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Boolean Hierarchy over NP Problems in DP

Reminder: Directed Hamilton Circuit

Definition

Directed Hamilton Circuit (DHC):

Given: A directed graph G = (V (G ),E (G )).

Question: Does there exist a Hamilton cycle in G , i.e., a sequence

(v1,v2, . . . ,vn), vi ∈ V (G ), n= ‖V (G )‖, such that

(vn,v1) ∈ E (G ) and (vi ,vi+1) ∈ E (G ) for 1≤ i < n?

Theorem

DHC is NP-complete.

Proof: Has been presented in Kryptokomplexität I. ❑
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Boolean Hierarchy over NP Problems in DP

Reminder: Hamilton Circuit

Definition

Hamilton Circuit (HC):

Given: An undirected graph G = (V (G ),E (G )).

Question: Does there exist a Hamilton cycle in G , i.e., a sequence

(v1,v2, . . . ,vn), vi ∈ V (G ), n= ‖V (G )‖, such that

{vn,v1} ∈ E (G ) and {vi ,vi+1} ∈ E (G ) for 1≤ i < n?

Theorem

HC is NP-complete.

Proof: (Kryptokomplexität I.) Hint: Reduction from DHC. ❑
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Boolean Hierarchy over NP Problems in DP

Reminder: Traveling Salesperson Problem

Definition

Traveling Salesperson Problem (TSP):

Given: A complete undirected graph Kn = (V ,E ), a cost function

c : E → N, and k ∈ N.

Question: Does there exist a Hamilton cycle in Kn such that the sum of

the edge costs is at most k?

Theorem

TSP is NP-complete.

Proof: TSP ∈ NP is easy to see.
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Boolean Hierarchy over NP Problems in DP

Reminder: TSP is NP-complete

TSP is NP-hard: We show HC≤p
m TSP.

Given an undirected graph G = (V (G ),E (G )) with

V (G ) = {v1,v2, . . . ,vn}, define

f (G ) = (Kn,c ,n),

where Kn = (V ,E ), V = {1,2, . . . ,n}, and for each edge e = {i , j} of Kn:

c({i , j}) =







1 if {vi ,vj} ∈ E (G )

2 otherwise.

Clearly, G ∈HC if and only if f (G ) ∈TSP. ❑
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Boolean Hierarchy over NP Problems in DP

Optimization and Search Variants of TSP

Definition

MinTSP:

Given: A complete undirected graph Kn = (V ,E ) and a cost

function c : E → N.

Output: The minimum cost of a Hamilton cycle in Kn with

respect to c .

SearchTSP:

Given: A complete undirected graph Kn = (V ,E ) and a cost

function c : E → N.

Output: A Hamilton cycle in Kn having minimum cost with

respect to c .
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Boolean Hierarchy over NP Problems in DP

Exact Variant of the Traveling Salesperson Problem

Definition

Exact Traveling Salesperson Problem

(Exact-TSP):

Given: A complete undirected graph Kn = (V ,E ), a cost function

c : E → N, and k ∈ N.

Question: Is it true that tsp(Kn,c) = k , where tsp(Kn,c) denotes the

length of an optimal tour in (Kn,c)?
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Boolean Hierarchy over NP Problems in DP

Exact Variant of the Traveling Salesperson Problem

Fact

Exact-TSP is NP-hard.

Proof: HC≤p
m Exact-TSP can be shown with the same reduction

f (G ) = (Kn,c ,n), where Kn = (V ,E ) and V = {1,2, . . . ,n}, as in the

previous proof:

G ∈HC if and only if tsp(Kn,c) = n,

which proves the fact. ❑

Question: Is it true that Exact-TSP ∈ NP?
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Boolean Hierarchy over NP Problems in DP

Exact Variant of the Traveling Salesperson Problem

Observation: Exact-TSP can be written as:

Exact-TSP = {(Kn,c ,k)
∣

∣ · · · and tsp(Kn,c) = k}

= {(Kn,c ,k)
∣

∣ · · · and tsp(Kn,c)≤ k}∩

{(Kn,c ,k)
∣

∣ · · · and tsp(Kn,c)≥ k}

Note that:

{(Kn,c ,k)
∣

∣ · · · and tsp(Kn,c)≤ k} is in NP and

{(Kn,c ,k)
∣

∣ · · · and tsp(Kn,c)≥ k} is in coNP.
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Boolean Hierarchy over NP Problems in DP

DP: “Difference NP”

Definition

DP = {L
∣

∣L= A∩B and A ∈ NP and B ∈ coNP}

= {L
∣

∣L= A−B and A,B ∈ NP}.

Lemma

DP = {L
∣

∣L= L1−L2 and L1,L2 ∈ NP and L2 ⊆ L1}.

Proof: The inclusion “⊇” is trivially true.

For the inclusion “⊆”, let L ∈ DP, i.e., L= A−B for A,B ∈ NP.

Define L1 = A and L2 = A∩B . Then L1 and L2 are in NP (because NP is

∩-closed), L2 ⊆ L1, and L= A−B = A− (A∩B) = L1−L2. ❑
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Boolean Hierarchy over NP Problems in DP

Exact Variants of Other NP-complete Problems

Analogously to Exact-TSP, exact variants can be defined for many

NP-complete problems:

Exact Vertex Cover,

Exact Independent Set,

Exact Clique,

Exact Dominating Set,

Exact-k-Color,

· · ·
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Boolean Hierarchy over NP Problems in DP

Exact Independent Set

Definition

Exact Independent Set (XIS):

Given: An undirected graph G = (V ,E ) and k ∈N.

Question: Is it true that mis(G ) = k , where mis(G ) denotes the size of

a maximum independent set in G?

Theorem

Exact-TSP, Exact Independent Set, and the other exact variants

of NP-complete problems are DP-complete. without proof

The proof for Exact-k-Color will be sketched later on.
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Boolean Hierarchy over NP Problems in DP

SAT-UNSAT

Definition

SAT-UNSAT:

Given: A pair (ϕ ,ϕ ′) of boolean formulas in 3-CNF.

Question: Is it true that ϕ ∈ SAT and ϕ ′ 6∈ SAT?

Theorem

SAT-UNSAT is DP-complete.

Proof:

1 SAT-UNSAT is in DP because SAT-UNSAT= A∩B with

A = {(ϕ ,ϕ ′)
∣

∣ϕ ∈ SAT} is in NP and

B = {(ϕ ,ϕ ′)
∣

∣ϕ ′ 6∈ SAT} is in coNP.
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Boolean Hierarchy over NP Problems in DP

SAT-UNSAT

2 SAT-UNSAT is DP-hard: Let L be an arbitrary set in DP.

Then there are sets A ∈ NP and B ∈ coNP such that

L= A∩B .

Since SAT is NP-complete, there are reductions

A≤
p
m SAT via f ∈ FP and

B≤p
m SAT via g ∈ FP.

Then L≤p
m SAT-UNSAT via h(x) = (f (x),g(x)), since:

x ∈ L ⇐⇒ x ∈ A and x ∈ B

⇐⇒ f (x) ∈ SAT and g(x) 6∈ SAT

⇐⇒ h(x) ∈ SAT-UNSAT. ❑
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Boolean Hierarchy over NP Problems in DP

Critical Problems in DP

Minimal-3-UNSAT:

Given: A boolean formula ϕ in 3-CNF.

Question: Is it true that ϕ is unsatisfiable, yet removing any clause

from ϕ makes it satisfiable?

Minimal-3-Uncolorability:

Given: An undirected graph G .

Question: Is it true that G is not 3-colorable, yet removing any

one of its vertices makes it 3-colorable?

Maximal Non-Hamilton Circuit:

Given: An undirected graph G .

Question: Is it true that G has no Hamilton cycle, yet adding any

one edge to G creates one?
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Boolean Hierarchy over NP Problems in DP

Critical Problems in DP

Papadimitriou & Yannakakis (JCSS 1984) introduced DP to capture the

complexity of problems that are

known to be NP-hard or coNP-hard,

but not known to be in NP or coNP.

Critical problems tend to be extremely elusive and very hard to tackle.

Papadimitriou & Yannakakis (JCSS 1984) write:

“This difficulty seems to reflect the extremely delicate and deep

structure of critical problems—too delicate to sustain any of the

known reduction methods. One way to understand this is that

critical graphs is usually the object of hard theorems.”

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 17 / 57



Boolean Hierarchy over NP Problems in DP

Critical Problems in DP

Theorem (Papadimitriou & Wolfe (JCSS 1988))

Minimal-3-UNSAT is DP-complete. without proof

Theorem (Cai & Meyer (SICOMP 1987))

Minimal-3-Uncolorability is DP-complete. without proof

Theorem (Papadimitriou & Wolfe (JCSS 1988))

Maximal Non-Hamilton Circuit is DP-complete. without proof
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Boolean Hierarchy over NP Problems in DP

Unique Solution Problems in DP

Definition

Unique SAT:

Given: A boolean formula ϕ .

Question: Does there exist a unique satisfying assignment for ϕ?

Theorem

Unique SAT is coNP-hard and in DP.

Proof: Excercise. ❑

Remark: It is still open whether Unique SAT is DP-complete.
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP

Definition (Boolean Hierarchy over NP)

For classes C and D of sets, define:

C∧D = {A∩B
∣

∣A ∈ C and B ∈ D};

C∨D = {A∪B
∣

∣A ∈ C and B ∈ D}.

The boolean hierarchy over NP is inductively defined by:

BH0(NP) = P,

BH1(NP) = NP,

BH2(NP) = NP∧coNP = DP,

BHk(NP) = BHk−2(NP)∨BH2(NP) for each k ≥ 3, and

BH(NP) =
⋃

k≥0

BHk(NP).
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP

Theorem (Cai et al. (SICOMP 1988))

For each k ≥ 1,

BHk(NP) =







A1−A2−·· ·−Ak

A1,A2, . . . ,Ak ∈ NP and

Ak ⊆ Ak−1 ⊆ ·· · ⊆ A1







,

where we agree by convention that parentheses may be omitted in such set

differences:

A1−A2−·· ·−Ak−1−Ak = A1− (A2− (· · ·− (Ak−1−Ak) · · · )).

without proof
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Inclusion Structure

Theorem (Cai et al. (SICOMP 1988))

For each k ≥ 0,

BHk(NP)⊆ BHk+1(NP) and coBHk(NP)⊆ coBHk+1(NP)

and, hence,

BHk(NP)∪ coBHk(NP)⊆ BHk+1(NP).

Proof: Follows immediately from the definitions. ❑
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP (Hasse Diagram)

P = BH0(NP)

coNP = coBH1(NP)

coDP = coBH2(NP)

coBH3(NP)

BH(NP)

BH3(NP)

BH2(NP) = DP

BH1(NP) = NP

...
...
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP (Venn Diagram)

· · ·

...

coBH1

BH2BH1

coBH2

coNP

NP P

BH(NP)

coDP

DP

...

· · ·
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Upward Collapse

Theorem (Cai et al. (SICOMP 1988))

1 For each k ≥ 0, if BHk(NP) = BHk+1(NP), then

BHk(NP) = coBHk(NP) = BHk+1(NP) = coBHk+1(NP) = · · ·= BH(NP).

2 For each k ≥ 1, if BHk(NP) = coBHk(NP), then

BHk(NP) = coBHk(NP) = BHk+1(NP) = coBHk+1(NP) = · · ·= BH(NP).
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Upward Collapse

Proof:

1 Suppose that BHk(NP) = BHk+1(NP) is true for some fixed k ≥ 0.

We prove by induction on n:

(∀n ≥ k) [BHn(NP) = coBHn(NP) = BHn+1(NP)]. (1)

The induction base, n = k , follows immediately from the previous

theorem and the hypothesis BHk(NP) = BHk+1(NP):

coBHk(NP)⊆ BHk+1(NP) = BHk(NP),

which immediately implies coBHk(NP) = BHk(NP).

The induction hypothesis says that (1) is true for some n ≥ k .

We have to show that BHn+1(NP) = BHn+2(NP). By an argument as

in the induction base, this also implies BHn+1(NP) = coBHn+1(NP).
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Upward Collapse

Let X be any set in BHn+2(NP).

Thus, there exist sets A1,A2, . . . ,An+2 in NP such that

An+2 ⊆ An+1 ⊆ ·· · ⊆ A1 and X = A1−A2−·· ·−An+2.

Let Y = A2−A3−·· ·−An+2. Thus, Y ∈ BHn+1(NP).

By induction hypothesis, Y is contained in BHn(NP) = BHn+1(NP).

Hence, Y = B1−B2−·· ·−Bn, for suitable NP sets B1,B2, . . . ,Bn

satisfying Bn ⊆ Bn−1 ⊆ ·· · ⊆ B1.

By our choice of the sets Ai , we have Y ⊆ A1, which implies Y ∩A1 = Y .

It follows that

Y = (B1∩A1)− (B2∩A1)−·· ·− (Bn∩A1).
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Upward Collapse

Each of the sets Bi ∩A1 is in NP, since NP is closed under intersection.

Consequently,

X = A1−Y = A1− (B1∩A1)− (B2∩A1)−·· ·− (Bn∩A1),

is a set in BHn+1(NP), where

(Bn∩A1)⊆ (Bn−1∩A1)⊆ ·· · ⊆ (B1∩A1)⊆ A1,

which concludes the induction and proves (1).
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Upward Collapse

2 Suppose that BHk(NP) = coBHk(NP) is true for some fixed k ≥ 1.

We show that this supposition implies BHk+1(NP) = BHk(NP), thus

reducing the second statement to the first statement of the theorem.

Let X = A1−A2−·· ·−Ak+1 be a set in BHk+1(NP), where

A1,A2, . . . ,Ak+1 are sets in NP satisfying that Ak+1 ⊆ Ak ⊆ ·· · ⊆ A1.

Hence, Y = A2−A3−·· ·−Ak+1 is a set in BHk(NP).

By our supposition, Y is in coBHk(NP) = BHk(NP).

Thus, Y is a set in BHk(NP).

Let B1,B2, . . . ,Bk be sets in NP such that

Y = B1−B2−·· ·−Bk and Bk ⊆ Bk−1 ⊆ ·· · ⊆ B1.
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Upward Collapse

Again, since NP is closed under intersection, each of the sets A1∩Bi ,

1≤ i ≤ k , is in NP.

Furthermore, A1∩Bk ⊆ A1∩Bk−1 ⊆ ·· · ⊆ A1∩B1.

Hence,

X = A1−Y = A1∩Y = (A1∩B1)− (A1∩B2)−·· ·− (A1∩Bk)

is a set in BHk(NP), which proves that

BHk+1(NP) = BHk(NP),

and the argument given in the proof of the first statement of the theorem

applies to prove the collapse BHk(NP) = BH(NP). ❑
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Complete Problems

Definition

Dk -SAT:

Given: A tuple (H1,H2, . . . ,Hk) of boolean formulas in CNF.

Question: Does there exist an i such that H1, . . . ,H2i−1 ∈ SAT and

H2i , . . . ,Hk 6∈ SAT?

Remark: Special cases:

k = 1: D1-SAT= SAT is NP-complete.

k = 2: D2-SAT= SAT-UNSAT is DP-complete.

Theorem

For each k ≥ 1, Dk -SAT is BHk(NP)-complete. without proof
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Complete Problems

Definition
Dk -Independent Set (Dk -IS):

Given: An undirected graph G = (V ,E ) and a tuple

(m1,m2, . . . ,mk) of positive integers.

Question: Is it true that:

if k is even then

0<m1 ≤m2 <m3 ≤m4 < · · ·<mk−1 ≤mk < ‖V ‖ and

mis(G ) ∈ [m1,m2]∪ [m3,m4]∪ ·· ·∪ [mk−1,mk ]?

if k is odd then

0<m1 ≤m2 <m3 ≤m4 < · · · ≤mk−1 <mk ≤ ‖V ‖ and

mis(G ) ∈ [m1,m2]∪ [m3,m4]∪ ·· ·∪ [mk ,‖V ‖]?
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Boolean Hierarchy over NP: Complete Problems

Remark: Special cases:

k = 1: D1-IS = IS is NP-complete.

k = 2 and m1 =m2: D2-IS = XIS is DP-complete.

Theorem

For each k ≥ 1, Dk -IS is BHk(NP)-complete. without proof
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Wagner’s Tool for Proving DP-Hardness

Lemma (Wagner, TCS 1987)

Let A be some NP-complete problem and let B be an arbitrary problem.

If there exists a polynomial-time computable function f such that, for all

input strings x1 and x2 for which x2 ∈ A implies x1 ∈ A, we have that

(x1 ∈ A∧ x2 6∈ A) ⇐⇒ f (x1,x2) ∈ B ,

then B is DP-hard.

Has been applied to prove DP-completeness of, e.g.,

XIS, Exact-7-Color, etc. (Wagner, TCS 1987),

Exact-4-Color (Rothe, IPL 2006).

Analogues for all levels of the boolean hierarchy and PNP
|| , e.g.,

Dodgson Winner is PNP
|| -complete (Hemaspaandra et al., J.ACM

1997)
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Wagner’s Tool for Proving BH2k(NP)-Hardness

Lemma (Wagner, TCS 1987)

Let A be some NP-complete problem, B be an arbitrary problem, and

k ≥ 1 a fixed integer. If there exists a polynomial-time computable

function f such that, for all input strings x1,x2, . . . ,x2k for which

(∀j : 1≤ j < 2k) [xj+1 ∈ A⇒ xj ∈ A],

we have that

‖{i
∣

∣ xi ∈ A}‖ is odd ⇐⇒ f (x1,x2, . . . ,x2k) ∈ B , (2)

then B is BH2k(NP)-hard.

Proof: Relatively easy to show and thus omitted. ❑
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Boolean Hierarchy over NP Structure and Properties of the Boolean Hierarchy over NP

Wagner’s Tool for Proving

BH2k−1(NP)/coBH2k(NP)/coBH2k−1(NP)-Hardness

Remark:

Replacing “2k” by “2k −1” in the lemma above yields an analogous

criterium for BH2k−1(NP)-Hardness.

Replacing “odd” by “even” yields an analogous criterium for

coBH2k(NP)- and coBH2k−1(NP)-Hardness, respectively.
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Boolean Hierarchy over NP Exact Graph Colorability

Reminder: Graph Colorability

Definition

Let G = (V (G ),E (G )) be an undirected graph.

A k-coloring of G is a mapping V (G )→{1,2, . . . ,k}.

A k-coloring ψ of G is called legal if for any two vertices x and y

in V (G ), if {x ,y} ∈ E (G ) then ψ(x) 6= ψ(y).

The chromatic number of G , denoted by χ(G ), is the smallest

number k such that G is legally k-colorable.
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Boolean Hierarchy over NP Exact Graph Colorability

Reminder: Graph Colorability

Definition

For fixed k ≥ 1, define

k-Color= {G
∣

∣G is a graph with χ(G )≤ k}.

Example:

Figure: A 3-colorable graph
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Boolean Hierarchy over NP Exact Graph Colorability

Exact Graph Colorability

Definition

For fixed k ≥ 1, define

Exact-k-Color= {G
∣

∣G is a graph with χ(G ) = k}.

Example:

Figure: A graph in Exact-3-Color (left) and in Exact-4-Color (right)
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Boolean Hierarchy over NP Exact Graph Colorability

Generalized Exact Graph Colorability

Definition

For fixed j ≥ 1, let Mj ⊆N be a given set of j non-consecutive integers and

define

Exact-Mj-Color= {G
∣

∣G is a graph with χ(G ) ∈Mj}.

Remark: For j = 1 with M1 = {k}, we write Exact-k-Color instead of

Exact-M1-Color= Exact-{k}-Color.

Theorem (Wagner, TCS 1987)

For fixed k ≥ 1, let Mk = {6k+1,6k +3, . . . ,8k−1}. Exact-Mk-Color

is BH2k(NP)-complete. In particular, for k = 1 (i.e., M1 = {7}),

Exact-7-Color is DP-complete. without proof
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Boolean Hierarchy over NP Exact Graph Colorability

Generalized Exact Graph Colorability
Lemma

There exists a polynomial-time computable function σ that ≤p
m-reduces

3-SAT to 3-Color and satisfies the following two properties:

ϕ ∈ 3-SAT ⇒ χ(σ(ϕ)) = 3; (3)

ϕ 6∈ 3-SAT ⇒ χ(σ(ϕ)) = 4. (4)

Proof: Use standard reduction 3-SAT≤p
m 3-Color (next slides). ❑

Lemma (Guruswami and Khanna, CCC-2000)

There exists a polynomial-time computable function ρ that ≤p
m-reduces

3-SAT to 3-Color and satisfies the following two properties:

ϕ ∈ 3-SAT ⇒ χ(ρ(ϕ)) = 3; (5)

ϕ 6∈ 3-SAT ⇒ χ(ρ(ϕ)) = 5. (6)
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Boolean Hierarchy over NP Exact Graph Colorability

Reminder: 3-Color is NP-complete

Fact

2-Color is in P. without proof

Theorem

3-Color is NP-complete.

Proof:

1 3-Color ∈ NP is easy to see.

2 3-Color is NP-hard: We show 3-SAT≤
p
m 3-Color. Let

ϕ(x1,x2, . . . ,xn) = C1∧C2∧ ·· ·∧Cm

be a given 3-SAT instance with exactly three literals per clause.
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Boolean Hierarchy over NP Exact Graph Colorability

Reminder: 3-Color is NP-complete

Define a reduction f mapping ϕ to the graph G constructed as follows.

The vertex set of G is defined by

V (G ) = {v1,v2,v3}∪{xi ,¬xi
∣

∣1≤ i ≤ n}

∪{yj ,k
∣

∣1≤ j ≤m and 1≤ k ≤ 6},

where the xi and ¬xi are vertices representing the literals xi and their

negations ¬xi , respectively.
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Boolean Hierarchy over NP Exact Graph Colorability

Reminder: 3-Color is NP-complete

The edge set of G is defined by

E (G ) = {{v1,v2},{v2,v3},{v1,v3}}∪ {{xi ,¬xi}
∣

∣1≤ i ≤ n}

∪ {{v3,xi},{v3,¬xi}
∣

∣ 1≤ i ≤ n}

∪ {{aj ,yj ,1},{bj ,yj ,2},{cj ,yj ,3}
∣

∣1≤ j ≤m}

∪ {{v2,yj ,6},{v3,yj ,6}
∣

∣ 1≤ j ≤m}

∪ {{yj ,1,yj ,2},{yj ,1,yj ,4},{yj ,2,yj ,4}
∣

∣ 1≤ j ≤m}

∪ {{yj ,3,yj ,5},{yj ,3,yj ,6},{yj ,5,yj ,6}
∣

∣ 1≤ j ≤m}

∪ {{yj ,4,yj ,5}
∣

∣1≤ j ≤m},

where aj ,bj ,cj ∈
⋃

1≤i≤n{xi ,¬xi} are vertices representing the literals

occurring in clause Cj = (aj ∨bj ∨ cj).

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 44 / 57



Boolean Hierarchy over NP Exact Graph Colorability

Skeletal Structure of the Graph in 3-SAT≤
p
m 3-Color

v v
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x

¬ x

¬ x

¬ x

1

x1 1
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2 2

n n

Figure: Skeletal Structure of the graph in 3-SAT≤
p
m 3-Color
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Boolean Hierarchy over NP Exact Graph Colorability

Clause Graph in 3-SAT≤
p
m 3-Color
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Figure: Graph H for clause C = (a∨b∨ c) in 3-SAT≤
p
m 3-Color
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Boolean Hierarchy over NP Exact Graph Colorability

Properties of Clause Graph H in 3-SAT≤
p
m 3-Color

1 Vertices xi and ¬xi corresponding to the literals xi and ¬xi are legally

colored 1 (“true”) or 2 (“false”).

2 Any coloring of the vertices a, b, and c that assigns color 1 to one of

a, b, and c can be extended to a legal 3-coloring of H that assigns

color 1 to y6. Thus, if ϕ ∈ 3-SAT then G ∈ 3-Color.

3 If ψ is a legal 3-coloring of H with ψ(a) = ψ(b) = ψ(c) = i , then

ψ(y6) = i . Thus, if ϕ 6∈ 3-SAT then G 6∈ 3-Color because

χ(σ(ϕ)) = χ(G ) = 4.

It follows that

ϕ ∈ 3-SAT⇐⇒ f (ϕ) = G ∈ 3-Color

Clearly, reduction f is polynomial-time computable. ❑
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Boolean Hierarchy over NP Exact Graph Colorability

Guruswami–Khanna Reduction: Sketch

ti ,1

ti ,3ti ,2

ri

si

Figure: Tree-like structure Si in the Guruswami–Khanna reduction
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Boolean Hierarchy over NP Exact Graph Colorability

Guruswami–Khanna Reduction: Sketch

1

2

3

Figure: Basic template in the Guruswami–Khanna reduction
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Boolean Hierarchy over NP Exact Graph Colorability

Guruswami–Khanna Reduction: Sketch

(111) (223) (332)

(222) (331) (113)

(333) (112) (221)

(111) (233) (322)

(222) (311) (133)

(333) (122) (211)

(111) (323) (232)

(222) (131) (313)

(333) (212) (121)

(123)

(312) (231) (213) (321)

(132)

ri

siti ,1

Figure: Connection pattern between the templates of a tree-like structure

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 50 / 57



Boolean Hierarchy over NP Exact Graph Colorability

Guruswami–Khanna Reduction: Sketch

Figure: Gadget connecting two “leaves” of the “same row” kind
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Boolean Hierarchy over NP Exact Graph Colorability

Guruswami–Khanna Reduction: Sketch

Figure: Gadget connecting two “leaves” of the “different rows” kind
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Boolean Hierarchy over NP Exact Graph Colorability

Exact-4-Color is DP-complete

Theorem (Rothe, IPL 2001)

For fixed k ≥ 1, let Mk = {3k+1,3k +3, . . . ,5k−1}.

Exact-Mk-Color is BH2k(NP)-complete.

In particular, for k = 1 (i.e., M1 = {4}), Exact-4-Color is

DP-complete.

Proof: Fix k ≥ 1. Apply Wagner’s Lemma with

A being the NP-complete problem 3-SAT and

B being the problem Exact-Mk-Color, where

Mk = {3k+1,3k+3, . . . ,5k −1}.
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Boolean Hierarchy over NP Exact Graph Colorability

Exact-4-Color is DP-complete

Let

σ be the standard reduction from 3-SAT to 3-Color according to

our previous lemma, and

let ρ be the Guruswami–Khanna reduction from 3-SAT to 3-Color

according to their lemma.

The join operation on graphs, denoted by ⊲⊳, is defined as follows: Given

two disjoint graphs A and B , their join A ⊲⊳ B is the graph whose vertex

and edge set, respectively, are:

V (A ⊲⊳ B) = V (A)∪V (B);

E (A ⊲⊳ B) = E (A)∪E (B)∪{{a,b}
∣

∣a ∈ V (A) and b ∈ V (B)}.

Note that χ(A ⊲⊳ B) = χ(A)+ χ(B) and ⊲⊳ is an associative operation.
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Boolean Hierarchy over NP Exact Graph Colorability

Exact-4-Color is DP-complete

Let ϕ1,ϕ2, . . . ,ϕ2k−1,ϕ2k be 2k given boolean formulas satisfying that

ϕj+1 ∈ 3-SAT implies ϕj ∈ 3-SAT for each j with 1≤ j < 2k .

Define 2k graphs H1,H2, . . . ,H2k−1,H2k as follows.

For each i with 1≤ i ≤ k , define

H2i−1 = ρ(ϕ2i−1) and H2i = σ(ϕ2i ).

By (3), (4), (5), and (6) from our previous two lemmas, it follows that

χ(Hj) =



















3 if 1≤ j ≤ 2k and ϕj ∈ 3-SAT

4 if j = 2i for some i ∈ {1,2, . . . ,k} and ϕj 6∈ 3-SAT

5 if j = 2i −1 for some i ∈ {1,2, . . . ,k} and ϕj 6∈ 3-SAT.

(7)
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Boolean Hierarchy over NP Exact Graph Colorability

Exact-4-Color is DP-complete

For each i with 1≤ i ≤ k , define the graph Gi to be the disjoint union of

the graphs H2i−1 and H2i .

Thus, χ(Gi) = max{χ(H2i−1), χ(H2i )}, for each i , 1≤ i ≤ k .

The construction of our reduction f is completed by defining

f (〈ϕ1,ϕ2, . . . ,ϕ2k−1,ϕ2k〉) = G ,

where the graph G is the join of the graphs G1,G2, . . . ,Gk .

Thus,

χ(G ) =
k

∑
i=1

χ(Gi) =
k

∑
i=1

max{χ(H2i−1), χ(H2i )}. (8)
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Boolean Hierarchy over NP Exact Graph Colorability

Exact-4-Color is DP-complete

It follows from our construction that:

‖{i
∣

∣ϕi ∈ 3-SAT}‖ is odd

⇐⇒ (∃i : 1≤ i ≤ k) [ϕ1, . . . ,ϕ2i−1 ∈ 3-SAT and ϕ2i , . . . ,ϕ2k 6∈ 3-SAT]

(7),(8)
⇐⇒ (∃i : 1≤ i ≤ k)









∑k
j=1 χ(Gj) = 3(i −1)+4+5(k− i)

= 5k−2i +1









(8)
⇐⇒ χ(G ) ∈Mk = {3k +1,3k+3, . . . ,5k−1}

⇐⇒ f (〈ϕ1,ϕ2, . . . ,ϕ2k−1,ϕ2k〉) = G ∈ Exact-Mk-Color.

Hence, the equivalence in Wagner’s lemma is satisfied.

By Wagner’s lemma, Exact-Mk-Color is BH2k(NP)-complete. ❑
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