Cryptocomplexity II

Kryptokomplexität II

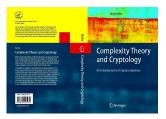
Sommersemester 2024

Chapter 7: Reminder: Some Foundations of Complexity Theory

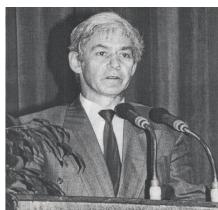
Dozent: Prof. Dr. J. Rothe

Jörg Rothe: "Komplexitätstheorie und Kryptologie. Eine Einführung in Kryptokomplexität", eXamen.Press, Springer-Verlag, 2008

Jörg Rothe: "Complexity Theory and Cryptology. An Introduction to Cryptocomplexity", EATCS Texts in Theoretical Computer Science, Springer-Verlag, 2005



 Gerd Wechsung: "Vorlesungen zur Komplexitätstheorie", Teubner-Verlag, Stuttgart, 2000



 Gerd Wechsung: "Vorlesungen zur Komplexitätstheorie", Teubner-Verlag, Stuttgart, 2000

 Gerd Wechsung: "Vorlesungen zur Komplexitätstheorie", Teubner-Verlag, Stuttgart, 2000

 Gerd Wechsung: "Vorlesungen zur Komplexitätstheorie", Teubner-Verlag, Stuttgart, 2000

Groß-Demo gegen das SED-Regime heute vor 25 ...

http://www.tlz.de/startseite/detail/-/specific/Gross...

Groß-Demo gegen das SED-Regime heute vor 25 Jahren in Jena

04.11.2014 - 20:01 Uhr

Der Alt-Prorektor und DA-Mitgründer Gerd Wechsung erinnert sich.

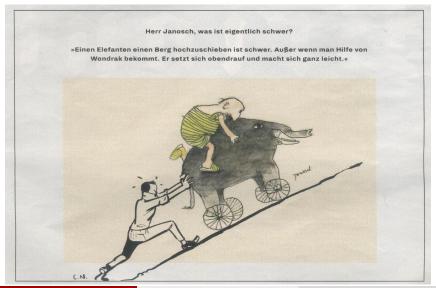
- Gerd Wechsung: "Vorlesungen zur Komplexitätstheorie", Teubner-Verlag, Stuttgart, 2000
- Lane A. Hemaspaandra and Mitsunori Ogihara: "The Complexity Theory Companion", EATCS Texts in Theoretical Computer Science, Springer-Verlag, Berlin, Heidelberg, New York, 2002
- Christos Papadimitriou: "Computational Complexity", 2.
 Auflage, reprinted with corrections, Addison-Wesley, 1995
- Danielo Bovet and Pierluigi Crescenzi: "Introduction to the Theory of Complexity", Prentice Hall, 1993

- D. Du and K. Ko: "Theory of Computational Complexity", John Wiley and Sons, 2000
- J. Balcázar, J. Díaz, and J. Gabarró: "Structural Complexity I + II", EATCS Monographs on Theoretical Computer Science, Berlin, Heidelberg, New York, vol. I (1995, 2. Auflage), vol. II (1990)
- Ingo Wegener: "Komplexitätstheorie. Grenzen der Effizienz von Algorithmen", Springer-Verlag, Berlin, Heidelberg, New York, 2003

8/73

 Klaus W. Wagner and Gerd Wechsung: "Computational Complexity", D. Reidel Publishing Company, 1986

Actually, What Does It Mean to Be a "Hard" Problem?



Another Intractable Problem

How "Hard" Is
$$S = \{x2^{|x|}x \mid x \in \{0,1\}^*\}$$
?

- Turing machines with one read-only input tape and one read-write working tape can solve S in real-time, i.e., the number of steps in the computation equals the length of the input.
- Turing machines with only one working tape and no separate input tape require time at least quadratic in the input size to solve S.
- Alternating Turing machines need time no more than logarithmic in the input size to solve S.
- Finite automata cannot solve *S* at all.

 Note that finite automata can be considered to be very restricted Turing machines, which are equipped only with a one-way read-only input tape (i.e., the head is allowed to go only from left to right in each step), have no working tape, and must finish their work in real-time.

A Problem's Complexity is Determined by:

- the computational model (or algorithmic device) used—e.g., the two-way, multitape Turing machine;
- the computational paradigm (or acceptance mode) of this computational model—e.g., Turing machines are
 - deterministic or
 - nondeterministic or
 - probabilistic or
 - alternating or etc.
- the complexity measure (or resource) used—e.g.,
 - the time (the number of steps executed in the computation) or
 - the space (the number of tape cells used in the computation) or etc.

needed to solve the problem (in either the *worst-case* or the *average-case complexity model*).

Where Do the Problems Come From?

Complexity theory studies important, interesting, natural problems from almost every field of sciences, including areas as diverse as

- logic,
- graph theory,
- algebra and number theory,
- algorithmics,
- cryptography,
- coding and information theory,
- data compression,
- the theory of formal languages and automata,
- circuit theory,
- genome sequencing,
- social choice theory, and many more.

Where Do the Problems Come From? Examples

• The satisfiability problem of propositional logic:

$$\mathsf{SAT} \ = \ \Big\{ \varphi \, \Big| \ \varphi \text{ is a satisfiable boolean formula } \Big\}$$

• The *clique problem* of graph theory:

CLIQUE =
$$\{(G, k) \mid G \text{ is a graph that has a clique of size } \geq k\}$$

 The primality problem and the quadratic residue problem of algebra and number theory:

PRIMES =
$$\{ bin(n) \mid n \text{ is a prime number} \}$$

$$QR = \left\{ (x,n) \middle| \begin{array}{l} x \in \mathbb{Z}_n^* \text{ and } n \in \mathbb{N} \text{ are encoded in binary} \\ \text{and } x \text{ is a quadratic residue mod } n \end{array} \right\}$$

Where Do the Problems Come From? Examples

- The *multiprocessor job scheduling problem* in algorithmics: "Given a list $J = (j_1, j_2, \dots, j_k)$ of jobs, j_i having length ℓ_i , m processors, and a bound t, is it possible to schedule all jobs in J on the processors such that none overlap and the total time to process all jobs is at most t?"
 - Decision problems like this have related optimization problems.
- The (functional) problem of breaking RSA in cryptography:
 "Given the public RSA key (n, e) in binary notation, determine the corresponding private key d."
- How does this relate to the factoring problem: "Given a number n in binary notation, determine its prime factors"?

Where Do the Problems Come From? Examples

- From the theory of formal languages and automata:
 - The halting problem for Turing machines:
 "Given a Turing machine M and an input x, does M(x) ever halt?"
 - The equivalence problem for context-free grammars: "Given two context-free grammars, G_1 and G_2 , are they equivalent (i.e., does it hold that $L(G_1) = L(G_2)$)?"
- From social choice theory:
 - The winner problem for plurality elections:
 "Given an election (C, V) and a distinguished candidate c ∈ C, is c a plurality winner of (C, V)?"
 - The (coalitional weighted) manipulation problem:
 "Given a candidate set C, a candidate c ∈ C, the votes and weights of the nonmanipulative voters, and the weights of the manipulators, can the manipulators cast their votes so that c wins?"

Tasks and Aims of Complexity Theory

- Classify problems in terms of their intrinsic complexity:
 - Prove an (algorithmic) upper bound for the problem;
 - Prove a *lower bound* for the problem.
- Compare problems according to their computational complexity via complexity-bounded reducibilities.
- Determine the "hardest" problems of complexity classes in terms of completeness w.r.t. some reducibility.
- Prove structural properties of complexity classes and hierarchies.

Reminder: Some Central Complexity Classes

Space classes					
L	=	DSPACE(log)			
NL	=	NSPACE(log)			
LINSPACE	=	DSPACE(Lin)			
NLINSPACE	=	NSPACE(Lin)			
PSPACE	=	DSPACE(Pol)			
NPSPACE	=	NSPACE(IPol)			
EXPSPACE	=	DSPACE(2 ^{Pol})			
NEXPSPACE	=	NSPACE(2 ^{Pol})			

Reminder: Some Central Complexity Classes

Time classes				
REALTIME	=	DTIME(id)		
LINTIME	=	DTIME(Lin)		
P	=	DTIME(Pol)		
NP	=	NTIME(IPol)		
Е	=	DTIME(2 ^{Lin})		
NE	=	NTIME(2 ^{ILin})		
EXP	=	DTIME(2 ^{Pol})		
NEXP	=	NTIME(2 ^{Pol})		

Reminder: Simple Inclusions

Theorem

 $L\subseteq NL\subseteq P\subseteq NP\subseteq PSPACE.$

Reminder: Many-One Reducibility and Completeness

Definition

- Let $\Sigma = \{0, 1\}$ be a fixed alphabet, and let $A, B \subseteq \Sigma^*$.
- Let FP denote the set of polynomial-time computable functions mapping from Σ* to Σ*.
- Let C be any complexity class.
- **1** Define the *polynomial-time many-one reducibility*, denoted by \leq_m^p , as follows: $A <_m^p B$ if there is a function $f \in FP$ such that

$$(\forall x \in \Sigma^*)[x \in A \iff f(x) \in B].$$

Reminder: Many-One Reducibility and Completeness

Definition (continued)

- 2 A set B is \leq_{m}^{p} -hard for C if $A \leq_{m}^{p} B$ for each $A \in C$.
- **③** A set *B* is $\leq_{\mathrm{m}}^{\mathrm{p}}$ -complete for *C* if
 - **1** B is \leq_m^p -hard for C (lower bound) and
 - **2** $B \in \mathcal{C}$ (upper bound).
- **4** \mathcal{C} is said to be *closed under the* \leq_m^p -*reducibility* (\leq_m^p -*closed*, for short) if for any two sets A and B,

if
$$A \leq_{m}^{p} B$$
 and $B \in \mathcal{C}$, then $A \in \mathcal{C}$.

Lemma

- $A \leq_m^p B$ implies $\overline{A} \leq_m^p \overline{B}$, yet in general it is not true that $A \leq_m^p \overline{A}$.
- ② The relation \leq_m^p is both reflexive and transitive, yet not antisymmetric.
- P, NP, and PSPACE are \leq_m^p -closed.

 That is, upper bounds are inherited downward with respect to \leq_m^p .
- $\textbf{ If } A \leq_m^p B \text{ and } A \text{ is } \leq_m^p \text{-hard for some complexity class } \mathcal{C}, \text{ then } B \text{ is } \\ \leq_m^p \text{-hard for } \mathcal{C}.$

That is, lower bounds are inherited upward with respect to \leq_m^p .

Lemma (continued)

5 Let $\mathcal C$ and $\mathcal D$ be any complexity classes. If $\mathcal C$ is \leq_m^p -closed and B is \leq_m^p -complete for $\mathcal D$, then

$$\mathcal{D} \subseteq \mathcal{C} \iff B \in \mathcal{C}$$
.

In particular, if B is NP-complete, then

$$P = NP \iff B \in P$$
.

6 For each nontrivial set $B \in P$ (i.e., $\emptyset \neq B \neq \Sigma^*$) and for each set $A \in P$, $A \leq_m^p B$. Thus, every nontrivial set in P is \leq_m^p -complete for P.

Proof: All these properties follow easily from the definitions.

As examples, we only show two selected properties:

- **3** We show that P is \leq_m^p -closed:
 - Let $A \leq_{\mathrm{m}}^{p} B$ via $f \in \mathrm{FP}$, where f is computed by DPTM M running in time $p \in \mathbb{P}$ ol, and
 - let $B \in P$ via DPTM N running in time $q \in \mathbb{P}$ ol.

To show that $A \in P$, given input x, simply

- compute f(x) via M,
- run N on input f(x), and
- accept if and only if N(f(x)) accepts.

Note that |f(x)| is polynomial in |x|, and as $p, q \in \mathbb{P}$ ol, so is p(q).

- **⑤** To show that every nontrivial set B in P is \leq_m^p -complete for P, choose
 - a string $b \in B$ and
 - a string $\bar{b} \notin B$

(which is possible because $\emptyset \neq B \neq \Sigma^*$).

Let A be an arbitrary set in P.

Define the reduction

$$f(x) = \begin{cases} b & \text{if } x \in A \\ \bar{b} & \text{if } x \notin A. \end{cases}$$

Clearly, $f \in FP$ and f witnesses that $A <_m^p B$.

Reminder: Log-Space Many-One Reducibility

Definition

- Let $\Sigma = \{0, 1\}$ be a fixed alphabet, and let $A, B \subseteq \Sigma^*$.
- Let FL denote the set of log-space computable total functions mapping from Σ^* to Σ^* .
- Let C be any complexity class.
- ① Define the *log-space many-one reducibility*, denoted by $\leq_{\rm m}^{\rm log}$, as follows: $A \leq_{\rm m}^{\rm log} B$ if there is a function $f \in {\rm FL}$ such that

$$(\forall x \in \Sigma^*)[x \in A \iff f(x) \in B].$$

Reminder: Log-Space Many-One Reducibility

Definition (continued)

- ② A set B is \leq_{m}^{\log} -hard for C if $A \leq_{\mathrm{m}}^{\log} B$ for each $A \in \mathcal{C}$.
- **3** A set *B* is \leq_{m}^{\log} -complete for \mathcal{C} if
 - **1** B is $\leq_{\mathrm{m}}^{\mathrm{log}}$ -hard for \mathcal{C} (lower bound) and
 - **2** $B \in \mathcal{C}$ (upper bound).
- \mathcal{C} is said to be *closed under the* \leq_{m}^{\log} -reducibility (\leq_{m}^{\log} -closed, for short) if for any two sets A and B,

if
$$A \leq_{\mathrm{m}}^{\log} B$$
 and $B \in \mathcal{C}$, then $A \in \mathcal{C}$.

Reminder: Properties of \leq_m^{\log}

Theorem

The $\leq_{\rm m}^{\log}$ -reducibility is a transitive relation.

Reminder: The Satisfiability Problem

• A boolean formula φ is in *conjunctive normal form* (*CNF*, for short) if and only if φ is of the form

$$\varphi(x_1, x_2, \dots, x_n) = \bigwedge_{i=1}^m \left(\bigvee_{j=1}^{k_i} \ell_{i,j} \right)$$

$$= (\ell_{1,1} \vee \dots \vee \ell_{1,k_1}) \wedge \dots \wedge (\ell_{m,1} \vee \dots \vee \ell_{m,k_m}),$$

where the $\ell_{i,j}$ are literals over $\{x_1, x_2, \dots, x_n\}$, and the disjuncts $\left(\bigvee_{j=1}^{k_i} \ell_{i,j}\right)$ of literals are said to be the *clauses of* φ .

- A boolean formula φ is in k-CNF if and only if φ is in CNF and each clause of φ has at most k literals.
- Analogously: disjunctive normal form (DNF, for short) and k-DNF.

Reminder: The Satisfiability Problem

Definition

Define the decision problems

$$\begin{array}{lll} \mathsf{SAT} &=& \Big\{\varphi \,\Big|\, \ \varphi \ \text{is a satisfiable boolean formula} \ \Big\}\,, \\ k\mathsf{-}\mathsf{SAT} &=& \Big\{\varphi \,\Big|\, \ \varphi \ \text{is a satisfiable boolean formula in } k\mathsf{-}\mathsf{CNF} \ \Big\}\,. \end{array}$$

Remark:

• 2-SAT is \leq_m^{log} -complete for NL, the class of problems solvable in nondeterministic logarithmic space.

As $NL \subseteq P$, it follows that 2-SAT is in P.

SAT is easy to solve (i.e., in P) for formulas in DNF.

Reminder: SAT is NP-complete

Theorem (Cook 1971 & Levin 1973)

SAT is \leq_m^p -complete for NP.

Proof:

- **1** SAT \in NP: Given a boolean formula φ with variable set X,
 - guess nondeterministically a truth assignment

$$T: X \to \{\text{true}, \text{false}\},\$$

② check deterministically whether $T \vDash \varphi$ and accept accordingly.

Cook Reduction: Boolean Variables in F_x

SAT is NP-hard: To show $A \leq_{\mathrm{m}}^{\mathrm{p}}$ SAT for any NP set A (with L(M) = A for NPTM M), construct a boolean formula F_X such that:

$$x \in A \iff f(x) = F_x \in SAT.$$
 (1)

Let $x = x_1 x_2 \cdots x_n$ be the input string, where $x_i \in \Sigma$ for each i.

Since $M = (\Sigma, \Gamma, Z, \delta, \Box, s_0, F)$ works in, w.l.o.g., time *exactly* p(n), the tape head can move no further than p(n) tape cells to the left or right.

Enumerate the relevant tape cells from -p(n) through p(n).

Start configuration of M(x):

- input symbols $x_1x_2 \cdots x_n$ in tape cells 0 through n-1,
- the head currently scans the tape cell with number 0, and
- the start state is s_0 .

Cook Reduction: Boolean Variables in F_x

•••				<i>X</i> ₁	<i>X</i> ₂	 Xn			
	-p(n)	-1	0	1	 <i>n</i> –1	n	 p(n)	

variables of F_x	index range	intended meaning
$state_{t,s}$	$0 \le t \le p(n)$	true \iff in step t ,
	$s \in Z$	<i>M</i> is in state <i>s</i>
$head_{t,i}$	$0 \le t \le p(n)$	true \iff in step t ,
	$-p(n) \leq i \leq p(n)$	<i>M</i> 's head scans cell <i>i</i>
tape _{t,i,a}	$0 \le t \le p(n)$	true \iff in step t ,
	$-p(n) \leq i \leq p(n)$	the symbol a is in
	<i>a</i> ∈ Γ	cell <i>i</i> of <i>M</i> 's tape

Cook Reduction: Structure of F_x

$$F_x = S \wedge T_1 \wedge T_2 \wedge E \wedge C$$
, where

- S: correct start of the computation of M(x);
- T₁: correct *transition* from step t to step t + 1 for those tape cells whose contents can be altered by the head of M;
- T₂: correct transition from step t to step t + 1 for those tape cells whose contents cannot be altered by the head of M;

Cook Reduction: Structure of F_x

$$F_x = S \wedge T_1 \wedge T_2 \wedge E \wedge C$$
, where

- E: correct *end* of the computation of M(x), i.e., E is true if and only if M(x) has an accepting computation path;
- C: general correctness, i.e.,
 C is true if and only if the following conditions hold:
 - in each step t of M(x), there exists exactly one state $s \in Z$ such that state_{t,s} is true, and there exists exactly one i such that head_{t,i} is true;
 - in each step t of M(x) and for each cell number i, there exists exactly one $a \in \Gamma$ such that $tape_{t,i,a}$ is true.

Cook Reduction: Subformula C

Let the set of states and the working alphabet of *M* be given by

$$Z = \{s_0, s_1, \dots, s_k\},$$

 $\Gamma = \{\Box, a_1, a_2, \dots, a_\ell\}.$

Define

$$C = \bigwedge_{0 \le t \le p(n)} [D(\operatorname{state}_{t,s_0}, \operatorname{state}_{t,s_1}, \dots, \operatorname{state}_{t,s_k}) \land \\ D(\operatorname{head}_{t,-p(n)}, \operatorname{head}_{t,-p(n)+1}, \dots, \operatorname{head}_{t,p(n)}) \land \\ \bigwedge_{-p(n) \le i \le p(n)} D(\operatorname{tape}_{t,i,\square}, \operatorname{tape}_{t,i,a_1}, \dots, \operatorname{tape}_{t,i,a_\ell})],$$

where the structure of the three subformulas D of C above is specified in the next lemma.

Cook Reduction: Lemma for Subformula C

Lemma

For each $m \ge 1$, there exists a boolean formula D in the variables v_1, v_2, \ldots, v_m such that:

- $D(v_1, v_2, ..., v_m)$ is true if and only if exactly one variable v_i is true, and
- the size of the formula D (i.e., the number of variable occurrences in D) is in $\mathcal{O}(m^2)$.

Proof of Lemma. For fixed $m \ge 1$, define

$$D(v_1, v_2, \ldots, v_m) = \underbrace{\left(\bigvee_{j=1}^m v_j\right)}_{D_{\geq}} \wedge \underbrace{\left(\bigwedge_{j=1}^{m-1} \bigwedge_{k=j+1}^m \neg(v_j \wedge v_k)\right)}_{D_{<}}.$$

Cook Reduction: Lemma for Subformula C

Subformulas D_{\geq} and D_{\leq} of D satisfy the following properties:

$$D_{\geq}(v_1, v_2, \dots, v_m)$$
 is true \iff at least one variable v_i is true; (2)

$$D_{\leq}(v_1, v_2, \dots, v_m)$$
 is true \iff at most one variable v_i is true. (3)

Equation (2) is obvious. To see that also (3) is true, observe that the formula $D_{\leq}(v_1, v_2, \dots, v_m)$ has the following structure:

(2) and (3) together imply that $D(v_1, v_2, ..., v_m)$ is true if and only if exactly one v_i is true. Clearly, the size of D is in $\mathcal{O}(m^2)$. \square

Cook Reduction: Subformulas T_1 and T_2

Letting δ denote M's transition function and $y \in \{-1, 0, 1\}$ represent M moving its head to the left, to the right, or not at all, respectively, define

$$\begin{array}{ll} \mathcal{T}_1 & = & \bigwedge_{t,s,i,a} \left(\left(\mathrm{state}_{t,s} \wedge \mathrm{head}_{t,i} \wedge \mathrm{tape}_{t,i,a} \right) \Longrightarrow \\ & \bigvee \left(\mathrm{state}_{t+1,\hat{\mathbf{s}}} \wedge \mathrm{head}_{t+1,i+y} \wedge \mathrm{tape}_{t+1,i,\hat{\mathbf{a}}} \right) \right) \\ & \hat{\mathbf{s}} \in \mathcal{Z}, \hat{\mathbf{a}} \in \Gamma, y \in \{-1,0,1\} \\ & \mathrm{with} \; (\hat{\mathbf{s}},\hat{\mathbf{a}},y) \in \delta(\mathbf{s},\mathbf{a}) \end{array}$$

and

$$T_2 = \bigwedge_{t,i,a} ((\neg \text{head}_{t,i} \land \text{tape}_{t,i,a}) \Longrightarrow \text{tape}_{t+1,i,a})$$
.

Cook Reduction: Subformulas S and E

Define

$$S = \operatorname{state}_{0,s_0} \wedge \operatorname{head}_{0,0} \wedge \bigwedge_{i=-p(n)}^{-1} \operatorname{tape}_{0,i,\square} \wedge \\ \bigwedge_{i=0}^{n-1} \operatorname{tape}_{0,i,x_{i+1}} \wedge \bigwedge_{i=n}^{p(n)} \operatorname{tape}_{0,i,\square}$$

and

$$E = \bigvee_{s \in F} \operatorname{state}_{p(n),s}.$$

Cook Reduction: Proof of Equivalence (1)

We show:

$$x \in A \iff f(x) = F_x \in SAT.$$

(⇒)

 $x \in A \Rightarrow$ there exists an accepting computation path α of M(x)

- \Rightarrow assigning truth values to every variable of F_x according to α , associating with each variable its "intended meaning" according to our table, this truth assignment satisfies each subformulas of F_x
- \Rightarrow $F_x \in SAT$

Cook Reduction: Proof of Equivalence (1)

We show:

$$x \in A \iff f(x) = F_x \in SAT.$$

(⇔)

- $F_X \in \mathsf{SAT} \ \Rightarrow \ \mathsf{there} \ \mathsf{exists} \ \mathsf{a} \ \mathsf{truth} \ \mathsf{assigment} \ \tau \ \mathsf{to} \ F_X$'s variables satisfying F_X
 - \Rightarrow according to τ , the variables $\mathrm{state}_{t,s}$, $\mathrm{head}_{t,i}$, and $\mathrm{tape}_{t,i,a}$ of F_x can be sensibly interpreted as a sequence of configurations $K_0, K_1, \ldots, K_{p(n)}$ of M(x) along some accepting computation path of M(x)

 $\Rightarrow x \in A$

Cook Reduction: Reduction is in FP

Finally, to show $f \in FP$, note that:

• The size of F_x is polynomial in n = |x|:

$$|F_x| \in \mathcal{O}((p(n))^3).$$

• An FP algorithm computing f runs in time linear in $|F_x|$.

Theorem

3-SAT is \leq_m^p -complete for NP.

Proof: Membership in NP for the restricted problem follows immediately from that for the general problem.

To prove that SAT \leq_m^p 3-SAT, define a reduction f mapping any given boolean formula φ to a boolean formula ψ in 3-CNF such that:

$$\varphi$$
 is satisfiable \iff ψ is satisfiable. (4)

Let

$$\varphi(x_1,x_2,\ldots,x_n)=C_1\wedge C_2\wedge\cdots\wedge C_m,$$

where the C_i are the clauses of φ .

The formula ψ is constructed from φ as follows.

The variables of ψ are φ 's variables x_1, x_2, \ldots, x_n and, for each clause C_j of φ , the variables $y_1^j, y_2^j, \ldots, y_{h_j}^j$.

Define

$$\psi = D_1 \wedge D_2 \wedge \cdots \wedge D_m$$

where each subformula D_j of ψ is constructed from the clause C_j of φ as follows.

Consider the j^{th} clause of φ , and suppose that $C_j = (z_1 \vee z_2 \vee \cdots \vee z_k)$, where each z_i is a literal over $\{x_1, x_2, \ldots, x_n\}$.

Distinguish the following four cases.

Case 1: k = 1. Define

$$D_j = (\mathbf{Z_1} \vee y_1^j \vee y_2^j) \wedge (\mathbf{Z_1} \vee \neg y_1^j \vee y_2^j) \wedge (\mathbf{Z_1} \vee y_1^j \vee \neg y_2^j) \wedge (\mathbf{Z_1} \vee \neg y_1^j \vee \neg y_2^j).$$

Case 2: k = 2. Define

$$D_j = (\mathbf{z}_1 \vee \mathbf{z}_2 \vee \mathbf{y}_1^j) \wedge (\mathbf{z}_1 \vee \mathbf{z}_2 \vee \neg \mathbf{y}_1^j).$$

Case 3: k = 3. Define $D_j = C_j = (z_1 \lor z_2 \lor z_3)$.

Case 4: $k \ge 4$. Define

$$D_{j} = (\mathbf{Z}_{1} \vee \mathbf{Z}_{2} \vee \mathbf{y}_{1}^{j}) \wedge (\neg \mathbf{y}_{1}^{j} \vee \mathbf{Z}_{3} \vee \mathbf{y}_{2}^{j}) \wedge (\neg \mathbf{y}_{2}^{j} \vee \mathbf{Z}_{4} \vee \mathbf{y}_{3}^{j}) \wedge \cdots \wedge (\neg \mathbf{y}_{k-4}^{j} \vee \mathbf{Z}_{k-2} \vee \mathbf{y}_{k-3}^{j}) \wedge (\neg \mathbf{y}_{k-3}^{j} \vee \mathbf{Z}_{k-1} \vee \mathbf{Z}_{k}).$$

Observe that the reduction f is polynomial-time computable.

It remains to show that (4) is true.

(⇒) Let *t* be a truth assignment to the variables $x_1, x_2, ..., x_n$ of φ such that $t(\varphi) = 1$.

Extend *t* to a truth assignment t' of the variables of ψ as follows.

Since for $i \neq j$, the subformulas D_i and D_j are disjoint with respect to the y variables, it is enough to consider all subformulas of ψ separately. Consider the subformula D_j for any fixed j.

In Cases 1 through 3 above, t already satisfies D_j , so t can arbitrarily be extended to t'.

Consider Case 4 above.

Let z_i , where $1 \le i \le k$ be the first literal in C_i for which $t(z_i) = 1$.

Such an i must exist, since t satisfies C_i .

If $i \in \{1,2\}$, then set $t'(y_{\ell}^j) = 0$ for each ℓ with $1 \le \ell \le k-3$.

If $i \in \{k-1, k\}$, then set $t'(y_{\ell}^j) = 1$ for each ℓ with $1 \le \ell \le k-3$.

Otherwise, set

$$t'(y_{\ell}^j) = \begin{cases} 1 & \text{if } 1 \leq \ell \leq i-2 \\ 0 & \text{if } i-1 \leq \ell \leq k-3. \end{cases}$$

In each case, t' satisfies D_j .

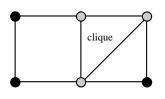
Hence, $t'(\psi) = 1$, so ψ is satisfiable.

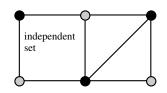
(⇐) Let t' be a satisfying truth assignment to ψ .

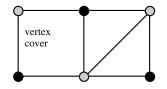
Let *t* be the restriction of *t'* to the variables x_1, x_2, \ldots, x_n of φ .

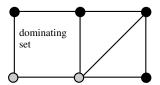
Hence, $t(\varphi) = 1$, so φ is satisfiable, which proves (4) and the theorem.

Reminder: Clique, Independent Set, Vertex Cover, and Dominating Set









Reminder: Clique and Independent Set

Definition

Let G be an undirected graph.

• A *clique of G* is a subset $C \subseteq V(G)$ such that for any two vertices $x, y \in C$ with $x \neq y$,

$$\{x,y\}\in E(G).$$

• An *independent set of G* is a subset $I \subseteq V(G)$ such that for any two vertices $x, y \in I$ with $x \neq y$,

$$\{x,y\} \not\in E(G)$$
.

Reminder: Vertex Cover and Dominating Set

Definition

Let G be an undirected graph.

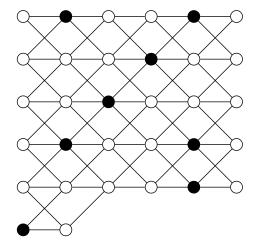
• A *vertex cover of G* is a subset $C \subseteq V(G)$ such that for each edge $\{x,y\} \in E(G)$,

$$\{x,y\}\cap C\neq\emptyset.$$

• A dominating set of G is a subset $D \subseteq V(G)$ such that for each $x \in V(G) - D$ there exists a vertex $y \in D$ such that

$$\{x,y\}\in E$$
.

Reminder: Dominating Set



Reminder: Clique, Independent Set, Vertex Cover, and Dominating Set

Definition

```
CLIQUE = \{(G, k) \mid G \text{ has a clique of size } \geq k\}
```

INDEPENDENT SET = $\{(G, k) \mid G \text{ has an independent set of size } \ge k\}$

VERTEX COVER = $\{(G, k) \mid G \text{ has a vertex cover of size } \leq k\}$

DOMINATING SET = $\{(G, k) \mid G \text{ has a dominating set of size } \le k\}$

Reminder: Clique, Independent Set, and Vertex Cover

Lemma

For each graph G and for each subset $U \subseteq V(G)$, the following are equivalent:

- U is a vertex cover of G.
- $\overline{U} = V(G) U$ is an independent set of G.
- **1** $\overline{U} = V(G) U$ is a clique of the co-graph of G, which is defined as the graph with vertex set V(G) and edge set

$$\{\{u,v\} \mid u,v \in V(G) \text{ and } \{u,v\} \notin E(G)\}.$$

Reminder: Clique, Independent Set, and Vertex Cover

Theorem

CLIQUE, INDEPENDENT SET, and VERTEX COVER are NP-complete.

Proof: It is easy to see that each of CLIQUE, INDEPENDENT SET, and VERTEX COVER belongs to NP.

The previous lemma implies that these three problems are pair-wise \leq_m^p -equivalent:

 $\mathsf{CLique} \leq^p_m \mathsf{Independent} \ \mathsf{Set} \leq^p_m \mathsf{Vertex} \ \mathsf{Cover} \leq^p_m \mathsf{Clique}.$

Hence, it suffices to prove that, e.g., $3-SAT \le_m^p INDEPENDENT SET$.

Proof Idea: Independent Set is NP-complete

Let $\varphi(x_1, x_2, \dots, x_n) = C_1 \wedge C_2 \wedge \dots \wedge C_m$ be a given boolean formula with exactly three literals per clause.

For each *i* with $1 \le i \le m$, let the *i*th clause be given by

$$C_i = (z_{i,1} \lor z_{i,2} \lor z_{i,3})$$
, where every

$$z_{i,j} \in \{x_1, x_2, \dots, x_n\} \cup \{\neg x_1, \neg x_2, \dots, \neg x_n\}$$
 is a literal.

The reduction f maps φ to the pair (G, m), where G is the graph with vertex set

$$V(G) = \{z_{i,j} \mid 1 \le i \le m \text{ and } 1 \le j \le 3\}$$

and edge set

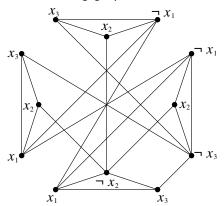
$$E(G) = \{\{z_{i,j}, z_{i,k}\} \mid 1 \le i \le m \text{ and } 1 \le j, k \le 3 \text{ and } j \ne k\} \cup \{\{z_{i,j}, z_{r,s}\} \mid i \ne r \text{ and } z_{i,j} = \neg z_{r,s}\}.$$

Proof Idea: Independent Set is NP-complete

According to the construction, formula

$$\varphi(x_1,x_2,x_3) = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3)$$

is transformed into the following graph:



Proof Idea: Independent Set is NP-complete

Clearly, $f \in FP$. The construction implies that:

$$\varphi \in 3\text{-SAT} \iff \text{there exists a truth assignment } t \text{ with } t(\varphi) = 1$$

$$\iff$$
 every clause C_i has a literal z_{i,j_i} with $t(z_{i,j_i}) = 1$

$$\iff$$
 there exists a sequence of literals $z_{1,j_1},\ldots,z_{m,j_m}$ such that $z_{i,j_i} \neq \neg z_{k,j_k}$ for $i,k \in \{1,\ldots,m\}$ with $i \neq k$

$$\iff$$
 there exists a sequence of literals $z_{1,j_1},\ldots,z_{m,j_m}$ such that $\{z_{1,j_1},\ldots,z_{m,j_m}\}$ is an independent set of size m in G .

Since G has an independent set of size at least m if and only if φ is satisfiable, the reduction f witnesses that

$$3-SAT <_{m}^{p} INDEPENDENT SET.$$

Reminder: Dominating Set is NP-complete

Theorem

DOMINATING SET is NP-complete.

Proof: Exercise, Hint: Reduction from VERTEX COVER.

Reminder: Graph Colorability

Definition

Let G = (V(G), E(G)) be an undirected graph.

- A *k-coloring of G* is a mapping $V(G) \rightarrow \{1, 2, ..., k\}$.
- A k-coloring ψ of G is called legal if for any two vertices x and y in V(G), if {x, y} ∈ E(G) then ψ(x) ≠ ψ(y).
- The *chromatic number of G*, denoted by $\chi(G)$, is the smallest number k such that G is legally k-colorable.

Reminder: NP-complete Problems

Reminder: Graph Colorability

Definition

For fixed $k \ge 1$, define

$$k$$
-COLOR = { $G \mid G$ is a graph with $\chi(G) \leq k$ }.

Example:

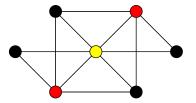


Figure: A 3-colorable graph

Reminder: 3-Color is NP-complete

Fact

2-COLOR is in P.

without proof

Theorem

3-Color is NP-complete.

Proof:

- **1** 3-Color \in NP is easy to see.
- ② 3-Color is NP-hard: We show 3-SAT \leq_m^p 3-Color. Let

$$\varphi(x_1,x_2,\ldots,x_n)=C_1\wedge C_2\wedge\cdots\wedge C_m$$

be a given 3-SAT instance with exactly three literals per clause.

Reminder: 3-COLOR is NP-complete

Define a reduction f mapping φ to the graph G constructed as follows. The vertex set of G is defined by

$$V(G) = \{v_1, v_2, v_3\} \cup \{x_i, \neg x_i \mid 1 \le i \le n\}$$
$$\cup \{y_{j,k} \mid 1 \le j \le m \text{ and } 1 \le k \le 6\},$$

where the x_i and $\neg x_i$ are vertices representing the literals x_i and their negations $\neg x_i$, respectively.

Reminder: 3-COLOR is NP-complete

The edge set of G is defined by

$$E(G) = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_1, v_3\}\} \cup \{\{x_i, \neg x_i\} \mid 1 \le i \le n\}$$

$$\cup \{\{v_3, x_i\}, \{v_3, \neg x_i\} \mid 1 \le i \le n\}$$

$$\cup \{\{a_j, y_{j,1}\}, \{b_j, y_{j,2}\}, \{c_j, y_{j,3}\} \mid 1 \le j \le m\}$$

$$\cup \{\{v_2, y_{j,6}\}, \{v_3, y_{j,6}\} \mid 1 \le j \le m\}$$

$$\cup \{\{y_{j,1}, y_{j,2}\}, \{y_{j,1}, y_{j,4}\}, \{y_{j,2}, y_{j,4}\} \mid 1 \le j \le m\}$$

$$\cup \{\{y_{j,3}, y_{j,5}\}, \{y_{j,3}, y_{j,6}\}, \{y_{j,5}, y_{j,6}\} \mid 1 \le j \le m\}$$

$$\cup \{\{y_{i,4}, y_{i,5}\} \mid 1 \le j \le m\},$$

where $a_j, b_j, c_j \in \bigcup_{1 \le i \le n} \{x_i, \neg x_i\}$ are vertices representing the literals occurring in clause $C_i = (a_i \lor b_i \lor c_i)$.

Skeletal Structure of the Graph in 3-SAT $\leq_m^p 3$ -Color

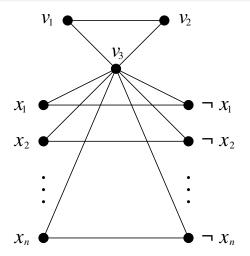


Figure: Skeletal Structure of the graph in 3-SAT \leq_m^p 3-COLOR

Clause Graph in 3-SAT \leq_m^p 3-COLOR

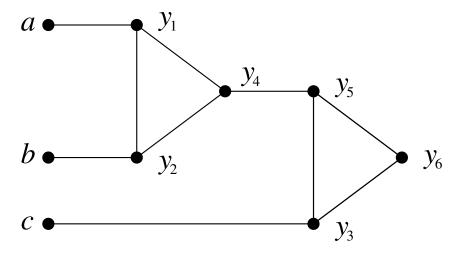


Figure: Graph H for clause $C = (a \lor b \lor c)$ in 3-SAT \leq_m^p 3-COLOR

Properties of Clause Graph H in 3-SAT $\leq_m^p 3$ -Color

- Vertices x_i and $\neg x_i$ corresponding to the literals x_i and $\neg x_i$ are legally colored 1 ("true") or 2 ("false").
- ② Any coloring of the vertices a, b, and c that assigns color 1 to one of a, b, and c can be extended to a legal 3-coloring of H that assigns color 1 to y_6 . Thus, if $\varphi \in 3$ -SAT then $G \in 3$ -COLOR.
- ③ If ψ is a legal 3-coloring of H with $\psi(a) = \psi(b) = \psi(c) = i$, then $\psi(y_6) = i$. Thus, if $\varphi \notin 3$ -SAT then $G \notin 3$ -COLOR.

It follows that

$$\varphi \in 3\text{-SAT} \Longleftrightarrow f(\varphi) = G \in 3\text{-COLOR}$$

Clearly, reduction f is polynomial-time computable.

Directed Hamilton Circuit

Definition

DIRECTED HAMILTON CIRCUIT (DHC, for short) is the following problem:

Given: A directed graph G = (V(G), E(G)).

Question: Does there exist a *Hamilton cycle* in *G*, i.e., a sequence

 $(v_1,v_2,\ldots,v_n),\,v_i\in\mathit{V(G)},\,n=|\mathit{V(G)}|,\,\text{such that}$

 $(v_n, v_1) \in E(G)$ and $(v_i, v_{i+1}) \in E(G)$ for $1 \le i < n$?

Theorem

DHC is NP-complete.

without proof

Hamilton Circuit

Definition

HAMILTON CIRCUIT (HC, for short) is the following problem:

Given: An undirected graph G = (V(G), E(G)).

Question: Does there exist a Hamilton cycle in G, i.e., a sequence

$$(v_1,v_2,\ldots,v_n),\,v_i\in\mathit{V}(\mathit{G}),\,n=|\mathit{V}(\mathit{G})|,\,$$
 such that

$$\{v_n, v_1\} \in E(G) \text{ and } \{v_i, v_{i+1}\} \in E(G) \text{ for } 1 \le i < n$$
?

Theorem

HC is NP-complete.

Proof: Excercise, Hint: Reduction from DHC.

Traveling Salesperson Problem

Definition

The TRAVELING SALESPERSON PROBLEM (TSP, for short) is the following problem:

Given: A complete undirected graph $K_n = (V, E)$, a cost function

 $c: E \to \mathbb{N}$, and $k \in \mathbb{N}$.

Question: Does there exist a Hamilton cycle in K_n such that the sum

of the edge costs is at most *k*?

Theorem

TSP is NP-complete.

Proof: $TSP \in NP$ is easy to see.

Traveling Salesperson Problem is NP-complete

TSP is NP-hard: We show HC \leq_m^p TSP.

Given an undirected graph G = (V(G), E(G)) with

$$V(G) = \{v_1, v_2, \dots, v_n\}, define$$

$$f(G)=(K_n,c,n),$$

where $K_n = (V, E)$, $V = \{1, 2, ..., n\}$, and for each edge $e = \{i, j\}$ of K_n :

$$c(\{i,j\}) = \begin{cases} 1 & \text{if } \{v_i, v_j\} \in E(G) \\ 2 & \text{otherwise.} \end{cases}$$

Clearly, $G \in HC$ if and only if $f(G) \in TSP$.