 padding players, d1, d2, d3, and d4,
to construct the weak rankings with double threshold, which we
present in Table 7.

Lemma 27. Let H = (A, w) be an additively separable hedonic game,
where the values the players assign to each other are integers and the
preferences are not symmetric. Let furthermore H ′

= (A′, ⪰B) with
A′

= A ∪ D be a Borda-induced FEN-hedonic game with fi = sfp and
ei = seo constructed from H according to Construction 25 and let Γ

be a coalition structure in H and Γ ′
= Γ ∪

⋃
∥D∥

i=1{di} be a coalition
structure in H ′. For each stability concept γ defined in Section 2, it
holds that Γ is stable in the sense of γ in H if and only if Γ ′ is stable
in the sense of γ in H ′.

Proof. Each padding player di ∈ D assigns a negative value to
all players in A′ ∖ {di}, so there are no acceptable coalitions for
di ∈ D except the singleton coalition {di}. Clearly, for each stability
concept γ defined in Section 2, a given coalition structure Γ ′ can
only be stable in the sense of γ if it assigns each di ∈ D to the
coalition {di}.With this, the above equivalence directly follows. □

Sung and Dimitrov (2010, Lemma 2 and Theorem 3) show
that in additively separable hedonic games the problem Nash-
Stability-Existence is NP-complete. We will show that for certain
choices of scoring vectors, we can obtain the same hardness result
in Borda-induced FEN-hedonic games. Note that Theorem 28 (and
the same comment applies, e.g., to Theorem 31) crucially follows
from Observation 17 stating that Borda-induced FEN-hedonic
games are additively separable. In general, however, Burani and
Zwicker (2003) have shown that responsive preferences do not
imply additive separability of preferences in hedonic games.6 In-
deed, it is due to our particular approach of completing preferences
over coalitions via Borda counts that gives Observation 17 and
thus makes the findings by Sung and Dimitrov (2010) (or, in the
case of Theorem 31, the findings byWoegingerWoeginger, 2013b)
applicable to Borda-induced FEN-hedonic games. Interestingly, the
specific structure of Borda-induced FEN-hedonic games does not
lower the computational complexity of the related stability prob-
lems.

Theorem 28. In Borda-induced FEN-hedonic games with each choice
of scoring vectors (fi, ei) from {sfp} × {seo, eo, sep, ep} or (fi, ei) =

(fo, eo), the problem Nash-Stability-Existence is NP-complete.

Proof. With Observation 17 and Lemma 2 of Sung and Dimitrov
(2010), the problem is in NP.

NP-hardness in the setting of additively separable hedonic
games is shown by a reduction from X3C and the players in the
constructed game assign values from {−68, 1, 2, 13, 16} to each
other.

For the choice of fi = sfp and ei = seo, we can use
Construction 25 and Lemma 27 to apply the argumentation in the
proof of Theorem 3 of Sung and Dimitrov (2010).

The value −68 is the only negative value that is assigned in the
additively separable hedonic game from the original proof and the
argumentation remains unchanged if this value was smaller than
−68.We show that for the other possible choices of ei this negative
value, let us call it K , is always at most −68.

Recalling the notation from Construction 25, we have that for
each player pi ∈ A ⊆ A′ with A−

pi ̸= D, the ordering of the enemies
is

⊵−

pi : D̂
−68
▷ ▷ A′′

∼
▷ D′

∼
,

where we first have ∥D̂−68
∥ = 67 padding players, then the set A′′

of players pi assigns value −68 to in the original game, followed

6 We consider it a challenging question for future research to further explore the
relation of responsive and additively separable preferences in FEN-hedonic games.
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by up to 15 padding players in D′ that are not contained in A+
pi . The

set A′′ corresponds to the set A−

pi,68
in the definition of the scoring

vectors ei in Section 4, and it is easy to see that K ≤ −68 for each
fixed choice of ei ∈ {eo, sep, ep}.

This leaves the case of (fi, ei) = (fo, eo). From Lemma 11 and
Proposition 21we know that for every Borda-induced FEN-hedonic
game (A, (⪰B

1, . . . ,⪰
B
n)) with scoring vectors as above, there is an

induced hedonic game that is consistent on pairs, 0-1-toxic,weakly
1-1-toxic, and weakly 2-2-toxic. Thus Theorem 10.2. is applicable
and we obtain NP-hardness of Nash-Stability-Existence. □

With an analogous argumentation we can show the following
result.

Theorem 29. In Borda-induced FEN-hedonic games with (fi, ei) ∈

{sfp} × {seo, eo, sep, ep} or (fi, ei) = (fo, eo), the problem
Individual-Stability-Existence is NP-complete.

Proof. NP membership follows straightforwardly with
Observation 17 and Lemma 2 of Sung and Dimitrov (2010). In their
NP-hardness proof, they construct an additively separable hedonic
game from an X3C instance in which the players’ values are from
{−4, 2, 1}. We can adapt this proof to our setting by constructing
a Borda-induced FEN-hedonic game with Construction 25 and
applying Lemma 27.

For the other choices of ei, we can argue that assigning a value
K that is smaller than −4, the original argumentation still applies.
For the players pi ∈ A ⊆ A′ with A−

pi ̸= D, Construction 25 defines
⊵−

pi to be:

⊵−

pi : d1 ▷ d2 ▷ d3 ▷ A′′

∼
▷ D′

∼
,

where D′ can have up to two elements. Here we have that A′′

corresponds to A−

pi,4
in the definition of the scoring vectors ei in

Section 4 and it is, again, easy to see that for each fixed choice of
ei ∈ {eo, sep, ep}, it holds that K ≤ −4.

Similarly to the proof of Theorem 28, we obtain NP-hardness
for (fi, ei) = (fo, eo) with the results shown in Lemma 11,
Proposition 21, and Theorem 10.2. □

Theorem 30. For Borda-induced FEN-hedonic games with each
choice of fi and ei, Strict-Core-Stability-Existence is coNP-hard.

Proof. We show coNP-hardness by a reduction from CLIQUE with
a similar construction as the one used in the proof of Theorem 23.

To this end, let G = (V ,H) be an undirected graph with
V = {v1, v2, . . . , vn} and H = {h1, h2, . . . , hm} and let k ≥ 2 be
a positive integer. Recall that N(v) denotes the neighborhood of
vertex v ∈ V , and let N[v] = N(v)∪{v} be the closed neighborhood
of v.

Construct the Borda-induced FEN-hedonic game (A, ⪰B) with
the set of players A = V ∪ Q ∪ R ∪ T , where the players vi ∈ V
correspond to the vertices in the graph, Q =

⋃n
i=1Qi with Qi =

{qi,1, qi,2, . . . , qi,k−2}, R = {r1, r2, . . . , rn}, and T = {t1, t2, . . . , tn}.
The players’ weak rankings with double threshold are shown in
Table 8 (note again that when a set of players appears in a pref-
erence, the players in the set are unranked and the subscripts ∼

are dropped).
For each vi ∈ V , all players in Qi are vi’s friends and so are all

other players in V that are connected to vi by an edge in G. The
players in each Qi only consider vi to be a friend, do not care about
the other players in Qi or ri or ti, while the remaining players are
enemies. For the players in R and T , both ri and ti consider qi,1 to
be their only friend for each i ∈ {1, . . . , n}, they both do not care
about the other players in Qi, while considering each other to be
enemies (and the remaining players are their enemies as well).

We claim that (G, k) ̸∈ Clique if and only if there exists a strictly
core stable coalition structure for (A, ⪰B) for each choice of fi and
ei.

Only if: Assume there is no clique of size k in G. Then

Γ = (Pv
1 , Pv

2 , . . . , Pv
n , P r

1, P
r
2, . . . , P

r
n, P

t
1, P

t
2, . . . , P

t
n)

with Pv
i = {vi} ∪ Qi, P r

i = {ri}, and P t
i = {ti} is a strictly core stable

coalition structure for (A, ⪰B): The players in the coalitions Pv
i are

in their best valued coalitions, thus every coalition containing them
would not be a weakly blocking coalition. This only leaves the
players in R and T , which all are enemies, so these cannot form
a weakly blocking coalition either. Thus the coalition structure is
strictly core stable.

If:We show the contraposition. Assume that there is a clique of
size k in G, say V ′. To construct a contradiction, let Γ be a strictly
core stable coalition structure. For Γ to be strictly core stable, the
players corresponding to the vertices in the clique V ′ have to be
together in a coalition in Γ and no other players can be contained
in this coalition. Let the set J = {i | vi ∈ V ′

}denote the indices of the
vertices that are contained in the clique V ′. For these j ∈ J , we have
that theplayers inQj (and, in particular, qj,1) cannot forma coalition
with their friend vj, so the players rj and tj are both interested in
forming a coalition with player qj,1. The players in each Qi can be
assigned to coalitions in four different ways:

1. {rj,Qj}; then {tj, qj,1} would be a weakly blocking coalition.
2. {tj,Qj}; then {rj, qj,1} would be a weakly blocking coalition.
3. {tj, rj,Qj}; then both {rj, qj,1} and {tj, qj,1} would be weakly

blocking coalitions.
4. {Qj}; then {rj, qj,1} and {tj, qj,1} would be weakly blocking

coalitions.

We see that in all cases there exists a weakly blocking coalition,
so Γ cannot be strictly core stable. □

We now turn to the 6
p
2 result for the existence of core stable

coalition structures. The proof is an adaption of the corresponding
result for additively separable hedonic games, which was shown
by Woeginger (2013b). Since the proof is very technical and for
the sake of comparability, we will refrain from altering the proof’s
structure and maintain the structure presented by Woeginger
(2013b). We state the result in Theorem 31 and prove it in several
steps via Construction 32 and Lemmas 33, 34, and 35.

Theorem 31. In Borda-induced FEN-hedonic games the problem
Core-Stability-Existence is 6

p
2-complete for the choice of scoring

vectors fi = sfp and ei ∈ {seo, ep}.

Proof. Woeginger (2013b) shows 6
p
2-completeness of Core-

Stability-Existence for additively separable hedonic games with a
reduction from 2-Quantified-3-DNF-SAT defined in Section 2. Our
approachdefined in Construction 25 cannot be applied directly, but
with careful adaptionswe candefine a Borda-induced FEN-hedonic
game for which Woeginger’s argumentation still works:

Let m be the number of clauses and n the number of variables
in a given instance of the problem 2-Quantified-3-DNF-SAT. The
values in the original game are from the set

{−∞, −2, 0, ϵ, 1, 2, 3, 4, 5, n + 2,m + n + 1, 4n + m − 1},

where −∞ denotes a ‘‘small enough number’’ and ϵ = 1/n+1.
To define a Borda-induced FEN-hedonic game, we have to define
the exact value for −∞ and change ϵ to a positive integer while
preserving the central argumentation. We present the definition
of our Borda-induced FEN-hedonic game in Construction 32 and
show in Lemmas 33 through 35 where and how Woeginger’s
argumentation has to be adapted.
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Table 8
Weak rankings with double threshold of the players in the proof of Theorem 30.

For each . . . Player ⊵+ A0 ⊵−

i ∈ {1, . . . , n} vi N(vi) ∪ Qi A ∖ ({N[vi] ∪ Qi}) ∅

i ∈ {1, . . . , n}, qi,j vi (Qi ∖ {qi,j}) ∪ {ri, ti} A ∖ (A+
qi,j ∪ A0

qi,j )j ∈ {1, . . . , k − 2}
i ∈ {1, . . . , n} ri qi,1 Qi ∖ {qi,1} A ∖ (A+

ri ∪ A0
ri )

i ∈ {1, . . . , n} ti qi,1 Qi ∖ {qi,1} A ∖ (A+

ti ∪ A0
ti )

Table 9
⊵+ of the players in the proof of Theorem 31 for (sfp, seo).

Value: m + n + 1 · · · n + 2 · · · 1
q′
t ▷ · · · ▷ q′′

t ▷ · · · ▷ PX ∪ PC⊵+
qt :

Value: 4n + 2m − 1 · · · 2 1
r ′ ▷ · · · ▷ PC ∪ PX ∪ PY ▷ d⊵+

r :

Value: 4 3 2 1
qf ▷ d ▷ r ▷ (PX ∖ {x}) ∪ {qt }⊵+

p(x):

Value: n + 1 · · · 1
qt ▷ · · · ▷ PX⊵+

q′
t
:

Value: 6 5
qt ▷ r ▷ · · ·⊵+

p(c):

Value: 2 1
r ▷ d⊵+

p(y):

Value: 1
qt⊵+

q′′
t
:

Value: 1
PX⊵+

qf :

Value: 1
r⊵+

qr′
:

Value: −

−⊵+

D :

Construction 32. Given a 2-Quantified-3-DNF-SAT instance (X, Y ,

φ(X, Y )), we denote the set of clauses in φ by C and we define

A = PX ∪ PY ∪ PC ∪ {qt , q′

t , q
′′

t , qf , r, r
′
} ∪ D

to be the set of players such that the following hold:

• For every literal ℓ over X, we construct a corresponding X-player
p(ℓ) (2n in total). We denote this set with PX .

• For every literal ℓ over Y , we construct a corresponding Y-player
p(ℓ) (2n in total). We denote this set with PY .

• For every clause c ∈ C, we construct a corresponding C-player
p(c) (m in total). We denote this set with PC .

• We have six structure players: qt , q′
t , q

′′
t , qf , r , and r ′.

• Wehave a set of padding players D, whichwewill use to generate
the preferences providing the needed values.

The number of padding players is bounded byO((n+m)(n2
+nm+

m2
+ 1)).
The scoring vector for the set of friends is fixed to fi = sfp and

we first construct ⊵+ for the players in A. Note that we change the
value of ϵ from 1/n+1 to 1 and adjust the score the player q′

t assigns
player qt to n + 1 (instead of 1). Table 9 shows ⊵+ of the players
in A and furthermore displays the values that are assigned based on
the choice of fi = sfp and ei = seo. Whenever set of players are
given in a preference, say of player p, we assume that p is indifferent
between the players in the set. Furthermore, if a single padding player
d is given, she can be replaced by an arbitrarily picked player from D.
Parts of the preferences that are denoted by ‘‘· · · ’’ have to be filledwith
an appropriate number of padding players from D.

The set of neutral players is A0
d = PC∪PX∪PY∖{p(ℓ1), p(ℓ2), p(ℓ3)}

for each d ∈ D, A0
q′′
t

= PC , A0
p(y) = PC ∪ PX ∪ (PY ∖ {y}), A0

p(x) =

PC ∪ PY ∪ {q′
t}, and A0

p = ∅ for all remaining players p ∈ A.

Table 10
⊵− of the players in the proof of Theorem 31 for (sfp, seo).

Value: −1
⊵−

d : A ∖ {d}

Value: · · · −Kr′ −Kr′ − 1
· · · ▷ A ∖ {r} ▷ D′⊵−

r ′ :

Value: · · · −Kqf −Kqf − 1

· · · ▷ A ∖ PX ▷ D′⊵−
qf :

Value: · · · −Kq′′t
−Kqf − 1

· · · ▷ PX ∪ PY ∪ {q′
t , qf , r, r

′
} ▷ D′⊵−

q′′
t
:

Value: · · · −Kp(y) −Kp(y) − 1

· · · ▷ {y, qt , q′
t , q

′′
t , qf , r

′
} ▷ D′⊵−

p(y):

Value: · · · −Kq′t
−Kq′t

− 1

· · · ▷ PC ∪ PY ∪ {q′′
t , r, r ′} ▷ D′⊵−

q′
t
:

Value: · · · −Kp(x) −Kp(x) − 1

· · · ▷ {q′′
t , r ′, x} ▷ D′⊵−

p(x):

Value: · · · −Kr −Kr − 1
· · · ▷ {qt , q′

t , q
′′
t , qf } ▷ D′⊵−

r :

Value: · · · −Kqt −Kqt − 1
· · · ▷ PY ∪ {qf , r, r

′
} ▷ D′⊵−

qt :

Value: −1 −2 · · · −Kp(c)
d ▷ {p(ℓ1), p(ℓ2), p(ℓ3)} ▷ · · · ▷ {q′

t , qf , r
′
}⊵−

D :

For each player p ∈ A assigning the symbolic value ‘‘−∞’’ to
some of her enemies in the original game, we define Kp to be the sum
of all positive values p assigns to other players in A ∖ {p}. Table 10
shows the neutral sets and ⊵− of the players in A, where D′ denotes
those padding players not contained in⊵+ and not contained in⊵− so
far. This completes the construction of the Borda-induced FEN-hedonic
game for fi = sfp and ei = seo.

For the scoring vectors fi = sfp and ei = ep, a similar
approach can be used to achieve almost the same values as in the
original construction. Only the preferences of the C-players have to
be constructed carefully. These players are the only players assigning
a different value than −∞ to a subset of their enemies, namely the
value −2 to those literal-players that are contained in the clause the
clause-player corresponds to. With ei = ep we cannot achieve the
assignment of value−2, but the assignment of value−3 by adding 12
padding players to the enemy set and due to this change, the players
r and qt in ⊵+

p(c) each have to gain one point more, so we have the
adapted preferences shown in Table 11.

The remaining padding players in A that have not been assigned
to ⊵+

p(c) or ⊵−

p(c) have to be in A0
p(c). This ensures that Woeginger’s

argumentation can be adapted straightforwardly.
We will present the argumentation for fi = sfp and ei = seo

in detail. Consider the following coalition structure Γ ∗ that will be
used throughout the rest of the argumentation. Let X = X1 ∪ X2 be
a partition of X into two sets such that for each x ∈ X1 we have that
x ∈ X2. Define:

Γ ∗
=

{
{qf , {p(x) | x ∈ X1}}, {p(y)}y∈Y , {r, r ′

}, {q′′

t },

{p(c)}c∈C , {d}d∈D, (6)
{qt , {p(x) | x ∈ X2}, q′

t}
}
.

Table 12 shows the values each player assigns to her coalition
in Γ ∗.
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Table 11
⊵+ and ⊵− of the C-players in the proof of Theorem 31 for (sfp, ep).

Value: −3 −16 −17 −18
⊵−

p(c) p(ℓ1) ∼ p(ℓ2) ∼ p(ℓ3) ▷ · · · ▷ q′
t ▷ qf ▷ r ′

Value: 8 7
⊵+

p(c): qt ▷ r ▷ · · ·

Table 12
Values the players assign to their coalition in Γ ∗ for (sfp, seo).

qf {p(x)|x ∈ X1} r r ′
{p(x)|x ∈ X2} qt q′t PY , PC , q′′

t ,D

n n + 3 4n + 2m − 1 1 n 2n + m + 1 2n + 1 0

Based on the constructed game, we will show Theorem 31 step
by step, just as Woeginger did, and we start with the following
lemma.

Lemma 33. Let (A, ⪰+0−) be a game constructed from a
2-Quantified-3-DNF-SAT instance (X, Y , φ(X, Y )) as in
Construction 32 and assume that Γ ∗ is a core stable coalition struc-
ture. Then the following hold for Γ ∗.

1. Coalition Γ ∗(qf ) consists of qf and n of the X-players. For each
x ∈ X either p(x) or p(x) is in Γ ∗(qf ).

2. Coalition Γ ∗(r) cannot consist of r together with n X-players, n
Y -players, and all m C-players.

3. Γ ∗(r) = {r, r ′
}.

4. q′′
t ̸∈ Γ ∗(qt ).

5. q′
t ∈ Γ ∗(qt ).

6. Γ ∗(qt ) = {qt , q′
t , {p(x)|p(x) ̸∈ Γ ∗(qf )}}.

7. Γ ∗ yields a value of 0 for q′′
t , all Y -players, and all C-players.

Proof of Lemma 33. Claim 1 directly follows from Lemma 4.1
of Woeginger (2013b), except that for the X-players all coalitions
not containing qf yield fewer than n + 3 points. The remaining
argumentation remains unchanged.

Claims 2 and 3 can be shown by exactly the argumentation in
the proofs of Lemmas 4.2 and 4.3 of Woeginger (2013b).

Claim 4 can be shown with a similar argumentation as pre-
sented in the proof of Lemma 4.4 of Woeginger (2013b): Assume
that q′′

t ∈ Γ ∗(qt ). That implies that Γ ∗(qt ) ⊆ {qt , q′′
t } ∪ PC and qt

assigns a value of at most m + n + 2, q′
t assigns a value of at most

n (because she is not in a coalition with qt ), and with Claims 1 and
3 we know that each p(x) assigns a value of at most n − 1. Now
consider the coalition {qt , {p(x)|p(x) ̸∈ Γ ∗(qf )}, q′

t} that ensures qt
a value ofm + 2n + 1, q′

t a value of 2n + 1, and the X-players each
a value of n and would thus be a blocking coalition.

Claims 5, 6, and 7 can be shown by exactly the same argumen-
tation as in the proofs of Lemmas 4.5, 4.6, and 4.7 of Woeginger
(2013b). □

Lemma 34. Let (A, ⪰+0−) be a game constructed from a
2-Quantified-3-DNF-SAT instance (X, Y , φ(X, Y )) as in
Construction 32. If there exists a core stable coalition structure Γ ∗

in this game, then (X, Y , φ(X, Y )) is a yes instance of 2-Quantified-
3-DNF-SAT.

Proof of Lemma 34. This claim can be shown by exactly the same
argumentation thatWoeginger (2013b) provides in Section 4 of his
paper. □

Lemma 35. Let (A, ⪰+0−) be a game constructed from a
2-Quantified-3-DNF-SAT instance (X, Y , φ(X, Y )) as in
Construction 32. If (X, Y , φ(X, Y )) is a yes instance of 2-Quantified-
3-DNF-SAT then a core stable coalition structureΓ exists in this game.

Proof of Lemma 35. Assume that (X, Y , φ(X, Y )) is a yes instance
of 2-Quantified-3-DNF-SAT with the truth-assignment τX for the
variables in X . Define a coalition structure Γ as the one in (6) and
let p(x) ∈ Γ (qf ) if and only if x is set to false.

For the sake of contradiction we assume that there is a coalition
S∗ that blocks the coalition structure Γ . With Lemmas 5.1, 5.2,
and 5.3 of Woeginger (2013b) and some further argumentation he
provides, we can show that

1. Γ (qf ) ̸⊆ S∗.
2. r, r ′

̸∈ S∗.
3. qt ̸∈ S∗.
4. For all c ∈ C , p(c) ̸∈ S∗.
5. For all y ∈ Y , p(y) ̸∈ S∗.
6. q′′

t ̸∈ S∗.

Furthermore, we have that p(d) ̸∈ S∗ for all d ∈ D, which
simply follows from the fact that being in a singleton coalition
already maximizes the values of the players in D. Together with
Claims 1 through 6 of Lemma 33, this implies that any possibly
blocking coalition S∗ is the empty set, soΓ is a core stable coalition
structure. □

Nowwe can easily conclude the proof of Theorem 31: The claim
follows immediately with Construction 32 and Lemmas 34 and
35. □

7. Conclusions and future work

We have studied FEN-hedonic games where players partition
the other players into friends, enemies, and neutral players and
rank their friends and their enemies. To extend the players’ pref-
erences over players to preferences over coalitions, we have used
bipolar responsive extensions. Since pairs of coalitionsmay remain
incomparable under these extensions, we have proposed com-
parability functions based on Borda-like scoring vectors in order
to resolve these incomparabilities. Then we have analyzed the
computational complexity of the existence and the verification
problem of some well-known stability concepts for the induced
hedonic games. Table 4 at the beginning of Section 6 gives an
overview of our results. Some questions remain open for the exis-
tence problem: First, for strict core stability in Borda-induced FEN-
hedonic games, we have a complexity gap between coNP-hardness
and Σ

p
2 membership; second, our NP-completeness results for

individual andNash stability aswell as ourΣp
2 -completeness result

for core stability hold only for certain combinations of comparabil-
ity functions. Solving these open problems would be interesting
tasks for future research.

It would also be interesting to study critical restrictions of the
model that may lead to a drop in complexity. For example, our
model allows ties in the players’ preferences, and as we have seen
for the related stable matching and stable roommates problems
in the Introduction, the complexity of the existence and the ver-
ification problem for various stability concepts in Borda-induced
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FEN-hedonic games might change when all players are required
to present strict preferences only. Finally and more generally, as
noted in Footnote 6, exploring the connection between respon-
siveness and additive separability of preferences in FEN-hedonic
games is another challenging question for future research.
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Appendix. Deferred proofs from Section 3.2

Proof of Lemma9. Let (A, ⪰) be a hedonic gamewith nplayers and
preferences induced by a profile⊵ = (⊵1, . . . ,⊵n) of rankings over
the players. The first and the third statement follow immediately
from the definitions. For the second statement, consider consis-
tency on pairs with k = i. Then, j ∈ A+

i ∪ A0
i implies j ⊵i i, due to

the definition of A+

i ∪ A0
i . Consistency on pairs, together with strict

a-b-toxicity gives us {i, j} ⪰i {i} ≻i S for all i ∈ A, for all j ∈ A+

i ∪A0
i ,

and for all S ⊆ Awith ∥S ∩ (A+

i ∪ A0
i )∥ = a and ∥S ∩ A−

i ∥ ≥ b. □

Proof of Lemma 11. For consistency on pairs, let us consider a
FEN-hedonic game with three players, i, j, and k, and assume that
j, k ∈ A+

i ∪ A0
i . If j, k ∈ A0

i , then clearly j ∼
+0−
i k and, by definition,

we also have that {i, j} ∼
+0−
i {i, k}. If, without loss of generality,

k ∈ A0
i and j ∈ A+

i , it holds by definition of ⊵+0−
i that j ▷+0−

i k,
which in turn is equivalent to {i, j} ≻

+0−
i {i, k}. For j, k ∈ A+

i ,
we know from Definition 3 that {i, j} ⪰

+0−
i {i, k} is equivalent to

the existence of an injective function σ : {k} ∩ A+

i → {j} ∩ A+

i ,
with σ (k) ▷+0−

i k. Thus, with σ mapping k to j, we have the
desired equivalence. To prove strict 0-1-toxicity, let S ⊆ A be an
arbitrary coalition and let i, j ∈ A be two players. Assuming that
∥S ∩ (A0

i ∪ A+

i )∥ = 0 and ∥S ∩ A−

i ∥ ≥ 1 holds, we know that
S contains at least one enemy of player i and neither friends of i
nor any players who are neutral for i. By definition, player i would
rather be alone than being part of coalition S, so {i} ≻

+0−
i S indeed

holds. □
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CHAPTER 6
Verification in Incomplete Argu-
mentation Frameworks

Summary

To answer the question of what parts of a discussion are to be accepted or
are the ’good’ arguments of the discussion, one fast encounters the ques-
tion, whether the abstract models that have been used to express real world
discussions are close enough to produce a good outcome. Most debates of
the real world are highly complex and it is not easily motivatable why a
simple model as the model of argumentation frameworks by Dung [29] is
enough. Many authors already discussed specialized or extended models of
these simple models, but not many tackled the question of what can be done
when assuming the agents to have incomplete knowledge. In the following
paper, we extend those existing models regarding incomplete knowledge and
define a general version that allows for a lack of knowledge in both, the set
of arguments and the set of attacks. The model is, for example, motivated
through the common approach of merging different believes into one, and
then extracting an aggregated result. We also answer the question on how to
extend the ideas of extensions as outcome of an argumentation framework
to fit to the new model of incomplete argumentation frameworks. Addition-
ally, we define a possible and necessary version of the verification problem,
which was originally defined for Dung’s argumentation frameworks, for each
of the semantics conflict-freeness, admissibility, completeness, preferredness,
groundedness, and stability, and analyze these in terms of their computa-
tional complexity.

79



80 CHAPTER 6. INCOMPLETE ARGUMENTATION FRAMEWORKS

Contribution and Preceding Versions

The idea, model, and writing was done jointly with my coauthors, as well
as Theorems 26 and 28, and Corollaries 27, 29, 42 and 50. Additionally,
Theorems 43, 44, Corollary 45, and not published versions of the proofs of
Theorems 46 and 48 have to be attributed to my contribution. This paper
merges and extends the preliminary papers [8], [9], [11], and [12].

Publication - Baumeister, Neugebauer, Rothe,

and Schadrack [13]

D. Baumeister, D. Neugebauer, J. Rothe, and H. Schadrack. Verification
in incomplete argumentation frameworks. Artificial Intelligence, 264:1–26,
2018



Artificial Intelligence 264 (2018) 1–26

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Verification in incomplete argumentation frameworks ✩

Dorothea Baumeister, Daniel Neugebauer, Jörg Rothe ∗, Hilmar Schadrack

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 November 2017
Received in revised form 31 July 2018
Accepted 8 August 2018
Available online 10 August 2018

Keywords:
Abstract argumentation
Argumentation framework
Incomplete knowledge
Verification
Computational complexity

We tackle the problem of expressing incomplete knowledge in abstract argumentation 
frameworks originally introduced by Dung [26]. In applications, incomplete argumentation 
frameworks may arise as intermediate states in an elicitation process, or when merging 
different beliefs about an argumentation framework’s state, or in cases where complete 
information cannot be obtained. We consider two specific models of incomplete argumen-
tation frameworks, one focusing on attack incompleteness and the other on argument 
incompleteness, and we also provide a general model of incomplete argumentation 
framework that subsumes both specific models. In these three models, we study the 
computational complexity of variants of the verification problem with respect to six 
common semantics of argumentation frameworks: the conflict-free, admissible, stable, 
complete, grounded, and preferred semantics. We provide a full complexity map covering 
all three models and these six semantics. Our main result shows that the complexity of 
verifying the preferred semantics rises from coNP- to �

p
2 -completeness when allowing 

uncertainty about either attacks or arguments, or both.
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Abstract argumentation frameworks are a simple, yet powerful tool for nonmonotonic reasoning that were originally 
introduced by Dung [26]. In this model, individual arguments are considered to be abstract entities, disregarding their inter-
nal structure and focusing only on the attack relation between them. Various semantics defined by Dung and others allow 
to investigate the acceptability status of sets of arguments based on the attack relation. However, abstract argumentation 
frameworks are suitable to describe an argumentation’s state only in an optimal situation—they require that all relevant 
arguments are included and that there is no uncertainty regarding the attacks between them. If these conditions are not 
met, the existing methods for semantic analysis cannot be applied.

To capture uncertainty in various real-world settings like intermediate states of an evolving argumentation, partial-
information settings (and, in particular, permanently unavailable information), and the task of merging individual (subjec-

✩ This paper merges and extends preliminary versions presented at the 32nd AAAI Conference on Artificial Intelligence (AAAI’18, [8]), at the 4th International 
Conference on Algorithmic Decision Theory (ADT’15, [6,11]), and at the 6th and the 7th International Workshop on Computational Social Choice (COMSOC’16 
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tive) views on an argumentation, we introduce two specific models formalizing attack- and argument-incomplete argu-
mentation frameworks, and we then combine them to express simultaneous uncertainty about attacks and arguments. Our 
objective in each model is to analyze how the computational complexity of certain variants of the verification problem (to 
be formally defined in Section 2) is affected by introducing uncertainty.

Why do we study variants of the verification problem and their complexity? Well, when one encounters an interesting 
semantic property, the first question that arises is: Can it be verified? And the second: How hard is it to verify it? In 
particular, since we extend the standard model of abstract argumentation by allowing uncertainty about the attacks and/or 
the arguments, it is natural to wonder whether the complexity of the related more general problem variants significantly 
increases. Our results show that in many cases the complexity of verification does not rise; however, we also pinpoint cases 
where it does (see Table 1 in Section 5 for an overview). For a bigger picture, we will compare the verification complexity 
with that of other computational tasks, namely checking credulous and skeptical acceptance of arguments in incomplete 
argumentation frameworks in Section 5.

The standard verification problem is defined in Dung’s original model of argumentation framework, so we first need to 
adjust it to our extended models. A natural way to adapt a decision problem in the face of incomplete knowledge is to ask 
whether the answer is possibly (respectively, necessarily) “yes”—i.e., given all possible completions of the incomplete state, to 
ask whether at least one such completion (respectively, whether all these completions) are yes-instances of the original prob-
lem. This approach has already been taken in various areas of computational social choice: in voting by, e.g., Konczak and 
Lang [34], Xia and Conitzer [49], Chevaleyre et al. [18], and Baumeister et al. [9,10]; in fair division by Bouveret et al. [14]
and Baumeister et al. [4]; in algorithmic game theory by Lang et al. [35]; and in judgment aggregation by Baumeister et 
al. [5]. However, this approach is new to argumentation theory: In two of this paper’s predecessors, Baumeister et al. [6,11]
were the first to define and study possible and necessary verification for certain semantics in incomplete argumentation 
frameworks, and they continued this line of research in their recent work [8]. The present paper merges and extends these 
preliminary versions. A general overview on the use of abstract argumentation in artificial intelligence is given by Rahwan 
and Simari [41] and Bench-Capon and Dunne [12].

In related work, incomplete knowledge about the attack relation has first been introduced by Coste-Marquis et al. [19]
and has been analyzed with respect to argument acceptability by Cayrol et al. [16]. Unlike us, however, they develop new 
semantics for attack-incomplete argumentation frameworks and thus put a lot of focus on the incomplete framework it-
self, rather than on its completions. Other work on incomplete knowledge in abstract argumentation includes probabilistic 
argumentation frameworks (see, for example, the work of Li et al. [36], Rienstra [42], Fazzinga et al. [31,30], Hunter [33], 
and Doder and Woltran [25]) where arguments and/or attacks have an associated probability as a quantified notion of 
uncertainty.

A related concept to incomplete knowledge is that of dynamic change. Cayrol et al. [17] study how the addition or dele-
tion of one single argument or several arguments, together with a respective change in the attack relation, can change the 
set of extensions of an argumentation framework. Liao et al. [37] investigate the complexity of computing the status of an 
argument (i.e., whether it is accepted, rejected, or undecided) upon changing the arguments and attacks. Coste-Marquis et 
al. [21] study how belief revision postulates can be applied to argumentation systems. Boella et al. [13] address the ques-
tion of which arguments or attacks can be removed without changing the set of extensions. Another dynamic setting is that 
of merging or aggregating different argumentation frameworks. Coste-Marquis et al. [19] study incomplete argumentation 
frameworks as a possible result of merging individual views. Tohmé et al. [46] discuss criteria for methods that aggregate 
several attack relations into a single attack relation (without uncertainty). Delobelle et al. [23] study merging operators for 
abstract argumentation frameworks axiomatically. Maher [38] studies resistance to corruption in strategic argumentation. 
While instances in his model and in our argument-incomplete argumentation frameworks are technically similar, his re-
sults do not carry over to our problems. One difference is that he focuses on credulous or skeptical acceptance of specific 
arguments, whereas we consider verification of entire extensions.

Extension enforcement as defined by Baumann and Brewka [3,2] has some connections to our work; for example, ex-
pansions can be viewed as making an argumentation framework argument- and attack-incomplete. On the other hand, 
extension enforcement in the argument-fixed variant due to Coste-Marquis et al. [22] is obviously related to attack incom-
pleteness. Wallner et al. [48] studied extension enforcement from an algorithmic point of view and provided algorithms and 
complexity results, just as we do here. However, it is clear that our models and results differ from these works.

This paper is structured as follows. In Section 2, we provide the formal model of standard argumentation framework. 
Sections 3.1 and 3.2 introduce, respectively, the attack-incomplete and argument-incomplete model extensions, which are 
then combined into a universal incompleteness model in Section 3.3. We provide a full study of the computational com-
plexity of the possible and necessary variants of the verification problem for Dung’s original semantics in Section 4, divided 
into upper bounds in Section 4.1 and lower bounds in Section 4.2. In Section 5, we summarize our results and point out 
some interesting tasks that could be tackled in future work.

2. Preliminaries

In this section, we give formalizations of the basic notions of abstract argumentation. While we adapt some notation 
from the book chapter by Dunne and Wooldridge [29], the underlying concepts are due to Dung [26].
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Fig. 1. A simple argumentation framework.

Fig. 2. Relations among various semantics for sets of arguments.

Definition 1. An argumentation framework AF is a pair 〈A , R〉, where A is a finite set of arguments, and R ⊆ A × A is a 
binary relation. We say that a attacks b if (a, b) ∈ R .

We will use the common representation of argumentation frameworks by graphs: Every argumentation framework AF =
〈A , R〉 can be seen as a directed graph GAF = (V , E) by identifying arguments with vertices and attacks with directed 
edges, i.e., V = A and E = R .

Example 2. Fig. 1 displays the graph representation of the argumentation framework AF = 〈A , R〉 with A = {a, b, c} and 
R = {(a, b), (c, a)}. It will be used—and extended along the way—as a running example throughout the paper.

In the literature, many semantics have been defined which allow to evaluate the acceptability status of sets of arguments. 
We use the semantics introduced by Dung [26] in his seminal paper:

Definition 3. Let AF = 〈A , R〉 be an argumentation framework. A set S ⊆ A is

• conflict-free if there are no a, b ∈ S such that (a, b) ∈ R ,
• admissible if S is conflict-free and every a ∈ S is acceptable with respect to S , where an argument a ∈ A is acceptable 

with respect to S ⊆ A if, for each b ∈ A with (b, a) ∈ R , there is a c ∈ S such that (c, b) ∈ R (if an argument a ∈ A is 
acceptable with respect to a set S ⊆ A , we may also say that S defends a),

• preferred if S is a maximal (with respect to set inclusion) admissible set,
• stable if S is conflict-free and for every b ∈ A \ S there is an a ∈ S with (a, b) ∈ R ,
• complete if S is admissible and contains all a ∈ A that are acceptable with respect to S , and
• grounded if S is the least (with respect to set inclusion) fixed point of the characteristic function of AF , where the 

characteristic function FAF : 2A → 2A of AF is defined by

FAF(S) = {a ∈ A | a is acceptable with respect to S}.

The characteristic function always has a least fixed point, since it is monotonic with respect to set inclusion, so the ex-
istence of the (unique) grounded set is guaranteed. The complete sets of an argumentation framework can be characterized 
as the fixed points of FAF —in particular, the grounded set is complete. Dung [26] also proved several other correlations be-
tween his semantics. In particular, he showed that every admissible set is a subset of a preferred set, and that there always 
is at least one preferred set (which may be the empty set). Also, every stable set is preferred, and every preferred set is 
complete. It is easy to find examples that a preferred or grounded set does not have to be stable, and it is easy to show 
that each of the above defined semantics entails conflict-freeness and admissibility. Fig. 2 displays all relations among the 
various semantics that we use. If an area labeled with semantics s is fully included in an area labeled with semantics s′ , 
this indicates that in all argumentation frameworks all sets of arguments that fulfill s also fulfill s′ . The converse is not 
necessarily true, i.e., all displayed set inclusions are strict. Further, none of the areas are disjoint, so one and the same set 
of arguments might fulfill all semantics simultaneously.

Dung [26] uses the notion of extensions of an argumentation framework as a term for those subsets that fulfill the 
criteria of a given semantics. For example, a set of arguments is called a preferred extension of the argumentation framework
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Fig. 3. Attack incompleteness.

if it is a preferred set of the given argumentation framework. Dung considers conflict-freeness and admissibility to be basic 
requirements rather than semantics, and therefore did not call conflict-free or admissible sets “extensions”—for convenience, 
however, we will do so sometimes.

We also need some of the basic notions from complexity theory. We assume the reader to be familiar with the com-
plexity classes P, NP, and coNP, as well as hardness, completeness, polynomial-time-reducibility, ≤p

m, and (oracle) Turing 
machines. Problems that are solvable by a nondeterministic oracle Turing machine with access to an NP oracle belong to 
�

p
2 = NPNP; this class constitutes, together with �p

2 = coNPNP, the second level of the polynomial hierarchy, and was in-
troduced by Meyer and Stockmeyer [39,44]. It is known that P ⊆ NP ⊆ �

p
2 , but it is still unknown whether any of these 

inclusions is strict. For further details, see, e.g., the books by Papadimitriou [40] and Rothe [43].
Dunne and Wooldridge [29] surveyed several decision problems defined for argumentation frameworks, many of which 

are hard to decide, as they are complete for NP, coNP, or even �p
2 . Here, we will focus on the verification problem, which—as 

shown by Dimopoulos and Torres [24]—is coNP-complete for the preferred semantics, but can be decided in polynomial time 
for all other semantics defined above, which follows immediately from the work of Dung [26]. This problem is defined as 
follows:

s-Verification

Given: An argumentation framework 〈A ,R〉 and a subset S ⊆ A .
Question: Is S an s extension of 〈A ,R〉?

In our notation, the boldfaced letter s is a placeholder for any of the six semantics defined earlier. For better readability, 
we will sometimes shorten their names and write cf for conflict-freeness, ad for admissibility, pr for preferredness, st for 
stability, cp for completeness, and gr for groundedness.

3. Three models of incomplete argumentation framework

In this section, we introduce three different notions of incompleteness for argumentation frameworks. We start with 
attack incompleteness in Section 3.1, followed by argument incompleteness in Section 3.2. In Section 3.3, both approaches 
are combined to provide a general model of incompleteness in argumentation frameworks.

3.1. Attack incompleteness

The first notion of incompleteness we consider concerns the attack relation between arguments. While Dung’s origi-
nal model only allows to express whether an attack (a, b) exists ((a, b) ∈ R) or doesn’t exist ((a, b) /∈ R), the extended 
model also allows to explicitly express lack of information about an attack. Attack-incomplete argumentation frameworks were 
originally proposed by Coste-Marquis et al. [19]—we employ their model, but use a slightly modified notation.

Definition 4. An attack-incomplete argumentation framework is a triple 〈A , R, R?〉, where A is a nonempty set of arguments 
and R and R? are disjoint subsets of A ×A . R denotes the set of all ordered pairs of arguments between which an attack 
is known to definitely exist, while R? contains all possible additional attacks not (yet) known to exist. The set of attacks 
that are known to never exist is denoted by R− = (A × A ) \ (R ∪ R?).

Example 5. Extending the argumentation framework from Example 2 by three possible attacks,

R? = {(a,a), (b,a), (b, c)},
yields the attack-incomplete argumentation framework 〈A , R, R?〉 the graph representation of which is given in Fig. 3(b). 
This incomplete framework might be the result of merging several individual (subjective) views that share a common set of 
arguments but may have different attacks. Fig. 3(a) shows two such individual argumentation frameworks, which are merged 
into the attack-incomplete argumentation framework of Fig. 3(b) by including those attacks that exist in all individual views 
as definite attacks (R), and including attacks that exist in some but not all individual views as possible attacks (R? ).
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Fig. 4. Optimistic completion and pessimistic completion.

In an attack-incomplete argumentation framework 〈A , R, R?〉, for each possible but as yet unknown attack in R?, when 
deciding whether or not the attack will be included, one obtains a standard argumentation framework that can be seen as 
a completion of 〈A , R, R?〉.

Definition 6. Let AtIAF = 〈A , R, R?〉 be a given attack-incomplete argumentation framework. An argumentation framework 
AtIAF∗ = 〈A , R∗〉 with R ⊆ R∗ ⊆ R ∪ R? is called a completion of AtIAF .

The number of possible completions for a given attack-incomplete argumentation framework is clearly 2|R? | . For R? = ∅, 
there is no uncertainty and only one completion exists, which coincides with the attack-incomplete framework itself. In 
general, however, the number of completions may be exponential in relation to the instance’s size.

In an attack-incomplete argumentation framework AtIAF , we say that a property defined for standard argumentation 
frameworks (e.g., a semantics) holds possibly if there exists a completion AtIAF∗ of AtIAF for which the property holds, and a 
property holds necessarily if it holds for all completions of AtIAF . Accordingly, we can define two variants of the verification 
problem in the attack-incomplete case for each given semantics s:

s-Att-Inc-Possible-Verification (s-AttIncPV)

Given: An attack-incomplete argumentation framework AtIAF = 〈A ,R,R?〉 and a set S ⊆ A .
Question: Is there a completion AtIAF∗ of AtIAF such that S is an s extension of AtIAF∗?

s-Att-Inc-Necessary-Verification (s-AttIncNV)

Given: An attack-incomplete argumentation framework AtIAF = 〈A ,R,R?〉 and a set S ⊆ A .
Question: For all completions AtIAF∗ of AtIAF, is S an s extension of AtIAF∗?

Both problems are potentially harder than standard verification, since they add an existential (respectively, universal) 
quantifier over a potentially exponential space of solutions. In Section 4.1, however, we prove that, for all cases except 
possible verification using the preferred semantics, their complexity in fact does not increase.

3.1.1. Optimistic and pessimistic completions
In the remainder of this section, we provide efficient algorithms that, given an attack-incomplete argumentation frame-

work A F and a set S of arguments in A F , create a single critical completion—in that completion, S is most likely (or, most 
unlikely) among all possible completions to be an extension for some given semantics. In Section 4.1, we will use some of 
these critical completions to prove P membership of possible verification for the associated semantics.

We start with the optimistic and the pessimistic completion, which are critical for conflict-freeness, admissibility, and 
the stable semantics. These completions simply exclude (respectively, include) all possible attacks against S and include 
(respectively, exclude) the remaining possible attacks.

Definition 7. Let AtIAF = 〈A , R, R?〉 be an attack-incomplete argumentation framework and let S ⊆ A .

• The optimistic completion of AtIAF for S is AtIAFopt
S = 〈A , Ropt

S 〉 with Ropt
S = R ∪ {(a, b) ∈ R? | b /∈ S}.

• The pessimistic completion of AtIAF for S is AtIAFpes
S = 〈A , Rpes

S 〉 with Rpes
S = R ∪ {(a, b) ∈ R? | b ∈ S}.

Example 8. Consider again the attack-incomplete argumentation framework from Fig. 3(b); Fig. 4(a) shows it with the 
arguments from the set S = {b, c} highlighted by boldfaced circles. Its optimistic and pessimistic completions for S are given 
in Fig. 4(b). The possible attacks added to the set of attacks in the optimistic (respectively, pessimistic) completion are 
displayed as boldfaced arcs.

Propositions 9 and 10 establish that the optimistic and pessimistic completions are indeed critical for the given proper-
ties.
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Proposition 9. Let AtIAF = 〈A , R, R?〉 be an attack-incomplete argumentation framework, let S ⊆ A , and let AtIAFopt
S be the opti-

mistic completion of AtIAF for S.

1. S is possibly conflict-free in AtIAF if and only if S is a conflict-free extension of AtIAFopt
S .

2. If S is conflict-free in AtIAFopt
S , then a ∈ S is possibly acceptable with respect to S in AtIAF if and only if a is acceptable with respect 

to S in AtIAFopt
S .

3. S is possibly admissible in AtIAF if and only if S is an admissible extension of AtIAFopt
S .

4. S is possibly stable in AtIAF if and only if S is a stable extension of AtIAFopt
S .

Proof. The converse is trivial in all cases: If S fulfills a given criterion in AtIAFopt
S , this immediately yields that S possibly 

fulfills the criterion in AtIAF . We now prove the other direction of the equivalence individually for each criterion:

1. If a set S of arguments is not conflict-free in AtIAFopt
S , then there must be an attack between elements of S in Ropt

S , 
which must be already in R due to how Ropt

S is constructed, and which therefore exists in every completion of AtIAF . 
Thus S is not a possibly conflict-free set in AtIAF .

2. Assume that S is conflict-free in AtIAFopt
S . Then, if there is some a ∈ S that is not acceptable with respect to S in 

AtIAFopt
S , it must be attacked by some b ∈ A in Ropt

S and there is no attack from an element of S against b in Ropt
S . By 

construction, Ropt
S does not contain any possible attacks (members of R?) that attack elements of S , and it contains all 

possible attacks that can defend S , i.e., that target attackers of S . Therefore, all attacks in Ropt
S against elements of S are 

already in R , so the undefended attack from b against a is in every completion of AtIAF . Since a cannot be acceptable 
with respect to S in any completion of AtIAF , a is not possibly acceptable with respect to S in AtIAF .

3. Assume that S is not an admissible extension in AtIAFopt
S , i.e., S is not conflict-free in AtIAFopt

S or there is some a ∈ S

that is not acceptable with respect to S in AtIAFopt
S . In either case, the previous results imply that S is not conflict-free 

in any completion of AtIAF or a is not acceptable with respect to S in any completion of AtIAF . Thus S is not a possibly 
admissible extension in AtIAF .

4. If a set S of arguments is not stable in AtIAFopt
S , S is necessarily not conflict-free in AtIAF or there is an a ∈ A � S that 

is not attacked by S in AtIAFopt
S , and therefore—by construction of AtIAFopt

S —a cannot be attacked by S in any completion 
of AtIAF . In both cases, there is no completion of AtIAF for which S is stable, so S is not a possibly stable extension of 
AtIAF .

This completes the proof. �
Proposition 10. Let AtIAF = 〈A , R, R?〉 be an attack-incomplete argumentation framework, S ⊆ A , and let AtIAFpes

S be the pes-
simistic completion of AtIAF for S.

1. S is necessarily conflict-free in AtIAF if and only if S is a conflict-free extension of AtIAFpes
S .

2. If S is conflict-free in AtIAFpes
S , then a ∈ S is necessarily acceptable with respect to S in AtIAF if and only if a is acceptable with 

respect to S in AtIAFpes
S .

3. S is necessarily admissible in AtIAF if and only if S is an admissible extension of AtIAFpes
S .

4. S is necessarily stable in AtIAF if and only if S is a stable extension of AtIAFpes
S .

Proof. Here, the left-to-right implications are trivial: If S necessarily fulfills a criterion in AtIAF , it must fulfill it in particular 
in the pessimistic completion. We prove the other direction of the implications individually:

1. If S is conflict-free in AtIAFpes
S , then all interior attacks among elements of S are in R− , because if such an attack were 

in R , S would not be conflict-free in any completion of AtIAF , and if such an attack were in R?, it would have been 
included in Rpes

S , which contradicts our assumption that S is conflict-free in AtIAFpes
S . Since all interior attacks among 

elements of S are in R− , S is necessarily conflict-free in AtIAF .
2. Assume that S is conflict-free in AtIAFpes

S . Then, if each a ∈ S is acceptable with respect to S in AtIAFpes
S , this means 

that S defends each of these arguments against all their attackers. By construction, Rpes
S contains all possible attacks 

from R? that attack elements of S , and no possible attacks that can defend S . Therefore, all attacks in Rpes
S that defend 

elements of S against possible or definite attacks are already in R , otherwise they could not be in Rpes
S , and are 

therefore in R∗ for any completion AtIAF∗ . This implies that each a ∈ S is necessarily acceptable with respect to S in 
AtIAF .

3. Assume that S is an admissible extension of AtIAFpes
S , i.e., S is conflict-free in AtIAFpes

S and each a ∈ S is acceptable with 
respect to S in AtIAFpes

S . The previous results then imply that S is necessarily conflict-free in AtIAF and each a ∈ S is 
necessarily acceptable with respect to S in AtIAF, which immediately yields that S is necessarily admissible in AtIAF .
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Fig. 5. Graph representations of initial, intermediate, and final argumentation frameworks in the execution of the fixed completion algorithm of Definition 11
in Example 12 using S = {a, b}. Dashed attacks again are uncertain.

4. Assume that S is a stable extension of AtIAFpes
S , i.e., S is conflict-free in AtIAFpes

S and S attacks each element b /∈ S in 
AtIAFpes

S . Again, this implies that S is necessarily conflict-free in AtIAF . Further, since Rpes
S only contains attacks by S

that are already in R , S necessarily attacks each element b /∈ S in AtIAF . Combined, we have that S is necessarily stable 
in AtIAF .

This completes the proof. �
3.1.2. Fixed and unfixed completions

Turning now to the complete and the grounded semantics, we define the fixed and the unfixed completion. These 
completions make it most likely (respectively, unlikely) for S to be a fixed point of the completion’s characteristic function.

Definition 11. Let AtIAF = 〈A , R, R?〉 be an attack-incomplete argumentation framework and S ⊆ A . The fixed completion 
AtIAFfix

S of AtIAF for S is the completion that is obtained by the following algorithm. The algorithm defines a finite sequence 
(AtIAFi)i≥0 of attack-incomplete argumentation frameworks, with the fixed completion being the minimal completion (that 
discards all remaining possible attacks) of the sequence’s last element.

1. Include definite attacks: Let AtIAF0 = AtIAF .
2. Include external conflicts: Let AtIAF1 = 〈A , R1, R?

1〉 with
• R1 = R ∪ {(a, b) ∈ R? | a /∈ S and b /∈ S} and
• R?

1 = R? \ R1.
3. Include defending attacks: Let T = {t ∈ A � S | ∃s ∈ S : (t, s) ∈ R1} (i.e., each argument in T necessarily attacks S) and 

let AtIAF2 = 〈A , R2, R?
2〉 with

• R2 = R1 ∪ {(a, b) ∈ R?
1 | a ∈ S and b ∈ T } and

• R?
2 = R?

1 \ R2.
4. Avoid S defending arguments outside of S: For the current i (initially, i = 2), let AtIAFmin

i be the minimal completion of 
AtIAFi and let Di = FAtIAFmin

i
(S) � S (i.e., Di is the set of arguments that are not in S , but that are defended by S in the 

current minimal completion). Let AtIAFi+1 = 〈A , Ri+1, R?
i+1〉 with

• Ri+1 = Ri ∪ {(a, b) ∈ R?
i | a ∈ S and b ∈ Di} and

• R?
i+1 = R?

i \ Ri+1,
and set i ← i + 1.

5. Repeat Step 4 until no more attacks are added.
6. The fixed completion of AtIAF for S is AtIAFfix

S = 〈A , Rfix
S 〉 with Rfix

S = Ri .

Example 12. Consider an instance (AtIAF, S) of cp-AttIncPV or gr-AttIncPV consisting of an attack-incomplete argumen-
tation framework AtIAF = 〈A , R, R?〉 with A = {a, b, c, d, e, f }, R = {(a, d), (c, b), (e, f )}, R? = {(a, b), (a, c), (a, e), (d, e)}, 
and a set S = {a, b}. The algorithm for the fixed completion from Definition 11 generates the following sequence (AtIAFi)i≥0
of attack-incomplete argumentation frameworks. Each of them is illustrated by its graph representation in Fig. 5.
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• In Step 1, AtIAF0 = AtIAF .
• In Step 2, the attack (d, e) is included in R1 because both d and e are not members of S .
• In Step 3, All attacks by S against arguments in T = {c}—namely, the attack (a, c)—are included in R2.
• Step 4, first iteration: D2 = {e}, because a ∈ S defends e against its only attacker d. All attacks by S against arguments 

in D2—namely, the attack (a, e)—are included in R3.
• Step 4, second iteration: D3 = { f }. However, there are no possible attacks by S against f , so R4 = R3 and the break 

condition in Step 5 is met.
• The remaining possible attack (a, b) is discarded by the minimal completion of AtIAF4 in Step 6. S = {a, b} is not 

complete or grounded in it, since S defends f . Proposition 14 will establish that this implies that S is neither possibly 
complete nor possibly grounded in AtIAF .

Now consider a slight variation of this instance where, additionally, the possible attack (b, f ) ∈ R? exists. All steps before 
the second iteration of Step 4 remain the same. Again, D3 = { f }, but now the attack (b, f ) is added to R4. In the third 
iteration, D4 = ∅, so the loop terminates. Again, (a, b) is discarded by the minimal completion of the final intermediate 
argumentation framework AtIAF5. The fixed completion for this instance is given in Fig. 5(f). Here, S is both complete and 
grounded in the fixed completion and therefore possibly complete and possibly grounded in AtIAF .

Proposition 13. For an attack-incomplete argumentation framework AtIAF = 〈A , R, R?〉 and a set S ⊆ A of arguments, the fixed 
completion AtIAFfix

S for S can be constructed in polynomial time.

Proof. All individual steps in the construction can obviously be carried out in time polynomial in the number of arguments. 
It remains to prove that Step 4 is executed at most a polynomial number of times. In each execution there is either (at 
least) one possible attack that is added to Ri+1, or no action is taken in which case the loop terminates. Therefore, the 
number of times Step 4 is executed is bounded by the number of possible attacks in the attack-incomplete argumentation 
framework AtIAF , which is at most n2, where n is the number of arguments. This completes the proof. �

Proposition 14 establishes that the fixed completion is critical for possible verification using the complete and grounded 
semantics.

Proposition 14. Let AtIAF = 〈A , R, R?〉 be an attack-incomplete argumentation framework, S ⊆ A , and let AtIAFfix
S be the fixed 

completion of AtIAF for S.

1. S is a possibly complete extension of AtIAF if and only if S is a complete extension of AtIAFfix
S .

2. S is a possibly grounded extension of AtIAF if and only if S is the grounded extension of AtIAFfix
S .

Proof. The converse is trivial in both cases. Further, if S is not an admissible extension in AtIAFfix
S , then S is not admissible 

in any completion of AtIAF , due to the same arguments that we used for the optimistic completion and, therefore, neither 
possibly complete nor possibly grounded in AtIAF . So, we may assume that S is admissible in AtIAFfix

S .

1. Assume that S is not a complete extension of AtIAFfix
S , i.e., S is not a fixed point of F

AtIAFfix
S

. We will show that this 
implies that S is not possibly complete in AtIAF . Let AtIAF∗ be any completion of AtIAF in which S is admissible. Since 
S is not a fixed point of F

AtIAFfix
S

, there is an argument b /∈ S which is acceptable with respect to S in AtIAFfix
S . We prove 

that, then, there must be some c /∈ S for which all attackers of c are attacked by S in AtIAF∗ (c = b may or may not be 
the case) by individually covering all cases in which attacks are added to Rfix

S :

• All attacks from R? between arguments outside of S , which are added to Rfix
S in Step 2, cannot make an argument 

b /∈ S acceptable with respect to S: If S did not attack all attackers of an argument before, it cannot do so after more
attackers are added.

• All attacks that are added in Step 3 are crucial for S to be admissible, and must therefore also be included in R∗ . 
In a case where multiple arguments in S attack a single attacker of S , it would be sufficient to include one of these 
defending attacks, but including all of them does not make a difference, since the criterion of being acceptable with 
respect to S does not distinguish between different elements of S .

• All attacks that are added in Step 4 are attacks by S against arguments that are currently acceptable with respect to 
S . Since all possible attacks among arguments outside of S were already included in Step 2, the only way to destroy 
acceptability of these arguments is by S directly attacking them. Therefore, none of the attacks added in Step 4
can be omitted without making the respective argument acceptable with respect to S (again, it is not necessary to 
distinguish between multiple attacks by different arguments in S against the same argument). It is possible for a given 
b /∈ S to be acceptable with respect to S in AtIAFfix

S and not in AtIAF∗ , but this happens only if S attacks an attacker 
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(or several attackers) of b in AtIAFfix
S that would otherwise be acceptable with respect to S , and which therefore must 

be acceptable with respect to S in AtIAF∗ . In either case, if an argument outside of S is acceptable with respect to S
in AtIAFfix

S , then some argument outside of S must be acceptable with respect to S in each completion AtIAF∗ of AtIAF

in which S is admissible. Therefore, if S is not a complete extension of AtIAFfix
S , it is not a complete extension of any 

completion AtIAF∗ of AtIAF , and therefore not a possibly complete extension of AtIAF .
2. Let AtIAF∗ be an arbitrary completion of AtIAF and assume that S is its grounded extension. We prove that, then, S is 

also the grounded extension of AtIAFfix
S . Let Ai = F i

AtIAF∗ (∅) and Bi = F i
AtIAFfix

S

(∅), where F i is the i-fold composition of 

the respective characteristic function F . Since S is grounded in AtIAF∗ , it is complete in AtIAFfix
S due to our previous 

result, and it holds that Ai ⊆ S for all i ≥ 0 and there exists a j ≥ 0 such that for all i ≥ j, it holds that Ai = S . We will 
prove that Ai ⊆ Bi ⊆ S for all i ≥ 0. Combined, these statements show that there exists some j such that Bi = S for all 
i ≥ j, which is equivalent to S being the grounded extension of AtIAFfix

S .
First, we prove that Ai ⊆ Bi for all i ≥ 0. For i = 0, we have Ai = Bi = ∅. For i = 1, Ai (respectively, Bi ) is the set of all 
unattacked arguments in AtIAF∗ (respectively, in AtIAFfix

S ). We know that A1 ⊆ S . Since the fixed completion does not 
include any possible attacks against elements of S , all a ∈ S that are unattacked in AtIAF∗ are unattacked in AtIAFfix

S , too, 
which proves A1 ⊆ B1. If we now have Ak ⊆ Bk for some k ≥ 1, this implies Ak+1 ⊆ Bk+1: Assume that this were not 
true, i.e., that Ak ⊆ Bk , but there is an argument a ∈ Ak+1 with a /∈ Bk+1. a is acceptable with respect to Ak in AtIAF∗ but 
not acceptable with respect to Bk in AtIAFfix

S . We know that—since Ak+1 ⊆ S—no possible attacks against Ak+1 (and in 
particular, against a) are included in AtIAFfix

S and all possible defending attacks by arguments in Ak+1 against arguments 
outside of S are included in AtIAFfix

S . Further, no element of S attacks a in AtIAFfix
S , since a ∈ S and S is complete in 

AtIAFfix
S . Therefore, a is acceptable with respect to Ak in AtIAFfix

S ; otherwise it could not be acceptable with respect to Ak

in AtIAF∗ . Now, the only way for a to not be acceptable with respect to Bk in AtIAFfix
S is if there were some b ∈ Bk � Ak

that necessarily attacks a. Then there would have to be a defending attack by an argument d ∈ Ak against b in AtIAF∗ , 
since a is acceptable with respect to Ak in AtIAF∗ . This implies that b /∈ S , since S is conflict-free in AtIAF∗ . Finally, 
since (d, b) is a possible (or even a necessary) defending attack by an element of S against b /∈ S , (d, b) ∈ Rfix

S holds by 
construction of the fixed completion, which contradicts that Bk is admissible in AtIAFfix

S . Therefore, a must be acceptable 
with respect to Bk in AtIAFfix

S , which proves that Ak+1 ⊆ Bk+1.

Now we prove that Bi ⊆ S for all i ≥ 0: Assume that Bi � S for some i ≥ 0. Then it also holds that Gfix
S � S for the 

grounded extension Gfix
S of AtIAFfix

S . It further holds that S ⊂ Gfix
S , since there exists a j ≥ 0 such that S ⊆ Bi for all i ≥ j, 

as established before. However, this contradicts the fact that S is complete in AtIAFfix
S , since the grounded extension Gfix

S

of AtIAFfix
S is its least complete extension with respect to set inclusion, as was shown by Dung [26], and the complete 

set S cannot be a strict subset of Gfix
S .

This completes the proof. �
We now turn to the unfixed completion, which can serve as a critical completion for necessary verification for the 

complete and grounded semantics.

Definition 15. Let AtIAF = 〈A , R, R?〉 be an attack-incomplete argumentation framework, let S ⊆ A , and fix any ordering 
σ : A → {1, . . . , |A |} on the arguments in A . The unfixed completion AtIAFunf

S,σ of AtIAF for S with respect to σ is the comple-
tion that is obtained by the following algorithm. The algorithm defines a finite sequence (AtIAFi)i≥0 of attack-incomplete 
argumentation frameworks, with the unfixed completion being the minimal completion of the sequence’s last element.

1. Include definite attacks: Let AtIAF0 = AtIAF .
2. Include attacks against S: Let AtIAF1 = 〈A , R1, R?

1〉 with
• R1 = R ∪ {(a, b) ∈ R? | b ∈ S} and
• R?

1 = R? \ R1.
3. Exclude external conflicts: Let AtIAF2 = 〈A , R2, R?

2〉 with
• R2 = R1 and
• R?

2 = R?
1 \ {(a, b) ∈ R?

1 | a /∈ S and b /∈ S}.
4. Exclude defending attacks: Let T = {t ∈ A � S | ∃s ∈ S : (t, s) ∈ R2} (i.e., each argument in T necessarily attacks S) and 

let AtIAF3 = 〈A , R3, R?
3〉 with

• R3 = R2 and
• R?

3 = R?
2 \ {(a, b) ∈ R?

2 | a ∈ S and b ∈ T }.
5. Try to make S defend arguments outside of S: Let D = A � S = {d1, . . . , dk}. For the current i (initially, i = 3) and 

successively for each d j ∈ D (in order according to σ ), do:
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Fig. 6. Graph representations of initial, intermediate, and final argumentation frameworks in the execution of the unfixed completion algorithm of Defini-
tion 15 in Example 16 using S = {a, b}. Dashed attacks again are uncertain.

(a) For Sd j = S ∪ {d j}, let AtIAFopt
i,Sd j

be the optimistic completion of AtIAFi for Sd j and let AtIAFmin
i be the minimal 

completion of AtIAFi .
(b) If d j is defended by S in AtIAFopt

i,Sd j
, but not defended by S in AtIAFmin

i , let AtIAFi+1 = 〈A , Ri+1, R?
i+1〉 with

• Ri+1 = Ri ∪ {(a, b) ∈ R?
i | a ∈ S and (b, d j) ∈ Ri} and

• R?
i+1 = R?

i \ Ri+1,
and set i ← i + 1. (To accept an argument d j that is not currently defended by S but possibly defended by S, include 
all possible attacks by S against d j ’s attackers.)

6. The unfixed completion of AtIAF for S with respect to σ is AtIAFunf
S,σ = 〈A , Runf

S,σ 〉 with Runf
S,σ = Ri .

Example 16. Consider an instance (AtIAF, S) of cp-AttIncNV or gr-AttIncNV consisting of an attack-incomplete argumenta-
tion framework AtIAF = 〈A , R, R?〉 with A = {a, b, c, d, e}, R = {(a, d), (a, e), (c, c), (c, d)}, R? = {(a, c), (b, e), (d, e), (e, b)}, 
and a set S = {a, b}. σ orders arguments lexicographically. The algorithm for the unfixed completion from Definition 15
generates the following sequence (AtIAFi)i≥0 of attack-incomplete argumentation frameworks (each of them is illustrated by 
its graph representation in Fig. 6):

• In Step 1, AtIAF0 = AtIAF .
• In Step 2, the attack (e, b) is included in R1 because b is a member of S .
• In Step 3, the attack (d, e) is excluded from R?

2 because both d and e are not members of S .
• In Step 4, all attacks by arguments in S against arguments in T = {e}—namely, the attack (b, e)—are excluded from R?

3 .
• In Step 5, we have D = {c, d, e}. The iteration order due to σ is c, then d, and then e. There is only one possible attack 

remaining, namely, (a, c).
– Sc = {a, b, c}. Both the optimistic completion AtIAFopt

4,Sc
of AtIAF4 for Sc and the minimal completion AtIAFmin

4 of AtIAF4
discard the possible attack (a, c). c is defended by S in both completions, so the condition in Step 5b is not met and 
no new intermediate argumentation framework is created.

– Sd = {a, b, d}. Here, the optimistic completion AtIAFopt
4,Sd

of AtIAF4 for Sd includes the possible attack (a, c) and the 
minimal completion AtIAFmin

4 of AtIAF4 discards the possible attack (a, c). However, d is not defended by S in either 
of the two completions, so again, there is no new intermediate argumentation framework.

– Se = {a, b, e}. Again, the optimistic completion AtIAFopt
4,Se

of AtIAF4 for Se includes the possible attack (a, c) and the 
minimal completion AtIAFmin

4 of AtIAF4 discards the possible attack (a, c). Again, e is not defended by S in either 
completion and there is no new intermediate argumentation framework.

• In Step 6, the remaining possible attack (a, c) in AtIAF4 is discarded by the unfixed completion. S = {a, b} is complete 
and grounded in it, and therefore, as will be shown in Proposition 18, S is necessarily complete and grounded in AtIAF .
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Consider again a slight variation (AtIAF′, S) of this instance where the attack (a, d) does not exist. All steps before the second 
iteration of Step 5 are the same as before. Again, the optimistic completion AtIAF′ opt

4,Sd
of AtIAF′

4 for Sd includes the possible 
attack (a, c) and the minimal completion AtIAF′ min

4 of AtIAF′
4 discards the possible attack (a, c). This time, d is defended by 

S in AtIAF′ opt
4,Sd

, but not in AtIAF′ min
4 . Thus, a new intermediate argumentation framework AtIAF ′

5 is created which includes 
the possible attack (a, c) and which also is the unfixed completion of AtIAF ′ displayed in Fig. 6(f). Here, S defends d /∈ S
and is neither complete nor grounded in the unfixed completion, and therefore clearly neither necessarily complete nor 
necessarily grounded in AtIAF′ .

Proposition 17. For an attack-incomplete argumentation framework AtIAF = 〈A , R, R?〉, a set S ⊆ A of arguments, and an ordering 
σ on A , the unfixed completion AtIAFunf

S,σ of AtIAF for S with respect to σ can be constructed in polynomial time.

Proof. Again, all individual steps can be carried out in time polynomial in the number of arguments. The sub-loop in Step 5
has a predefined number of iterations that is bounded by the number n of arguments. The construction of the minimal and 
the optimistic completion in each iteration is possible in polynomial time. This completes the proof. �

Proposition 18 establishes that the unfixed completion is critical for necessary verification using the complete and 
grounded semantics.

Proposition 18. Let AtIAF = 〈A , R, R?〉 be an attack-incomplete argumentation framework, S ⊆ A , σ be an ordering on A , and 
let AtIAFunf

S,σ be the unfixed completion of AtIAF for S with respect to σ .

1. S is a necessarily complete extension of AtIAF if and only if S is a complete extension of AtIAFunf
S,σ .

2. S is a necessarily grounded extension of AtIAF if and only if S is the grounded extension of AtIAFunf
S,σ .

Proof. Here, the left-to-right implication is trivial in both cases. We prove the other direction of the implications indi-
vidually. First, if S is not necessarily admissible in AtIAF , S is not admissible either (and, therefore, neither complete nor 
grounded) in AtIAFunf

S,σ , because AtIAFunf
S,σ includes all possible attacks against arguments in S and excludes all defending 

attacks by arguments in S . We may therefore assume that S is necessarily admissible in AtIAF .

1. Assume that S is not necessarily complete in AtIAF . We prove that S is not complete in AtIAFunf
S,σ : Since S is necessarily 

admissible but not necessarily complete in AtIAF , there is a completion AtIAF∗ of AtIAF in which there exists some 
b′ ∈ A � S that is acceptable with respect to S in AtIAF∗ . Obviously, this means that b′ is possibly acceptable with 
respect to S in AtIAF . We will prove that, after each step of the algorithm, if there is some b ∈ A � S that is acceptable 
with respect to S in AtIAFi , then there also is some c ∈ A � S that is acceptable with respect to S in AtIAFi+1 (c = b
may or may not be the case).
• After Step 1, b′ is possibly acceptable with respect to S in AtIAF0, since AtIAF0 = AtIAF .
• After Step 2, b′ is possibly acceptable with respect to S in AtIAF1, because including attacks against S has no influence 

on whether S possibly attacks all attackers of b′ .
• After Step 3, b′ is possibly acceptable with respect to S in AtIAF2, because excluding attacks between arguments in 

A � S can only make it more likely for S to attack all attackers of b′ .
• Step 4 has no effect on instances where S is necessarily admissible, because there are no possible defending attacks 

by S against A � S that could be excluded, since in such an instance S necessarily defends itself against all possible 
attacks.

• The only way for an argument b ∈ A � S to no longer be possibly acceptable with respect to S in AtIAFi+1 after an 
iteration of Step 5 is if an attack by some a ∈ S against b is included. If this is the case, the defended argument d j
is possibly acceptable with respect to S in AtIAFi+1. Either way, the previously possibly acceptable argument b or the 
new argument d j is possibly acceptable with respect to S in AtIAFi+1.

After Step 4, the only attacks that are not yet definite are attacks by arguments in S against arguments in A � S . 
Therefore, the only way for the condition in Step 5b to be met—i.e., d j is possibly, but not currently accepted by 
S—is if there is an attack (a, b) ∈ R?

i with a ∈ S and (b, d j) ∈ Ri , which proves that AtIAFi+1 �= AtIAFi . So, when the 
algorithm terminates in Step 6, we know that there is an argument b ∈ A � S that is possibly acceptable with respect 
to S in AtIAFi (as proven earlier) and that is also acceptable with respect to S in AtIAFi ’s minimal completion, because 
otherwise the condition in Step 5b would have been met. Since the unfixed completion is AtIAFi ’s minimal completion, 
this establishes that there is an argument in A � S that is acceptable with respect to S in AtIAFunf

S,σ , which implies that 
S is not complete in AtIAFunf

S,σ , and concludes the proof of the first item.

2. Assume that S is the grounded extension of AtIAFunf
S,σ . We prove that, then, S is the grounded extension of all com-

pletions of AtIAF . Let AtIAF∗ be an arbitrary completion of AtIAF and let Ai = F i
AtIAF∗ (∅) and Bi = F i

AtIAFunf
S,σ

(∅), where F i
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is the i-fold composition of the respective characteristic function F . Since S is grounded in AtIAFunf
S,σ , it is complete in 

AtIAF∗ due to our previous result, and it holds that Bi ⊆ S for all i ≥ 0 and there exists a j ≥ 0 such that for all i ≥ j, it 
holds that Bi = S . We will prove that Bi ⊆ Ai ⊆ S for all i ≥ 0. Combined, these statements show that there exists some 
j such that Ai = S for all i ≥ j, which is equivalent to S being the grounded extension of AtIAF∗ .
First, we prove that Bi ⊆ Ai for all i ≥ 0: For i = 0, we have Ai = Bi = ∅. For i = 1, Ai (respectively, Bi ) is the set 
of all unattacked arguments in AtIAF∗ (respectively, in AtIAFunf

S,σ ). We know that B1 ⊆ S . Since the unfixed completion 
includes all possible attacks against elements of S , all a ∈ S that are unattacked in AtIAFunf

S,σ are necessarily unattacked, 
and therefore unattacked in AtIAF∗ , too, which proves B1 ⊆ A1. If we now have Bk ⊆ Ak for some k ≥ 1, this implies 
Bk+1 ⊆ Ak+1: Assume that this is not true, i.e., that Bk ⊆ Ak , but there is an argument b ∈ Bk+1 with b /∈ Ak+1. b is 
acceptable with respect to Bk in AtIAFunf

S,σ but not acceptable with respect to Ak in AtIAF∗ . Recall that all possible attacks 
against Bk+1 (and in particular, against b) are included in AtIAFunf

S,σ and no possible defending attacks by arguments in 
Bk+1 against arguments outside of S are included in AtIAFunf

S,σ . Therefore, since b is acceptable with respect to Bk ⊆ S in 
AtIAFunf

S,σ , it is necessarily acceptable with respect to Bk and, in particular, acceptable with respect to Bk in AtIAF∗ . Now, 
the only way for b to not be acceptable with respect to Ak in AtIAF∗ is if there were some a ∈ Ak � Bk that possibly 
attacks b. Then there would have to be a defending attack by an argument d ∈ Bk against a in AtIAFunf

S,σ , since b is 
acceptable with respect to Bk in AtIAFunf

S,σ . This implies that a /∈ S , since S is conflict-free in AtIAFunf
S,σ . Finally, since (d, a)

is a necessary attack, it holds in particular that (d, a) ∈ R∗ , which contradicts that Ak is admissible in AtIAF∗ . Therefore, 
b must be acceptable with respect to Ak in AtIAF∗ , which proves that Bk+1 ⊆ Ak+1.
Now we prove that Ai ⊆ S for all i ≥ 0: Assume that Ai � S for some i ≥ 0. Then it also holds that G∗ � S for the 
grounded extension G∗ of AtIAF∗ . It further holds that S ⊂ G∗ , since there exists a j ≥ 0 such that S ⊆ Ai for all i ≥ j, 
as established before. However, this contradicts the fact that S is complete in AtIAF∗ , since the grounded extension G∗
of AtIAF∗ is its least complete extension with respect to set inclusion, and cannot be a strict subset of the complete 
extension S .

This completes the proof. �
3.2. Argument incompleteness

In our second model, we allow uncertainty about the set of arguments. While the total set of arguments that may take 
part in the argumentation is known (and finite), there is uncertainty for some of these arguments as to whether or not 
they actually exist in the argumentation—they may not be constructible given a certain knowledge base, they may not be 
applicable, or they may simply not be brought forward by any agent. Note that this notion of possible nonexistence is 
different from that of (in)acceptability.

Definition 19. An argument-incomplete argumentation framework is a triple 〈A , A ?, R〉, where A and A ? are disjoint sets of 
arguments and R is a subset of (A ∪ A ?) × (A ∪ A ?). A is the set of arguments that are known to definitely exist, while 
A ? contains all possible additional arguments that are not (yet) known to exist. Attacks in R that are incident to at least 
one uncertain argument (i.e., a member of A ?) are called conditionally definite; they are known to definitely exist exactly if 
both incident arguments are known to definitely exist. All other attacks in R (i.e., attacks not incident to a member of A ?) 
are simply called definite.

Note that, in this model, there is no uncertainty regarding the attack relation—even though conditionally definite attacks 
may be indirectly excluded by excluding an incident argument. As an example, consider a discussion where each agent has 
a private set of arguments that they can bring forward, but they may also choose to not introduce some of the arguments 
that they know of—maybe for strategic purposes. However, for the “outcome” of the argumentation, only those arguments 
that were explicitly stated by some agent are considered. Such a situation could be modeled using an argument-incomplete 
argumentation framework.

Example 20. Extending the argumentation framework from Example 2 by two possible arguments A ? = {d, e} together with 
an expansion of the attack relation, by including the attacks (d, b), (d, c), (b, d), and (e, c), yields the argument-incomplete 
argumentation framework 〈A , A ?, R〉 the graph representation of which is given in Fig. 7(b). As already discussed in 
Example 5, such an incomplete framework might result from merging several individual views, which agree on all attacks 
over those arguments that are known to all agents but may have different argument sets. Fig. 7(a) shows two such individual 
argumentation frameworks, which are then merged into the argument-incomplete argumentation framework of Fig. 7(b) by 
including all arguments that are known in every agent’s argumentation framework as definite arguments (A ), and including 
arguments that exist in some but not in all agents’ argumentation frameworks as possible arguments (A ?). Note that there 
is no choice of whether or not we include attacks: Attacks must be identical in all agents’ individual views that contain the 
corresponding arguments, and an attack is included in the argument-incomplete argumentation framework if and only if 
both adjacent arguments are included.
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Fig. 7. Argument incompleteness.

Also for argument-incomplete argumentation frameworks, we can define completions quite similar to those of Defini-
tion 6:

Definition 21. Let ArIAF = 〈A , A ?, R〉 be an argument-incomplete argumentation framework. For a set A ∗ of arguments 
with A ⊆ A ∗ ⊆ A ∪ A ?, define the restriction of R to A ∗ by R|A ∗ = {(a, b) ∈ R | a, b ∈ A ∗}. Then an argumentation 
framework ArIAF∗ = 〈A ∗, R|A ∗ 〉 is called a completion of ArIAF .

Note that a conditionally definite attack can be contained in a completion ArIAF∗ only if ArIAF∗ includes both arguments 
incident to this attack. Obviously, the total number of possible completions is again exponential—this time in the number 
of possible new arguments, i.e., there can be up to 2|A ?| possible completions.

Let us now define the two variants of the verification problem in argument-incomplete argumentation frameworks for 
each given semantics s:

s-Arg-Inc-Possible-Verification (s-ArgIncPV)

Given: An argument-incomplete argumentation framework ArIAF = 〈A ,A ?,R〉 and a set S ⊆ A ∪ A ?.
Question: Is there a completion ArIAF∗ = 〈A ∗,R|A ∗ 〉 of ArIAF such that S|A ∗ = S ∩ A ∗ is an s extension of ArIAF∗?

s-Arg-Inc-Necessary-Verification (s-ArgIncNV)

Given: An argument-incomplete argumentation framework ArIAF = 〈A , A ?, R〉 and a set S ⊆ A ∪ A ?.
Question: For all completions ArIAF∗ = 〈A ∗, R|A ∗ 〉 of ArIAF, is S|A ∗ = S ∩ A ∗ an s extension of ArIAF∗?

3.3. General incompleteness

We now combine the two given models by allowing incomplete knowledge about both the attack relation and the set of 
arguments at the same time.

Definition 22. An incomplete argumentation framework is a quadruple 〈A , A ?, R, R?〉, where A and A ? are disjoint sets of 
arguments and R and R? are disjoint subsets of (A ∪ A ?) × (A ∪ A ?). A (respectively, R) is the set of arguments (re-
spectively, the set of attacks) that are known to definitely exist, while A ? (respectively, R?) contains all possible additional 
arguments (respectively, all possible additional attacks) not (yet) known to exist. The set of attacks that are known to never 
exist is denoted by R− = (A × A ) \ (R ∪ R?).

The difference between a conditionally definite attack (which, recall Definition 19, belongs to R and is incident to at least 
one argument in A ?) and an uncertain attack (a member of R?) is that the former must occur in all completions containing 
both of its incident arguments, whereas the latter may vanish in a completion containing both incident arguments.

Again, an incomplete argumentation framework can be the result of merging a number of individual argumentation 
frameworks. Recall that, in Section 3.1, we only allowed those argumentation frameworks to be merged that share a common 
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Fig. 8. General incompleteness.

set of arguments, i.e., we could aggregate only those argumentation frameworks AF1 = 〈A1, R1〉, . . . , AFn = 〈An, Rn〉 for 
which Ai = A j holds for each i, j ∈ {1, . . . , n}. And in Section 3.2 we restricted ourselves to those argumentation frameworks 
that agree on all attacks between common arguments. Formally, this can be expressed by requiring Ri |Ai∩A j = R j |Ai∩A j

for all i, j ∈ {1, . . . , n}.
In the general model, however, we do not restrict the input anymore. Hence, we need to specify how we can merge ar-

gumentation frameworks that were not mergeable before, namely those over possibly different sets of arguments regarding 
attack incompleteness, and those over possibly different attack relations in the case of argument incompleteness.

Definition 23. The merging operation for n individual argumentation frameworks AF1, . . . , AFn produces the following in-
complete argumentation framework 〈A , A ?, R, R?〉: A consists of all arguments that belong to all AF ∈ {AF1, . . . , AFn}. 
A ? consists of all arguments that belong to at least one (but not to all) AF ∈ {AF1, . . . , AFn}. R consists of all attacks (a, b)

that belong to all AF ∈ {AF1, . . . , AFn} containing both a and b. R? consists of all attacks (a, b) that belong to at least one
(but not to all) AF ∈ {AF1, . . . , AFn} that contain both a and b.

Example 24. Extending the argumentation framework from Example 2 the same way we did in Examples 5 and 20, we 
obtain the incomplete argumentation framework 〈A , A ?, R, R?〉 the graph representation of which is given in Fig. 8(b). 
This incomplete argumentation framework is the result of merging the individual argumentation frameworks from Figs. 3(a), 
7(a), and 8(a) according to Definition 23.

The given merge operation is a strict generalization of those in Sections 3.1 and 3.2. If we restrict the input of the 
merging operation the same way we restricted the input in Section 3.1 (that is, requiring Ai = A j for all i, j ∈ {1, . . . , n}), 
we have A ? = ∅ and the same merging operation as defined there. On the other hand, if we restrict the input the same 
way we did in Section 3.2 (that is, requiring Ri |Ai∩A j = R j |Ai∩A j for all i, j ∈ {1, . . . , n}), we have R? = ∅ and the same 
merging operation as defined there. Accordingly, incomplete argumentation frameworks are a true generalization of both 
individual models of incomplete argumentation frameworks. Fixing A ? = ∅ yields exactly the class of attack-incomplete 
argumentation frameworks, and fixing R? = ∅ yields exactly the class of argument-incomplete argumentation frameworks.

The merging operation we defined above regarding the argument sets can be seen as a global merging: If an argument 
is contained in all input argumentation frameworks, put it into A , otherwise into A ?. In contrast, the merging operation 
regarding the attack relation is a local merging: If an attack (a, b) is contained in all those inputs that actually have an 
opinion over both a and b, put it into R , otherwise into R?. This conforms to the way in which consensual expansion, as 
defined by Coste-Marquis et al. [19], handles the merging of attacks.

In the general model of incomplete argumentation framework, a notion of completion can now be defined as follows.

Definition 25. Let IAF = 〈A , A ?, R, R?〉 be a given incomplete argumentation framework. An argumentation framework 
IAF∗ = 〈A ∗, R∗〉 with A ⊆ A ∗ ⊆ A ∪ A ? and R|A ∗ ⊆ R∗ ⊆ (

R ∪ R?
) |A ∗ is called a completion of IAF .

Finally, for each given semantics s, the variants of the verification problem adapted to incomplete argumentation frame-
works are defined analogously to those in the purely attack-incomplete and the purely argument-incomplete setting.

s-Inc-Possible-Verification (s-IncPV)

Given: An incomplete argumentation framework IAF = 〈A ,A ?,R,R?〉 and a set S ⊆ A ∪ A ?.
Question: Is there a completion IAF∗ = 〈A ∗,R∗〉 of IAF such that S|A ∗ = S ∩ A ∗ is an s extension of IAF∗?

s-Inc-Necessary-Verification (s-IncNV)

Given: An incomplete argumentation framework IAF = 〈A , A ?, R, R?〉 and a set S ⊆ A ∪ A ?.
Question: For all completions IAF∗ = 〈A ∗, R∗〉 of IAF, is S|A ∗ = S ∩ A ∗ an s extension of IAF∗?
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4. Complexity of verification in incomplete argumentation frameworks

In this section, we provide a full map of the complexity of possible and necessary verification in all three presented 
models of incompleteness and for the conflict-free, admissible, stable, complete, grounded, and preferred semantics. All 
results are summarized in Table 1 in Section 5.

Since general incomplete argumentation frameworks are a generalization of both individual models of incompleteness, 
all upper complexity bounds for the general model carry over to both individual models, and all lower complexity bounds 
for any of the individual models carry over to the general model.

4.1. Upper bounds

We start by providing some simple upper bounds for the general incompleteness model (omitting results that are re-
placed by tighter results later).

Theorem 26.

1. For s ∈ {ad, st, cp, gr}, s-IncPV is in NP.
2. pr-IncPV is in �p

2 .
3. pr-IncNV is in coNP.

Proof. The results follow directly from the quantifier representations of the given problems: In the possible case, we start 
with an existential quantifier, and in the necessary case with a universal quantifier. For s ∈ {ad, st, cp, gr}, it can be checked 
in polynomial time whether the given subset is an s extension, which provides the results of Item 1. The standard verifi-
cation problem for the preferred semantics belongs to coNP, hence it can be written as a universal quantifier followed by 
a statement checkable in polynomial time. Therefore, we have two alternating quantifiers in the case of pr-IncPV (Item 2), 
and two universal quantifiers collapsing into one in the case of pr-IncNV (Item 3). This completes the proof. �

In Corollary 27, we derive the same upper bounds for the attack- and argument-incomplete models (again omitting 
results that are replaced by tighter results later).

Corollary 27.

1. For s ∈ {ad, st, cp, gr}, s-ArgIncPV is in NP.
2. pr-AttIncPV and pr-ArgIncPV are in �p

2 .
3. pr-AttIncNV and pr-ArgIncNV are in coNP.

Next, we provide proofs for the cases where we were able to establish P membership. First, verification for conflict-
freeness remains easy in all cases.

Theorem 28. cf-IncPV and cf-IncNV are in P.

Proof. Given an incomplete argumentation framework IAF = 〈A , A ?, R, R?〉 and a set S ⊆ A ∪ A ? of arguments, S is 
possibly conflict-free in IAF if and only if S|A is conflict-free in the minimal completion 〈A , R|A 〉 of IAF , which discards 
all additional arguments and attacks. Similarly, S is necessarily conflict-free in IAF if and only if S is conflict-free in the 
maximal completion 〈A ∪ A ?, R ∪ R?〉 of IAF , which includes all additional arguments and attacks. Since both the minimal 
and maximal completion can clearly be constructed in polynomial time, we have P membership for both problems. �

The following upper bounds then follow immediately; note that membership of cf-AttIncPV and cf-AttIncNV in P has 
previously been proven by Coste-Marquis et al. [19].

Corollary 29. cf-AttIncPV, cf-AttIncNV, cf-ArgIncPV, and cf-ArgIncNV are in P.

Next, we extend P membership of cf-ArgIncNV to the admissible and stable semantics.

Theorem 30. ad-ArgIncNV and st-ArgIncNV are in P.

Proof. Let I = (〈A , A ?, R〉, S) be an instance of ad-ArgIncNV. If S is not necessarily conflict-free in 〈A , A ?, R〉, it is not 
necessarily admissible in 〈A , A ?, R〉, either. Since cf-ArgIncNV is in P, this can be checked in polynomial time. In the 
following, we may assume that S is necessarily conflict-free.
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Let A0 = A ∪ (A ? \ S) and C0 = 〈A0, R|A0 〉, and for each argument a ∈ A ? ∩ S , let Aa = A0 ∪ {a} and Ca = 〈Aa, R|Aa 〉. 
If, for some x ∈ {0} ∪ (A ? ∩ S), S|Ax is not admissible in the completion Cx , we clearly have I /∈ ad-ArgIncNV. Since the 
number of these completions is bounded by the number of arguments (plus one), this can again be verified in polynomial 
time. We may now assume that, in each completion Cx , S|Ax is admissible.

Note that each of these completions includes all possible attacks against the respective set S|Ax , because the completions 
include all possibly harmful arguments (members of A0) and because there cannot be any attacks among members of S . 
This yields that S|A0 defends all attacks against its elements in any completion, and, for all a ∈ A ? ∩ S , S|Aa defends all 
attacks against a in any completion. Finally, since in any completion C∗ = 〈A ∗, R|A ∗ 〉, it holds that S|A ∗ ⊆ ⋃

x S|Ax , we can 
conclude that each element of S|A ∗ is acceptable with respect to S|A ∗ in C∗ , so S is necessarily admissible in 〈A , A ?, R〉
and I ∈ ad-ArgIncNV.

For st-ArgIncNV, the same construction as above can be used. We can again conclude that I /∈ st-ArgIncNV in all cases 
where we had I /∈ ad-ArgIncNV, since each stable set needs to be admissible. In addition, it is easy to see that, in order 
for S to be necessarily stable, the set S|A0 in the completion C0 as defined above needs to attack all arguments in A0 \ S . 
However, since A0 \ S = A \ S (A0 contains all arguments that are not in S) and further S|A0 is a subset of S|A ∗ for any 
completion with argument set A ∗ , this already yields that S|A ∗ necessarily attacks all arguments outside of S|A ∗ in any 
completion, and we have I ∈ st-ArgIncNV. �

We further lift the previous result to the general incompleteness model.

Theorem 31. ad-IncNV and st-IncNV are in P.

Proof. Let (IAF, S) with IAF = 〈A , A ?, R, R?〉 be an instance of ad-IncNV. Let IAFpes
S = 〈A , A ?, Rpes

S 〉 with Rpes
S = R ∪

{(a, b) ∈ R? | b ∈ S} be the pessimistic argument-incomplete argumentation framework obtained when eliminating attack 
incompleteness by including each and only those attacks that target S (which can clearly be done in polynomial time).

We will prove that (IAF, S) ∈ ad-IncNV ⇐⇒ (IAFpes
S , S) ∈ ad-ArgIncNV. Since ad-ArgIncNV ∈ P and IAFpes

S can be created 
from IAF in polynomial time, this yields that ad-IncNV ∈ P. A completely analogous argument applies to the stable semantics 
and the problem st-IncNV.

If (IAF, S) ∈ ad-IncNV, then (IAFpes
S , S) ∈ ad-ArgIncNV follows trivially, since the set of completions of IAFpes

S is a subset of 
the completions of IAF . We prove the other direction of the equivalence by contraposition. Assume that (IAF, S) /∈ ad-IncNV. 
Then there is a completion IAF∗ of IAF in which S is not admissible. Create a completion IAF pes∗

S from the argument-
incomplete argumentation framework IAFpes

S by adding exactly those elements of A ? to the set of arguments that are also 
added in IAF∗ . By construction, in IAF pes∗

S all attacks against arguments in S that exist in IAF∗ are included, too, and any 
attacks against arguments outside of S that are not in IAF∗ are not included, either. Since S is not admissible in IAF∗ , it can 
clearly not be admissible in IAF pes∗

S . Therefore, we have (IAFpes
S , S) /∈ ad-ArgIncNV. This completes the proof. �

The following upper bounds then follow immediately; note that membership of ad-AttIncNV in P has previously been 
proven by Coste-Marquis et al. [19].

Corollary 32. ad-AttIncNV and st-AttIncNV are in P.

Turning to the complete and grounded semantics, we can successively prove P membership of cp-IncNV and gr-IncNV

in Theorems 33 and 38, respectively.

Theorem 33. cp-IncNV is in P.

Proof. Let (IAF, S) with IAF = 〈A , A ?, R, R?〉 be an instance of cp-IncNV. Since ad-IncNV ∈ P, we may assume that S is 
necessarily admissible in IAF . Then, we clearly have (IAF, S) /∈ cp-IncNV if and only if there is at least one argument outside 
of S that is acceptable with respect to S in some completion of IAF . It remains to show how to check this criterion.

If all arguments a ∈ (A ∪ A ?) \ S are definitely attacked by S , i.e., (ba, a) ∈ R for each such argument a and some 
corresponding ba ∈ S , then S is necessarily stable and therefore necessarily complete, and we are done. Now assume this 
is not the case and let a ∈ (A ∪ A ?) \ S be any argument outside of S that is not definitely attacked by S , i.e., (b, a) /∈ R
for all b ∈ S ∩ A (if a were attacked by S , it clearly could not be acceptable with respect to S in any completion). Let 
Att(a) = {b ∈ A ∪A ? | (b, a) ∈ R} be the set of all arguments with a definite attack against a. Further, let Ra = R ∪{(b, c) ∈
R? | b ∈ S and c ∈ Att(a) \ {a}} be the set of attacks that includes all and only those possible attacks for which the attacker 
is in S and the target is an attacker of a.

Consider now the completion Ca = 〈Aa, Ra|Aa 〉 where Aa = A ∪ {a} ∪ {b ∈ A ? | (b, a) /∈ Ra}, i.e., Ca uses the attack 
relation Ra and includes a and exactly those possible arguments that do not attack a (in Ra).

If, for any of these completions, a is acceptable with respect to S in Ca , then S is not complete in Ca and therefore 
not necessarily complete. If, on the other hand, each argument a is not acceptable with respect to S in the respective 
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completion Ca , then none of these arguments are possibly acceptable with respect to S , and therefore, S is necessarily 
complete: Assume that a is not acceptable with respect to S in Ca , i.e., there is some b ∈ Aa with (b, a) ∈ Ra|Aa and S
does not attack b in Ca . By construction of Ca , we know that b is a definite argument, i.e., b ∈ A , and (b, a) is a definite 
attack, i.e., (b, a) ∈ R , so b attacks a in any completion that contains a. Also, in all completions S either does not defend a
against b, or S attacks a, since all possible arguments in S either attack a or are already included in Ca . So, a is not possibly 
acceptable with respect to S .

All steps taken can clearly be performed in polynomial time. This completes the proof. �
The following upper bounds then follow immediately.

Corollary 34. cp-AttIncNV and cp-ArgIncNV are in P.

Next, we introduce the notion of ungrounded completion of an incomplete argumentation framework as a tool to prove 
P membership of gr-IncNV.

Definition 35. Let IAF = 〈A , A ?, R, R?〉 be an incomplete argumentation framework and S ⊆ A ∪ A ? be a set of argu-
ments in IAF . The ungrounded completion IAFungr

S of IAF for S is the completion that is obtained by the following algorithm. 
The algorithm first eliminates attack incompleteness and then defines a finite sequence (IAFi)i≥0 of argument incomplete 
argumentation frameworks, with the ungrounded completion being the maximal completion (that includes all remaining 
possible arguments) of the sequence’s last element.

1. Eliminate attack incompleteness: Let R0 = R ∪ {(a, b) ∈ R? | b ∈ S}, i.e., include only those possible attacks that at-
tack S .

2. Let initially G0 = ∅, A ?
0 = A ?, IAF0 = 〈A , A ?

0 , R0〉 and i = 0.
3. Let Maxi be the maximal completion of IAFi and let Xi ⊆ S be the set of arguments in S that are acceptable with respect 

to Gi in Maxi , i.e., Xi = F Maxi (Gi) ∩ S . Add the definite arguments in Xi to G and exclude the possible arguments in Xi
from the framework, i.e.,
• Gi+1 = Gi ∪ (Xi \ A ?),
• A ?

i+1 = A ?
i \ Xi , and

• Ri+1 = Ri |A ∪A ?
i+1

.

Set i ← i + 1.
4. Repeat the previous step until Gi = Gi−1.
5. The ungrounded completion of IAF for S is IAFungr

S = 〈A ungr
S , Ri〉 with A ungr

S = A ∪ A ?
i .

Intuitively, the ungrounded completion removes all and only those arguments that are in S and that are possible candi-
dates for membership in the grounded extension (elements of Xi in each iteration i)—all other arguments are included. The 
purpose of that is to make it as unlikely as possible for S to be grounded in this completion.

Lemma 36 establishes that the ungrounded completion is polynomial-time computable.

Lemma 36. For an incomplete argumentation framework IAF = 〈A , A ?, R, R?〉 and a set S ⊆ A ∪ A ? of arguments, the un-
grounded completion IAFungr

S of IAF for S can be constructed in polynomial time.

Proof. All individual steps can obviously be carried out in time polynomial in the number of arguments. Also, the loop in 
Step 4 runs at most a polynomial number of times, since in each execution of the loop there is either (at least) one definite 
argument that is added to Gi+1, or no action is taken in which case the loop terminates. Therefore, the number of times 
the loop is executed is bounded by the number of definite arguments in the incomplete argumentation framework AtIAF . 
This completes the proof. �

The ungrounded completion is critical in the following sense: If a necessarily complete set S is grounded even in the 
ungrounded completion, then it must be grounded in all completions. This is formalized in Lemma 37.

Lemma 37. Let IAF = 〈A , A ?, R, R?〉 be an incomplete argumentation framework, S ⊆ A ∪ A ? be a necessarily complete set of 
arguments in IAF, and let IAFungr

S be the ungrounded completion of IAF for S. S is the necessarily grounded extension of IAF if and only 
if S|A ungr

S
is the grounded extension of IAFungr

S .

Proof. If S|A ungr
S

is not the grounded extension of IAFungr
S , it immediately follows that S is not necessarily grounded in IAF . 

We now prove the other direction of the equivalence: Let S|A ungr
S

be the grounded extension of IAFungr
S . We prove that, then, 

S is necessarily grounded in IAF .
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First, we observe that whenever S|A ungr
S

is the grounded extension of IAFungr
S (which we know by assumption), then 

S|A ungr
S

= Gi′ for the set Gi′ in the last iteration i′ of the algorithm: Gi′ ⊆ S|A ungr
S

holds because, by construction, Gi′

consists only of definite arguments. For the other inclusion S|A ungr
S

⊆ Gi′ , we can utilize the fact that Gi′ is a complete 
extension of IAFungr

S : Gi′ is conflict-free since it is a subset of the grounded extension S|A ungr
S

, and it is a fixed point of 
the characteristic function due to the condition in Step 4 of the algorithm. Since the grounded extension is a subset of all 
complete extensions, this directly infers the desired inclusion S|A ungr

S
⊆ Gi′ . Since Gi′ consists only of definite arguments, 

we know that S|A ungr
S

consists only of definite arguments under the given assumptions.

Now, let IAF∗ = 〈A ∗, R|A ∗ 〉 be any completion of 〈A , A ?, R, R?〉 (different from the ungrounded completion) and 
let G∗ be its grounded extension. Since we know by assumption that S|A ∗ is complete in IAF∗ , with the fact (proven by 
Dung [26]) that the grounded extension is contained in all complete extensions of the same argumentation framework, we 
can conclude that G∗ ⊆ S|A ∗ .

However, we also have S|A ∗ ⊆ G∗: Since S|A ungr
S

contains only definite arguments, these must be in G∗ , too. Now 
assume that S|A ∗ � G∗ . Then there is a possible (nondefinite) argument a ∈ (S|A ∗ \ G∗). We know that a is not included 
in the ungrounded completion. We also know that a is not acceptable with respect to G∗ in IAF∗ , because otherwise it 
would need to be included in the grounded set G∗ . Also, since S|A ungr

S
⊆ G∗ , a is not acceptable with respect to S|A ungr

S

either (remember that S is necessarily complete and, in particular, necessarily conflict-free in IAF , so any attackers must be 
outside of S). So, there must be an attacker b /∈ S of a which is not attacked by G∗ (and, therefore, not attacked by S|A ungr

S
) 

in IAF∗ . Since the ungrounded completion includes all arguments that are not in S , b is also included in A ungr
S . Further, 

since the ungrounded completion includes all and only those possible attacks that target S , the attack (b, a) is included and 
any possible defending attacks are not included in the ungrounded completion. However, this means that the attack (b, a)

is not defended by S|A ungr
S

in the ungrounded completion, which, by its construction, would mean that a would be included 
in A ungr

S (a could only be excluded in Step 3 if it is acceptable with respect to a subset of S|A ungr
S

, which a is not, due to 
the attack by b). This contradicts the fact that a is not included in the ungrounded completion. Therefore, such an argument 
a cannot exist and we can conclude S|A ∗ ⊆ G∗ and, in total, S|A ∗ = G∗ . So, S|A ∗ is grounded in IAF∗ and, since IAF∗ was 
kept generic, S is necessarily grounded in IAF . �

Using the above lemmas, we are now ready to show that for the grounded semantics, necessary verification in incomplete 
argumentation frameworks remains efficient.

Theorem 38. gr-IncNV is in P.

Proof. Let (〈A , A ?, R, R?〉, S) be an instance of gr-IncNV. If the set S is not necessarily complete in 〈A , A ?, R, R?〉, 
it is not necessarily grounded in 〈A , A ?, R, R?〉, either. By Theorem 33, the former can be checked in polynomial time. 
Therefore, we may assume that S is necessarily complete.

Lemma 36 provides polynomial-time constructability for the ungrounded completion. Given a completion, gr-

Verification can be solved in polynomial time, and Lemma 37 yields that the answer to gr-IncNV is the same as that 
to gr-Verification for the ungrounded completion. �

The following upper bounds then follow immediately.

Corollary 39. gr-AttIncNV and gr-ArgIncNV are in P.

We have completed our proofs for P membership of necessary verification in all three incompleteness models for the 
admissible, stable, complete, and grounded semantics. In Theorems 40 and 41, using the notions of optimistic completion 
(Definition 7) and fixed completion (Definition 11), respectively, we prove that possible verification can also be efficiently 
decided for these four semantics in the attack-incomplete model.

Theorem 40. For s ∈ {ad, st}, s-AttIncPV is in P.

Proof. The optimistic completion can obviously be constructed in polynomial time. As already mentioned, the problem 
s-Verification can be solved in polynomial time for a given completion. Proposition 9 then provides that the answer to 
s-AttIncPV is the same as that to s-Verification for the optimistic completion. �
Theorem 41. For s ∈ {cp, gr}, s-AttIncPV is in P.

Proof. Propositions 13 provides polynomial-time constructability for the fixed completion. Given a completion, s-Verifica-

tion can be solved in polynomial time, and Proposition 14 implies that the answer to s-AttIncPV is the same as that to 
s-Verification for the fixed completion. �
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Fig. 9. A yes-instance of ad-ArgIncPV created from a yes-instance of X3C.

4.2. Lower bounds

In this section, we prove tight lower bounds for all remaining cases.
First, by a straightforward reduction from the Verification problem for standard argumentation frameworks, we ob-

serve in Corollary 42 that the upper bounds from the previous section coincide with the lower bounds for pr-AttIncNV,
pr-ArgIncNV, and pr-IncNV.

Corollary 42. pr-AttIncNV, pr-ArgIncNV, and pr-IncNV are coNP-hard.

Next, we present results for possible verification, where introducing argument incompleteness raises the complexity from 
P to NP-completeness for the admissible, stable, complete, and grounded semantics.

Theorem 43. ad-ArgIncPV is NP-hard.

Proof. To show NP-hardness, we reduce from the following NP-complete problem (see, e.g., the book by Garey and John-
son [32]):

Exact-Cover-By-3-Sets (X3C)

Given: A set B = {b1, . . . ,b3k} and a family S of subsets of B , with ‖S j‖ = 3 for all S j ∈ S .
Question: Does there exist a subfamily S ′ ⊆ S of size k that exactly covers B , i.e.,

⋃
S j∈S ′ S j = B?

Given an instance (B, S ) = ({b1, . . . , b3k}, {S1, . . . , Sm}) of X3C, we construct an instance (〈A , A ?, R〉, S) of ad-

ArgIncPV as follows (where we slightly abuse notation and use the same identifiers for both instances; it will always 
be clear from the context, though, which instance an element belongs to):

A = {x} ∪ B,

A ? = S ,

R = {(bi, x) | bi ∈ B} ∪ {(S j,b j1), (S j,b j2), (S j,b j3) | S j = {b j1 ,b j2 ,b j3} ∈ S } ∪
{(Si, S j), (S j, Si) | Si, S j ∈ S and Si ∩ S j �= ∅},

S = {x} ∪ S .

In particular, A ∪ A ? contains one argument bi for every element bi ∈ B , 1 ≤ i ≤ 3k, one argument S j for every set S j
in S , 1 ≤ j ≤ m, and one additional argument x. All arguments corresponding to elements of B attack x, and each argument 
S j attacks the three arguments corresponding to those elements of B that belong to S j in S . Additionally, there are attacks 
between Si and S j if the corresponding sets in S are not disjoint. Finally, A and S act as opponents: x belongs to both, 
but the arguments corresponding to elements in B belong to A only, whereas the arguments corresponding to the sets in 
S belong to S only.

Let us give two examples of this construction resulting from two distinct X3C instances, (B, S1) and (B, S2), with 
B = {b1, . . . , b6}. On the one hand, Fig. 9 shows a yes-instance of ad-ArgIncPV created from a yes-instance of X3C: (B, S1)

with S1 = {{b1, b2, b3}, {b3, b5, b6}, {b4, b5, b6}}. On the other hand, Fig. 10 shows a no-instance of ad-ArgIncPV created 
from a no-instance of X3C: (B, S2) with S2 = {{b1, b2, b3}, {b3, b5, b6}, {b2, b4, b6}}. In both figures, A contains the solid 
arguments, the dashed arguments belong to A ?, and the boldfaced arguments are part of S .

We claim that (B, S ) ∈ X3C if and only if (〈A , A ?, R〉, S) ∈ ad-ArgIncPV.
(=⇒) Clearly, if (B, S ) is a yes-instance of X3C, we can add exactly those arguments Si to A that correspond to 

an exact cover of B . Let A ∗ be the argument set of this completion. In A ∗ , every bi , 1 ≤ i ≤ 3k, is attacked by exactly 
one argument S j , 1 ≤ j ≤ m, due to the exact cover. Hence, x ∈ S|A ∗ is defended against every attack. Additionally, the 
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Fig. 10. A no-instance of ad-ArgIncPV created from a no-instance of X3C.

arguments S j in A ∗ have no attacks between them, because the corresponding sets are pairwise disjoint, which implies 
that no new attacks on the elements of S|A ∗ are introduced. But this means that S|A ∗ is admissible in 〈A ∗, R|A ∗ 〉.

(⇐=) If there is a completion with the argument set A ∗ , this completion must defend x against every bi , 1 ≤ i ≤ 3k. 
This means that there must exist a cover of the elements of B by the sets of S . But because the arguments S j attack each 
other whenever they are not disjoint, this cover must be exact; otherwise, the set S|A ∗ would not be conflict-free. Hence, 
there exists an exact cover of B . �
Theorem 44. For s ∈ {st, cp, gr}, s-ArgIncPV is NP-hard.

Proof. We show NP-hardness for all three problems by showing that the reduction used in Theorem 43 also works for 
the stable, complete, and grounded semantics. To this end, we will prove that the following four statements are pairwise 
equivalent for the instance (〈A , A ?, R〉, S) constructed in the proof of Theorem 43:

• (〈A , A ?, R〉, S) ∈ ad-ArgIncPV,
• (〈A , A ?, R〉, S) ∈ st-ArgIncPV,
• (〈A , A ?, R〉, S) ∈ gr-ArgIncPV, and
• (〈A , A ?, R〉, S) ∈ cp-ArgIncPV.

(〈A , A ?, R〉, S) ∈ ad-ArgIncPV implies (〈A , A ?, R〉, S) ∈ st-ArgIncPV: If S|A ∗ is admissible for a completion 
〈A ∗, R|A ∗ 〉, it is, in particular, conflict-free. We know from the reduction that 〈A ∗, R|A ∗ 〉 only contains arguments 
S j that do not attack each other, and all these arguments belong to S|A ∗ . Hence, the only arguments outside of S|A ∗ are 
the bi s. But all of them are attacked, as explained in the proof of Theorem 43. Therefore, S|A ∗ is a stable extension of 
〈A ∗, R|A ∗ 〉.

(〈A , A ?, R〉, S) ∈ st-ArgIncPV implies (〈A , A ?, R〉, S) ∈ gr-ArgIncPV: If S|A ∗ is stable for a completion 〈A ∗, R|A ∗ 〉, 
it must contain all arguments of A ∗ except for the bis. As every stable extension is conflict-free, there are no attacks 
between arguments that correspond to an S j . This means for the characteristic function of this completion 〈A ∗, R|A ∗ 〉
that the output of the first step is the set that contains exactly those S j . In the second step, we add argument x, because all 
those S j defend x against all attacks from the arguments bi . No new arguments are added in step three. Therefore, this set 
is the grounded extension of the argumentation framework 〈A ∗, R|A ∗ 〉. But this set is exactly the set S|A ∗ . Hence, S|A ∗
is the grounded extension of 〈A ∗, R|A ∗ 〉.

It is easy to see the two remaining implications needed to prove the equivalences: Every grounded set is complete, and 
every complete set is admissible. This completes the proof. �

The previous hardness results carry over to the general model and coincide with the respective upper bounds from 
Theorem 26.

Corollary 45. For s ∈ {ad, st, cp, gr}, s-IncPV is NP-complete.

Our final results show that the complexity of possible verification for the preferred semantics raises from coNP-hardness 
to �p

2 -completeness in all three models.

Theorem 46. pr-AttIncPV is �p
2 -hard.

Proof. First, we quickly recall some notation from propositional logic. A boolean variable x has two literals, x and ¬x. 
A boolean formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals (clauses), and in 
disjunctive normal form (DNF) if it is a disjunction of conjunctive clauses of literals. 3-CNF (respectively, 3-DNF) denotes 
CNF (respectively, DNF) with at most three literals per clause. A truth assignment τ on a set X of variables is a function 
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Fig. 11. Graph representations of the attack-incomplete argumentation frameworks created from clauses c2 = (x1 ∨ y1 ∨ ¬y2) and either c1 = (¬x1 ∨ x2 ∨
¬y1) (top) or c′

1 = (¬x1 ∨ x2) (bottom) following the construction in the proof of Theorem 46. Dashed attacks indicate uncertainty as usual. The first 
instance is a no-instance of pr-AttIncPV, the second is a yes-instance.

τ : X → {true, false}. For a formula ϕ and truth assignments τ1, τ2, . . . , τk on disjoint sets of variables, ϕ[τ1, τ2, . . . , τk]
denotes the formula obtained by replacing variables in ϕ with their truth values in τ1, τ2, . . . , τk .

To prove �p
2 -hardness, we reduce from the quantified satisfiability problem �2SAT, which is well known to be complete 

for �p
2 (see [44]):

�2SAT

Given: A 3-DNF formula ϕ on two disjoint sets of variables, X and Y .
Question: Does ∃τX ∀τY : ϕ[τX , τY ] evaluate to true (where τX and τY are truth assignments on X and Y , respectively)?

Let (ϕ, X, Y ) be an instance of �2SAT, where X = {x1, . . . , x|X |} and Y = {y1, . . . , y|Y |} are two disjoint sets of proposi-
tional variables and ϕ is a 3-DNF formula over X ∪ Y . For ϕ̄ = ¬ϕ , the question in �2SAT is equivalent to asking whether 
∃τX∀τY : ϕ̄[τX , τY ] = false, where ϕ̄ = c1 ∧ · · · ∧ cm is a formula in 3-CNF with clauses c1 through cm . From now on, we 
will mostly use this CNF formulation of the problem.

We create an instance (〈A , R, R?〉, S) of pr-AttIncPV from (ϕ, X, Y ) as follows (see Fig. 11 for an example):

A =

⎧⎪⎪⎨
⎪⎪⎩

yi, ȳi, for yi ∈ Y
xi, x̄i, for xi ∈ X
ci, for ci in ϕ̄
s

⎫⎪⎪⎬
⎪⎪⎭

,

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ȳi, yi), (yi, ȳi), for yi ∈ Y
(x̄i, xi), for xi ∈ X
(ci, ci), for ci in ϕ̄
(ci, y j), (ci, ȳ j), for ci in ϕ̄, y j ∈ Y
(ci, xk), (ci, x̄k), for ci in ϕ̄, xk ∈ X
(y j, ci), if y j in ci
( ȳ j, ci), if ¬y j in ci
(xk, ci), if xk in ci
(x̄k, ci), if ¬xk in ci

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

R? = {
(s, x̄i), for xi ∈ X

}
.

Finally, let S = {s}. We call all arguments xi , x̄i , yi , and ȳi literal arguments and arguments ci clause arguments. Note that 
S is necessarily admissible in 〈A , R, R?〉, so the verification of possible preferredness boils down to checking whether all 
supersets of S are nonadmissible in some completion of 〈A , R, R?〉.

We prove that

(ϕ, X, Y ) ∈ �2SAT ⇐⇒ (〈A ,R,R?〉, S) ∈ pr-AttIncPV.
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Assume that (ϕ, X, Y ) ∈ �2SAT, i.e., ∃τX∀τY : ϕ̄[τX , τY ] = false. Let τX be an assignment of truth values to the variables 
in X that satisfies ∀τY : ϕ̄[τX , τY ] = false. Let 〈A , RτX 〉 be the completion of 〈A , R, R?〉 obtained by letting RτX =
R ∪ {(s, ̄xi) ∈ R? | τX (xi) = true}. In 〈A , RτX 〉, the assignment τX to the variables in X is translated to a commitment on 
literal arguments: If, for xi ∈ X , τX (xi) = true, then the attack by s against argument x̄i is included and x̄i can no longer be 
a member of admissible supersets of S , while argument xi is defended by s and potentially can be such a member. On the 
other hand, if τX (xi) = false, the attack is excluded and the roles are switched: Argument xi cannot be defended against 
argument x̄i by S (or any conflict-free superset of S), so xi cannot be contained in admissible supersets of S , whereas x̄i

can.
Now let τY be any truth assignment for Y . We know that ϕ̄[τX , τY ] = false. Transform τX and τY to a set S(τX ,τY ) ⊃ S

of arguments by letting

S(τX ,τY ) = S ∪ {xi | τX (xi) = true} ∪ {x̄i | τX (xi) = false}
∪ {yi | τY (yi) = true} ∪ { ȳi | τY (yi) = false}.

It is easy to see that S(τX ,τY ) is conflict-free in 〈A , RτX 〉. However, S(τX ,τY ) cannot defend itself against all clause argu-
ments c1, . . . , cm in 〈A , RτX 〉, and therefore is not admissible: Since ϕ̄ is in CNF and ϕ̄[τX , τY ] = false, at least one clause 
in ϕ̄ is unfulfilled. Let c j be any such clause. Since the clauses of ϕ̄ are disjunctions of literals, all literals in c j are unful-
filled. The only arguments in A that attack the clause argument c j are the literal arguments whose corresponding literals 
appear in clause c j . However, by construction, none of these arguments are in S(τX ,τY ) , since all these literals are false in 
τX and τY . Therefore, no argument in S(τX ,τY ) attacks argument c j . On the other hand, c j attacks all literal arguments and 
therefore it attacks S(τX ,τY ) , which proves that S(τX ,τY ) is not admissible in 〈A , RτX 〉.

All conflict-free supersets of S are either the set S(τX ,τY ) for some τY or a subset of one of these. We proved that none 
of these can be admissible, and in consequence, that S is preferred in 〈A , RτX 〉, so we have (〈A , R, R?〉, S) ∈ pr-AttIncPV.

For the other direction, assume that (ϕ, X, Y ) /∈ �2SAT, i.e., ∀τX∃τY : ϕ̄[τX , τY ] = true. Let τX be any assignment on X
and let τY be an assignment on Y that satisfies ϕ̄[τX , τY ] = true. Create the completion 〈A , RτX 〉 and the set S(τX ,τY ) as 
before. Since ϕ̄[τX , τY ] = true, all clauses in ϕ̄ are fulfilled, which means that in each clause at least one literal must be 
fulfilled. Each such literal corresponds to a literal argument in S(τX ,τY ) , which attacks the corresponding clause argument. 
So, S(τX ,τY ) is admissible, which shows that S is not preferred in 〈A , RτX 〉, and since τX was generic, S is not preferred in 
any completion of 〈A , R, R?〉, which proves (〈A , R, R?〉, S) /∈ pr-AttIncPV. �
Example 47. Consider a �2SAT instance (ϕ, X, Y ) with X = {x1, x2}, Y = {y1, y2} and ϕ = (x1 ∧¬x2 ∧ y1) ∨ (¬x1 ∧¬y1 ∧ y2). 
We have ϕ̄ = ¬ϕ = c1 ∧ c2 with c1 = (¬x1 ∨ x2 ∨ ¬y1) and c2 = (x1 ∨ y1 ∨ ¬y2). We have (ϕ, X, Y ) /∈ �2SAT, because for 
all assignments τX on X and the assignment τY with τY (y1) = false, τY (y2) = false we have ϕ[τX , τY ] = false, or, 
equivalently, ϕ̄[τX , τY ] = true.

To create a yes-instance, we slightly modify this �2SAT instance by setting ϕ′ = (x1 ∧¬x2) ∨ (¬x1 ∧¬y1 ∧ y2), i.e., ¬y1 is 
omitted in the first clause. We now have ϕ̄′ = ¬ϕ′ = c′

1 ∧ c2, where c′
1 = (¬x1 ∨ x2), and c2 = (x1 ∨ y1 ∨ ¬y2) is unchanged. 

(ϕ′, X, Y ) is a yes-instance of �2SAT, because for the assignment τ ′
X on X with τ ′

X (x1) = true, τ ′
X (x2) = false and for all 

assignments τ ′
Y on Y , we have ϕ′[τ ′

X , τ ′
Y ] = true, or, equivalently, ϕ̄′[τ ′

X , τ ′
Y ] = false.

Fig. 11 shows the graph representations of two attack-incomplete argumentation frameworks that are created from 
(ϕ, X, Y ) (top) and (ϕ′, X, Y ) (bottom) according to the construction in the proof of Theorem 46. The top graph together 
with the set {s} constitutes a no-instance for pr-AttIncPV. The set {s, ȳ1, ȳ2} (corresponding to τY from above) is an 
admissible superset of {s} in all completions of the incomplete argumentation framework. The bottom graph together with 
the set {s} constitutes a yes-instance for pr-AttIncPV. The completion that corresponds to the assignment τ ′

X as defined 
above includes the possible attack (s, ̄x1) and excludes the possible attack (s, ̄x2) In this completion, there are no admissible 
supersets of {s} that counterattack c′

1, so {s} is preferred.

The same hardness can be proven for the argument-incomplete model.

Theorem 48. pr-ArgIncPV is �p
2 -hard.

Proof. Again, we reduce from �2SAT using a very similar construction. Given an instance (ϕ, X, Y ) of �2SAT, we create an 
instance (〈A , A ?, R〉, S) of pr-ArgIncPV by setting S = ∅ and:

A =
⎧⎨
⎩

yi, ȳi, for yi ∈ Y
x̄i, for xi ∈ X
ci, for ci in ϕ̄

⎫⎬
⎭ ,

A ? = {
xi, for xi ∈ X

}
,
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R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ȳi, yi), (yi, ȳi), for yi ∈ Y
(xi, x̄i), for xi ∈ X
(ci, ci), for ci in ϕ̄
(ci, y j), (ci, ȳ j), for ci in ϕ̄, y j ∈ Y
(ci, xk), (ci, x̄k), for ci in ϕ̄, xk ∈ X
(y j, ci), if y j in ci
( ȳ j, ci), if ¬y j in ci
(xk, ci), if xk in ci
(x̄k, ci), if ¬xk in ci

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Again, S is necessarily admissible in 〈A , A ?, R〉, so for the verification of possible preferredness it is enough to check 
whether there is a completion of 〈A , A ?, R〉 where all supersets of S are nonadmissible.

We prove that

(ϕ, X, Y ) ∈ �2SAT ⇐⇒ (〈A ,A ?,R〉, S) ∈ pr-ArgIncPV.

Assume that (ϕ, X, Y ) ∈ �2SAT, i.e., ∃τX∀τY : ϕ̄[τX , τY ] = false. Let τX be an assignment of truth values to the variables 
in X that satisfies ∀τY : ϕ̄[τX , τY ] = false. Let 〈A τX , R|A τX 〉 be the completion of 〈A , A ?, R〉 obtained by letting A τX =
A ∪{xi ∈ A ? | τX (xi) = true}. In 〈A τX , R|A τX 〉, the assignment τX to the variables in X is translated to a commitment on 
literal arguments: If, for xi ∈ X , τX (xi) = true, then argument xi is included in A τX and has an attack against argument x̄i
which S cannot defend, so xi is a candidate for membership in admissible supersets of S and x̄i is not. If τX (xi) = false, 
then xi is excluded and does not attack x̄i , so x̄i could be in admissible supersets of S .

Now let τY be any truth assignment for Y . We know that ϕ̄[τX , τY ] = false. Transform τX and τY to a set S(τX ,τY ) ⊃ S
of arguments by letting

S(τX ,τY ) = S ∪ {xi | τX (xi) = true} ∪ {x̄i | τX (xi) = false}
∪ {yi | τY (yi) = true} ∪ { ȳi | τY (yi) = false}.

It is easy to see that S(τX ,τY ) is conflict-free in 〈A τX , R|A τX 〉. However, S(τX ,τY ) cannot defend itself against all clause 
arguments c1, . . . , cm in 〈A τX , R|A τX 〉, and therefore is not admissible: Since ϕ̄ is in CNF and ϕ̄[τX , τY ] = false, at least 
one clause in ϕ̄ is unfulfilled. Let c j be any such clause. Since the clauses of ϕ̄ are disjunctions of literals, all literals in c j are 
unfulfilled. The only arguments in A τX that attack the clause argument c j are the literal arguments whose corresponding 
literals appear in clause c j . However, by construction, none of these arguments are in S(τX ,τY ) , since all these literals are 
false in τX and τY . Therefore, no argument in S(τX ,τY ) attacks argument c j . On the other hand, c j attacks all literal 
arguments and therefore it attacks S(τX ,τY ) , which proves that S(τX ,τY ) is not admissible in 〈A τX , R|A τX 〉.

All conflict-free supersets of S are either the set S(τX ,τY ) for some τY or a subset of one of these. We proved that 
none of these can be admissible, and in consequence, that S is preferred in 〈A τX , R|A τX 〉, so we have (〈A , A ?, R〉, S) ∈
pr-ArgIncPV.

For the other direction, assume that (ϕ, X, Y ) /∈ �2SAT, i.e., ∀τX∃τY : ϕ̄[τX , τY ] = true. Let τX be any assignment on 
X and let τY be an assignment on Y that satisfies ϕ̄[τX , τY ] = true. Create the completion 〈A τX , R|A τX 〉 and the set 
S(τX ,τY ) as before. Since ϕ̄[τX , τY ] = true, all clauses in ϕ̄ are fulfilled, which means that in each clause at least one literal 
must be fulfilled. Each such literal corresponds to a literal argument in S(τX ,τY ) , which attacks the corresponding clause 
argument. So, S(τX ,τY ) is admissible, which shows that S is not preferred in 〈A τX , R|A τX 〉, and since τX was generic, S is 
not preferred in any completion of 〈A , A ?, R〉, which proves (〈A , A ?, R〉, S) /∈ pr-ArgIncPV. �
Example 49. Fig. 12 shows the graph representations of two argument-incomplete argumentation frameworks that are cre-
ated from the same �2SAT instances (ϕ, X, Y ) (top) and (ϕ′, X, Y ) (bottom) used in Example 47. Here, the set ∅ constitutes 
a no-instance for pr-ArgIncPV together with the top graph and a yes-instance together with the bottom graph. In the no-
instance, the set { ȳ1, ȳ2} is an admissible superset of ∅ in all completions of the incomplete argumentation framework. 
In the yes-instance, the completion that includes the possible argument x1 and excludes the possible argument x2 has no 
admissible supersets of ∅ that counterattack c′

1, so ∅ is preferred.

Both previous results also provide �p
2 -hardness for the problem pr-IncPV in the general model, which completes our 

complexity analysis.

Corollary 50. pr-IncPV is �p
2 -hard.

5. Conclusion and future work

We introduced three specific models of incompleteness in argumentation frameworks, one focusing on attack incomplete-
ness alone, one on argument incompleteness alone, and one that combines these two models so as to provide a general model 
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Fig. 12. Graph representations of the argument-incomplete argumentation frameworks created from clauses c2 = (x1 ∨ y1 ∨ ¬y2) and either c1 = (¬x1 ∨
x2 ∨ ¬y1) (top) or c′

1 = (¬x1 ∨ x2) (bottom) following the construction in the proof of Theorem 48. Dashed arguments indicate uncertainty as usual, and 
conditionally definite attacks are dash-dotted as usual. The first instance is a no-instance of pr-ArgIncPV, the second is a yes-instance.

Table 1
Overview of complexity results for various semantics (first column) in the argumentation framework model without uncertainty (second column), with 
results marked by ♠ due to Dung [26] and the result marked by ♣ due to Dimopoulos and Torres [24]; in the attack-incomplete model (third and sixth 
column) from Section 3.1, with results marked by � due to Coste-Marquis et al. [19]; in the argument-incomplete model (fourth and seventh column) from 
Section 3.2; and in the combined model (fifth and eighth column) from Section 3.3. Key: For a complexity class C , C -c. stands for C -completeness and
Ver is a shorthand for Verification.

s Ver AttIncNV ArgIncNV IncNV AttIncPV ArgIncPV IncPV

cf in P ♠ in P � in P in P in P � in P in P
ad in P ♠ in P � in P in P in P NP-c. NP-c.
st in P ♠ in P in P in P in P NP-c. NP-c.
cp in P ♠ in P in P in P in P NP-c. NP-c.
gr in P ♠ in P in P in P in P NP-c. NP-c.
pr coNP-c. ♣ coNP-c. coNP-c. coNP-c. �

p
2 -c. �

p
2 -c. �

p
2 -c.

of incompleteness. We then have studied the computational complexity of two variants of the verification problem, one for-
malizing the possibility of completing the given incomplete state and the other formalizing the necessity of completion, both 
with respect to six common semantics of argumentation frameworks.

Table 1 gives an overview of the complexity results for the verification problem in the standard model and in the three 
incompleteness models considered in this paper. The complexity results show a pattern in how introducing incomplete in-
formation affects the complexity of the verification problem in abstract argumentation frameworks. We observe that there 
are only two triggers for an increase of complexity: the preferred semantics for possible verification in all three models, and 
the admissible semantics (along with all other semantics that entail admissibility) for possible verification in the model of 
argument incompleteness (and, therefore, also in the general incompleteness model). In all other cases—in particular, for all 
variants of necessary verification—introducing incomplete information does not make the verification problem computation-
ally harder. Note that each of our hardness results for verification problems carries over to any more general model; so our 
approach is potentially useful in other frameworks as well. We further note that the �p

2 -completeness results for possible 
verification in the preferred semantics are significantly more severe than the NP- or coNP-completeness results for possible 
verification in the other semantics entailing admissibility and for standard or necessary verification in the preferred seman-
tics: The known methods to circumvent NP- or coNP-hardness in practice (e.g., by using fast SAT-solvers) are much more 
efficient than those known to tame �p

2 -hardness (e.g., by using QBF solvers). Nevertheless, there are some approaches to 
tackle problems on the second level of the polynomial-time hierarchy—especially in the field of argumentation (see, e.g., the 
work of Thimm and Villata [45] on the first competition on computational models of argumentation)—that can be adapted 
to our problem.

To put the above results into a bigger picture, let us briefly compare the complexity of the verification problem in incom-
plete argumentation frameworks with the complexity of other computational tasks, namely that of credulous and skeptical 
acceptance of arguments in incomplete argumentation frameworks. Extending previous work by Coste-Marquis [20], Di-
mopoulos and Torres [24], and Dunne and Bench-Capon [28], Baumeister et al. [7] have recently settled, for the same 
six semantics considered in this paper, the complexity of the problems related to credulous and skeptical acceptance of 
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arguments in standard argumentation frameworks as well as for their possible and necessary variants in incomplete argu-
mentation frameworks. While most entries in Table 1 for verification are P results (with the exception of the coNP- and 
�

p
2 -completeness results for the preferred semantics and of the NP-completeness results for s ∈ {ad, st, cp, gr} in (argu-

ment-)incomplete argumentation frameworks), the complexity results for possible/necessary credulous/skeptical acceptance 
are much more varied, ranging from P membership to completeness in the third level of the polynomial hierarchy and all 
its intermediate levels: completeness for NP, coNP, �p

2 , �p
2 , and even �p

3 = NPNPNP
.

A task for future work is to analyze the complexity of possible and necessary variants of other decision problems than 
verification or credulous or skeptical acceptance of individual arguments. Also, the range of classical semantics considered 
here could be extended by including other, more recently proposed semantics like the stage semantics [47], the semi-stable 
semantics [15], the ideal semantics [27], or the CF2 semantics [1].
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CHAPTER 7
Conclusion

We have studied the behavior of agents from two different perspectives, he-
donic games and abstract argumentation. In Chapter 3 we tried to close the
open gap for a specific question in hedonic games: How hard is it to decide,
whether for a given enemy-oriented hedonic game the strict core is nonempty
(SCSCS)? As hedonic games are often represented by graphs, a second, very
closely related question, crossed our way: How hard is it to decide for a
given undirected graph, whether there exists a wonderfully stable partition
of the vertices (WSPE)? It turned out, that both problems are closely related,
yet not easily reducible to each other. However, it is possible to use similar
techniques to prove similar results in both settings. This leads to hardness
results for NP, coNP and finally DP for both problems, SCSCS and WSPE.
As side effects, we were able to prove completeness results for WSPV and
k-WSPE. The former is the verification version of WSPE, in which we ask
whether a given partition is wonderfully stable in a given undirected graph.
The latter is WSPE restricted to graphs in which all vertices have the same
fixed clique number k. As both problems, WSPE and SCSCS, are essentially
equivalent for each such class of restricted graphs, we could directly derive
NP-completeness for k-SCSCS, the corresponding version of k-WSPE in the
setting of hedonic games. As upper bounds have already been known (Θp

2 for
WSPE and Σp

2 for SCSCS) the goal was to close the gap between DP and
the respective upper bound even further. We were able to establish a short-
cut and have shown, that the proof of coDP-hardness for WSPE is sufficient
to prove Θp

2-hardness. The same argument also works for SCSCS, however,
it still remains unclear whether the upper bound of Σp

2 for SCSCS can be
lowered to Θp

2 or not.
In Chapters 4 and 5, we proposed a new type of encoding, called weak

ranking with double threshold, that combines the singleton approach with the
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friend- and enemy-oriented encoding. An advantage of this idea is a huge
increase in expressivity without increasing the size of the input. However, a
major drawback is the need for a comprehensive procedure to extend these
rankings to a preference order over coalitions. We have chosen to use the
polarized responsive extension principle, which yields a partial order over
coalitions containing the player. Adversely, we need total orders, which led
us to two ideas: In Chapter 4, we dealt with this problem by leaving these
incomparabilities open and using notions such as possible and necessary.
Similar to the problems of Chapter 3, we focused on the verification and
existence problem and the stability concepts perfectness, individual rational-
ity, (contractual) individual stability, Nash stability, (strict) core stability,
Pareto optimality, and (strict) popularity. We investigated all possible com-
binations of the ten different stability concepts and the four cases of decision
problems, and established a wide range of results ranging from feasibility re-
sults to hardness results for NP and coNP, but also left open important gaps,
especially for the stability concepts (strict) core stability, Pareto optimality,
and (strict) popularity.

In Chapter 5 we used Borda-like comparability functions to break incom-
parabilities. We recommended four different versions of these functions for
the friends, and four analogous versions for the enemies. Each combination
of one function for the friends and one for the enemies defines a way of how
the scores are derived from the rankings, and therefore results in a possibly
different hedonic game. We established four feasibility results in the case of
the verification problem (for perfectness, individual stability, contractual in-
dividual stability, and Nash stability) and two in the case of the existence
problem (perfectness and contractual individual stability). For the two re-
maining stability concepts studied in Chapter 5, core stability and strict
core stability, we were able to prove coNP-completeness in the verification
case, with all results so far being independent from the choice of the compa-
rability function. However, the last four remaining cases (individual stability,
Nash stability, core stability, and strict core stability in combination with the
existence problem) are partly open: While strict core stability seems to be a
hard case in general, as we have not been able to tighten the gap between
coNP-hardness and membership in Σp

2 for any choice of comparability func-
tions, the three other cases depend highly on the choice of the comparability
functions.

Abstract argumentation was introduced in Chapter 6. We proposed a new
extended model of argumentation frameworks that allows us to model situ-
ations with incomplete information. This includes incomplete information in
both the set of arguments and attacks. As in the other chapters, we inves-
tigated the verification problem from computational complexity applied to
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the solution concepts of argumentation frameworks proposed by Dung [29],
which are called semantics. To deal with the incomplete information, we
again use the notions of possibility and necessity. We established many feasi-
bility results for the semantics conflict-freeness, admissibility, stability, com-
pleteness, groundedness, and preferredness, especially in the case of necessary
verification, while hardness almost solely occurs for possible verification. The
only exception is the preferred semantics, for which the standard verification
problem already was coNP-complete. Even though this complexity does not
increase in the necessary case, it increases to Σp

2-completeness in the case of
possible verification.

For future work it seems to be a good idea to continue with a complex-
ity analysis of the investigated models to close the open gaps, but also to
investigate decision problems such as credulous or skeptical acceptance, as
already started by Baumeister et al. [10]. For credulous acceptance we ask
whether there is a coalition structure (respectively argument set) that con-
tains an a priorly fixed coalition (respectively argument) and that satisfies
a given stability concept (respectively semantics). For skeptical acceptance
we ask whether there is one coalition (respectively argument) that is con-
tained in any coalition structure (respectively argument set) that satisfies a
given stability concept (respectively semantics). Additionally, it seems to be
important for any application of these formal analysis to find suitable ideas
that refine the contrasting concepts of possibility and necessity but also cred-
ulous and skeptical acceptance. A goal could be to search for intermediate
states that represent the some-part, instead of only allowing one or all. In
general, it could be very fruitful to continue with close interdisciplinary work
and capture exactly those problems from other disciplines that seem to profit
from a formal analysis most, and that can sustainably influence and shape
the future of our research fields.
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[25] K. Cechlárová and A. Romero-Medina. Stability in coalition formation
games. International Journal of Game Theory, 29(4):487–494, 2001.

[26] D. Dimitrov, P. Borm, R. Hendrickx, and S. Sung. Simple priorities
and core stability in hedonic games. Social Choice and Welfare, 26(2):
421–433, 2006.

[27] Y. Dimopoulos and A. Torres. Graph theoretical structures in logic
programs and default theories. Theoretical Computer Science, 170(1):
209–244, 1996.

[28] P. Dondio. Multi-valued argumentation frameworks. In International
Workshop on Rules and Rule Markup Languages for the Semantic Web,
pages 142–156. Springer, 2014.

[29] P. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Arti-
ficial Intelligence, 77(2):321–357, 1995.



114 BIBLIOGRAPHY

[30] P. Dunne and M. Wooldridge. Complexity of abstract argumentation.
In I. Rahwan and G. Simari, editors, Argumentation in Artificial Intel-
ligence, chapter 5, pages 85–104. Springer, 2009.

[31] U. Endriss, editor. Trends in Computational Social Choice. AI Access,
2017.

[32] D. Gale and L. Shapley. College admissions and the stability of marriage.
The American Mathematical Monthly, 69(1):9–15, 1962.

[33] L. Hemachandra. The strong exponential hierarchy collapses. Journal
of Computer and System Sciences, 39(3):299–322, 1989.

[34] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact analysis of
Dodgson elections: Lewis Carroll’s 1876 voting system is complete for
parallel access to NP. Journal of the ACM, 44(6):806–825, 1997.

[35] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Raising NP lower
bounds to parallel NP lower bounds. SIGACT News, 28(2):2–13, 1997.

[36] E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Ke-
meny elections. Theoretical Computer Science, 349(3):382–391, 2005.

[37] H. Jakobovits and D. Vermeir. Dialectic semantics for argumentation
frameworks. In Proceedings of the 7th international conference on Arti-
ficial intelligence and law, pages 53–62. ACM, 1999.
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