
Cryptocomplexity II

Kryptokomplexität II

Sommersemester 2024

Chapter 4: Rabin’s Public-Key Cryptosystem

Dozent: Prof. Dr. J. Rothe

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 1 / 28

Rabin’s Public-Key Cryptosystem Rabin’s Cryptosystem

Rabin’s Public-Key Cryptosystem

In 1979, Michael O. Rabin developed a public-key cryptosystem

whose security is based on the difficulty of computing square roots

modulo some integer n.

His cryptosystem is provably secure against chosen-plaintext attacks,

assuming that the factoring problem is computationally intractable,

i.e., assuming that it is hard to find the prime factors of n = pq by a

randomized algorithm with nonnegligible probability.

However, it is insecure against chosen-ciphertext attacks.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 2 / 28

Rabin’s Public-Key Cryptosystem Rabin’s Cryptosystem

Rabin’s Public-Key Cryptosystem

Step Alice Erich Bob

1 chooses two large random primes, p and

q with p ≡ q ≡ 3 mod 4 and p 6= q, keeps

them secret, and computes his public key

n = pq

2 ⇐ n

3 encrypts the message m

by

c = m2 mod n

4 c ⇒

5 decrypts c by computing

m =
√
c mod n

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 3 / 28

Rabin’s Public-Key Cryptosystem Rabin’s Cryptosystem

Rabin’s Public-Key Cryptosystem

1 Key Generation. Bob randomly chooses two large distinct prime

numbers p and q, which satisfy p ≡ q ≡ 3 mod 4.

The pair (p,q) is his private key.

He then computes the module n = pq, his public key.

2 Communication. Bob’s public key n is now known to Alice.

3 Encryption. Given the public key n, Alice computes her ciphertext c

by squaring her message m modulo n, i.e., the encryption function

En : Z∗n→ Z∗n is defined by

En(m) = c = m2 mod n.

4 Communication. Alice sends the ciphertext c to Bob.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 4 / 28

Rabin’s Public-Key Cryptosystem Rabin’s Cryptosystem

Rabin’s Public-Key Cryptosystem

5 Decryption. The decryption function is given by

D(p,q)(c) =
√
c mod n. (1)

It is not clear yet how the private key (p,q) is used for decryption.

Note that, in general, computing square roots modulo some integer

with unknown prime factors is considered to be a hard problem.

However, since Bob knows the prime factors p and q of n, he can

make use of the fact that determining m by (1) is equivalent to

solving the following two congruences for the values mp and mq:

(mp)2 ≡ c mod p; (2)

(mq)2 ≡ c mod q. (3)

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 5 / 28

Rabin’s Public-Key Cryptosystem Rabin’s Cryptosystem

Rabin’s Public-Key Cryptosystem

By Euler’s criterion, Bob can efficiently decide

whether or not c is a quadratic residue modulo p, and also

whether or not c is a quadratic residue modulo q.

However, Euler’s criterion does not actually find these square roots.

Fortunately, using the assumption that p ≡ q ≡ 3 mod 4, Bob can

apply our lemma (on slide 41, Chapter 3): If p is a prime number

with p ≡ 3 mod 4, then every α ∈QRp has the two square roots

±α
(p+1)/4 mod p.

So, he first computes

mp = c
(p+1)/4 mod p and mq = c

(q+1)/4 mod q.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 6 / 28

Rabin’s Public-Key Cryptosystem Rabin’s Cryptosystem

Rabin’s Public-Key Cryptosystem

Note that c must be a square root modulo p, provided that c is a

valid ciphertext, i.e., provided that c was created by proper

encryption of some message.

Again by Euler’s criterion, c is a quadratic residue modulo p if and

only if c (p−1)/2 ≡ 1 mod p. Hence,

(±mp)2 ≡
(
±c (p+1)/4

)2
≡ c

(p+1)/2 ≡ c
(p−1)/2c mod p ≡ c mod p,

which proves (2).

Thus, ±mp are the two square roots of c modulo p.

Analogously, ±mq are the two square roots of c modulo q, which

proves (3).

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 7 / 28

Rabin’s Public-Key Cryptosystem Rabin’s Cryptosystem

Rabin’s Public-Key Cryptosystem

Then, using the Chinese Remainder Theorem, Bob determines the

four square roots of c modulo n.

To this end, he first uses the extended Euclidean Algorithm to

compute integer coefficients zp and zq such that

zpp+ zqq = 1.

Finally, applying the Chinese Remainder Theorem, he computes

s = (zppmq + zqqmp) mod n and t = (zppmq− zqqmp) mod n.

It can be checked that ±s and ±t are the four square roots of c

modulo n.

Which one yields the “right” plaintext, is not immediately clear.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 8 / 28

Rabin’s Public-Key Cryptosystem Rabin’s Cryptosystem

Rabin’s Public-Key Cryptosystem

Remark:

1 Note that encryption in Rabin’s system is not injective.

That is, since n is the product of two prime numbers, every ciphertext

c has four square roots modulo n.

Thus, Rabin’s system has the disadvantage that decryption recovers

not only the original plaintext, but also three other square roots of c

that hopefully are “sufficiently meaningless” so as to be eliminated.

One way for Bob to tell the “right” decryption apart from these three

“wrong” decryptions is to give the plaintext a special structure

identifying the original plaintext. For example, one might repeat one

specified block of plaintext, e.g., attach to m the last 64 bits of m.

However, the proof that breaking the Rabin system is “computationally

equivalent” to the factoring problem is then no longer valid.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 9 / 28

Rabin’s Public-Key Cryptosystem Rabin’s Cryptosystem

Rabin’s Public-Key Cryptosystem

Remark:

2 Rabin’s system also works for prime factors that are not so-called Blum

numbers, i.e., not of the form p ≡ q ≡ 3 mod 4.

However, the usage of Blum numbers simplifies the analysis of this

system.

For example, if p ≡ 1 mod 4, then there is no known deterministic

polynomial-time algorithm for computing the square roots modulo p,

which is needed for efficient decryption, even though there is an

efficient randomized Las Vegas algorithm for this problem.

Finally, note that in Rabin’s system it would also be possible to use Zn

instead of Z∗n as the message and ciphertext space.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 10 / 28

Rabin’s Public-Key Cryptosystem Rabin’s Cryptosystem

Rabin’s Public-Key Cryptosystem: Example

Example (Rabin’s public-key cryptosystem)

Suppose that Bob chooses the prime numbers p = 43 and q = 47.

Note that 43≡ 47≡ 3 mod 4.

He then computes the Rabin modulus n = pq = 2021.

To encrypt the message m = 741, Alice computes

c = 7412 = 549081≡ 1390 mod 2021

and sends c = 1390 to Bob.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 11 / 28

Rabin’s Public-Key Cryptosystem Rabin’s Cryptosystem

Rabin’s Public-Key Cryptosystem: Example

Example (Rabin’s public-key cryptosystem: continued)

To decrypt the ciphertext c , Bob first determines the following values:

mp = 1390(43+1)/4 = 139011 ≡ 10 mod 43;

mq = 1390(47+1)/4 = 139012 ≡ 36 mod 47,

using fast exponentiation (“square-and-multiply”).

Now, using the extended Euclidean Algorithm, he computes the integer

coefficients zp =−12 and zq = 11 satisfying

zpp+ zqq =−12 ·43 + 11 ·47 = 1.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 12 / 28

Rabin’s Public-Key Cryptosystem Rabin’s Cryptosystem

Rabin’s Public-Key Cryptosystem: Example

Example (Rabin’s public-key cryptosystem: continued)

Finally, by the Chinese Remainder Theorem, he computes

s = zppmq + zqqmp =−12 ·43 ·36 + 11 ·47 ·10≡ 741 mod 2021;

t = zppmq− zqqmp =−12 ·43 ·36−11 ·47 ·10≡ 506 mod 2021.

As can easily be checked, the four plaintexts that are encrypted to the

same ciphertext c = 1390 are ±s and ±t, i.e., 741, 1280, 506, and 1515.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 13 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

Security of Rabin’s Public-Key Cryptosystem

Suppose Erich is able to factor the Rabin module n. He thus obtains

Bob’s private key and can decipher any message sent to Bob.

That is, breaking the Rabin system is computationally no harder than

solving the factoring problem.

Conversely, we show that factoring large integers is no harder than

breaking the Rabin system, so these are equally hard problems.

Thus, Rabin’s cryptosystem has a proof of security that is based on

the assumption that factoring is computationally intractable.

In this regard, Rabin’s system is superiour to other public-key systems

such as RSA or ElGamal.
J. Rothe (HHU Düsseldorf) Cryptocomplexity II 14 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

The Problem of Breaking Rabin’s System

This result is proven by a polynomial-time randomized (Las Vegas)

Turing reduction from the factoring problem to the (functional)

problem of breaking Rabin’s system.

Informally stated, a Las Vegas algorithm is a randomized algorithm

that never gives a wrong answer, although it might happen that it

doesn’t give any answer at all, i.e., it has “zero-sided error” (ZPP).

Monte Carlo algorithms are randomized algorithms with “one-sided

error” (RP and coRP).

There are also “two-sided error” randomized algorithms (BPP).

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 15 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

The Problem of Breaking Rabin’s System

Recall that the set of quadratic residues modulo n is denoted by

QRn = {x2 mod n
∣∣ x ∈ Z∗n}.

Definition

Define the (functional) problem of breaking Rabin, denoted by

break-rabin as follows: Given 〈n,c〉, where

n is the product of two (unknown) prime numbers in 3 + 4Z and

c ∈QRn,

compute some m ∈ Z∗n such that

c = m2 mod n.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 16 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

RP and coRP: Yes- and No-biased Monte Carlo Algorithms

A no-biased Monte Carlo algorithm for a decision problem A is a

randomized polynomial-time algorithm that:

always gives reliable “yes” answers, but

possibly incorrect “no” answers.

They accept problems in the complexity class RP.

Random polynomial time (denoted by RP) is the complexity class of

all decision problems A for which there is a randomized

polynomial-time algorithm M such that for each input x ,

x ∈ A =⇒ Pr(M accepts x)≥ 1/2;

x 6∈ A =⇒ Pr(M accepts x) = 0.

A yes-biased Monte Carlo algorithm for A is a no-biased Monte Carlo

algorithm for the complement of A.

They accept problems in the complexity class coRP = {A
∣∣A ∈ RP}.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 17 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

ZPP: Las Vegas Algorithms

By repeated trials, the error probability of a yes- or no-biased

algorithm can be made arbitrarily small, from 1/2 to 2−|x |.

In addition, there are Las Vegas algorithms, randomized algorithms

that never lie (but may give no answer at all): ZPP = RP∩ coRP.

Zero-error probabilistic polynomial time (denoted by ZPP) is the

complexity class of all decision problems A for which there is a

randomized polynomial-time algorithm M with three types of final

states (sa accepts, sr rejects, and s? for “don’t know”) such that for

each input x ,

x ∈ A =⇒ (Pr(M accepts x)≥ 1/2 and Pr(M rejects x) = 0);

x 6∈ A =⇒ (Pr(M rejects x)≥ 1/2 and Pr(M accepts x) = 0).

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 18 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

The Problem of Breaking Rabin’s System

Theorem

There is a polynomial-time Las Vegas algorithm Random-Factor that,

given any integer n = pq with p ≡ q ≡ 3 mod 4, uses its function oracle

break-rabin to find the prime factors of n with probability at least 1/2.

Proof: Let n = pq be the Rabin modulus to be factored, where

p ≡ q ≡ 3 mod 4.

Consider the algorithm Random-Factor with oracle break-rabin on

the next slide.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 19 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

Algorithm Random-Factor with Oracle break-rabin

Random-Factorbreak-rabin(n) {

(* Rabin module n = pq with p ≡ q ≡ 3 mod 4 for distinct primes p and q *)

Randomly choose a number x ∈ Z∗n under the uniform distribution;

c := x2 mod n;

m := break-rabin(〈n,c〉);

(* query the oracle about 〈n,c〉 to obtain an m with c = m2 mod n *)

if (m ≡±x mod n) return “failure” and halt;

else

p := gcd(m−x ,n);

q := n/p;

return “p and q are the prime factors of n” and halt;

}

Figure: Factoring a Rabin module using an oracle to break Rabin’s system

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 20 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

The Problem of Breaking Rabin’s System

On input n, Random-Factor with oracle break-rabin randomly picks

an element x ∈ Z∗n and squares it modulo n to obtain

c ∈QRn.

Then, the algorithm queries its oracle break-rabin about the pair 〈n,c〉
and obtains the answer m, which is one of the square roots of c modulo n.

The two square roots m and x of c modulo n need not be identical.

However, m and x must satisfy either one of the following two cases.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 21 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

The Problem of Breaking Rabin’s System

Case 1: m≡±x mod n.

Then, we have either m = x or m+ x = n.

Thus, gcd(m−x ,n) is either n or 1.

In both cases, the algorithm does not find a prime factor of n and

returns “failure.”

Case 2: m≡±αx mod n, where α is a nontrivial square root of

1 mod n. In this case,

m2 ≡ x2 mod n and m 6≡ ±x mod n.

Thus, gcd(m−x ,n) is either p or q, which yields the factorization

of n.
J. Rothe (HHU Düsseldorf) Cryptocomplexity II 22 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

The Problem of Breaking Rabin’s System

To estimate the success probability of Random-Factor, let x be any

element randomly chosen in Z∗n under the uniform distribution.

Let α be a nontrivial square root of 1 mod n.

Consider the set

Rx = {±x mod n}∪{±αx mod n}.

Squaring any element r of Rx yields the same c = r2 = x2 mod n.

In particular, the oracle answer

m = break-rabin(〈n,c〉)

is an element of Rx , and is independent of which of the four elements of

Rx in fact was chosen to yield c .
J. Rothe (HHU Düsseldorf) Cryptocomplexity II 23 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

The Problem of Breaking Rabin’s System

In Case 2 above, we noted that the algorithm finds the prime factors of n

if and only if m ≡±αx mod n.

For fixed m, the probability that an x ∈ Rx with m ≡±αx mod n was

chosen is 1/2.

Hence, the success probability of Random-Factor is 1/2. q

Remark: The success probability of Random-Factor can be amplified

so as to be arbitrarily close to one.

Corollary

Assuming that large integers cannot be factored by an efficient randomized

algorithm with nonnegligible probability of success, Rabin’s cryptosystem is

secure against chosen-plaintext attacks.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 24 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

Security of Rabin’s Public-Key Cryptosystem

Corollary

Rabin’s cryptosystem is insecure against chosen-ciphertext attacks.

Proof: The scenario of a chosen-ciphertext attack is that a cryptanalyst

has temporary access to the decryption device.

Thus, choosing some ciphertext c at will, he learns the corresponding

plaintext m.

This can be seen as having an efficient algorithm (as opposed to a

hypothetical oracle) for computing break-rabin.

By the previous theorem, the attacker can take advantage of this fact as

follows.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 25 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

Security of Rabin’s Public-Key Cryptosystem

He chooses some plaintext x at random, computes

c = x2 mod n,

and decrypts c to obtain a square root m of c modulo n.

As in the proof of the previous theorem, he can factor the Rabin modulus

n with high probability, and obtains the private key. q

Example (factoring by breaking Rabin’s system)

Let n = 23 ·7 = 161 be the given Rabin modulus.

Suppose Erich does not know the prime factors 7 and 23.

However, he has the oracle break-rabin (or an efficient algorithm for

computing it) and can thus determine square roots modulo 161.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 26 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

Security of Rabin’s Public-Key Cryptosystem

Example (factoring by breaking Rabin’s system: continued)

Using the algorithm Random-Factor, Erich randomly picks x = 13;

note that gcd(161,13) = 1, so 13 ∈ Z∗161.

He then computes c = 132 mod 161 = 8.

The four square roots of 8 mod 161 are R13 = {13,36,125,148}.

Let m be the oracle answer for the query 〈161,8〉, i.e.,

m = break-rabin(〈161,8〉).

For each possible answer m ∈ R13, we determine gcd(m−x ,n).

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 27 / 28

Rabin’s Public-Key Cryptosystem Security of Rabin’s System

Security of Rabin’s Public-Key Cryptosystem

Example (factoring by breaking Rabin’s system: continued)

If m = 13 then gcd(m−x ,n) = gcd(0,161) = 161.

And if m = 148 then gcd(m−x ,n) = gcd(135,161) = 1.

In both cases, Random-Factor fails to find the prime factors of 161.

But if m = 36 then gcd(m−x ,n) = gcd(23,161) = 23,

and if m = 125 then gcd(m−x ,n) = gcd(112,161) = 7.

In these two cases, Random-Factor succeeds and provides Erich with

the prime factors of 161.

Thus, Erich has a fifty percent chance of factoring n.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 28 / 28

	Rabin's Public-Key Cryptosystem
	Rabin's Cryptosystem
	Security of Rabin's System

