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Outline of this Chapter
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@ Structure and Properties of the Boolean Hierarchy over NP

@ Exact Graph Colorability
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Boolean Hierarchy over NP Problems in DP

Reminder: Directed Hamilton Circuit

Definition
DireCTED HaMmiLTON CirculT (DHC):
Given: A directed graph G = (V(G), E(G)).
Question: Does there exist a Hamilton cycle in G, i.e., a sequence
(vi,va,...,vn), vi € V(G), n=|V(G)||, such that
(Vayvi) € E(G) and (vi,viy1) € E(G) for 1 <i<n?

Theorem
DHC is NP-complete. }

Proof: Has been presented in Kryptokomplexitat |. a
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Boolean Hierarchy over NP Problems in DP

Reminder: Hamilton Circuit

Definition
HamMmicToN Circult (HC):
Given: An undirected graph G = (V(G),E(G)).
Question: Does there exist a Hamilton cycle in G, i.e., a sequence
(vi,va,...,vn), vi € V(G), n=|V(G)||, such that
{Va,v1} € E(G) and {vj,vi11} € E(G) for 1 <i<n?

Theorem
HC is NP-complete. J

Proof: (Kryptokomplexitat I.) Hint: Reduction from DHC. a
Cryptocomplexity 11 4/57



Boolean Hierarchy over NP Problems in DP

Reminder: Traveling Salesperson Problem

Definition
TRAVELING SALESPERSON PROBLEM (TSP):

Given: A complete undirected graph K, = (V,E), a cost function
c:E—N, and ke N.

Question: Does there exist a Hamilton cycle in K, such that the sum of

the edge costs is at most k?

Theorem
TSP is NP-complete. }

Proof: TSP € NP is easy to see.
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Boolean Hierarchy over NP Problems in DP

Reminder: TSP is NP-complete

TSP is NP-hard: We show HC <, TSP.

Given an undirected graph G = (V(G),E(G)) with
V(G) ={vi,va,...,v,}, define

f(G)=(Kn,c,n),
where K, =(V,E), V={1,2,...,n}, and for each edge e = {i,j} of Kj:

i< b Tl EC)

2  otherwise.
Clearly, G € HC if and only if f(G) € TSP.
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b P
Optimization and Search Variants of TSP

Definition
° MINTSP:
Given: A complete undirected graph K, =(V,E) and a cost
function c: E - N.
Output: The minimum cost of a Hamilton cycle in K, with

respect to c.

° SEARCHTSP:
Given: A complete undirected graph K, =(V,E) and a cost
function c: E — N.
Output: A Hamilton cycle in K, having minimum cost with

respect to c.
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Boolean Hierarchy over NP Problems in DP

Exact Variant of the Traveling Salesperson Problem

Definition
ExXACT TRAVELING SALESPERSON PROBLEM
(ExacT-TSP):

Given: A complete undirected graph K, = (V,E), a cost function
c:E—N, and ke N.

Question: Is it true that tsp(Kp,,c) = k, where tsp(Kp,c) denotes the
length of an optimal tour in (K, c)?
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Boolean Hierarchy over NP Problems in DP

Exact Variant of the Traveling Salesperson Problem

Fact
ExAcT-TSP is NP-hard. J

Proof: HC <P EXAcT-TSP can be shown with the same reduction
f(G) = (Kn,c,n), where K, =(V,E) and V ={1,2,...,n}, as in the
previous proof:

G € HC if and only if tsp(Kp,c) = n,
which proves the fact. a

Question: Is it true that ExacT-TSP € NP?
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Boolean Hierarchy over NP Problems in DP

Exact Variant of the Traveling Salesperson Problem

Observation: EXAcT-TSP can be written as:

EXACT-TSP = {(Kp,c,k)| - and tsp(Kp,c) =k}
— {(Knc.K)| -+ and tsp(Kn.c) < K}
{(Knvc,K)| - and tsp(Ko,c) > k}
Note that:

o {(Kn,c,k)| -+ and tsp(Ky,c) < k} is in NP and
o {(Kn,c,k)| -+ and tsp(Ky,c) > k} is in coNP.
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DP: “Difference NP”

Definition

DP {L|L=ANB and A€ NP and B € coNP}

= {L|L=A-Band A,BENP}.

Lemma

DP={L|L=1Ly— Ly and Ly, NP and L, C L;}.

Proof: The inclusion "2" is trivially true.
For the inclusion “C", let L€ DP, i.e., L=A— B for A,B € NP.

Define L1 = A and L, = ANB. Then L; and L, are in NP (because NP is
N-closed), L, C Ly, and L=A-B=A—(ANB)=L;— L. Q
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b P
Exact Variants of Other NP-complete Problems

Analogously to EXACT-TSP, exact variants can be defined for many

NP-complete problems:
o ExAcT VERTEX COVER,
o EXACT INDEPENDENT SET,
o Exact CLIQUE,
o EXACT DOMINATING SET,
o EXACT-k-COLOR,
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b P
Exact Independent Set

Definition
ExAcT INDEPENDENT SET (XIS):
Given: An undirected graph G = (V,E) and k € N.

Question: Is it true that mis(G) = k, where mis(G) denotes the size of

a maximum independent set in G?

Theorem
ExAcT-TSP, EXACT INDEPENDENT SET, and the other exact variants

of NP-complete problems are DP-complete. without proof

The proof for EXACT-k-COLOR will be sketched later on.
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SAT-UNSAT
Definition
SAT-UNSAT:

Given: A pair (¢, ¢’) of boolean formulas in 3-CNF.
Question: Is it true that ¢ € SAT and ¢’ ¢ SAT?

Theorem
SAT-UNSAT is DP-complete.

Proof:
@ SAT-UNSAT is in DP because SAT-UNSAT = AN B with
A = {(9,9')| @€ SAT} isin NP and

B = {(¢,9")|¢"¢SAT} isin coNP.
Cryptocomplexity Il o




SAT-UNSAT

© SAT-UNSAT is DP-hard: Let L be an arbitrary set in DP.
Then there are sets A € NP and B € coNP such that
L=ANB.
Since SAT is NP-complete, there are reductions
A<P SAT via f € FP and
B<h SAT  via g €FP.
Then L<F, SAT-UNSAT via h(x) = (f(x),g(x)), since:
xel < xe€AandxeB
<= f(x) € SAT and g(x) ¢ SAT
<= h(x) e SAT-UNSAT. Q
Cryptocomplexity |1 15 /57



Problems in DP
Critical Problems in DP

°
Given:
Question:

°
Given:
Question:

°
Given:
Question:

MINIMAL-3-UNSAT:
A boolean formula ¢ in 3-CNF.
Is it true that ¢ is unsatisfiable, yet removing any clause

from ¢ makes it satisfiable?

MINIMAL-3-UNCOLORABILITY:
An undirected graph G.
Is it true that G is not 3-colorable, yet removing any

one of its vertices makes it 3-colorable?

MAaXIMAL NON-HAMILTON CIRCUIT:
An undirected graph G.
Is it true that G has no Hamilton cycle, yet adding any

one edge to G creates one?
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Boolean Hierarchy over NP Problems in DP

Critical Problems in DP

Papadimitriou & Yannakakis (JCSS 1984) introduced DP to capture the
complexity of problems that are

@ known to be NP-hard or coNP-hard,
@ but not known to be in NP or coNP.

Critical problems tend to be extremely elusive and very hard to tackle.
Papadimitriou & Yannakakis (JCSS 1984) write:

“This difficulty seems to reflect the extremely delicate and deep
structure of critical problems—too delicate to sustain any of the
known reduction methods. One way to understand this is that
critical graphs is usually the object of hard theorems.”

J. Rothe (HHU Diisseldorf)
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Problems in DP
Critical Problems in DP

Theorem (Papadimitriou & Wolfe (JCSS 1988))
MINIMAL-3-UNSAT is DP-complete. without proof }

Theorem (Cai & Meyer (SICOMP 1987))
MINIMAL-3-UNCOLORABILITY is DP-complete. without proof J

Theorem (Papadimitriou & Wolfe (JCSS 1988))
MAXIMAL NON-HAMILTON CIRCUIT is DP-complete.  without proof }
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Boolean Hierarchy over NP Problems in DP

Unique Solution Problems in DP

Definition
UNIQUE SAT:

Given: A boolean formula ¢.

Question: Does there exist a unique satisfying assignment for @7

Theorem
UNIQUE SAT is coNP-hard and in DP.

Proof: Excercise. a

Remark: It is still open whether UNIQUE SAT is DP-complete.
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP

Definition (Boolean Hierarchy over NP)

@ For classes ¥ and & of sets, define:

CND
A

= {ANB|A€c € and B € 7};
= {AUB|Ac% and Be 7}.

@ The boolean hierarchy over NP is inductively defined by:

J. Rothe (HHU Diisseldorf)

P,

NP,

NPAcoNP = DP,
BH,_»(NP)VBH;,(NP)

| BHK(NP).
k>0

Cryptocomplexity |l
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP

Theorem (Cai et al. (SICOMP 1988))
For each k > 1,

A1,A2,...,Ax € NP and
Ak CA 1S CA

BH,(NP) = { Ay — Ay — -+ — Ag

where we agree by convention that parentheses may be omitted in such set
differences:

Ar—Ar— = A1 — Ak =Ar— (A= (- = (A1 —Ak) )

without proof

v
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Inclusion Structure

Theorem (Cai et al. (SICOMP 1988))
For each k > 0,

BH,(NP) C BH,;1(NP) and coBH,(NP) C coBH, 1 (NP)

and, hence,

BH,(NP) UcoBH,(NP) C BHy, 1 (NP).

Proof: Follows immediately from the definitions. a
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP (Hasse Diagram)

BH(NP)

coBH3(NP) BH3(NP)

E—— sl

coDP = coBH,(NP) BH,(NP) = DP

Bl

coNP = coBH; (NP) BH; (NP) = NP

oo

P = BHy(NP)
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP (Venn Diagram)
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Upward Collapse

Theorem (Cai et al. (SICOMP 1988))
© For each k >0, if BHK(NP) = BHx41(NP), then

BH, (NP) = coBH(NP) = BH,., 1 (NP) = coBH,_.1 (NP) = - -- = BH(NP).

© For each k > 1, if BH(NP) = coBH,(NP), then

BH, (NP) = coBH(NP) = BH,., 1 (NP) = coBH;1 (NP) = - -- = BH(NP)

4
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Upward Collapse

Proof:
© Suppose that BH,(NP) = BHy 1(NP) is true for some fixed k > 0.

We prove by induction on n:
(Vn > k) [BH,(NP) = coBH,(NP) = BH,,+1 (NP)]. (1)

The induction base, n = k, follows immediately from the previous
theorem and the hypothesis BH,(NP) = BHy 1 (NP):

coBH(NP) C BHg.1(NP) = BH,(NP),
which immediately implies coBH,(NP) = BH(NP).
The induction hypothesis says that (1) is true for some n > k.

We have to show that BH,11(NP) = BH,»(NP). By an argument as
in the induction base, this also implies BH,,;1(NP) = coBH,,+1(NP).
Cryptocomplexity |l 26 /57



Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Upward Collapse

Let X be any set in BH,2(NP).
Thus, there exist sets A1, Az,...,Apt2 in NP such that
A2 €A1 €--CA and X =A1—Ar——Apo.
Let Y =Ay—As—---— App. Thus, Y € BH,.1(NP).
By induction hypothesis, Y is contained in BH,(NP) = BH,1(NP).

Hence, Y =By — B, —---— B,, for suitable NP sets By, Bs,...,B,
satisfying B, C B,_1 C --- C Bj.

By our choice of the sets A;, we have Y C A;, which implies YNA; =Y.
It follows that
Y = (BlﬁAl)—(BQQAl)— '-'—(BnﬂAl).
Cryptocomplexity |l 27 /57



Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Upward Collapse

Each of the sets B; N A; is in NP, since NP is closed under intersection.

Consequently,
X = A — Y:Al—(BlﬁAl)—(BQﬁAl)—'-'—(BnﬂAl),
is a set in BH,11(NP), where

(BaNA1) C(Bp-1NAL) C--- C(BiNA;) C Ay,

which concludes the induction and proves (1).
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Upward Collapse

© Suppose that BH,(NP) = coBH(NP) is true for some fixed k > 1.

We show that this supposition implies BHx1(NP) = BH,(NP), thus

reducing the second statement to the first statement of the theorem.

Let X =A;— Ay —---— Axy1 be a set in BHi 1(NP), where
A1,Az, ..., Aks1 are sets in NP satisfying that A1 C A C--- C Ay

Hence, Y = Ay — A3 — - — Ak41 is a set in BH(NP).
By our supposition, Y is in coBH,(NP) = BH(NP).
Thus, Y is a set in BH,(NP).

Let By, B>,..., By be sets in NP such that
Y=B-B,—---—B and B.CB1C---CB;.
Cryptocomplexity 11 29 /57



Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Upward Collapse

Again, since NP is closed under intersection, each of the sets A; N B;,
1<i<k, isin NP.

Furthermore, AiN B, CA1NBx_1C---CA1NB;s.
Hence,
X = Al-Y=ANY=(A1NB)—(A1NB)—--— (AN By)
is a set in BH,(NP), which proves that
BH,1(NP) = BH,(NP),

and the argument given in the proof of the first statement of the theorem
applies to prove the collapse BH,(NP) = BH(NP). Q
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Structure and Properties of the Boolean Hierarchy over NP
Boolean Hierarchy over NP: Complete Problems
Definition
Dk—SATZ
Given: A tuple (H1,Ha,...,Hk) of boolean formulas in CNF.

Question: Does there exist an i such that Hy,...,Hy;_1 € SAT and
Hoiy...,He & SAT?

Remark: Special cases:
@ k=1: D1-SAT = SAT is NP-complete.
@ k=2: D-SAT =SAT-UNSAT is DP-complete.

Theorem
For each k > 1, D-SAT is BH,(NP)-complete. without proof J
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Complete Problems

Definition D,-INDEPENDENT SET (D-IS):

Given: An undirected graph G = (V/,E) and a tuple
(my,my,...,my) of positive integers.
Question: s it true that:

o if k is even then
O<m<my<m3<my<--<mg1<mg<| V| and

mIS(G) S [ml, mg] @] [m3, m4] U---u [mk,]_, mk]7

o if k is odd then
0<m <my<mg<my<--<m_3 <m<|V| and

mis(G) € [my,m]U[msz, ma]U---U[my, || V]]?
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Complete Problems

Remark: Special cases:
@ k=1: Dy-IS = IS is NP-complete.
@ k=2 and my = my: D»-IS = XIS is DP-complete.

Theorem
For each k > 1, D-IS is BH,(NP)-complete. without proof }
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Structure and Properties of the Boolean Hierarchy over NP
Wagner's Tool for Proving DP-Hardness

Lemma (Wagner, TCS 1987)

Let A be some NP-complete problem and let B be an arbitrary problem.
If there exists a polynomial-time computable function f such that, for all
input strings x1 and xu for which x; € A implies x; € A, we have that

(x1 €eAAX2 ¢ A) <= f(x1,x)€ B,

then B is DP-hard.

@ Has been applied to prove DP-completeness of, e.g.,
e XIS, EXACT-7-COLOR, etc. (Wagner, TCS 1987),
o EXACT-4-COLOR (Rothe, IPL 2006).
@ Analogues for all levels of the boolean hierarchy and Pﬂlp, eg.,

o DODGSON WINNER is Pﬁp—complete (Hemaspaandra et al., JJACM

1997
J. Rothe (HHU Diisseldorf) Cryptocomplexity | 34 /57



Structure and Properties of the Boolean Hierarchy over NP
Wagner's Tool for Proving BHy,(NP)-Hardness

Lemma (Wagner, TCS 1987)
Let A be some NP-complete problem, B be an arbitrary problem, and
k > 1 a fixed integer. If there exists a polynomial-time computable

function f such that, for all input strings x1,Xo,...,xa, for which
(Vj:1<j<2k) [xiq1€ A= x € A
we have that

I{i|xi € A}|| is odd <= f(x1,%2,...,%x) € B, (2)

then B is BHpk(NP)-hard.

Proof: Relatively easy to show and thus omitted. a
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Wagner's Tool for Proving
BHy_1(NP)/coBHy,(NP)/coBH,, 1 (NP)-Hardness

Remark:
@ Replacing “2k" by “2k —1" in the lemma above yields an analogous

criterium for BHp,_1(NP)-Hardness.

@ Replacing “odd” by “even” yields an analogous criterium for
coBHy (NP)- and coBHy,_1(NP)-Hardness, respectively.
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=G e e
Reminder: Graph Colorability

Definition
Let G =(V(G),E(G)) be an undirected graph.
@ A k-coloring of G is a mapping V(G) — {1,2,...,k}.

@ A k-coloring v of G is called legal if for any two vertices x and y
in V(G), if {x.y} € E(G) then y(x) # (y).

@ The chromatic number of G, denoted by x(G), is the smallest

number k such that G is legally k-colorable.
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Boolean Hierarchy over NP Exact Graph Colorability

Reminder: Graph Colorability

Definition

For fixed kK > 1, define

k-CoLOR ={G| G is a graph with x(G) < k}.

Example:

Figure: A 3-colorable graph

J. Rothe (HHU Diisseldorf) Cryptocomplexity Il
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Boolean Hierarchy over NP Exact Graph Colorability

Exact Graph Colorability

Definition
For fixed kK > 1, define

EXACT-k-COLOR = {G | G is a graph with x(G) = k}.

Example:

Figure: A graph in ExAcT-3-COLOR (left) and in EXAcT-4-COLOR (right)

J. Rothe (HHU Diisseldorf) Cryptocomplexity Il
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=G e e
Generalized Exact Graph Colorability

Definition
For fixed j > 1, let M; C N be a given set of j non-consecutive integers and

define

ExAcT-M;-CoLOR = {G | G is a graph with x(G) € M;}.

Remark: For j =1 with M; = {k}, we write EXACT-k-COLOR instead of
ExAcT-M;-COLOR = EXACT-{k}-COLOR.

Theorem (Wagner, TCS 1987)
For fixed k > 1, let My = {6k +1,6k+3,...,8k—1}. ExacT-M;-COLOR
is BHyx (NP)-complete. In particular, for k =1 (i.e.,, My ={7}),

ExacT-7-COLOR is DP-complete. without proof
Cryptocomplexity 11 40 /57



=G e e
Generalized Exact Graph Colorability

Lemma
There exists a polynomial-time computable function ¢ that <h -reduces

3-SAT to 3-COLOR and satisfies the following two properties:

@€ 3-SAT = x(o(e))=3; (3)
¢ ¢Z3-SAT = x(o(p))=4 (4)

Proof: Use standard reduction 3-SAT <§, 3-COLOR (next slides). Q

Lemma (Guruswami and Khanna, CCC-2000)
There exists a polynomial-time computable function p that <h -reduces

3-SAT to 3-COLOR and satisfies the following two properties:

P c3-SAT = x(p(9))=3; (5)
p(®))

0 Z3-SAT = x(p(9))=5. (6)1
Cryptocomplexity |l 41 /57




;26 @) ey
Reminder: 3-COLOR is NP-complete

Fact

2-COLOR is in P. without proof

4

Theorem
3-COLOR is NP-complete.

Proof:

© 3-COLOR € NP is easy to see.

© 3-COLOR is NP-hard: We show 3-SAT <P 3-COLOR. Let
O(x1,x2,. ., xn) = GAGA--ACpy

be a given 3-SAT instance with exactly three literals per clause.
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Boolean Hierarchy over NP Exact Graph Colorability

Reminder: 3-COLOR is NP-complete

Define a reduction f mapping ¢ to the graph G constructed as follows.
The vertex set of G is defined by

V(G) = {wvi,vo,v3}U{x,—xj|1<i<n}
U{yjk|1<j<mand 1<k<6},

where the x; and —x; are vertices representing the literals x; and their
negations —x;, respectively.
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Boolean Hierarchy over NP Exact Graph Colorability

Reminder: 3-COLOR is NP-complete

The edge set of G is defined by

E(G) = {{n,v}{v,v},{n,v}}U {{x,—x} ‘ 1<i<n}
U {{vs,xi},{v3,~x} ‘ 1<i<n}
U {{aj,yja b Abj.yi2b A, ys} |1 <j < m)
U {{va,yj6}:{v3,¥j6} |1 <j < m}
U {{ysnyeh vissva b v, vjat [ 1 <j < m}
U {3yt {3yl {yis:yiet | 1 <j< m}
U {{yjayis}|1<j<mj,

where a;, bj, ¢; € U1<j<,{xi,~x;} are vertices representing the literals

occurring in clause C; = (a; vV bV ¢j).

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11
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Boolean Hierarchy over NP Exact Graph Colorability

Skeletal Structure of the Graph in 3-SAT <%, 3-CoLor

Vi V,

==
\
/
e 6
= o=

Figure: Skeletal Structure of the graph in 3-SAT <P 3-CoLor
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;26 @) ey
Clause Graph in 3-SAT <P 3-CoLor

a Vi

Yo

cCe Vs

Figure: Graph H for clause C = (aV bV c) in 3-SAT <}, 3-COLOR
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;26 @) ey
Properties of Clause Graph H in 3-SAT <b 3-CoLor

© Vertices x; and —x; corresponding to the literals x; and —x; are legally
colored 1 (“true”) or 2 (“false”).

© Any coloring of the vertices a, b, and ¢ that assigns color 1 to one of
a, b, and ¢ can be extended to a legal 3-coloring of H that assigns
color 1 to y6. Thus, if ¢ € 3-SAT then G € 3-COLOR.

O If yis a legal 3-coloring of H with y(a) = y(b) = y(c) =1, then
V(ye) =1i. Thus, if ¢ ¢ 3-SAT then G ¢ 3-COLOR because
x(c(9)) =x(G) = 4.

It follows that
¢ € 3-SAT < f(¢) = G € 3-COLOR

Clearly, reduction f is polynomial-time computable. a
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Boolean Hierarchy over NP Exact Graph Colorability

Guruswami—Khanna Reduction: Sketch

ti2 ti3

Figure: Tree-like structure S; in the Guruswami—Khanna reduction
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Boolean Hierarchy over NP Exact Graph Colorability

Guruswami—Khanna Reduction: Sketch

Figure: Basic template in the Guruswami—Khanna reduction
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Boolean Hierarchy over NP Exact Graph Colorability

Guruswami—Khanna Reduction: Sketch

(111) (223) (332)
(222) (331) (113)] [i
(333) (112) (221)

(123) (132)
(312) (231) (213) (321)
(111) (233) (322) (111) (323) (232)
(222) (311) (133)] ti,1 (222) (131) (313)| Si
(333) (122) (211) (333) (212) (121)

Figure: Connection pattern between the templates of a tree-like structure
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Boolean Hierarchy over NP Exact Graph Colorability

Guruswami—Khanna Reduction: Sketch

Figure: Gadget connecting two “leaves” of the “same row” kind
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Boolean Hierarchy over NP Exact Graph Colorability

Guruswami—Khanna Reduction: Sketch

Figure: Gadget connecting two “leaves” of the “different rows” kind
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Boolean Hierarchy over NP Exact Graph Colorability

ExXACT-4-COLOR is DP-complete

Theorem (Rothe, IPL 2001)
For fixed k > 1, let My = {3k+1,3k+3,...,5k —1}.

o ExAcT-M;-COLOR is BHy, (NP)-complete.

® In particular, for k =1 (i.e., My ={4}), EXACT-4-COLOR s
DP-complete.

Proof: Fix k> 1. Apply Wagner's Lemma with

@ A being the NP-complete problem 3-SAT and
@ B being the problem EXACT-M,-COLOR, where

My = {3k +1,3k+3,...,5k —1}.
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EXACT-4-COLOR is DP-complete

Let
@ o be the standard reduction from 3-SAT to 3-COLOR according to
our previous lemma, and
® let p be the Guruswami—Khanna reduction from 3-SAT to 3-COLOR

according to their lemma.

The join operation on graphs, denoted by <, is defined as follows: Given
two disjoint graphs A and B, their join A B is the graph whose vertex
and edge set, respectively, are:
V(A B) = V(A)UV(B);
E(AxiB) = E(A)UE(B)U{{a,b}|ac V(A)and be V(B)}.
Note that (A B) = x(A)+ x(B) and < is an associative operation.
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Boolean Hierarchy over NP Exact Graph Colorability

ExXACT-4-COLOR is DP-complete

Let ¢1,02,..., 00k 1,02k be 2k given boolean formulas satisfying that
@j+1 € 3-SAT implies @; € 3-SAT for each j with 1 < j < 2k.

Define 2k graphs Hi,Ha, ..., Hoi 1, Hok as follows.
For each i/ with 1 < < k, define
Hoi1=p(@oi-1) and  Hoj = o (@2).

By (3), (4), (5), and (6) from our previous two lemmas, it follows that

3 if 1< <2k and ¢; € 3-SAT
x(H;) = 4 if j=2i for some i € {1,2,...,k} and ¢@; ¢ 3-SAT (7)
5 if j=2i—1 for some i€ {1,2,...,k} and ¢; & 3-SAT.

J. Rothe (HHU Diisseldorf) Cryptocomplexity | 55 /57



Boolean Hierarchy over NP Exact Graph Colorability

ExXACT-4-COLOR is DP-complete

For each i/ with 1 < i < k, define the graph G; to be the disjoint union of
the graphs H; 1 and Ho;.

Thus, x(G;) = max{yx(H>; 1), x(Ha;)}, for each i, 1 <j < k.

The construction of our reduction f is completed by defining

Q1,902,006 1,021)) = G,

where the graph G is the join of the graphs G, Gy, ..., Gk.
Thus,
K
x(G)=) x(G)= ZmaX{X(HZ—l)aX(HZ)}- (8)

i=1 i=1
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Boolean Hierarchy over NP Exact Graph Colorability

ExXACT-4-COLOR is DP-complete
It follows from our construction that:

1{i| @i € 3-SAT}| is odd
— (i 1<i<k)[Qi,...,0-1 € 3-SAT and @y;,..., 0k & 3-SAT]

DO g 1<i<k) | Tax(6) = 3(i-1)+a+5(k-1)
— 5k—2i+1
B (G) e My = {3k+1,3k+3,...,5k—1}

— ({01, 02,..., 020 1,02k)) = G € EXACT-M-COLOR.

Hence, the equivalence in Wagner's lemma is satisfied.

By Wagner's lemma, EXACT-M;-COLOR is BHy, (NP)-complete. a
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