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Reminder: Some Foundations of Complexity Theory Literature

Literature

@ Gerd Wechsung: “Vorlesungen zur Komplexitatstheorie”,
Teubner-Verlag, Stuttgart, 2000

Grol-Demo gegen das SED-Regime heute vor 25 ... http://www.tlz.de/startseite/detail/-/specific/Gross...
DIENSTAG, 04. NOVEMBER 2014
Thiiringische
Landeszeitung

GroR-Demo gegen das SED-Regime heute vor 25 Jahren
in Jena

04.11.2014 - 20:01 Uhr

Der Alt-Prorektor und DA-Mitgriinder Gerd Wechsung erinnert sich.

J. Rothe ( Cryptocomplexity Il 6/73
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Reminder: Some Foundations of Complexity Theory Reminder: Tasks and Aims of Complexity Theory

Actually, What Does It Mean to Be a “Hard” Problem?

Herr

was ist ei

54

»Einen Elefanten einen Berg h

ist

. Aufer wenn man Hilfe von

Wondrak bekommt. Er setzt sich obendrauf und macht sich ganz leicht.«
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Reminder: Some Foundations of Complexity Theory Reminder: Tasks and Aims of Complexity Theory

Another Intractable Problem
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Reminder: Tasks and Aims of Complexity Theory
1] ” X *
How “Hard” Is S = {x2¥Ix | x € {0,1}*}?

@ Turing machines with one read-only input tape and one read-write
working tape can solve S in real-time, i.e., the number of steps in
the computation equals the length of the input.

© Turing machines with only one working tape and no separate input
tape require time at least quadratic in the input size to solve S.

© Alternating Turing machines need time no more than
logarithmic in the input size to solve S.

© Finite automata cannot solve S at all.
Note that finite automata can be considered to be very restricted Turing
machines, which are equipped only with a one-way read-only input tape
(i.e., the head is allowed to go only from left to right in each step), have
no working tape, and must finish their work in real-time.
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Reminder: Some Foundations of Complexity Theory Reminder: Tasks and Aims of Complexity Theory

A Problem’s Complexity is Determined by:

@ the computational model (or algorithmic device) used—e.g., the
two-way, multitape Turing machine;

@ the computational paradigm (or acceptance mode) of this
computational model—e.g., Turing machines are

deterministic or

@ nondeterministic or

e probabilistic or

e alternating or etc.

@ the complexity measure (or resource) used—e.g.,
o the time (the number of steps executed in the computation) or
o the space (the number of tape cells used in the computation) or etc.
needed to solve the problem (in either the worst-case or the
average-case complexity model).
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Reminder: Some Foundations of Complexity Theory Reminder: Tasks and Aims of Complexity Theory

Where Do the Problems Come From?

Complexity theory studies important, interesting, natural problems

from almost every field of sciences, including areas as diverse as
@ logic,
@ graph theory,

algebra and number theory,

algorithmics,

cryptography,

coding and information theory,

data compression,

the theory of formal languages and automata,

circuit theory,

@ genome sequencing,

@ social choice theory, and many more.
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Reminder: Some Foundations of Complexity Theory Reminder: Tasks and Aims of Complexity Theory

Where Do the Problems Come From? Examples

@ The satisfiability problem of propositional logic:

SAT = {90‘ v is a satisfiable boolean formula }

@ The clique problem of graph theory:
CLiQue = {(G,k) \ G is a graph that has a clique of size > k}

@ The primality problem and the quadratic residue problem of
algebra and number theory:

PRIMES = {bin(n)|nis a prime number}
x € Z; and n € N are encoded in binary
QR = <{(x,n)
and x is a quadratic residue mod n

J. Rothe (HHU Dusseldorf) Cryptocomplexity Il 14/73



Reminder: Some Foundations of Complexity Theory Reminder: Tasks and Aims of Complexity Theory

Where Do the Problems Come From? Examples

@ The multiprocessor job scheduling problem in algorithmics:
“Given a list J = (j1, jo, - - - , Jx) Of jobs, j; having length ¢;, m
processors, and a bound t, is it possible to schedule all jobs in J
on the processors such that none overlap and the total time to
process all jobs is at most t?”

Decision problems like this have related optimization problems.

@ The (functional) problem of breaking RSA in cryptography:
“Given the public RSA key (n, e) in binary notation, determine the
corresponding private key d.”

@ How does this relate to the factoring problem: “Given a number n
in binary notation, determine its prime factors”?
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Reminder: Some Foundations of Complexity Theory Reminder: Tasks and Aims of Complexity Theory

Where Do the Problems Come From? Examples

@ From the theory of formal languages and automata:
e The halting problem for Turing machines:
“Given a Turing machine M and an input x, does M(x) ever halt?”
e The equivalence problem for context-free grammars:
“Given two context-free grammars, G; and G, are they equivalent
(i.e., does it hold that L(G1) = L(G2))?”

@ From social choice theory:

e The winner problem for plurality elections:
“Given an election (C, V) and a distinguished candidate c € C, is ¢
a plurality winner of (C, V)?”

e The (coalitional weighted) manipulation problem:
“Given a candidate set C, a candidate ¢ € C, the votes and weights
of the nonmanipulative voters, and the weights of the manipulators,
can the manipulators cast their votes so that ¢ wins?”
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Reminder: Tasks and Aims of Complexity Theory
Tasks and Aims of Complexity Theory

@ Classify problems in terms of their intrinsic complexity:

e Prove an (algorithmic) upper bound for the problem;
e Prove a lower bound for the problem.

@ Compare problems according to their computational complexity
via complexity-bounded reducibilities.

@ Determine the “hardest” problems of complexity classes in terms
of completeness w.r.t. some reducibility.

@ Prove structural properties of complexity classes and hierarchies.

J. Rothe (HHU Dusseldorf) Cryptocomplexity Il 17/73



Reminder: Some Foundations of Complexity Theory Reminder: Some Central Complexity Classes

Reminder: Some Central Complexity Classes

Space classes

L DSPACE(log)

NL NSPACE(log)
LINSPACE DSPACE(ILin)
NLINSPACE NSPACE(ILin)
PSPACE DSPACE(IPol)
NPSPACE NSPACE(IPol)
EXPSPACE DSPACE(2F?!)
NEXPSPACE NSPACE(2F°!)
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Reminder: Some Foundations of Complexity Theory Reminder: Some Central Complexity Classes

Reminder: Some Central Complexity Classes

J. Rothe (HHU Dusseldorf)

Time classes

REALTIME DTIME(id)
LINTIME DTIME(LLin)
P DTIME(IPol)
NP NTIME(IPol)
E DTIME(2%")
NE NTIME(2Lin)
EXP DTIME(2F°!)
NEXP NTIME(2F°!)
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Reminder: Some Foundations of Complexity Theory Reminder: Some Central Complexity Classes

Reminder: Simple Inclusions

Theorem

L € NL € P C NP C PSPACE.
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Reminder: Some Foundations of Complexity Theory Reminder: Reducibility, Hardness, and Completeness

Reminder: Many-One Reducibility and Completeness

Definition
@ Let X = {0, 1} be a fixed alphabet, and let A, B C ¥*.
@ Let FP denote the set of polynomial-time computable functions
mapping from X* to £*.

@ Let C be any complexity class.

@ Define the polynomial-time many-one reducibility, denoted by <%,
as follows: A <h, B if there is a function f € FP such that

(WxeX*)[xe A < f(x) e B
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Reminder: Some Foundations of Complexity Theory Reminder: Reducibility, Hardness, and Completeness

Reminder: Many-One Reducibility and Completeness

Definition (continued)
@ Aset Bis <b -hard forC if A<P Bforeach A e C.

© Aset Bis <! -complete for C if

@ Bis <h-hard for C (lower bound) and
@ B < C (upper bound).

@ Cis said to be closed under the <k, -reducibility (<h,-closed, for
short) if for any two sets A and B,

if A<P Band B € C, then A e C.
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Reminder: Reducibility, Hardness, and Completeness
. . . p
Reminder: Properties of <i,

Lemma

Q@ A< Bimplies A<P, B, yet in general it is not true that A<b, A.

@ The relation <%, is both reflexive and transitive, yet not
antisymmetric.

© P, NP, and PSPACE are <}, -closed.
That is, upper bounds are inherited downward with respect to <5,.

Q IfA<} B and A is <k -hard for some complexity class C, then B is
<P -hard for C.

That is, lower bounds are inherited upward with respect to <},.

J. Rothe (HHU Dusseldorf) Cryptocomplexity Il 23/73



Reminder: Some Foundations of Complexity Theory Reminder: Reducibility, Hardness, and Completeness

Reminder: Properties of <},

Lemma (continued)

© LetC and D be any complexity classes. IfC is <h -closed and B is
<P -complete for D, then

DCC < Bec(.
In particular, if B is NP-complete, then
P=NP < BeP.

© For each nontrivial set B € P (i.e., ) # B # ¥*) and for each set
A c P, A<k B. Thus, every nontrivial set in P is < -complete for P.
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Reminder: Some Foundations of Complexity Theory Reminder: Reducibility, Hardness, and Completeness

Reminder: Properties of <},

Proof: All these properties follow easily from the definitions.

As examples, we only show two selected properties:
© We show that P is <}-closed:

e Let A<k Bvia f € FP, where f is computed by DPTM M running in
time p € Pol, and
o let B € Pvia DPTM N running in time g € Pol.

To show that A € P, given input x, simply
e compute f(x) via M,
e run N on input f(x), and
e accept if and only if N(f(x)) accepts.

Note that |f(x)| is polynomial in | x|, and as p, g € Pol, so is p(q).
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Reminder: Reducibility, Hardness, and Completeness
. . . p
Reminder: Properties of <i,

© To show that every nontrivial set B in P is <k -complete for P,
choose

e astring b € Band
e astringb¢ B

(which is possible because () # B # ¥*).
Let A be an arbitrary set in P.

Define the reduction

b ifxeA
fx)=4 _
b ifx¢A
Clearly, f € FP and f witnesses that A <}, B. Q
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Reminder: Reducibility, Hardness, and Completeness
Reminder: Log-Space Many-One Reducibility

Definition
@ Let X = {0, 1} be a fixed alphabet, and let A, B C ¥*.
@ Let FL denote the set of log-space computable total functions
mapping from X* to £*.

@ Let C be any complexity class.

@ Define the log-space many-one reducibility, denoted by <% as
follows: A <I€ Bif there is a function f € FL such that

(WxeX*)[xe A < f(x) e B
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Reminder: Reducibility, Hardness, and Completeness
Reminder: Log-Space Many-One Reducibility

Definition (continued)
O A set Bis <'°%-hard for C if A<\°® Bfor each A € C.

@ A set Bis <I%5-complete for C if

@ Bis <\%-hard for C (lower bound) and
@ B € C (upper bound).

Q Cis said to be closed under the <\%%-reducibility (<\%-closed, for
short) if for any two sets A and B,

if A<!®®¢ Band B e C,then A cC.
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Reminder: Some Foundations of Complexity Theory Reminder: Reducibility, Hardness, and Completeness

Reminder: Properties of <8

Theorem

The <\°-reducibility is a transitive relation.
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Reminder: Reducibility, Hardness, and Completeness
Reminder: The Satisfiability Problem

@ A boolean formula ¢ is in conjunctive normal form (CNF, for short)
if and only if ¢ is of the form

o(X1, X2, ..., Xn) = /\ (\/ﬁ,j)

i=1
= (5171 \/'-‘\/517/(1)A'-'/\(€m,1 V"'\/Em,km)a

where the /; ; are literals over {xy, X2, ..., Xp}, and the disjuncts

(ij ; ) of literals are said to be the clauses of .

@ A boolean formula ¢ is in k-CNF if and only if ¢ is in CNF and
each clause of ¢ has at most k literals.

@ Analogously: disjunctive normal form (DNF, for short) and k-DNF.
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Reminder: Some Foundations of Complexity Theory Reminder: Reducibility, Hardness, and Completeness

Reminder: The Satisfiability Problem

Definition
Define the decision problems

SAT = {ap ‘ © is a satisfiable boolean formula } ,
k-SAT = {cp ‘ ¢ is a satisfiable boolean formula in k-CNF } :
Remark:

@ 2-SAT is glﬁg-complete for NL, the class of problems solvable in
nondeterministic logarithmic space.

As NL C P, it follows that 2-SAT is in P.

@ SAT is easy to solve (i.e., in P) for formulas in DNF.
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Reminder: SAT is NP-complete

Theorem (Cook 1971 & Levin 1973)
SAT is <b -complete for NP. J

Proof:

@ SAT € NP: Given a boolean formula ¢ with variable set X,
@ guess nondeterministically a truth assignment

T : X — {true, false},

@ check deterministically whether T E ¢ and accept accordingly.
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Cook Reduction: Boolean Variables in Fy

@ SAT is NP-hard: To show A <k SAT for any NP set A (with
L(M) = Afor NPTM M), construct a boolean formula Fx such that:

xeA <= f(x)=Fxe SAT. (1)

Let x = x1 X2 - - - X, be the input string, where x; € ¥ for each .

Since M = (%,I,Z,0,0, so, F) works in, w.l.o.g., time exactly p(n), the
tape head can move no further than p(n) tape cells to the left or right.

Enumerate the relevant tape cells from —p(n) through p(n).

Start configuration of M(x):
@ input symbols x1 Xz - - - X, in tape cells 0 through n — 1,
@ the head currently scans the tape cell with number 0, and
@ the start state is sp.
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Cook Reduction: Boolean Variables in Fy

o]~ [olnle] - Tx[o] - [d]

—p(n) - -1 0 1 R o p(n)

variables of Fy index range intended meaning

state g 0<t<p(n true < instep t,
se”Z Mis in state s

heady 0<t<p(n true < instept,

—p(n) <i<p(n) | Msheadscans cell i

tapey ; , 0<t<p(n true < instept,
—p(n) <i<p(n) | thesymbol aisin

aefl cell i of M’s tape
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Cook Reduction: Structure of F

Fx=S8SANTi ATy ANE A C, where
@ S: correct start of the computation of M(x);

@ T;: correct transition from step t to step t + 1 for those tape cells
whose contents can be altered by the head of M,

@ T»: correct fransition from step t to step t + 1 for those tape cells
whose contents cannot be altered by the head of M,
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Cook Reduction: Structure of F

Fx=SATiANT> A EAC, where

@ E: correct end of the computation of M(x), i.e., E is true if and
only if M(x) has an accepting computation path;

@ C: general correctness, i.e.,
C is true if and only if the following conditions hold:

e in each step t of M(x), there exists exactly one state s € Z such
that state; s is true, and there exists exactly one i such that head; ; is
true;

e in each step t of M(x) and for each cell number i, there exists
exactly one a € I such that tape, ; , is true.
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Cook Reduction: Subformula C

Let the set of states and the working alphabet of M be given by

Z = {807317'”73/(}’
r = {0,a,a,...,a}.
Define
C = /\ [D(state s, , statey s, , . . -, stateg s, ) A
0<t<p(n)

D(headt,_p(n), headt7_p(n)+1 e ,headnp(n)) A
/\ D(tapet,i,m tapet; a,5 - - - 7tapet,i,ag)]7
—p(n)<i<p(n)

where the structure of the three subformulas D of C above is specified

in the next lemma.
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Reminder: NP-complete Problems
Cook Reduction: Lemma for Subformula C

Lemma
For each m > 1, there exists a boolean formula D in the variables
Vi, Vo,...,Vy Such that:

@ D(vq,Vva,...,Vn) is true if and only if exactly one variable v; is true,
and

@ the size of the formula D (i.e., the number of variable occurrences
in D) is in O(m?).

Proof of Lemma. For fixed m > 1, define

D(vy,Va,...,Vm) = (\n}vi>/\ /\ /\ —(Vj A Vi)

j=1 k=j+1

D> D
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Cook Reduction: Lemma for Subformula C

Subformulas D> and D< of D satisfy the following properties:

D->(v4,v2,...,vm)istrue <= atleast one variable v; is true; (2)
D(vi,Va,...,Vn)istrue <= at mostone variable v; is true. (3)

Equation (2) is obvious. To see that also (3) is true, observe that the
formula D<(vq, v, ..., vin) has the following structure:

(—v1 VvV —v) (~viv—=ws) A oo A (2 V Vy)
A A

A
AN (ﬁVgVﬁVg) (ﬁVg\/ﬁVm)

A\ (ﬁVm,1 V ﬁVm).

(2) and (3) together imply that D(vq, v, ..., viy) is true if and only if
exactly one v; is true. Clearly, the size of Dis in O(m?). Q Lemma
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Cook Reduction: Subformulas 71 and 75

Letting § denote M'’s transition function and y € {—1,0,1} represent M
moving its head to the left, to the right, or not at all, respectively, define

T, = /\ ((statet,s A heads j A taPet,i,a) .

t,s,i,a

\/ (statet+1 s Aheadyyq 1y A tape; 4 ,,-,;3))
§cZ ael,ye{-1,0,1}
with (8,4, y) € i(s, a)
and
T, = /\ ((—headu /\tapeu’a) = tapet+17,-7a) .

ti,a
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Reminder: NP-complete Problems
Cook Reduction: Subformulas S and E

Define
—1
S = stateg s, Aheadgp A /\ tapeg ;o A

i==p(n)

p(n)
/\ tapeg j x,,, A /\ tapeg j o

i=0 i=n

and

E = \/statep(nys

seF
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Cook Reduction: Proof of Equivalence (1)
We show:

xeA << f(x)=Fxec SAT.
(=)

x € A = there exists an accepting computation path « of M(x)
= assigning truth values to every variable of Fy
according to «, associating with each variable
its “intended meaning” according to our table, this
truth assignment satisfies each subformulas of Fy
= Fx € SAT
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Reminder: NP-complete Problems
Cook Reduction: Proof of Equivalence (1)

We show:

xeA << f(x)=Fxe SAT.
(<)

Fx € SAT = there exists a truth assigment 7 to F,’s variables
satisfying Fy
= according to 7, the variables state; s, head; ;, and
tape; ; , Of Fx can be sensibly interpreted as a sequence
of configurations Ko, Ki, ..., Ky of M(x) along
some accepting computation path of M(x)

= xcA
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Cook Reduction: Reduction is in FP

Finally, to show f € FP, note that:
@ The size of Fy is polynomial in n = |x|:

x| € O((p(n))®).

@ An FP algorithm computing f runs in time linear in |Fy|. a
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Reminder: NP-complete Problems
Reminder: 3-SAT is NP-complete

Theorem
3-SAT is <h,-complete for NP. J

Proof: Membership in NP for the restricted problem follows
immediately from that for the general problem.

To prove that SAT <[, 3-SAT, define a reduction f mapping any given
boolean formula ¢ to a boolean formula v in 3-CNF such that:

v is satisfiable <= 1 is satisfiable. (4)

Let
o(X1,X2,...,Xn) = C{ ANCoA--- A Cp,

where the C; are the clauses of .

J. Rothe (HHU Dusseldorf) Cryptocomplexity Il 45/73



Reminder: NP-complete Problems
Reminder: 3-SAT is NP-complete

The formula v is constructed from ¢ as follows.

The variables of ¢ are ¢’s variables x4, xo, . . ., X, and, for each clause
; Jo J
C;j of ¢, the variables yy, yp, .- -, Vp -

Define
YV=DyANDoN\--- A Dp,

where each subformula D; of v is constructed from the clause C; of ¢
as follows.

Consider the j clause of ¢, and suppose that C; = (21 V 2o V- -+ V Z),
where each z; is a literal over {xy, X2, ..., Xn}.

Distinguish the following four cases.
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Reminder: NP-complete Problems
Reminder: 3-SAT is NP-complete

Case 1: k = 1. Define
Dj:(z1Vy{Vyé)/\(avﬁy{Vyé)A(zwy{vﬁyé)/\(a\/ﬁy{vﬁyé).
Case 2: k = 2. Define
Di=(z1V 2z Vy{)A (z1 Vngﬂy{).

Case 3: k = 3. Define Dj = Cj = (Z1 V Zo V 23).
Case 4: kK > 4. Define

D = (z \/ngy{)A(—\y{\/Z3Vy£)/\(—\y£\/24vyé)/\-"/\
(Vi gV Zk2V Vi ) N (Wi 3V Zko1 V Z).
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Reminder: NP-complete Problems
Reminder: 3-SAT is NP-complete

Observe that the reduction f is polynomial-time computable.
It remains to show that (4) is true.

(=) Let t be a truth assignment to the variables xq, x2, ..., xp of ¢
such that t(p) = 1.

Extend t to a truth assignment t' of the variables of v as follows.

Since for i # j, the subformulas D; and D; are disjoint with respect to
the y variables, it is enough to consider all subformulas of ¢
separately. Consider the subformula D; for any fixed j.

In Cases 1 through 3 above, t already satisfies D;, so t can arbitrarily
be extended to t'.
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Reminder: NP-complete Problems
Reminder: 3-SAT is NP-complete

Consider Case 4 above.
Let z;, where 1 < i < k be the first literal in C; for which t(z;) = 1.
Such an i must exist, since t satisfies C;.
If i € {1,2}, then set t’(yé) = 0 for each ¢ with 1 < ¢ < k — 3.
If i € {k —1,k}, then set t'(y!) = 1 for each £ with 1 < ¢ < k — 3.
Otherwise, set
. { 1 if1<e<i-2
t(y) = .
0 ifi—1<¢<k-3.
In each case, t’ satisfies D;.

Hence, t'(¢) = 1, so ¢ is satisfiable.
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Reminder: NP-complete Problems
Reminder: 3-SAT is NP-complete

(<=) Let t' be a satisfying truth assignment to .
Let t be the restriction of t’ to the variables x1, x, . .., x, of ©.

Hence, t(y) = 1, so ¢ is satisfiable, which proves (4) and the
theorem. Q0
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Reminder: Clique, Independent Set, Vertex Cover, and
Dominating Set

O O
clique independent
set
19
vertex dominating
cover set
U U
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Reminder: Clique and Independent Set

Definition
Let G be an undirected graph.
@ A clique of G is a subset C C V(G) such that for any two vertices
X,y € Cwith x # y,
{x,y} € E(G).

@ An independent set of G is a subset | C V(@) such that for any
two vertices x, y € [ with x # y,

{x,y} ¢ E(G).
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Reminder: Vertex Cover and Dominating Set

Definition
Let G be an undirected graph.

@ A vertex cover of G is a subset C C V(G) such that for each edge
{x,y} € E(G),
{x.y}nC#0.

@ A dominating set of G is a subset D C V(G) such that for each
x € V(G) — D there exists a vertex y € D such that

{x,y} € E.
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Reminder: Dominating Set
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Reminder: Clique, Independent Set, Vertex Cover, and
Dominating Set

Definition
CLiQUE = {(G, k)| G has a clique of size > k}
INDEPENDENT SET = {(G, k)| G has an independent set of size > k

VERTEX COVER = {(G, k)| G has a vertex cover of size < k}

DOMINATING SET = {(G, k)| G has a dominating set of size < k}
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Reminder: Clique, Independent Set, and Vertex Cover

Lemma

For each graph G and for each subset U C V(G), the following are
equivalent:

@ U is a vertex cover of G.
@ U = V(G) — U is an independent set of G.

© U= V(G) - U is aclique of the co-graph of G, which is defined as
the graph with vertex set V(G) and edge set

{{u,v}|u,ve V(G)and{u,v} ¢ E(G)}.
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Reminder: Clique, Independent Set, and Vertex Cover

Theorem
CLIQUE, INDEPENDENT SET, and VERTEX COVER are NP-complete. J

Proof: It is easy to see that each of CLIQUE, INDEPENDENT SET, and
VERTEX COVER belongs to NP.

The previous lemma implies that these three problems are pair-wise
<P -equivalent:

CLIQUE <P INDEPENDENT SET <?, VERTEX COVER <P CLIQUE.

Hence, it suffices to prove that, e.g., 3-SAT <k INDEPENDENT SET.
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Proof Idea: Independent Set is NP-complete

Let o(x1,X2,...,Xn) = C1 A Co A --- A Cpy be a given boolean formula
with exactly three literals per clause.

For each j with 1 </ < m, let the /"™ clause be given by
Ci=(zi1Vzi2V z3), where every
zjj€{X1,Xe,...,Xn} U{=X1,7Xa, ..., ~Xpn} is a literal.

The reduction f maps ¢ to the pair (G, m), where G is the graph with

vertex set
V(G)={zij|1<i<mand1<;<3}

and edge set
E(G) = {{zij,zix}|1<i<mand1<jk<3andj#k}U
{{zij,zrs}|i# rand zjj = -z s}.
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Proof Idea: Independent Set is NP-complete
According to the construction, formula

(p(X1 , Xo, X3) = (X1 \/X2\/X3)/\(ﬂX1 VX2\/X3)/\(—\X1 \/X2\/—\X3)/\(X1 \/ﬁXQ\/X3)

is transformed into the following graph:
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Proof Idea: Independent Set is NP-complete

Clearly, f € FP. The construction implies that:

¢ € 3-SAT < there exists a truth assignment t with t(¢) = 1
<= every clause C; has a literal z;; with {(z; ;) = 1
<= there exists a sequence of literals z; j,, ..., Zm,
such that z;; # -z fori k € {1,...,m} with i # k
< there exists a sequence of literals z; j,, ..., zp, such
that {z,,...,2mj,} is an independent set of size m
in G.
Since G has an independent set of size at least mif and only if ¢ is
satisfiable, the reduction f witnesses that
3-SAT <b INDEPENDENT SET. Q
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Reminder: Dominating Set is NP-complete

Theorem
DOMINATING SET is NP-complete. J

Proof: Exercise. Hint: Reduction from VERTEX COVER. a
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Reminder: Graph Colorability

Definition
Let G = (V(G), E(G)) be an undirected graph.
@ A k-coloring of G is a mapping V(G) — {1,2,...,k}.

@ A k-coloring ¢ of G is called legal if for any two vertices x and y
in V(G), if {x,y} € E(G) then (x) # ¥(y).

@ The chromatic number of G, denoted by x(G), is the smallest
number k such that G is legally k-colorable.
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Reminder: Graph Colorability

Definition
For fixed k > 1, define

k-COLOR = {G| G is a graph with x(G) < k}.

Example:

Figure: A 3-colorable graph
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Reminder: NP-complete Problems
Reminder: 3-COLOR is NP-complete

Fact

2-COLOR s inP. without proof

v

Theorem
3-COLOR is NP-complete.

Proof:
@ 3-COLOR € NP is easy to see.

@ 3-COLOR is NP-hard: We show 3-SAT <P 3-COLOR. Let
o(X1,X2,...,Xn) =Cy ANCoA--- A Cp

be a given 3-SAT instance with exactly three literals per clause.
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Reminder: NP-complete Problems
Reminder: 3-COLOR is NP-complete

Define a reduction f mapping ¢ to the graph G constructed as follows.
The vertex set of G is defined by

V(G) = {w1,va,va} U{x;,—x|1<i<n}
U{yjk|1<j<mand1<k<6},

where the x; and —x; are vertices representing the literals x; and their
negations —x;, respectively.
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Reminder: 3-COLOR is NP-complete
The edge set of G is defined by

E(G) = {{w,va},{va,vs} . {vi,v5}} U {{x;,~x}|1<i<n}
U {{va,x;},{v3,~x} |1 <i<n}
U{{a, Y1340y yi2} {6 et | 1 <J < m}
U {{v,¥je},{vs,¥j6} |1 <j<m}
U{{yj1. Y2} its Viad (Vjas vjad [ 1 <j < m}
U{{¥s Vst Vs Vi) (Vs Yjet | 1 <j< m}
U{{yja ¥} |1 <ji<m}

where a;, b;, ¢; € U1§,§n{x,-, —X;} are vertices representing the literals
occurring in clause C; = (a; v b; V ¢).
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Skeletal Structure of the Graph in 3-SAT <}, 3-COLOR

W %)

= o=
\
/
J 4
= o=

Xn X,

Figure: Skeletal Structure of the graph in 3-SAT <}, 3-COLOR
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Reminder: NP-complete Problems
Clause Graph in 3-SAT <! 3-COLOR

a Vi

Yo

cCe Vs

Figure: Graph H for clause C = (aV bV ¢) in 3-SAT <}, 3-COLOR
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Reminder: NP-complete Problems
Properties of Clause Graph H in 3-SAT <}, 3-COLOR

@ Vertices x; and —x; corresponding to the literals x; and —x; are
legally colored 1 (“true”) or 2 (“false”).

@ Any coloring of the vertices a, b, and c that assigns color 1 to one
of a, b, and ¢ can be extended to a legal 3-coloring of H that
assigns color 1 to yg. Thus, if o € 3-SAT then G € 3-COLOR.

Q If ¢ is a legal 3-coloring of H with v(a) = ¢(b) = ¥(c) = i, then
¥(ye) = i. Thus, if ¢ & 3-SAT then G ¢ 3-COLOR.
It follows that

¢ € 3-SAT <= f(¢) = G € 3-COLOR

Clearly, reduction f is polynomial-time computable. Q
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Directed Hamilton Circuit

Definition

DIRECTED HAMILTON CIRcUIT (DHC, for short) is the following
problem:

Given: A directed graph G = (V(G), E(G)).
Question: Does there exist a Hamilton cycle in G, i.e., a sequence

(vi,Vo,...,Vn), vi € V(G), n=|V(G)|, such that
(vn,v1) € E(G) and (v;, vi1q) € E(G) for1 <i < n?

Theorem

DHC is NP-complete. without proof

.
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Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Hamilton Circuit

Definition
HAMILTON CIRcUIT (HC, for short) is the following problem:
Given: An undirected graph G = (V(G), E(G)).
Question: Does there exist a Hamilton cycle in G, i.e., a sequence
(vi,Vo,...,Vn), vi € V(G), n=|V(G)|, such that
{Vn,vai} € E(G) and {v;,vj; 1} € E(G) for 1 <i< n?

Theorem
HC is NP-complete. }

Proof: Excercise. Hint: Reduction from DHC. Q
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Traveling Salesperson Problem

Definition
The TRAVELING SALESPERSON PROBLEM (TSP, for short) is the
following problem:

Given: A complete undirected graph K, = (V, E), a cost function
c:E—N,and k ¢ N.

Question: Does there exist a Hamilton cycle in K, such that the sum
of the edge costs is at most k?

Theorem
TSP is NP-complete.

Proof: TSP € NP is easy to see.



Reminder: Some Foundations of Complexity Theory Reminder: NP-complete Problems

Traveling Salesperson Problem is NP-complete

TSP is NP-hard: We show HC <k, TSP.

Given an undirected graph G = (V(G), E(G)) with
V(G) = {vy, Vo, ..., Vpn}, define

f(G) = (Kn, c, n),

where K, = (V,E), V. ={1,2,...,n}, and for each edge e = {i,j} of

Kn:
o 1 if{vy, v} € E(G)
c({i,j}) = { o
2 otherwise.
Clearly, G € HC if and only if f(G) € TSP. Qa
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