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Randomized Algorithms and Complexity Classes

Outline of this Chapter

PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

BPP: Bounded-Error Probabilistic Polynomial Time

Quantifiers and BPP

Graph Isomorphism and the Arthur-Merlin Hierarchy
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Probabilistic Turing Machines: Syntax

The probabilistic Turing machine model can be described by

nondeterministic Turing machines (NTMs).

Syntactically, a probabilistic Turing machine simply is an NTM N.

Convention:

The nondeterministic branching degree of N is at most two.

We require that NTMs be normalized, i.e., for each input x , all

computations paths in N(x) have the same number of nondeterministic

branching points and can thus be described by binary strings of the

same length.

In other words, normalized machines always have a full binary

computation tree (not allowing for the deterministic steps of the

machine).
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Probabilistic Turing Machines: Semantics

To define the semantics of probabilistic Turing machines, we specify

an acceptance behavior of NTMs suitable for randomization.

To this end, for any given NTM N and any input x , we define a

probability measure µT on the set of computation paths in the tree

N(x), whose vertices represent the configurations of N on input x .

Note that there is a one-to-one correspondence between the

computation paths and the leaves in the tree N(x).
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Probabilistic Turing Machines: Semantics

Definition

For any NTM N and any input x , consider any subtree T of the computation tree

N(x) such that the root of T is the root of N(x).

The probability measure µT on the set of leaves of T is defined inductively by:

Initially, if T consists of only the root r of N(x) (i.e., r is the start

configuration of N(x)), then set µT (r) = 1.

While T 6= N(x), fix some leaf ` of T that is not a leaf of N(x), and

consider the new subtree T` of N(x) that is obtained from T by adding the

immediate successor configuration(s) of `. From the probability measure µT

on the leaves of T , define the probability measure on the leaves of T` by:

µT`
(c) =


µT (`)/2 if c is one out of two successor configurations of `

µT (`) if c is the only successor configuration of `

µT (c) if c is not a successor configuration of `.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Probabilistic Turing Machines

We consider only polynomial-time probabilistic Turing machines.

Every computation path of a given NPTM N running on some input

x is represented by a binary string α of length p(|x |) for some

p ∈ IPol, where the i th bit of α corresponds to the i th nondeterministic

branching of N(x) along α.

If α leads to some leaf ` of T = N(x), we write µT (α) = µT (`).

Note that µT indeed is a probability measure, since for each finite

tree T :

∑
α is some path of T

µT (α) = 1.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Probabilistic Turing Machines

Every subset of paths of T is an event. The probability that some

event E occurs with respect to µT is given by:

Pr(E ) = ∑
α ∈ E

µT (α) = ∑
α ∈ E

2−|α|.

Using the above notation, we can now define the first two

probabilistic complexity classes:

the class PP, “probabilistic polynomial time,” and

the class RP, “random polynomial time.”
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Probabilistic Polynomial Time & Random Polynomial Time

Definition

1 Probabilistic polynomial time is defined by

PP =

A
there is some NPTM M such that for each input x ,

x ∈ A ⇐⇒ Pr({α
∣∣M accepts x on path α})≥ 1

2

 .

2 Random polynomial time is defined by

RP =

A

there is some NPTM M such that for each input x ,

x ∈ A =⇒ Pr({α
∣∣M accepts x on path α})≥ 1

2 ;

x 6∈ A =⇒ Pr({α
∣∣M accepts x on path α}) = 0

 .
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Normalized Turing Machines and Threshold Computation

Remark:
1 Every NPTM whose acceptance criterion is based on probability

weights can easily be normalized:

Just extend every computation path up to a fixed polynomial length by

appending a full binary subtree to it;

on each path thus obtained,

accept if and only if the original path was accepting.

The modified normalized machine has the same acceptance

probability as the original machine.

2 The acceptance criterion of the probabilistic machines for PP and RP
is determined by the probability weight of accepting paths.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Normalized Turing Machines and Threshold Computation

Alternatively, the acceptance criterion for PP and RP can be based on the

number of accepting paths of NPTMs. For any NPTM M, define the

function accM : Σ∗→ N by accM(x) = ‖{α
∣∣M accepts x on path α}‖.

Then, the following characterizations of PP and RP can be shown:

1 A is in PP if and only if there exists some normalized NPTM M and

some polynomial p such that for each x :

x ∈ A ⇐⇒ accM(x)≥ 2p(|x |)−1.

2 A is in RP if and only if there exists some normalized NPTM M and

some polynomial p such that for each x :

x ∈ A =⇒ accM(x)≥ 2p(|x |)−1;

x 6∈ A =⇒ accM(x) = 0.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

RP is a Promise Class

Observe that this equivalence of the probability weight interpretation

and the accM interpretation uses normalized machines.

In fact, for PP, the normalization requirement may be dropped.

However, for RP, having normalized machines appears to be a crucial

requirement. Unlike PP, the class RP is a so-called “promise class”:

RP has a rejection criterion that is more restrictive than the logical

negation of the acceptance criterion, which leaves open the possibility

that for some inputs none of the two criteria applies.

The burdon to avoid this obstacle is shouldered by the machines

representing the promise class: Every machine “promises” that for each

input exactly one of the two criteria holds.

Promise classes appear to have different properties than non-promise

complexity classes (e.g., lack of complete sets).
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

RP and Monte Carlo Algorithms

RP and coRP algorithms both have a one-sided error probability.

Such algorithms are also called Monte Carlo algorithms.

Let L be a set in RP, and let A be an RP algorithm for L.

By definition,

A may make errors for instances x in L, but

A never lies for instances x not in L.

Thus,

the answer “yes” (i.e., an accepting path) of A on input x can occur

only if x is in L and is thus always correct,

whereas the answer “no” (i.e., a rejecting path) can occur both

erroneously (if x is in L) and correctly (if x is not in L).
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

RP and Monte Carlo Algorithms

Therefore, RP algorithms are sometimes called no-biased Monte Carlo

algorithms.

Similarly, coRP algorithms always give reliable “no” answers, but

perhaps erroneous “yes” answers.

Therefore, coRP algorithms are sometimes called yes-biased Monte

Carlo algorithms.

Example: Primes is in coRP, since the Miller–Rabin test is a

yes-biased Monte Carlo algorithm for Primes.

Unlike PP, the class RP seems to be not closed under

complementation (unless, of course, it turns out that RP = P).
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Inclusion Relations and Properties of PP and RP

Theorem

1 P⊆ RP⊆ NP⊆ PP⊆ PSPACE.

2 PP is closed under complementation.

Proof:

1 The first two inclusions, P⊆ RP⊆ NP, follow immediately from the

definitions.

The inclusion PP⊆ PSPACE can be proven similar to the inclusion

NP⊆ PSPACE: Given a PP machine M running on input x , the

simulating PSPACE machine performs a depth-first search through

the computation tree of M(x).
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Inclusion Relations and Properties of PP and RP

However, rather than searching for some accepting path as in the

proof of NP⊆ PSPACE, the PSPACE machine now counts all

accepting paths of M(x), and it accepts the input if and only if this

number is at least half of the total number of paths.

For the inclusion NP⊆ PP, let A be any set in NP, and let M be a

given NP machine accepting A.

Suppose that M is normalized so that on each input x , the

computation tree M(x) is a complete binary tree of depth p(|x |) for

some p ∈ IPol.

Construct a new NPTM N accepting A in the sense of PP as follows.

On input x , N branches nondeterministically.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Inclusion Relations and Properties of PP and RP

On the left branch, N simulates the computation of M(x).

On the right branch, N creates a complete binary tree of depth p(|x |),

accepts on 2p(|x |)−1 of its paths, and rejects on one of its paths.

If x ∈ A, then M(x) accepts on at least one of its 2p(|x |) paths.

Thus, N(x) accepts on at least 2p(|x |) of its 2p(|x |)+1 paths, i.e., N

accepts x with probability at least one half.

If x 6∈ A, then all 2p(|x |) paths of M(x) are rejecting.

Thus, N(x) accepts on at most 2p(|x |)−1 of its 2p(|x |)+1 paths, i.e., N

accepts x with probability less than one half.

It follows that A is in PP.

2 Exercise. q
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Changing the Acceptance Threshold of 1/2 in RP

Definition

Let q be a fixed polynomial. Define the class

RPq =

A

there is some NPTM M such that for each input x ,

x ∈ A =⇒ Pr({α
∣∣M accepts x on path α})≥ 1

q(|x |) ;

x 6∈ A =⇒ Pr({α
∣∣M accepts x on path α}) = 0

 .

Theorem

Let q be a nondecreasing polynomial such that for each n, q(n)≥ 2.

Then, RPq = RP.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Changing the Acceptance Threshold of 1/2 in RP

Proof: Since q(n)≥ 2 for each n, RP⊆ RPq holds by definition.

Conversely, to prove RPq ⊆ RP, let A be any set in RPq for some fixed

polynomial q, and let M be some NPTM for A witnessing A ∈ RPq.

Construct an NPTM N that accepts A in the sense of RP as follows.

On input x of length n, N successively simulates the computation of M(x)

in q = q(n) independent trials.

Thus, every path α = α1α2 · · ·αq of N(x) consists of a sequence of q

paths αi of M(x), and α is defined to accept if and only if at least one of

its subpaths αi accepts.

Since q is a polynomial and M runs in polynomial time, so does N.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Changing the Acceptance Threshold of 1/2 in RP

It remains to show that N witnesses membership of A in RP.

Let x be the given input string.

If x 6∈ A, no path of M(x) accepts.

Thus, N(x) has no accepting paths and the acceptance probability is zero.

We now estimate the error probability EN(x) of N for x ∈ A:

EN(x) = Pr({α
∣∣N rejects x on path α}).

The error probability of M(x) is bounded above by 1− 1
q .

For each path α of N(x), all subpaths αi of α are independently chosen.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Changing the Acceptance Threshold of 1/2 in RP

This implies for the error probability of N that

EN(x) <

(
1− 1

q(n)

)q(n)

<
1

2
. (1)

The latter inequality of (1) follows from limk→∞(1 + a
k )k = ea, where

e = 2.71828 · · · is the base of the natural logarithm.

Thus, for a =−1, we have that
(

1− 1
q(n)

)q(n)
is close to e−1, which is less

than one half.

Hence,

Pr({α
∣∣N accepts x on path α})≥ 1

2
,

which completes the proof. q
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Closure Properties of RP and PP

Corollary

RP is closed under union and intersection.

Proof: Just think a little about it . . . q

Theorem (Beigel, Reingold, and Spielman (1991))

PP is closed under union and intersection. without proof

Remark: Whereas closure under complementation is easy to see for PP,

the proof of closure under intersection is not at all trivial. Check it out!
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Zero-Error Probabilistic Polynomial Time

RP algorithms have a one-sided error, and this error can be made very

small. This is a clear advantage of RP over PP algorithms.

RP algorithms can give false “no” answers, whereas coRP algorithms

always give reliable “no” answers.

On the other hand, coRP algorithms can give false “yes” answers,

whereas RP algorithms always give reliable “yes” answers.

The class ZPP collects all problems solvable by polynomial-time

randomized algorithms with zero error probability, combining the

advantages of yes-biased and no-biased Monte Carlo algorithms.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Zero-Error Probabilistic Polynomial Time

Definition

Define the class zero-error probabilistic polynomial time by

ZPP = RP∩ coRP.

Remark:

Just like RP, the class ZPP is a promise class.

ZPP algorithms, which are also dubbed Las Vegas algorithms, never

give a wrong answer, although it might happen that they do not give

any useful answer at all.

This justifies the name “zero-error” probabilistic polynomial time.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Zero-Error Probabilistic Polynomial Time

A ZPP algorithm can be viewed as an NPTM M with three types of

final states:

an accepting state, sa,

a rejecting state, sr , and

a “don’t know” state, s?.

Let A be any language in ZPP, and let M and N be NPTMs

witnessing that A ∈ RP and A ∈ RP, respectively.

path α of M(x) path β of N(x) path 〈α,β 〉 of (M ◦N)(x)

x ∈ A + − (+,−) = sa

− − (−,−) = s?

x 6∈ A − + (−,+) = sr

− − (−,−) = s?
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Zero-Error Probabilistic Polynomial Time

Corollary

A is in ZPP if and only if

there exists an NPTM M with three types of final states:

an accepting state, sa,

a rejecting state, sr , and

a “don’t know” state, s?

such that for each x ,

x ∈ A =⇒ Pr({α
∣∣M accepts x on path α})≥ 1/2 and

Pr({α
∣∣M rejects x on path α}) = 0;

x 6∈ A =⇒ Pr({α
∣∣M rejects x on path α})≥ 1/2 and

Pr({α
∣∣M accepts x on path α}) = 0.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Majority Satisfiability and Threshold Satisfiability

Definition

Majority-SAT =

ϕ
ϕ is a boolean formula with n variables

and at least 2n−1 satisfying assignments

 ;

Threshold-SAT =

〈ϕ, i〉 ϕ is a boolean formula with at

least i satisfying assignments

 .

Theorem

Both Majority-SAT and Threshold-SAT are ≤p
m-complete for PP.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Majority Satisfiability and Threshold Satisfiability

Proof: It is easy to see that Majority-SAT belongs to PP.

We now prove that

1 Threshold-SAT is ≤p
m-hard for PP, and

2 Threshold-SAT≤p
m Majority-SAT.

Since PP is closed under ≤p
m-reductions (see exercises), both statements of

the theorem follow.

1 Threshold-SAT is ≤p
m-hard for PP:

Let A be any set in PP, and let M be some NPTM accepting A in the

sense of PP. We may assume that M is a normalized machine and

there is a polynomial p such that for each x of length n:

x ∈ A ⇐⇒ accM(x)≥ 2p(n)−1.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 27 / 82



Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Majority Satisfiability and Threshold Satisfiability

Let fM be the Cook reduction and let ϕM,x = fM(x) be the

corresponding boolean formula.

Since the Cook reduction is “parsimonious,”

accM(x) = ‖{β
∣∣β is a satisfying assignment for ϕM,x}‖.

Thus, the reduction

g(x) = 〈ϕM,x ,2
p(|x |)−1〉

shows that A≤p
m Threshold-SAT.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Majority Satisfiability and Threshold Satisfiability

2 Threshold-SAT≤p
m Majority-SAT:

Let 〈ϕ, i〉 be any given Threshold-SAT instance, where ϕ is a

boolean formula in the variables x1,x2, . . . ,xm.

Construct a formula ψ = ψ(x1,x2, . . . ,xm) such that ψ has exactly

j = 2m− i satisfying assignments, where we assume that i ≤ 2m.

Consider the binary representation of

j = 2m−s1 + 2m−s2 + · · ·+ 2m−sk ,

where 0≤ s1 < s2 < · · ·< sk ≤m.

For example, if m = 3,

j = 7 = 23−1 + 23−2 + 23−3.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Majority Satisfiability and Threshold Satisfiability

Define

ψ = (x1∧·· ·∧xs1−1∧xs1)∨

(x1∧·· ·∧xs1−1∧¬xs1 ∧xs1+1∧·· ·∧xs2−1∧xs2)∨
...

(x1∧·· ·∧xs1−1∧¬xs1 ∧xs1+1∧·· ·∧xs2−1∧¬xs2 ∧xs2+1

∧·· ·∧xsk−1−1∧¬xsk−1
∧xsk−1+1∧·· ·∧xsk ).

Observe that

the `th implicant in ψ (i.e., a term in ψ that, if true, makes the formula

ψ true) contributes exactly 2m−s` satisfying assignments, and

due to the negations in ψ no assignment satisfying one implicant can

also satisfy another. Thus, none of the satisfying assignments is

counted twice.
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Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Majority Satisfiability and Threshold Satisfiability

Hence, the number of assignments satisfying ψ adds up to:

2m−s1 + 2m−s2 + · · ·+ 2m−sk = j

as desired.

Now, fix some formula γ 6∈Majority-SAT; for example, pick

γ = x ∧y .

Define the reduction Threshold-SAT≤p
m Majority-SAT by

f (〈ϕ, i〉) =

 γ if i > 2m

(x0∧ϕ(x1, . . . ,xm))∨ (¬x0∧ψ(x1, . . . ,xm)) if i ≤ 2m.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 31 / 82



Randomized Algorithms and Complexity Classes PP, RP, and ZPP: Monte Carlo and Las Vegas Algorithms

Majority Satisfiability and Threshold Satisfiability

It is easy to see that

if i > 2m, then

both 〈ϕ, i〉 6∈Threshold-SAT

and f (〈ϕ, i〉) = γ 6∈Majority-SAT.

On the other hand, if i ≤ 2m, then

〈ϕ, i〉 ∈Threshold-SAT ⇐⇒ f (〈ϕ, i〉) is satisfied by at

least i + 2m− i = 2m out of the

2m+1 possible assignments. q
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Randomized Algorithms and Complexity Classes BPP: Bounded-Error Probabilistic Polynomial Time

Bounded-Error Probabilistic Polynomial Time

The acceptance criterion for PP machines is not very robust:

Adding or deleting just one accepting path may result in a different

outcome with regard to accepting or rejecting the input.

In other words, as the input size grows to infinity, the error probability

asymptotically can go to one half.

Our goal now is to bound the error probability away from one half.

To this end, we introduce the complexity class BPP.

In a BPP computation either accepts or rejects its input with high

probability, leaving a proper gap around the value of one half that is

strictly avoided by the acceptance or rejection probability.

That is why BPP is a promise class as well.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 33 / 82



Randomized Algorithms and Complexity Classes BPP: Bounded-Error Probabilistic Polynomial Time

Bounded-Error Probabilistic Polynomial Time

Definition

The class bounded-error probabilistic polynomial time is defined by

BPP =


A

there is some NPTM M and a constant c , 0 < c ≤ 1/2,

such that for each input x ,

x ∈ A =⇒ Pr({α
∣∣M accepts x on path α})≥ 1

2 + c ;

x 6∈ A =⇒ Pr({α
∣∣M accepts x on path α})≤ 1

2 − c


.
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Randomized Algorithms and Complexity Classes BPP: Bounded-Error Probabilistic Polynomial Time

Bounded-Error Probabilistic Polynomial Time

Let r be a function from N to the real interval [0,1].

We say that an NPTM M accepts a set A in the sense of BPP with

error probability at most r if and only if

Pr({α
∣∣M(x) = χA(x) on path α})≥ 1− r(|x |),

where χA denotes the characteristic function of A.

We now show that the error probability of BPP computations can be

made exponentially small in the input size. Thus, the error in such a

BPP computation is “negligibly small.”
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Randomized Algorithms and Complexity Classes BPP: Bounded-Error Probabilistic Polynomial Time

Bounded-Error Probabilistic Polynomial Time

Theorem

Let p be some fixed polynomial, and let A be any set in BPP. Then, there

exists an NPTM N accepting A in the sense of BPP with error probability

at most 2−p(n).

Proof: Fix a polynomial p. Given any set A in BPP, let M be some

NPTM and c with 0 < c ≤ 1/2 be some constant such that:

Pr({α
∣∣M(x) = χA(x) on path α})≥ 1

2
+ c .

For any given input x of length n and for some polynomial q to be

specified below, set k = 2q(n) + 1.

As in the proof of RPq ⊆ RP, construct an NPTM N that, on input x ,

simulates the computation of M(x) in k successive, independent trials.
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Randomized Algorithms and Complexity Classes BPP: Bounded-Error Probabilistic Polynomial Time

Bounded-Error Probabilistic Polynomial Time

Thus, every path α = α1α2 · · ·αk of N(x) consists of a sequence of k

paths αi of M(x).

However, now we define α to accept if and only if a majority (i.e., at least

q(n) + 1) of the paths αi of M(x) along α accept.

We have to show that we can find a polynomial q such that the error

probability of N(x), which is given by

EN(x) = Pr({α
∣∣N(x) 6= χA(x) on path α})

is bounded above by 2−p(n).
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Randomized Algorithms and Complexity Classes BPP: Bounded-Error Probabilistic Polynomial Time

Bounded-Error Probabilistic Polynomial Time

By the way acceptance of a path α = α1α2 · · ·αk is defined, for α to be

such an erroneous computation, there must exist some j satisfying that:

j ≤ q(n),

j subpaths αi along α are correct, i.e., M(x) = χA(x), and

the remaining k− j subpaths αi along α are incorrect, i.e.,

M(x) 6= χA(x).

Denote

the success probability of M(x) by σ = 1
2 + c and

the error probability of M(x) by ε = 1
2 − c.
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Randomized Algorithms and Complexity Classes BPP: Bounded-Error Probabilistic Polynomial Time

Bounded-Error Probabilistic Polynomial Time

Choosing among the k possible subpaths αi of α the j correct ones and

summing over all possible j , we can estimate the error probability of N(x)

as follows:

EN(x) ≤
q(n)

∑
j=0

(
k

j

)
σ
j
ε
k−j . (2)

Let m > 0 be chosen such that

j =
k

2
−m and k− j =

k

2
+m.

Since ε < σ , it follows that:

σ
j
ε
k−j = (σ · ε)

k
2 ·σ−m · εm = (σ · ε)

k
2 ·
(

ε

σ

)m
< (σ · ε)

k
2 . (3)
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Bounded-Error Probabilistic Polynomial Time

The Binomial Theorem, which says that

(a+b)k =
k

∑
j=0

(
k

j

)
ajbk−j ,

implies for the special case of a = b = 1 that:

k

∑
j=0

(
k

j

)
= 2k . (4)

Substituting (3) and (4) in (2) gives:

EN(x) < (σ · ε)
k
2 ·2k

= (4σε)
k
2

=
(
1−4c2

) k
2 , since σε = ( 1

2 + c)( 1
2 − c) = 1

4 − c2

≤
(
1−4c2

)q(n)
,
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Bounded-Error Probabilistic Polynomial Time

where the latter inequality follows from

1−4c2 < 1 and
k

2
= q(n) +

1

2
> q(n).

Since 1−4c2 < 1, we have
(
1−4c2

)t ≤ 1/2 for some integer t.

Now, setting q(n) = t ·p(n) gives

EN(x) ≤
(
1−4c2

)t·p(n) ≤
(

1

2

)p(n)

≤ 2−p(n),

as desired. q

Fact

RP⊆ BPP = coBPP⊆ PP.
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Bounded-Error Probabilistic Polynomial Time

Theorem

If NP⊆ BPP then NP = RP.

Proof: Suppose that NP⊆ BPP.

By the previous theorem, there is some NPTM M accepting SAT in the

sense of BPP with error probability at most 2−n:

Pr({α
∣∣M(ϕ) = χSAT(ϕ) on path α}) ≥ 1−2−n, (5)

where n = |ϕ| is the length of the boolean formula ϕ in some suitable

encoding.

Goal: to show that SAT ∈ RP by constructing an RP machine for SAT.

Since SAT is ≤p
m-complete in NP and since RP is ≤p

m-closed, NP = RP
follows.
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Bounded-Error Probabilistic Polynomial Time

For any given boolean formula ϕ = ϕ(x1,x2, . . . ,xm) and for any bit string

s ∈ {0,1}∗, |s| ≤m, define the formula ϕs in m−|s| variables that is

obtained from ϕ by substituting the i th bit of s as the truth value of the i th

variable in ϕ:

ϕ0(x2,x3, . . .xm) = ϕ(0,x2,x3, . . . ,xm)

ϕ1(x2,x3, . . .xm) = ϕ(1,x2,x3, . . . ,xm)

ϕ00(x3,x4, . . .xm) = ϕ(0,0,x3,x4, . . . ,xm)
...

Depending on the encoding used, simplifying ϕ to some formula ϕs may

result in a shorter encoding string, so |ϕs | ≤ |ϕ|.
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Bounded-Error Probabilistic Polynomial Time

However, since the error probability of M depends on the input size, we

want to make sure that |ϕs | ≥ |ϕ|.

To this end, we pad ϕs with a sufficient number of new variables

v1,v2, . . . ,vk(s).

For each ϕs , where s ∈ {0,1}∗ and |s| ≤m, define the padded formula ψs

in the variables xm−|s|+1, . . . ,xm,v1, . . . ,vk(s) by

ψs = ϕs(xm−|s|+1, . . . ,xm)∧v1∧ . . .∧vk(s),

where k(s) is chosen large enough to ensure |ψs | ≥ |ϕ|.

Note that ψs is satisfiable if and only if ϕs is satisfiable.
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Bounded-Error Probabilistic Polynomial Time

To show that SAT ∈ RP, we describe an NPTM N accepting SAT in the

sense of RP.

On input ϕ(x1,x2, . . . ,xm) of length n, N seeks to find a satisfying

assignment for ϕ, if one exists.

To this end, N first nondeterministically branches and uses M to

construct, step by step, candidates of satisfying assignments for ϕ on each

of its nondeterministic computation paths.

Then, on each such path, N verifies deterministically whether or not the

candidate constructed indeed satisfies ϕ.
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Bounded-Error Probabilistic Polynomial Time

In more detail, N on input ϕ(x1,x2, . . . ,xm) works as follows:

Step 1: Simulate M(ψ0). Since |ψ0| ≥ |ϕ|= n, Equation (5) implies that:

Pr({α
∣∣M(ψ0) = χSAT(ψ0) on path α}) ≥ 1−2−|ψ0|

≥ 1−2−n. (6)

On the accepting paths α of M(ψ0), N stores the assignment 0

for the variable x1 by setting the first bit of sα to 0, and

continues recursively by simulating M(ψ00).

On the rejecting paths α of M(ψ0), N stores the assignment 1

for the variable x1 by setting the first bit of sα to 1, and

continues recursively by simulating M(ψ10).

After m such steps, N has found on each path α a candidate sα of a

satisfying assignment for ϕ.
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Bounded-Error Probabilistic Polynomial Time

Step 2: On each path α, N checks deterministically whether sα indeed

satisfies ϕ.

If so, N accepts on α; otherwise, N rejects on α.

If ϕ 6∈ SAT, N(ϕ) rejects on all paths, due to the checking in Step 2.

Thus,

Pr({α
∣∣N accepts ϕ on path α}) = 0.
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Bounded-Error Probabilistic Polynomial Time

Suppose now that ϕ ∈ SAT.

By (6), the error probability of M is at most 2−n in each of the m

simulations in Step 1.

Since each of these m trials are independent, the acceptance probability of

N(ϕ) can be estimated as follows:

Pr({α
∣∣N accepts ϕ on path α}) ≥

(
1−2−n

)m
≥

(
1−m2−n

)
≥ 1

2
,

where the latter inequality follows from the obvious fact that m ≤ n, which

implies m2−n ≤ 2−1 = 1/2. q
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Reminder: Quantifier Representation of Complexity Classes

Recall that NP can be characterized by existential polynomially

length-bounded quantifiers: A is in NP if and only if there is some set

B ∈ P and a polynomial p such that for each x ∈ Σ∗,

x ∈ A =⇒ (∃pw) [〈x ,w〉 ∈ B];

x 6∈ A =⇒ (∀pw) [〈x ,w〉 6∈ B].

Definition

1 Let Q1 and Q2 be two strings of n quantifiers each. The pair

(Q1,Q2) is sensible if and only if for each (n+ 1)-ary predicate B,

for each x , and for each ~y = (y1,y2, . . . ,yn),

(Q1~y) [B(x ,~y)]∧ (Q2~y) [¬B(x ,~y)]

is a contradiction. Here, yi is the variable quantified by the i th

quantifier in Q1 and Q2, respectively.
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Reminder: Quantifier Representation of Complexity Classes

Definition

2 Let (Q1,Q2) be a sensible pair of strings consisting of n (polynomially

length-bounded) quantifiers each. Define the complexity class

(Q1 |Q2) as follows: L belongs to (Q1 |Q2) if and only if there exists

an (n+ 1)-ary predicate B ∈ P such that for each x ∈ Σ∗:

x ∈ L =⇒ (Q1~y) [B(x ,~y)];

x 6∈ L =⇒ (Q2~y) [¬B(x ,~y)],

where ~y = (y1,y2, . . . ,yn) and yi is the variable quantified by the i th

quantifier in Q1 and Q2, respectively, and |yi | ≤ p(|x |) for some

suitable polynomial p.

Example: NP = (∃|∀).
J. Rothe (HHU Düsseldorf) Cryptocomplexity II 50 / 82



Randomized Algorithms and Complexity Classes Quantifiers and BPP

Polynomially Length-Bounded Majority Quantifier

Definition

Let B be a predicate, and let p be a given polynomial. For each fixed

string x , define (∃+y) [B(x ,y)] to be true if and only if at least

three-quarters of all strings y with |y | ≤ p(|x |) satisfy B(x ,y).

Example: BPP = (∃+ |∃+) and RP = (∃+ |∀).

Fact

For each sensible pair (Q1,Q2) of quantifier strings,

(Q1 |Q2) = co(Q2 |Q1).

Corollary

BPP is closed under complementation.
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Quantifiers and BPP

Lemma

Let B be any predicate in P, let x be any string, and suppose that

(∀y)(∃+z) [B(x ,y ,z)]. Then, the following two statements are true:

1 (∃+Z )(∀y)(∃z ∈ Z ) [B(x ,y ,z)].

2 (∀Y )(∃+z)(∀y ∈ Y ) [B(x ,y ,z)].

In the first part, if |z | ≤ p(n) for some p ∈ IPol, then Z is viewed as a

variable ranging over sets of strings of length at most p(n). To ensure

that Z itself can be represented by a string of length polynomially

in n, we require Z to satisfy ‖Z‖= q(n) for some q ∈ IPol.

An analogous comment applies to the set variable Y in the second

part. without proof
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Quantifiers and BPP

y

z

Z

Figure: Illustration of the first statement of this lemma
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Quantifiers and BPP

Lemma (Swapping Quantifiers)

(∃∀|∀∃+)⊆ (∀∃|∃+∀).

Proof: Let A be any set in (∃∀|∀∃+). By definition, there exists a

predicate B ∈ P such that for each x ,

x 6∈ A =⇒ (∀y)(∃+z) [¬B(x ,y ,z)] by definition

=⇒ (∃+Z )(∀y)(∃z ∈ Z ) [¬B(x ,y ,z)] by part 1 of lemma

=⇒ (∃Z )(∀y)(∃z ∈ Z ) [¬B(x ,y ,z)]

=⇒ (∀y)(∃z) [¬B(x ,y ,z)]

=⇒ x 6∈ A,

where the last =⇒ follows from ”x ∈ A =⇒ (∃y)(∀z) [B(x ,y ,z)].”
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Quantifiers and BPP

Now, defining the predicate C by

C (x ,y ,Z )≡ (∀z ∈ Z ) [B(x ,y ,z)],

it follows that

x 6∈ A ⇐⇒ (∃+Z )(∀y) [¬C (x ,y ,Z )]; (7)

x 6∈ A ⇐⇒ (∃Z )(∀y) [¬C (x ,y ,Z )]. (8)

Negating (8), we obtain

x ∈ A ⇐⇒ (∀Z )(∃y) [C (x ,y ,Z )]. (9)

Since Z contains only polynomially many elements, B ∈ P implies C ∈ P.

By definition, it follows from (7) and (9) that A is a set in (∀∃|∃+∀). q
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Quantifiers and BPP: BPP Theorem by Zachos and Heller

Theorem

BPP = (∃+ |∃+) = (∀∃+ |∃+∀) = (∃+∀|∀∃+).

Proof: It is enough to prove the equality (∃+ |∃+) = (∀∃+ |∃+∀). The

other equality follows immediately from the above fact and corollary, since

(∀∃+ |∃+∀) = co(∃+∀|∀∃+).

To prove the inclusion (∀∃+ |∃+∀)⊆ (∃+ |∃+), let A be any set in

(∀∃+ |∃+∀). By definition, there is a set B ∈ P such that for each x ,

x ∈ A =⇒ (∀y)(∃+z) [B(x ,y ,z)]

=⇒ (∃+〈y ,z〉) [C (x ,〈y ,z〉)],

where C , defined by C (x ,〈y ,z〉)≡ B(x ,y ,z), is in P.
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Quantifiers and BPP: BPP Theorem by Zachos and Heller

Furthermore, for each x ,

x 6∈ A =⇒ (∃+y)(∀z) [¬B(x ,y ,z)]

=⇒ (∃+〈y ,z〉) [¬C (x ,〈y ,z〉)].

Thus, A is in (∃+ |∃+).

Conversely, to prove the inclusion (∃+ |∃+)⊆ (∀∃+ |∃+∀), let A be any set

in (∃+ |∃+). Thus, there exists a set B ∈ P such that for each x ,

x ∈ A =⇒ (∃+y) [B(x ,y)]; (10)

x 6∈ A =⇒ (∃+y) [¬B(x ,y)]. (11)

Let p be some polynomial bounding the lengths of the variables y

quantified in (10) and (11).
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Quantifiers and BPP: BPP Theorem by Zachos and Heller

Let x be any fixed string of length n. Let

S = {0,1}≤p(n)

be the set of all binary strings of length at most p(n).

Suppose that the strings in S are lexicographically ordered, i.e.,

S = {s0,s1, . . . ,sm−1}, where m = 2p(n)+1−1.

For fixed x , define a predicate C (x ,y ,z) as follows, where the variables y

and z range over the strings in S :

C (x ,si ,sj)≡ B(x ,si+j mod m),

where i and j are from the set Zm = {0,1, . . . ,m−1}, i.e., they are

residues modulo m.
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Quantifiers and BPP: BPP Theorem by Zachos and Heller

y s0 s1 s2 · · · sm−2 sm−1

z

s0 b0 b1 b2 · · · bm−2 bm−1

s1 b1 b2 b3 · · · bm−1 b0

s2 b2 b3 b4 · · · b0 b1

...
...

...
...

. . .
...

...

sm−2 bm−2 bm−1 b0 · · · bm−4 bm−3

sm−1 bm−1 b0 b1 · · · bm−3 bm−2

Table: Definition of predicate C
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Quantifiers and BPP: BPP Theorem by Zachos and Heller

This table illustrates the definition of C : Letting bi = B(x ,si ) for i ∈ Zm,

the table’s i th row gives the values of C (x ,y ,si ) for varying y , and

the table’s j th column gives the values of C (x ,sj ,z) for varying z .

Note that C (x ,y ,z) is symmetric in its last two arguments.

Thus, the rows are cyclically shifted by one position, and so are the

columns.

Consequently, every row and every column in this table has the same

number of ones and the same number of zeros.

Note that B ∈ P implies C ∈ P.
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Quantifiers and BPP: BPP Theorem by Zachos and Heller

From (10) it follows that for each x ,

x ∈ A =⇒ (∀z)(∃+y) [C (x ,y ,z)] since each row has the

same number of ones

=⇒ (∀y)(∃+z) [C (x ,y ,z)] since C is symmetric in

its last two arguments

=⇒ (∀Y )(∃+z) (∀y ∈ Y ) [C (x ,y ,z)]︸ ︷︷ ︸
D(x ,z ,Y )

by part 2 of the lemma,

where the predicate D is defined by D(x ,z ,Y )≡ (∀y ∈ Y ) [C (x ,y ,z)].

Since the ∀ quantifier in D ranges over a domain of polynomial size,

C ∈ P implies D ∈ P.
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Quantifiers and BPP: BPP Theorem by Zachos and Heller

Similarly, from (11) it follows that for each x ,

x 6∈ A =⇒ (∀z)(∃+y) [¬C (x ,y ,z)] since each row has the

same number of zeros

=⇒ (∀y)(∃+z) [¬C (x ,y ,z)] since C is symmetric in

its last two arguments

=⇒ (∃+Z )(∀y) (∃z ∈ Z ) [¬C (x ,y ,z)]︸ ︷︷ ︸
¬D(x ,y ,Z)

by part 1 of the lemma

=⇒ (∃+Z )(∀y) [¬D(x ,y ,Z )].

Thus, A is in (∀∃+ |∃+∀). q
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Reminder: The Arthur-Merlin Hierarchy

Definition (Arthur-Merlin Hierarchy)

The levels of the Arthur-Merlin hierarchy are the following classes:

A = (∃+ |∃+), AM = (∃+∃|∃+∀), AMA = (∃+∃∃+ |∃+∀∃+),

M = (∃|∀), MA = (∃∃+ |∀∃+), MAM = (∃∃+∃|∀∃+∀), . . .

Define the Arthur-Merlin hierarchy, AMH, as the union of all these classes.

Theorem

NP∪BPP⊆MA⊆ AM = AMA = MAM = · · ·= AMH.
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The Arthur-Merlin Hierarchy Collapses

Proof: By definition, NP⊆MA and BPP⊆MA.

To prove the inclusion MA⊆ AM, we

first characterize these classes in terms of quantifier-based classes and

then apply the swapping quantifiers lemma:

That is, we will prove that

MA !
= (∃∀|∀∃+)⊆ (∀∃|∃+∀)

!
= AM. (12)

In what follows, we apply the swapping quantifiers lemma and the BPP
Theorem in certain quantifier contexts, underlying the relevant quantifiers.
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The Arthur-Merlin Hierarchy Collapses

The first equality in (12) can be seen as follows:

MA = (∃∃+ |∀∃+) by definition

= (∃∃+∀|∀∀∃+) by BPP Theorem in quantifier context

⊆ (∃∃∀|∀∀∃+) since (∃+v) [· · · ] implies (∃v) [· · · ]

= (∃∀|∀∃+) by combining adjacent, equal quantifiers

⊆ (∃∃+ |∀∃+) since (∀v) [· · · ] implies (∃+v) [· · · ]

= MA by definition.
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The Arthur-Merlin Hierarchy Collapses

The last equality in (12) can be seen as follows:

AM = (∃+∃|∃+∀) by definition

= (∀∃+∃|∃+∀∀) by BPP Theorem in quantifier context

⊆ (∀∃∃|∃+∀∀) since (∃+v) [· · · ] implies (∃v) [· · · ]

= (∀∃|∃+∀) by combining adjacent, equal quantifiers

⊆ (∃+∃|∃+∀) since (∀v) [· · · ] implies (∃+v) [· · · ]

= AM by definition.

By the swapping quantifiers lemma, inclusion (12) is proven, so MA⊆AM.
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The Arthur-Merlin Hierarchy Collapses

We now show that the entire Arthur-Merlin hierarchy collapses down

to AM.

It is clear that we have the inclusions AM⊆MAM, AM⊆ AMA, etc.

Conversely, applying the inclusion MA⊆ AM from (12) in a quantifier

context implies

AMA⊆ AAM⊆ AM,

since two adjacent ∃+ quantifiers can be combined to one ∃+ quantifier

the same way that this can be done for the ∃ or the ∀ quantifier.

Note that, for example, (∃+∃+ |∃+∃+) = (∃+ |∃+) = BPP.

Equivalently, this can be written as BPPBPP = BPP.
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The Arthur-Merlin Hierarchy Collapses

The inclusion MAM⊆ AM can be seen as follows:

MAM = (∃∃+∃|∀∃+∀) by definition

= (∃∃+∀∃|∀∀∃+∀) by BPP Theorem in quantifier context

⊆ (∃∃∀∃|∀∀∃+∀) since (∃+v) [· · · ] implies (∃v) [· · · ]

= (∃∀∃|∀∃+∀) by combining adjacent, equal quantifiers

⊆ (∀∃∃|∃+∀∀) by swapping quantifiers lemma in context

= (∀∃|∃+∀) by combining adjacent, equal quantifiers

⊆ (∃+∃|∃+∀) since (∀v) [· · · ] implies (∃+v) [· · · ]

= AM by definition.

So AM = MAM = AMA. The other equalities follow by induction. q
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Universal Hashing

As a technical prerequisite to show that GI is in coAM, we need the

so-called hashing lemma.

Hashing is a method used in computer science for dynamic data

management.

Every data set is uniquely identified by some (short) key.

The set of all potential keys, called the universe U, is usually very

large, whereas the set V ⊆ U of all keys actually used can be much

smaller.

A hashing function h : U → T maps the elements of U to the

hashing table T = {0,1, . . . ,k−1}.
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Universal Hashing

Hashing functions are many-to-one, which means that distinct keys

from U can be mapped to the same address in T .

If possible, however, any two distinct keys from V should be mapped

to distinct addresses in T . That is, one seeks to avoid collisions on

the set of actually used keys.

In other words, a hashing function should, if possible, be injective

on V .

Hashing is also a very useful technique in cryptographic applications.

Cryptographic hash functions usually map large keys to smaller keys

in a “secure” manner.
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Universal Hashing

Among the various hashing techniques, universal hashing (which was

invented by Carter and Wegman in 1979) is of particular interest for

proving that GI is in coAM. The idea is to not focus on a particular,

concrete hashing function, but rather to randomly select one from a

suitable family of hashing functions.

This hashing technique is universal in the sense that it no longer

depends on a specific set V of keys that are actually used;

instead, it seeks to avoid collisions on all sufficiently small sets V

with high probability.

The probability is taken over the random choice of hashing functions.

In what follows, we think of keys as strings over the alphabet

Σ = {0,1}, and we denote by Σn the set of all length n strings in Σ∗.
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Definition (Universal Hashing)

Let Σ = {0,1}, and let m and t be integers with t >m.

A hashing function h : Σt → Σm is a linear mapping determined by a

boolean (m× t) matrix Bh = (bi ,j)i ,j , where bi ,j ∈ {0,1}.

For ~x ∈ Σt and for each i with 1≤ i ≤m, the i th bit of ~y = h(~x) ∈ Σm is

given by

yi = (bi ,1∧x1)⊕ (bi ,2∧x2)⊕·· ·⊕ (bi ,t ∧xt),

where ⊕ denotes the exclusive-or operation (a.k.a. the parity operation).

Note that ⊕ is associative. We can thus write:

a1⊕a2⊕·· ·⊕an = 1 ⇐⇒ ‖{i
∣∣ai = 1}‖ ≡ 1 mod 2.
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Definition (Universal Hashing, continued)

Let Ht,m = {h : Σt → Σm
∣∣Bh is a boolean (m× t) matrix}

be a family of hashing functions for the parameters t and m.

We assume the uniform distribution on Ht,m:

A hashing function h is chosen from Ht,m by picking the bits bi ,j in Bh

independently according to the uniform distribution.

Let V ⊆Σt . For a subfamily Ĥ of Ht,m, we say there is a collision on V if

(∃~v ∈ V )(∀h ∈ Ĥ )(∃~x ∈ V ) [~v 6=~x ∧h(~v) = h(~x)].

Otherwise, Ĥ is collision-free on V .
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Lemma (Hashing Lemma)

Let t,m ∈ N be fixed parameters, let V ⊆ Σt , and let

Ĥ = (h1,h2, . . . ,hm+1) be some family of hashing functions randomly

selected from Ht,m under the uniform distribution.

Let the collision predicate be

Col(V ) = {Ĥ
∣∣ (∃~v ∈ V )(∀h ∈ Ĥ )(∃~x ∈ V ) [~v 6=~x ∧h(~v) = h(~x)]}.

That is, Col(V ) is the event that, given Ĥ , a collision occurs on V .

Then, the following two statements are true:

1 If ‖V ‖ ≤ 2m−1, then Col(V ) occurs with probability at most 1/4.

2 If ‖V ‖> (m+ 1)2m, then Col(V ) occurs with

probability 1. without proof
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Theorem

GI is in coAM.

Proof: Let G and H be two graphs with n vertices each.

Reminder: Define the set

A(G ,H) = {〈F ,ϕ〉
∣∣F ∼= G ∧ϕ ∈Aut(F )}∪{〈F ,ϕ〉

∣∣F ∼= H ∧ϕ ∈Aut(F )}.

Lemma

For any two given graphs G and H with n vertices each, we have

‖A(G ,H)‖ =

 n! if G ∼= H

2n! if G 6∼= H.
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We want to apply the hashing lemma.

It seems to be reasonable to use as the set V from this lemma the set

A(G ,H) = {〈F ,ϕ〉
∣∣F ∼= G ∧ϕ ∈Aut(F )}∪{〈F ,ϕ〉

∣∣F ∼= H ∧ϕ ∈Aut(F )}.

We give an AM machine for GNI, the complement of GI, which, of

course, must be polynomial-time bounded. This requires the parameters t

and m from the hashing lemma to be polynomially in n. However, we

then would have to choose the polynomial m = m(n) such that

n!≤ 2m−1 < (m+ 1)2m < 2n!, (13)

since otherwise the set V = A(G ,H) would not be large enough to tell

two isomorphic graphs G and H apart from two nonisomorphic graphs,

with sufficiently high probability as per the hashing lemma.
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Unfortunately, it is not possible to find a polynomial m satisfying (13).

That is why we choose, as our V from the hashing lemma, a set other

than A(G ,H), one that creates a gap between the upper and the lower

bound in (13) that is large enough so as to tell isomorphic graphs apart

from nonisomorphic graphs. Define

V = A(G ,H)n = A(G ,H)×A(G ,H)×·· ·×A(G ,H)︸ ︷︷ ︸
n times

.

Now, (13) becomes

(n!)n ≤ 2m−1 < (m+ 1)2m < (2n!)n, (14)

and this inequality can be satisfied by setting m = m(n) = 1 + dn logn!e,
which is polynomially in n.
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Define an AM machine M for GNI as follows.

Given two graphs G and H with n vertices each, M starts by computing

the parameter m = m(n).

Note that the set V = A(G ,H)n contains n-tuples of pairs of the form

〈F ,ϕ〉, where F is a graph with n vertices, and ϕ is a permutation in the

automorphism group Aut(F ).

The elements of V can be suitably encoded as strings over the alphabet

Σ = {0,1}, where t = t(n) is an appropriate polynomial.

So far, all computations are deterministic.
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M then makes a probabilistic move by Arthur: Randomly choose a family

Ĥ = (h1,h2, . . . ,hm+1)

of hashing functions under the uniform distribution.

Each such hashing function hi ∈ Ĥ is given by a boolean (m× t) matrix

whose entries are chosen independently and uniformly distributed.

The m+ 1 hashing functions hi ∈ Ĥ can thus be encoded by a string

r
Ĥ
∈ Σ∗ of length p(n), for some suitable polynomial p.

Modify the collision predicate Col(V ) from the hashing lemma as follows:

B =

〈G ,H, r
Ĥ
〉

(∃~v ∈ V )(∀i : 1≤ i ≤m+ 1)

(∃~x ∈ V ) [~v 6=~x ∧hi (~v) = hi (~x)]

 .
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Since the ∀ quantifier in B ranges over only polynomially many i , it can be

evaluated deterministically in polynomial time.

Thus, the two ∃ quantifiers in B can be combined to just one polynomially

length-bounded ∃ quantifier, which means that B is a set in NP.

Let N be an NPTM for B.

If r
Ĥ

is the randomly chosen string encoding m+ 1 independently and

uniformly distributed hashing functions from Ht,m, then simulating the

computation of N(〈G ,H, r
Ĥ
〉) corresponds to Merlin’s move.

This completes the description of M.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 80 / 82



Randomized Algorithms and Complexity Classes Graph Isomorphism and the Arthur-Merlin Hierarchy

Graph Isomorphism is in coAM

Suppose that G and H are nonisomorphic.

By our previous lemma, ‖A(G ,H)‖= 2n!.

Inequality (14) implies

‖V ‖= (2n!)n > (m+ 1)2m.

By the hashing lemma, the probability of 〈G ,H, r
Ĥ
〉 being in B is 1, i.e., a

collision occurs with certainty.

Thus, for each choice of r
Ĥ

, there exists an accepting computation path

of N(〈G ,H, r
Ĥ
〉).
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Now suppose that G and H are isomorphic.

By our previous lemma, ‖A(G ,H)‖= n!.

Inequality (14) implies

‖V ‖= (n!)n ≤ 2m−1.

By the hashing lemma, the probability of 〈G ,H, r
Ĥ
〉 being in B is at

most 1/4.

Thus, for more than 3/4 of the possible choices of r
Ĥ

, N(〈G ,H, r
Ĥ
〉) has

no accepting computation path.

It follows that GNI is in (∃+∃|∃+∀) = AM;

or, equivalently, that GI is in (∃+∀|∃+∃) = coAM. q
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