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The Protocols of ElGamal

In 1985, Taher ElGamal modified the Diffie–Hellman protocol to

a public-key cryptosystem and

a digital signature scheme.

A particularly efficient variant of this protocol, due to an ingenious

idea of Schnorr (1990), has been adopted in 1993 as the United

States Digital Signature Standard (DSS) (specified in FIPS-186):

The Digital Signature Algorithm (DSA) is covered by U.S. Patent

5,231,668 and attributed to David W. Kravitz, a former NSA employee.

Claus P. Schnorr claims that his U.S. Patent 4,995,082 (expired)

covered DSA; this claim is disputed.

The security of both protocols rests on the difficulty of computing

discrete logarithms.
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ElGamal’s Public-Key Cryptosystem

Step Alice Erich Bob

1 Alice and Bob agree upon a large prime p and a primitive element γ of p;

p and γ are public

2 chooses a large random num-

ber b as his private key and

computes β = γb mod p

3 ⇐ β

4 chooses a large random num-

ber a and encrypts the mes-

sage m by: α1 = γa mod p and

α2 = mβ a mod p

5 (α1,α2)⇒

6 decrypts by computing

α2 (α1)−b mod p
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ElGamal’s Public-Key Cryptosystem

1 Preparation. As in the Diffie–Hellman protocol, Alice and Bob agree

upon

a large prime number p such that the discrete logarithm problem is

intractable in Z∗p and

a primitive element γ of p.

Both p and γ are public.

2 Key Generation. Bob generates his private key b at random and

computes his public key by

β = γ
b mod p.

3 Communication. Bob’s public key β is now known to Alice.
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ElGamal’s Public-Key Cryptosystem

4 Encryption.

As usual, messages are encoded block-wise, where any block is

represented by an element of the plaintext space Z∗p.

Suppose that Alice wants to send the message block m ∈ Z∗p to Bob.

The ciphertext space is Z∗p×Z∗p, and the two components of the

ciphertext c = (α1,α2) encrypting m are computed by:

α1 = γ
a mod p (1)

α2 = mβ
a mod p. (2)

The encryption function E(p,γ,β ,a)(m) = (α1,α2) is defined according

to (1) and (2).
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ElGamal’s Public-Key Cryptosystem

Alice “masks” her plaintext m by multiplying it by her “Diffie–Hellman

key”

β
a ≡ γ

ba mod p.

The value of α1 = γa mod p is also part of the ciphertext in order to

allow decryption by the legitimate receiver Bob.

1 Communication. Alice sends the ciphertext c = (α1,α2) to Bob.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 6 / 72



ElGamal’s Protocols ElGamal’s Public-Key Cryptosystem

ElGamal’s Public-Key Cryptosystem

5 Decryption.

The decryption function is given by

D(p,γ,b)(α1,α2) = α2 (α1)−b mod p. (3)

According to (3), Bob uses his private key b to first compute

γ
−ab mod p

from α1 = γa mod p.

Then, multiplying α2 by γ−ab, he removes the “mask” β a from the

plaintext.

Summing up, Bob decrypts the ciphertext c by computing

α2 (α1)−b ≡mβ
a (γ

a)−b ≡mγ
ba

γ
−ab ≡m mod p

and thus obtains the original plaintext m.
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ElGamal’s Public-Key Cryptosystem

ElGamal’s system modifies the Diffie–Hellman protocol in the

following way:

While in the Diffie–Hellman scheme Alice and Bob simultaneously

compute and send their “partial keys” α and β , respectively,

they do so sequentially in the ElGamal protocol.

That is, Alice must wait for Bob’s value β to be able to compute her

second component of the ciphertext, α2, in which her message m is

“masked” by β a.

Another difference between the two protocols:

Bob generates his public key β once and for all in the ElGamal

protocol. Thus, he can use β for more than one communication.

However, Alice has to generate her secret exponent a and thus her

α1 = γa mod p anew again and again every time she communicates

with Bob, just as in the Diffie–Hellman protocol.
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ElGamal’s Public-Key Cryptosystem: Example

Example (ElGamal’s Public-Key Cryptosystem)

Alice and Bob choose

the prime number p = 101 and

the primitive element γ = 8 of 101.

(Check: γ
(p−1)/q 6≡ 1 mod p for all prime divisors q of p−1 = 100:

8100/2 = 850 ≡ 100 mod 101;

8100/5 = 820 ≡ 87 mod 101.)

Bob chooses b = 12 as his private key and computes the public key

β = γ
b = 812 mod 101 = 78.
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ElGamal’s Public-Key Cryptosystem: Example

Example (ElGamal’s Public-Key Cryptosystem: continued)

Alice chooses her private exponent a = 33 and computes key

β
a = 7833 mod 101 = 92.

To encrypt the plaintext m = 53, she computes

α1 = γ
a mod p = 833 mod 101 = 51

α2 = mβ
a mod p = 53 ·92 mod 101 = 28

and sends c = (α1,α2) = (51,28) to Bob.
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ElGamal’s Public-Key Cryptosystem: Example

Example (ElGamal’s Public-Key Cryptosystem: continued)

Bob decrypts c

α2(α1)−b = 28(51)−12

≡ 28(51−1)12

≡ 28 ·212

≡ 28 ·56

≡ 53 mod 101

and obtains the original plaintext m = 53.
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ElGamal’s Digital Signature Scheme

Step Alice Erich Bob

1 Alice and Bob agree upon a large prime p and a primitive element γ of p;

p and γ are public

2 chooses two large random num-

bers b, s with gcd(s,p− 1) = 1,

and computes his signature for

message m by sigB(m) = (σ ,ρ),

β = γb mod p, σ = γs mod p,

ρ = (m−bσ)s−1 mod (p−1)

3 ⇐ 〈m,β ,sigB(m)〉

4 verifies Bob’s sig-

nature by checking

γm ≡ β σ σρ mod p
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ElGamal’s Digital Signature Scheme

Preparation. Alice and Bob agree on

a large prime number p, chosen so that the discrete logarithm problem

is infeasible in Z∗p, and

on a primitive element γ of p.

Both p and γ are public.

Signing the message.

Suppose that Bob wants to send Alice some message m.

As in the ElGamal cryptosystem, Bob chooses his private exponent b

and computes

β = γ
b mod p.

In addition, he now chooses a secret number s coprime with p−1,

keeping b and s secret.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 13 / 72



ElGamal’s Protocols ElGamal’s Digital Signature Scheme

ElGamal’s Digital Signature Scheme

Signing the message (continued).

To sign m, Bob first computes

σ = γ
s mod p

and a solution ρ to the congruence

bσ + sρ ≡m mod p−1 (4)

using the extended algorithm of Euclid.

Then, his signature for m is defined by

sigB(m) = (σ ,ρ).

Communication. Along with his message m, Bob sends his digital

signature

sigB(m) = (σ ,ρ)

and the value β to Alice.
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ElGamal’s Digital Signature Scheme

Verifying the signature. Alice checks the validity of the signature by

verifying the congruence

γ
m ≡ β

σ
σ

ρ mod p. (5)

By Fermat’s Little Theorem and by (4), we have that

γ
m ≡ γ

bσ+sρ ≡ β
σ

σ
ρ mod p.

Thus, as desired, (5) verifies correctly that Bob’s signature is valid,

which shows that the ElGamal digital signature protocol works.
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ElGamal’s Digital Signature Scheme

Example

Let p = 1367 be a given prime number, and let γ = 5 be a given

primitive element of 1367. Suppose that Bob chooses the private

exponents b = 513 and s = 129; note that gcd(129,1366) = 1.

First, Bob computes

β = 5513 mod 1367 = 855 and σ = 5129 mod 1367 = 1180.

Suppose that Bob wants to sign the message m = 457. Bob has to

solve the congruence

513 ·1180 + 129ρ ≡ 457 mod 1366

for ρ.
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ElGamal’s Digital Signature Scheme

Example (continued)

Using the extended algorithm of Euclid, he determines the inverse

element s−1 = 593 of s = 129 modulo 1366, and thus he obtains the

solution

ρ = (457−513 ·1180)593 mod 1366 = 955.

Now, Bob’s signature for m = 457 is given by

sigB(457) = (1180,955)

and he transfers the triple 〈457,855,(1180,955)〉 to Alice.
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ElGamal’s Digital Signature Scheme

Example (continued)

On the other side of town, Alice checks whether the signature is valid

by verifying the congruence

5457 ≡ 1280≡ 749 ·750≡ 8551180 ·1180955 mod 1367. (6)

As usual, Alice employs the “square-and-multiply” algorithm to
compute the values γm, β σ , and σρ in the arithmetics modulo p:

20 21 22 23 24 25 26 27 28 29 210

5 25 625 1030 108 728 955 236 1016

855 1047 1242 588 1260 513 705 804 1192 551 127

1180 794 249 486 1072 904 1117 985 1022 96
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ElGamal’s Digital Signature Scheme

Example (continued)

The gray boxes of this table contain the values to be multiplied

according to the binary expansion of the exponents:

m = 457 = 20 + 23 + 26 + 27 + 28;

σ = 1180 = 22 + 23 + 24 + 27 + 210;

ρ = 955 = 20 + 21 + 23 + 24 + 25 + 27 + 28 + 29.

This yields:

γ
m mod p = 1280

β
σ mod p = 749

σ
ρ mod p = 750
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Security of ElGamal’s Protocols

Just as with the Diffie–Hellman protocol, the security of the ElGamal

cryptosystem and of the ElGamal digital signature scheme relies on

the hardness of the discrete logarithm problem:

If Erich can compute discrete logarithms efficiently, then he can

break, for example, the ElGamal cryptosystem by computing

Bob’s private key

b = logγ β mod (p−1)

from Bob’s public key β and the public prime p with its public

primitive element γ.
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Security of ElGamal’s Protocols

On the other hand, it is not known if

computing discrete logarithms and

breaking either of the ElGamal protocols

are equally hard problems.

However, it can be shown that

breaking the ElGamal public-key cryptosystem

is computationally equivalent to

the Diffie–Hellman problem (diffie-hellman).
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Problem of Breaking ElGamal

Definition

Define the (functional) problem of breaking ElGamal, denoted by

break-elgamal, as follows: Given 〈p,γ,β ,α1,α2〉, where

p is a prime number,

γ is a primitive element of p, and

β , α1, and α2 are defined as in the ElGamal system for any

message m,

compute m.
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Security of ElGamal’s Public-Key Cryptosystem

Theorem

The problem of breaking ElGamal and the Diffie–Hellman problem are

equivalent under polynomial-time Turing reductions. That is,

1 break-elgamal ∈ FPdiffie-hellman and

2 diffie-hellman ∈ FPbreak-elgamal.

Proof:

1 Suppose that eavesdropper Erich has an algorithm, D, for solving the

Diffie–Hellman problem.

He wants to use D to break ElGamal’s cryptosystem.

Let p be a prime number, and let γ be a primitive element of p.
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Security of ElGamal’s Public-Key Cryptosystem

As in ElGamal’s cryptosystem, for any message m, let β , α1, and α2

be the transmitted values, which Erich knows.

On input 〈p,γ,β ,α1,α2〉, he wishes to compute the corresponding

message m.

Looking at ElGamal’s cryptosystem, note that α1 = γa mod p and

β = γb mod p.

Using his algorithm D, Erich can compute γab mod p from α1 and β .

Note further that

α2 = mβ
a ≡mγ

ab mod p.

Hence, using the extended algorithm of Euclid, Erich can recover the

message m by computing α2γ−ab mod p = m.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 24 / 72



ElGamal’s Protocols Security of ElGamal’s Protocols

Security of ElGamal’s Public-Key Cryptosystem

2 Conversely, suppose that Erich has an algorithm, E , for breaking the

ElGamal cryptosystem.

Let p, γ, β , α1, and α2 be given as in ElGamal for an arbitrary

message m. Using E , Erich can determine m from 〈p,γ,β ,α1,α2〉.

To solve the Diffie–Hellman problem, given α1 = γa mod p and

β = γb mod p, he runs E on input 〈p,γ,β ,α1,1〉 for the specific value

of α2 = 1, obtaining some corresponding message m.

It follows that

mβ
a ≡mγ

ab ≡ 1 mod p.

Thus, in order to determine γab = m−1 mod p, it is enough to

compute the inverse element of m modulo p, using the extended

algorithm of Euclid. q
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Bit Security of Discrete Logarithms

Definition

Define the (functional) discrete logarithm bit problem, denoted by

dlogbit, as follows: Given 〈p,γ,α, i〉, where

p is a prime number,

γ is a primitive element of p,

α ∈ Z∗p, and

i is an integer with 1≤ i ≤ dlog(p−1)e,

compute the i th least significant bit in the binary representation of

logγ α mod (p−1).
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Bit Security of Discrete Logarithms

Example

In a previous example, Shanks’ algorithm was used to compute

log2 47 mod 100 = 58.
Every element of Z∗101 can be represented in binary using no more

than dlog 100e= 7 bits.

In particular, since

58 = 25 + 24 + 23 + 21,

the binary representation of 58 is bin(58) = 111010 and has six bits,

dropping leading zeros.

The least significant bit of bin(58) is the rightmost zero.
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Bit Security of Discrete Logarithms

Example (continued)

In general, the least significant bit of bin(n) is the coefficient of 20 in

the binary expansion of n.

This bit determines the parity of n:

it is one if n is odd, and

it is zero if n is even.

Suppose that an instance

〈p,γ,α, i〉= 〈101,2,47, i〉

of dlogbit is given for 1≤ i ≤ 7.
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Bit Security of Discrete Logarithms

Example (continued)

The following table shows the function values of

dlogbit(〈101,2,47, i〉) for the possible values of i , where leading

zeros are not being dropped.

i 7 6 5 4 3 2 1

dlogbit(〈101,2,47, i〉) 0 1 1 1 0 1 0

Table: An instance of the discrete logarithm bit problem
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Reminder: Quadratic Residue and Nonresidue

Definition

For n ∈ N, an element x ∈ Z∗n is said to be a quadratic residue

modulo n if there exists some w ∈ Zn such that

x ≡ w2 mod n.

Otherwise, x is said to be a quadratic nonresidue modulo n.

If x = 1, such a w is said to be a square root of 1 modulo n.

Define the decision problems

QR = {(x ,n)
∣∣ x ∈ Z∗n, n ∈ N, and x is a quadratic residue mod n};

QNR = {(x ,n)
∣∣ x ∈ Z∗n, n ∈ N, and x is a quadratic nonresidue mod n},

where x and n are represented in binary.
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Reminder: Quadratic Residue and Nonresidue

Alternatively, we define the set of quadratic residues for a given n ∈ N by

QRn = {w2 mod n
∣∣w ∈ Z∗n}.

Example (quadratic residue)

Let n = 13.

w 1 2 3 4 5 6 7 8 9 10 11 12

w2 mod 13 1 4 9 3 12 10 10 12 3 9 4 1

QR13 = {1,3,4,9,10,12}.

QR26 = {1,3,9,17,23,25}.

QR27 = {1,4,7,10,13,16,19,22,25}.
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Reminder: Facts About Square Roots of 1 modulo n

Trivially, 1 and n−1 are always square roots of 1 modulo n:

12 ≡ 1 mod n and (n−1)2 ≡ (−1)2 ≡ 1 mod n.

If n is a prime number, then it has no square roots of 1 modulo n

other than the trivial ones: a2 ≡ 1 mod n implies

(a+ 1)(a−1) = a2−1≡ 0 mod n.

Thus n divides (a+ 1)(a−1).

Since n is prime, n divides a+ 1 or a−1.

Hence, a≡ n−1 mod n or a≡ n+ 1≡ 1 mod n.

Hence, if n has a nontrivial square root of 1 modulo n, then n must

be composite.
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Reminder: Facts About Square Roots of 1 modulo n

Conversely, if n = p1p2 · · ·pk is composite, where the pi are odd prime

numbers, then the Chinese Remainder Theorem can be applied to

show that n has exactly 2k square roots of 1 modulo n, namely all

numbers a, 1≤ a≤ n, satisfying

a mod pi ∈ {1,pi −1}, 1≤ i ≤ k .

Thus, trying to find nontrivial square roots of 1 modulo n by

randomly picking a number a is hopeless, unless n happens to have

extraordinarily many prime factors.
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Reminder: Facts About Square Roots of 1 modulo n

Example (nontrivial square roots of 1 modulo n)

1 Consider the composite number n = 143 = 11 ·13.

Since 143 has two prime factors, there are four square roots of 1

modulo 143, namely 1, 12, 131, and 142.

The nontrivial square roots of 1 modulo 143 are 12 and 131.

In this example, the square roots of 1 modulo 143 happen to be just

the Fermat liars for 143. In general, however, this is not the case.

2 n = 91 = 7 ·13 has the square roots: 1, 27, 64, and 90:

1≡ 64 mod 7 and 27≡ 90≡ 6 mod 7

1≡ 27 mod 13 and 64≡ 90≡ 12 mod 13.
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Computing the Parity of Discrete Logarithms by Euler

Theorem (Euler’s criterion)

Let p be an odd prime number. Then, x is a quadratic residue modulo p if

and only if

x
(p−1)/2 ≡ 1 mod p.

Proof: Suppose that x is a quadratic residue modulo p, i.e.,

x ≡ w2 mod p

for some w ∈ Z∗p.

By Fermat’s Little Theorem, wp−1 ≡ 1 mod p. Thus,

x
(p−1)/2 ≡

(
w2

)(p−1)/2 ≡ wp−1 ≡ 1 mod p.
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Computing the Parity of Discrete Logarithms by Euler

Conversely, suppose that x (p−1)/2 ≡ 1 mod p.

Let γ be a primitive element modulo p.

Then we have x ≡ γ i mod p for some i .

It follows that

x
(p−1)/2 ≡

(
γ
i
)(p−1)/2 ≡ γ

i(p−1)/2 ≡ 1 mod p.

Since γ has the order p−1, it follows that p−1 divides i(p−1)/2.

Hence, i is even, and the two square roots of x are ± γ
i/2. q

Using this result, we now show that the discrete logarithm bit problem can

be efficiently solved for instances with i = 1.
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Computing the Parity of Discrete Logarithms by Euler

Theorem

If 〈p,γ,α,1〉 is an instance of the discrete logarithm bit problem, then

dlogbit(〈p,γ,α,1〉) can be determined in polynomial time.

Proof: Let 〈p,γ,α,1〉 be a given instance of the discrete logarithm bit

problem, i.e.,

p is prime,

γ is a primitive element of p,

α ∈ Z∗p, and

the least significant bit of the binary representation of

logγ α mod (p−1) is to be evaluated.
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Computing the Parity of Discrete Logarithms by Euler

Define the function s : Z∗p→ Z∗p by

s(w) = w2 mod p.

Recall that

QRp = {w2 mod p
∣∣w ∈ Z∗p}.

Note that s(w) = s(p−w), since p ≡ 0 mod p.

Note further that

x2 ≡ w2 mod p ⇐⇒ p divides (x−w)(x +w)

⇐⇒ x ≡±w mod p.
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Computing the Parity of Discrete Logarithms by Euler

Hence, every z ∈QRp has exactly two preimages with respect to s.

It follows that

‖QRp‖=
p−1

2
.

In other words,

exactly half of the elements of Z∗p are quadratic residues modulo p and

the remaining half of the elements of Z∗p are quadratic nonresidues

modulo p.

Since γ is a primitive element of p, γa ∈QRp if the exponent a is even.

Since the (p−1)/2 elements γ0,γ2, . . . ,γp−3 are pairwise distinct, they are

precisely the elements of QRp, i.e.,

QRp = {γ2i mod p
∣∣0≤ i ≤ (p−3)/2}.
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Computing the Parity of Discrete Logarithms by Euler

It follows that an element α is a quadratic residue modulo p if and only if

logγ α is even. That is,

the least significant bit of the binary representation of logγ α is zero

if and only if α ∈QRp,

which by Euler’s criterion is equivalent to α
(p−1)/2 ≡ 1 mod p.

Hence, we have

dlogbit(〈p,γ,α,1〉) = 0 ⇐⇒ α
(p−1)/2 ≡ 1 mod p.

Since α
(p−1)/2 ≡ 1 mod p can be efficiently computed using

square-and-multiply, Euler’s criterion provides an efficient algorithm for

computing dlogbit(〈p,γ,α,1〉). q
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What Other Bits of dlogbit are Easy to Compute?

Theorem

Let 〈p,γ,α, i〉 be an instance of the discrete logarithm bit problem, and let

p−1 = r2q

for some odd number r . Then,

1 for each i ≤ q, dlogbit(〈p,γ,α, i〉) can be determined in polynomial

time, and

2 logγ α mod (p−1) can be computed in FPdlogbit(〈p,γ,α,q+1〉), i.e.,

computing the (q+ 1)th bit of the discrete logarithm of α is no easier

than computing the full discrete logarithm of α in Z∗p.
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What Other Bits of dlogbit are Easy to Compute?

Proof: The proof of the theorem makes use of the following lemma.

Lemma

Let p be a prime number with p ≡ 3 mod 4.

1 Every α ∈QRp has the two square roots

±α
(p+1)/4 mod p.

2 Moreover, if γ is a primitive element of p and α 6= 0, then

dlogbit(〈p,γ,α,1〉) 6= dlogbit(〈p,γ,p−α,1〉).
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What Other Bits of dlogbit are Easy to Compute?

Proof of Lemma. (1) Let γ be a generator of Z∗p and let α ∈QRp.

By the proof of the previous theorem, we know that

α = γ
2i .

Since modulo p

x = α
p+1
4 = γ

i(p−1)
2 +i = (−1)i · γ i , (7)

we have

x2 = (−1)2i · γ2i = 1 ·α = α,

so ±x =±α
p+1
4 are the roots of α.

(7) holds because
(

γ
p−1
2

)2
≡ γp−1 ≡ 1 mod p,

but γ
p−1
2 6≡ 1 mod p, since γ has order p−1. Thus γ

p−1
2 ≡−1 mod p.
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What Other Bits of dlogbit are Easy to Compute?

(2) Let γa ≡ α mod p. This implies

γ
a+ p−1

2 ≡ γ
a · γ

p−1
2 ≡−α mod p.

Since p ≡ 3 mod 4, (p−1)/2 is odd, which proves our claim. q Lemma

We will prove the theorem only for q = 1.

1 This is just the previous theorem saying that dlogbit(〈p,γ,α,1〉)
can be determined in polynomial time.

2 p−1 = r ·21 for odd r means: p ≡ 3 mod 4. We give an algorithm

that computes xi−1, . . . ,x0 with logγ α =
i−1
∑
j=0

xj2
j in polynomial time

using a DLogBit-2-Oracle for dlogbit(〈p,γ,α,2〉).
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Discrete-Log-Algorithm with DLogBit-2-Oracle

Let α ≡ γa mod p for an unknown even exponent a.

By the above lemma, we either have

α
(p+1)/4 ≡ γ

a/2 mod p or −α
(p+1)/4 ≡ γ

a/2 mod p.

Which of these two possible congruences is true, can be efficiently

determined as soon as we know (by querying our oracle)

dlogbit(〈p,γ,α,2〉)

by applying our previous result that the least significant bit of the discrete

logarithm can be computed in polynomial time because

dlogbit(〈p,γ,α,2〉) = dlogbit(〈p,γ,γa/2,1〉).
This is the intuitive idea behind the following algorithm.
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Discrete-Log-Algorithm with DLogBit-2-Oracle

Discrete-Log-Algo-with-DLogBit-2-Oracle(p,γ,α) {
(* p is prime, γ is a primitive element of Z∗p, and α ∈ Z∗p *)

x0 := dlogbit(〈p,γ,α,1〉); (* Using Euler’s Criterion *)

α := α/γx0 mod p;

i := 1;

while (α 6= 1) {
xi := dlogbit(〈p,γ,α,2〉); (* Using DLogBit-2-Oracle *)

ω := α
(p+1)/4 mod p; (* Trying the first square root of α *)

if dlogbit(〈p,γ,ω,1〉) = xi then α := ω else α := p−ω;

α := α/γxi mod p;

i := i + 1;}
return “(xi−1,xi−2, . . . ,x0)” and halt;

} q
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Discrete-Log-Algorithm with DLogBit-2-Oracle
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Breaking Cryptosystems versus Digital Signature Schemes

When breaking a cryptosystem, a cryptanalyst usually aims at

determining the private key used and the plaintext encrypted.

When breaking a digital signature scheme, however, a cryptanalyst

usually pursues a different goal, namely,

forging signatures of signed messages.
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Types of Forgery

Total break: The cryptanalyst is able to determine the private key of

the sender in a digital signature scheme; e.g., Bob’s secret numbers b

and s in the ElGamal digital signature scheme.

Using this private key, cryptanalyst Erich can create a valid signature

for any message of his choice.

Selective forgery: The cryptanalyst is able to create, with

nonnegligible probability of success, a valid signature for some

message chosen by somebody else.

That is, if Erich intercepts a message m that was previously not

signed by Bob, he is able to create a valid signature for m with a

certain success probability.
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Types of Forgery

Existential forgery: The cryptanalyst is able to create a valid

signature for at least one message that was previously not signed by

Bob. Here, no specified probability of success is required.

Again, one can distinguish several levels of security, depending on what

information is available to the cryptanalyst during the attack:

Key-only attack: Cryptanalyst Erich only knows Bob’s public key.

Known-message attack: Erich knows some pairs of messages and

corresponding signatures in addition to the public key.

Chosen-message attack: Erich knows the public key and obtains a

list of Bob’s signatures corresponding to a list of messages he has

chosen at will.
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Breaking the ElGamal Digital Signature Scheme

Suppose that m is the message Erich wants to sign with a forged

signature that looks like Bob’s signature.

According to the ElGamal digital signature scheme, he has to choose

some elements σ and ρ satisfying

σ = γ
s mod p

ρ = (m−bσ)s−1 mod (p−1).

The order in which σ and ρ are chosen does matter here.

Consider:
1 Erich choosing σ first and then the corresponding ρ;

2 Erich choosing ρ first and then the corresponding σ ;

3 Erich choosing σ and ρ simultaneously;

4 a key-only attack allowing an existential forgery.
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Breaking the ElGamal Digital Signature Scheme

1 Erich chooses σ first and then computes the corresponding ρ:

By the verification condition (5):

γ
m ≡ β

σ
σ

ρ mod p,

in this case he must solve the discrete logarithm

ρ = logσ β
−σ

γ
m mod p.
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Breaking the ElGamal Digital Signature Scheme

2 Erich chooses ρ first and then computes the corresponding σ :

He faces the problem of solving the ElGamal verification condition (5)

for the unknown σ .

This problem is not known to have an efficient algorithm either.

However, it does not seem to be closely related to other thoroughly

investigated problems such as the discrete logarithm problem.

Thus, it might well be that there exists such an efficient solution to

this problem that just eluded us so far.

It might also be the case that there is some clever way of determining

σ and ρ simultaneously so that (σ ,ρ) is a valid signature for m that

Alice would have to accept when verifying it using Bob’s public key β .
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Breaking the ElGamal Digital Signature Scheme

3 Erich might try to choose σ and ρ simultaneously:

Then he must solve (5) for the unknown value m.

In this case, he again faces the problem of computing a discrete

logarithm, namely

m = logγ β
σ

σ
ρ mod p.

This approach has the disadvantage that, depending on the choice of

σ and ρ, the message signed may not be meaningful.

Again, since solving discrete logarithms is considered to be hard, this

is not a practical attack.
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Key-Only Attack on ElGamal’s Digital Signature Scheme

4 Key-only attack allowing an existential forgery:

Erich is able to create a valid ElGamal signature for a random

message m, by choosing σ , ρ, and m simultaneously.

Let x and y be integers with 0≤ x ≤ p−2 and 0≤ y ≤ p−2.

Writing σ as σ = γxβ y mod p implies that the ElGamal verification

condition (5) is of the form

γ
m ≡ β

σ (γ
x
β
y )ρ mod p,

which is equivalent to

γ
m−xρ ≡ β

σ+yρ mod p. (8)
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Key-Only Attack on ElGamal’s Digital Signature Scheme

Now, (8) is true if and only if the following two congruences are

satisfied:

m−xρ ≡ 0 mod (p−1); (9)

σ + yρ ≡ 0 mod (p−1). (10)

Given x and y and assuming that gcd(y ,p−1) = 1, the congruences

(9) and (10) can easily be solved for ρ and m, and we obtain:

σ = γ
x
β
y mod p;

ρ = −σy−1 mod (p−1);

m = −xσy−1 mod (p−1).

By way of construction, (σ ,ρ) is a valid signature for the message m.
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Key-Only Attack on ElGamal’s Digital Signature Scheme

Example (continuing our previous example)

Let p = 1367 be a given prime number, and let γ = 5 be a given

primitive element of 1367.

Bob’s private exponents are b = 513 and s = 129, which Erich does

not know.

However, Erich does know Bob’s public value β = 855.

Suppose he chooses x = 33 and y = 77.
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Key-Only Attack on ElGamal’s Digital Signature Scheme

Example (continued)

Using the extended Euclidean algorithm, he checks that

gcd(77,1366) = 1 and

determines the inverse element y−1 = 479 of y = 77

modulo p−1 = 1366.

Then Erich computes:

σ = 533 ·85577 ≡ 906 ·343≡ 449 mod 1367;

ρ = −449 ·479≡ 757 mod 1366;

m = −33 ·449 ·479≡ 393 mod 1366.
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Key-Only Attack on ElGamal’s Digital Signature Scheme

Example (continued)

Hence, (449,757) is a valid signature for the message m = 393.

As a check, note that Alice will verify it using the condition (5):

5393 ≡ 1125≡ 930 ·817≡ 855449 ·449757 mod 1367

and will thus accept Erich’s forgery.

It is not certain, though, that 393 indeed is a message that Erich

would wish to send to Alice with Bob’s forged signature.
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Known-Message Attack on ElGamal’s Digital Signatures

This attack provides another existential forgery of ElGamal signatures:

Suppose that Erich knows a previous signature (σ̂ , ρ̂) for some

message m̂.

He can then sign new messages forging Bob’s signature.

As usual, let p be a prime number with primitive element γ, and let β

be Bob’s public key. Let x ,y ,z ∈ Zp−1 be chosen such that

gcd(x σ̂ − z ρ̂,p−1) = 1.
Erich computes:

σ = σ̂
x
γ
y
β
z mod p;

ρ = ρ̂σ(x σ̂ − z ρ̂)−1 mod (p−1); (11)

m = σ(xm̂+ y ρ̂)(x σ̂ − z ρ̂)−1 mod (p−1).
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Known-Message Attack on ElGamal’s Digital Signatures

Exercise: Check that the ElGamal verification condition (5):

γ
m ≡ β

σ
σ

ρ mod p

is satisfied.

Hence, (σ ,ρ) is a valid signature for the message m.

Example (Known-Message Attack on ElGamal Signatures)

As in our previous examples, Bob chooses the prime number p = 1367, the

primitive element γ = 5 of 1367, and the public key β = 855.
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Known-Message Attack on ElGamal’s Digital Signatures

Example (Known-Message Attack on ElGamal Signatures: continued)

Suppose that Erich knows Bob’s signature

(σ̂ , ρ̂) = (1180,955)

for the message m̂ = 457 from our previous example.

Erich chooses the integers x = 19, y = 65, and z = 23.

Using the extended Euclidean Algorithm, he checks that

gcd(x σ̂ − z ρ̂,p−1) = gcd(455,1366) = 1

and he computes the inverse element 455−1 mod 1366 = 1363.
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Known-Message Attack on ElGamal’s Digital Signatures

Example (Known-Message Attack on ElGamal Signatures: continued)

Using (11), Erich now computes:

σ = 118019 ·565 ·85523 ≡ 963 ·674 ·219≡ 1184 mod 1367;

ρ = 955 ·1184 ·455−1 ≡ 984 mod 1366;

m = 1184 · (19 ·457 + 65 ·955) ·455−1 ≡ 656 mod 1366.

Hence, (1184,984) is a valid signature for the message 656, as can be

checked by the ElGamal verification condition (5):

5656 ≡ 452≡ 698 ·314≡ 8551184 ·1184984 mod 1367.

Thus, Alice accepts Erich’s forged signature.
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Comments on the Attacks on ElGamal’s Digital Signatures

Remark:

Both of the above attacks on the ElGamal signature scheme yield an

existential forgery.

It is currently not known whether these attacks can be strengthened

to yield even selective forgeries.

Therefore, mounting these attacks is not a practical threat for the

ElGamal digital signature scheme.

As a countermeasure to prevent these attacks, one can make use of a

cryptographic hash function as sketched below.
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Countermeasure: Cryptographic Hash Functions

In cryptography, a hashing function h : Σ∗→ T can be used to

produce a “message digest” of prespecified length from any given

message of arbitrary length.

A common choice of the length of the hash values in T is 256 bits.

If Bob wishes to sign a message m, he first computes the message

digest t = h(m), which is an element of the hashing table T .

Then, he computes his signature s = sigB(t) for t, using a digital

signature scheme such as ElGamal, and sends (m,s) to Alice.

To verify the signature, she first reconstructs the message digest

t = h(m), using the public hashing function h, and then checks the

validity of the signature s for t.
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Countermeasure: Cryptographic Hash Functions

To prevent existential forgeries by key-only or known-message attacks,

hashing functions are required to have certain properties so as to be

considered cryptographically secure.

For example, suppose that Erich mounts a known-message attack.

Thus, he already knows some pair (m,s), where

m is a message previously signed by Bob and

s is the signature for the message digest t = h(m) generated from m by

some hashing function h.

Since h is public, Erich can determine t.
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Countermeasure: Cryptographic Hash Functions

He might then try to find some other mesage m̃ 6= m such that

h(m̃) = h(m).

This would enable him to forge Bob’s signature for the message m̃,

since the pair (m̃,s) contains a valid signature s for m̃.

This type of attack can be prevented by requiring the hashing

function used to be “collision-free” on the relevant domain in the

sense that it is computationally infeasible to determine, given m,

some message m̃ with

m̃ 6= m and h(m̃) = h(m).
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Careful Choice of ElGamal Parameters Avoids Total Break

Some care must be taken in choosing the parameters of the ElGamal

Digital Signature Scheme in order to avoid a total break:

1 Bob’s secret exponent s must never be revealed.

If Erich knows s, then it is a matter of routine for him to compute,

using (4), Bob’s secret exponent b from m and the signature (σ ,ρ) by

b ≡ (m− sρ)σ
−1 mod p−1.

This known-message attack results in a total break of the ElGamal

digital signature scheme, and Erich can henceforth forge Bob’s

signature at will.
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Careful Choice of ElGamal Parameters Avoids Total Break

2 Bob’s secret exponent s must never be used twice for signing

distinct messages.

Again, a known-message attack can be mounted to yield a total break.

Bob computes

β = γ
b mod p with his private b,

σ = γ
s mod p with his private s,

but uses s twice for messages m1 and m2, m1 6= m2:

ρ1 = (m1−bσ)s−1 mod (p−1),

ρ2 = (m2−bσ)s−1 mod (p−1),

yielding the signatures (σ ,ρ1) for m1 and (σ ,ρ2) for m2.
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Careful Choice of ElGamal Parameters Avoids Total Break

Alice can now verify the signatures for i ∈ {1,2}:

γ
mi ≡ β

σ
σ

ρi mod p. (12)

Erich knows p, γ, β , and (σ ,ρi ) for mi , i ∈ {1,2}.
That is, this is a known-message attack.

From (12) it follows that

γ
m1−m2 ≡ β

σ−σ
σ

ρ1−ρ2 ≡ γ
s(ρ1−ρ2) mod p,

which is equivalent to:

m1−m2 ≡ s(ρ1−ρ2) mod (p−1). (13)

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 70 / 72



ElGamal’s Protocols Security of ElGamal’s Protocols

Careful Choice of ElGamal Parameters Avoids Total Break

Let d = gcd(ρ1−ρ2,p−1).

Since d divides ρ1−ρ2 and p−1, d also divides m1−m2.

Erich first determines d and then

m′ =
m1−m2

d
, ρ

′ =
ρ1−ρ2

d
, and p′ =

p−1

d
.

By (13), it follows that

m′ ≡ s ·ρ ′ mod p′.

Since gcd(ρ ′,p′) = 1, we have s = m′ ·ρ ′−1 mod p′.
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Careful Choice of ElGamal Parameters Avoids Total Break

Specifically, there are d candidate values for s:

si = m′ ·ρ ′−1 + i ·p′ mod (p−1) for 0≤ i ≤ d −1.

The correct value can be determined via σ = γs mod p.

From, say ρ1 = (m1−bσ)s−1 mod (p−1), Erich can now easily

determine

b = (m1− sρ1)σ
−1 mod (p−1).

⇒ total break!
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