Cryptocomplexity |l

Kryptokomplexitat |l
Sommersemester 2024

Chapter 2: Diffie-Hellman and the Discrete Logarithm Problem

Dozent: Prof. Dr. J. Rothe

hhu,

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 1/54

Diffie—=Hellman and the Discrete Logarithm Problem Secret-Key Agreement Problem

Merkle, Hellman, and Diffie 1977 at Stanford University

@© Chuck Painter/Stanford News Service

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 2/54

el
Diffie and Hellman Receive the 2015 Turing Award

© ACM
J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 3/54

Diffie—=Hellman and the Discrete Logarithm Problem Secret-Key Agreement Problem

Secret-Key Agreement Problem

o Key distribution for symmetric systems:

Erich

ior

@© The design of Alice and Bob is due to Crépeau.

~d

-
lice

is an issue, and it is the more demanding, the more users are

participating in the same system.

o Secret-key agreement problem:
How can Alice and Bob agree on such a joint secret key, without
meeting in private prior to exchanging encrypted messages and
without using an expensive secure channel for key distribution?

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 4/54

el
Secret-Key Agreement Problem

@ The secret-key agreement problem has been considered unsolvable

since the beginnings of cryptography.

@ Thus, it caused much surprise when Diffie and Hellman came up with

an ingenious, simple idea to solve it.

@ Using their secret-key agreement protocol, Alice and Bob can agree

on a joint secret key by exchanging some messages.

@ Eavesdropper Erich, however, does not have a clue about their key,
even though he knows every single bit exchanged, provided that he

cannot solve the discrete logarithm problem.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 5/54

Diffie-Hellman and the Discrete Logarithm Problem Secret-Key Agreement Problem

Diffie-Hellman Secret-Key Agreement Protocol

’ StepH Alice ‘ Erich ‘ Bob
1 Alice and Bob agree on a large prime p and a primitive element y of p;
p and 7y are public
2 chooses a large random num- chooses a large random num-
ber a, keeps it secret, and com- ber b, keeps it secret, and com-
putes putes
o =7 mod p B =179" mod p
3 o=
<P
4 computes her key computes his key
ka=PB?mod p kg = a® mod p

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 6/54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Recall the multiplicative group

Zy={i|1<i<n-1and gcd(i,n) =1}
of order ¢(n) = |Z}|, where ¢ is the Euler function.
Definition

A primitive element of a number n € N is an element y € Z}, satisfying

9 #1mod n
for each d with 1 <d < ¢(n).

Remark:

@ A primitive element y of n is a generator of the entire group Zj:

Zy=(y)={y|0<i<o(n)}

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 7/54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Remark:
@ Not every integer has a primitive element; the number 8 is the
smallest such example:
¢ =1{1,3,5,7}, so ¢(8) =4.
1'=1, 32=9=1mod8, 5°=25=1mod8, 7°=49=1mod 8.

@ It is known from elementary number theory that a number n has a
primitive element if and only if

e n either is in {1,2,4},
e or is of the form n= g or n = 2g* for some odd prime q.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 8/54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Example (primitive element)
Consider Zi = {1,2,3,4}, so ¢(5) = 4.

5 has two primitive elements: 2 and 3, both generating Zg:

20 = 1, 21 = 2, 22 = 4, 23 = 3mod5;
30 = 1, 31 = 3, 32 = 4mod5, 3® = 2modb5.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 9/54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Fact
For each prime p, Zj, has exactly ¢(p—1) primitive elements. J

Proof: Since a primitive element y of p generates Zj, every x € Zj, can

be uniquely written as
x:yi for some j, 0<i<p-—1.

The order of x is defined as the smallest k > 0 such that x¥ = 1.

Note that x = ¥’ has order wa (see next slide).

It follows that x itself is a primitive element of p if and only if
gcd(p—1,i) =1, and hence there are exactly @(p—1) primitive elements
of p. a

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 10 /54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

The proof of this fact uses that the order of x =¥’ is ﬁ—lu)-
Why?

Theorem

Let G be a multiplicative group with neutral element 1, let g € G be of
finite order n, and let k,¢,m € Z.

Q g"=1 <= ndivides m.

Q g'=gFk < ¢=kmodn.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 11/54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Proof:
Q (=):Letg™=1and m=qgn+r with0<r<n.

Since n is the smallest positive number with g” =1 and 0 <r < n,

we must have r = 0. Hence, m = gn, so n divides m.

(<) : Assume m = gn. It follows that
gn=g"=(g")"=1"=1

@ follows from the first statement with m = ¢ — k because
gl=g" < ¢=kmodn

is equivalent to

m l

g :g*kzl & m=F¢—k=0mod n. QA

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 12 /54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Corollary
If y € G is of finite order n and i € Z, then the order of ¥' is anf)' J

Proof: We have (}/i)"/ng("’f) = (yn)"/gcd("-") =1.

By the theorem'’s first statement, the order of ¥’ divides —7—.
ged(n,i)

Now let k be the order of ', i.e., 1—() =yk.
Again, it follows from the theorem’s first statement that n divides i - k.

Hence, divides k.

gcd(f)
Since k divides

) and —7) divides k, we have k = —7—. Q

n
ged(n,i ged(n,i ged(n,i)

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 13 /54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Example (' has order Wh)

Let p =17 be a given prime number.

Note that y = 3 is a primitive element of 17 (see next slide).

3% mod 17 = 13 has order ﬁ =4, since
131 = 13+#1,
132 = 169=—-1mod 17 =16 #1,
133 = —13mod17=4#1,

13* = (=1)(~1) mod 17 =1.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 14 /54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

How to Determine All Primitive Elements

Example (computing all primitive elements)

o Let p=17 be a given prime number.

o Note that Zjs ={1,3,5,7,9,11,13,15}, so ¢(16) =8 is the number

of primitive elements modulo 17.

@ It can be verified that 3 is a primitive element of 17, since 3
generates Z3, = {1,3,9,10,13,5,15,11,16,14,8,7,4,12,2,6}.

@ The remaining primitive elements modulo 17 can be determined as

follows. Recall from the previous proof that the order of x =7 is

p—1
ged(p—1,i) 1)

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 15 /54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

How to Determine All Primitive Elements

Example (computing all primitive elements: continued)

@ First, compute all successive powers of 3 modulo 17:

i 01

3

4

516

7

8

9

10

11

12

13

14

15

3 mod 17|13

10

13

5 |15

11

16

14

12

Table: Computing the primitive elements modulo 17

e By (1), an element 3/ mod 17 is primitive if and only if ged(16,i) = 1.

@ The above table shows these primitive elements in gray boxes.

J. Rothe (HHU Diisseldorf)

Cryptocomplexity |l

16 /54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

How to Test if a Given Element is Primitive

o If pis very large, it can be costly to compute p—1 powers of y € Z,.

@ This can be speeded up if the prime factorization of p—1 is known.

Theorem
Let p be prime. An element 'y € Z,, is primitive for p if and only if

Y4 £1 mod p

for each prime q dividing p— 1.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 17 /54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

How to Test if a Given Element is Primitive

Proof: (=-): If yis a primitive element of p, by definition we have

Y %1 mod p
for all i, 1 <i< p—2, which implies the right-hand side.

(<) : Suppose that 7 is not a primitive element of p. Let k be the order
of 7, i.e., the smallest positive number with Y =1 mod p.

Then k < p—1 because ¥ is not primitive.
By Lagrange’s theorem, k divides p—1, the order of the group Zj,.

Hence, pT_l is an integer larger than 1.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 18 /54

Diffie—=Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

How to Test if a Given Element is Primitive

Let g be a prime divisor of ”—1

Then k divides 22X because:
p—1 . p—1
—— =a-q implies —— =a-k.
k q
Since k divides 2=, it follows that
(V)a:f’k: y% =1mod p
by the first statement of the previous theorem. u

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 19 /54

Some Number-Theoretic Notions
How to Test if a Given Element is Primitive

Example (for the previous theorem)

@ Consider p=17,s0 p—1=16=2% i.e., g=2 is the only prime

divisor of 16. ¥y =3 is a primitive element of 17, since

p—1

ye =37 =38 mod 17 = 16 # 1 mod 17.
However, Y =4 is not a primitive element of 17, since 48 mod 17 =1.

@ Now let p=19,s0o p—1=18=2-32. Check 2,3,...,17:

2°mod19=18 and 2°mod19=7
3*mod19=18 and 3°mod19=7 /
4 mod19=1 X
5 mod19=1 X

J. Rothe (HHU Diisseldorf)

Cryptocomplexity 11 20 /54

Diffie-Hellman and the Discrete Logarithm Problem Diffie and Hellman’s Secret-Key Agreement Protocol

Diffie-Hellman Secret-Key Agreement Protocol

’ StepH Alice ‘ Erich ‘ Bob
1 Alice and Bob agree on a large prime p and a primitive element y of p;
p and 7y are public
2 chooses a large random num- chooses a large random num-
ber a, keeps it secret, and com- ber b, keeps it secret, and com-
putes putes
o =7 mod p B =179" mod p
3 o=
<P
4 computes her key computes his key
ka=PB?mod p kg = a® mod p

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 21 /54

Diffie—=Hellman and the Discrete Logarithm Problem Diffie and Hellman’s Secret-Key Agreement Protocol

Diffie-Hellman Secret-Key Agreement Protocol

Remark:

@ The Diffie-Hellman protocol works, since in the arithmetics modulo p:
R A AT

@ Thus, Alice and Bob indeed compute the same key.

@ Using the “square-and-multiply” algorithm to perform exponentiation

fast, both Alice and Bob can efficiently determine this key.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 22 /54

Diffie-Hellman and the Discrete Logarithm Problem Diffie and Hellman’s Secret-Key Agreement Protocol

Diffie-Hellman Secret-Key Agreement Protocol

Example (Diffie-Hellman)

Suppose that Alice und Bob have chosen the prime number p =17 and
the primitive element y =12 of 17. (Check: 128 # 1 mod 17.)

Further, Alice chooses the secret number a = 10 at random.
She wants to send the number a = 1219 mod 17 to Bob.

Applying the “square-and-multiply” algorithm, she first computes the
binary expansion of the exponent, 10 = 2% +23, and then the values

122 mod 17 for 0 < i < 3:

122° mod 17

122" mod 17

122> mod 17

122* mod 17

o = 1210 mod 17

12

8

13

16

9

J. Rothe (HHU Diisseldorf)

Cryptocomplexity |l

23 /54

Diffie—=Hellman and the Discrete Logarithm Problem Diffie and Hellman’s Secret-Key Agreement Protocol

Diffie-Hellman Secret-Key Agreement Protocol

Example (Diffie-Hellman: continued)

Multiplying the values in the gray boxes, she obtains
o =12'"=9 mod 17

and sends o =9 to Bob.

Meanwhile, Bob has chosen his secret exponent b =15 and has computed
his value B = 12!® = 10 mod 17 by the same procedure.

Bob sends 8 = 10 to Alice. Now, Alice and Bob compute

ka=101=2mod 17 and kg=9'>=2mod 17

to determine their joint secret key, ka =2 = kg.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 24 /54

B e L el
Security of Diffie-Hellman

How secure is the Diffie-Hellman protocol?

Answer: Security of the Diffie-Hellman protocol rests on the hardness of

computing discrete logarithms.

@ Direct (passive) attack on Diffie-Hellman:

Erich solves the “Diffie-Hellman problem.”

@ Active “Man-in-the-Middle" attack:
Erich changes the protocol to his advantage.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 25 /54

Diffie and Hellman’s Secret-Key Agreement Protocol
Man-in-the-Middle Attack on Diffie—Hellman

Step Alice Erich Bob
1 Alice and Bob agree on a large prime p and a primitive element v of p;
p and ¥ are public

2 chooses a large ran- | chooses a secret | chooses a large ran-
dom number a, keeps | number e and com- | dom number b, keeps
it secret, and com- | putes af = B = it secret, and com-
putes @ = v® mod p ¥¢ mod p putes B =7® mod p

3 o= | o=

=Pe| <P

4 computes her key computes his keys computes his key

kag=(Be)?mod p | kea = a®modp, | kg = (0g)? mod p
ke.g = B¢ mod p

J. Rothe (HHU Diisseldorf)

Cryptocomplexity |l

26 /54

Diffie—=Hellman and the Discrete Logarithm Problem Discrete Logarithm and the Diffie—-Hellman Problem

Modular Exponentiation and Discrete Logarithm

Definition
Let p be a prime, and let ¥ be a primitive element of p.

© The modular exponential function with base v and modulus p is the

function exp, , mapping from Z,_; to Z, and defined by

exp, ,(a) =y’ mod p.

@ lts inverse function is called the discrete logarithm and maps, for fixed
p and v, the value o = exp, ,(a) to a. If & = exp, ,(a), we write

a = log, & mod (p—1) or, for short, a=log,a.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 27 /54

Diffie—=Hellman and the Discrete Logarithm Problem Discrete Logarithm and the Diffie—-Hellman Problem

The Discrete Logarithm Problem

Example
Let p=13. A primitive element of 13 is 2. We have 2* =16 = 3 mod 13.

o ‘123456789101112
Iogza‘01429511381076

Remark:
@ In the following, we will consider only cyclic, multiplicative groups G
of finite order n, such as Z;, with n=p—1 for prime p.
e If G is not cyclic, the discrete logarithm may not always exist.
o Every cyclic group of finite order n is isomorphic to the additive group
Z,. However, this group is not suitable for implementing

Diffie—Hellman, as discrete logarithms can be computed efficiently.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 28 /54

Discrete Logarithm and the Diffie—-Hellman Problem
The Discrete Logarithm Problem

Definition
The (functional) discrete logarithm problem, denoted by DLOG, is defined

as follows: Given

@ a cyclic, multiplicative group (G,), represented by a primitive

element v € G of order n, and
@ an element o € (y),

compute the unique element a with 0 < a < n—1 such that
a=log, 0.

Equivalently, given ¥y and a, compute the unique element a with

Y =a.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 29 /54

Diffie—=Hellman and the Discrete Logarithm Problem Discrete Logarithm and the Diffie—-Hellman Problem

Direct Attack on Diffie—Hellman: Diffie—Hellman Problem

Definition
The (functional) Diffie-Hellman problem, denoted by DIFFIE-HELLMAN, is
defined as follows: Given

@ an element y € Z, of order n=p—1 for some prime number p, and
o two elements & and f in (y) =Zj,

compute an element § € (y) such that
log, 6 = (log, a)(log, 8) mod n.

Equivalently, given 7, & = ¥ mod p, and 8 = ¥” mod p, compute

¥?® mod p.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 30/54

Diffie—=Hellman and the Discrete Logarithm Problem Discrete Logarithm and the Diffie—-Hellman Problem

Discrete Logarithm Problem vs. Diffie—Hellman Problem

o If Erich were able to compute discrete logarithms efficiently, he would
be able to solve the Diffie—Hellman problem, since he could determine

o Alice's private exponent a = log, & mod (p—1) from p, ¥, and «, and
o Bob's private exponent b = log, 3 mod (p—1) from p, 7, and B.

@ Thus, computing discrete logarithms is no easier than solving the

Diffie-Hellman problem.

@ This argument can easily be generalized from Zj to arbitrary cyclic,
multiplicative groups and thus proves the following fact.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 31/54

Diffie—=Hellman and the Discrete Logarithm Problem Discrete Logarithm and the Diffie—-Hellman Problem

Discrete Logarithm Problem vs. Diffie—Hellman Problem

Fact

The Ditflie—Hellman problem reduces to the discrete logarithm problem

under polynomial-time Turing reductions: DIFFIE-HELLMAN /s in FPPM0¢,

@ The converse question of whether the discrete logarithm problem is at

least as hard as the Diffie-Hellman problem remains an unproven
conjecture.

@ The Diffie-Hellman protocol currently has no proof of security, not
even in the sense that it is as hard as the discrete logarithm, which

itself is a problem whose precise complexity is an open issue.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 32/54

Algorithms fo the Discrete Logarithm Problem
Exhaustive Search Algorithm

The discrete logarithm problem can be solved by exhaustive search:

@ Given ¥ and «, successively compute

A G SR

until the unique exponent a with
Y=

is found.

@ This can be done by computing ¥/ =771 for 1 <i < n.
@ Hence, assuming that executing one group operation costs constant
time, this naive brute-force algorithm requires time &(n), which is

exponential in the length of n and thus exponential in the input size.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 33 /54

Algorithms for the Discrete Logarithm Problem
Shanks’ Baby-Step Giant-Step Algorithm

SHANKS(n,y,a) {
(* G = (y) is a cyclic, multiplicative group, generated by a primitive

element 7y of order n, and o € G ¥)

vl

for (i=0,1,...,s—1) { add (y*,i) to a list 43, }

Sort the elements of % with respect to their first coordinates;

for (j=0,1,...,5s—1) { add (ay,j) to a list £;}

Sort the elements of % with respect to their first coordinates;

Find a pair (6,/) € £ and a pair (6,)) € %, i.e., find two pairs
with identical first coordinates;

return “log, ot =is+;" and halt;

Figure: Shanks' baby-step giant-step algorithm

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 34 /54

Algorithms for the Discrete Logarithm Problem
Shanks’ Baby-Step Giant-Step Algorithm: Explanation
In order to compute log, & for given values & and 7y, where 7 is a primitive
element of order n, Shanks’ algorithm first determines s = [/n].

If we now set
a=is+j, 0<j<s,

we have
a=7y=yH. 2)
We want to determine a = log, .

Equation (2) implies ay~ = (y°)".

The pairs (ay~,j) with 0 < j < s are the elements of the list %5, sorted
with respect to the first coordinates, which represent the “baby steps.”

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 35 /54

Algorithms for the Discrete Logarithm Problem
Shanks’ Baby-Step Giant-Step Algorithm: Explanation

If the pair (1,/) is in %, for some j, we are done, since ay 7 =1 implies
o =Y, so setting a = j solves the discrete logarithm problem in this case.

Otherwise, we determine
o=7y
and search for a group element 8 1<i<s, occurring as the first

coordinate of some element in .%.

The elements (y°)" = ¥ are collected in the list .%}, again sorted with

respect to the first coordinates, and represent the “giant steps.”

Once a pair (¥*,i) is found in 2] such that (¥*,}) occurs in the list % of
baby steps, we have solved the discrete logarithm problem, since

ayi =5 =
implies o = Y*%/, s0 a = log, 0 = is + .

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 36 /54

Algorithms for the Discrete Logarithm Problem
Shanks’ Baby-Step Giant-Step Algorithm: Example

Example
@ Suppose we want to find a = log, 47 mod 100 in the group Zj,;, using
Shanks' algorithm. That is, p =101, y=2, and a = 47 are given.

@ Note that 101 is a prime number and 2 is a primitive element of 101.
@ Since n=p—1=100 is the order of 2, we have s = [v/100 | = 10.

o It follows that
¥* mod p = 2% mod 101 = 14.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 37/54

Algorithms for the Discrete Logarithm Problem
Shanks’ Baby-Step Giant-Step Algorithm

Example (continued)
@ Now, the sorted lists %7 and % can be determined as follows:
21,0](14,1)|(95,2)|(17,3)|(36,4)|(100,5)|(87.6)| (6,7) | (84,8) | (65,9)
4 sorted|| (1,0) | (6,7) 17,3)|(36,4)| (65,9) |(84,8)(87,6)| (95,2) | (100,5)

7
69,
69,

(
(17.3)) (
(69,3)|(85,4)| (93,5) |(97,6)|(99,7)|(100,8)| (50,9)
(69,3)) (

(
% ||(47,0)(74,1)|(37,
((74,1)| (85,4) |(93,5)|(97,6)| (99,7) | (100,8)

% sorted||(37,2)((47,0)

@ Since (100,5) is in .Z; and (100,8) is in %5, we obtain
a=>5-10+8 =58.

@ It can be verified that 2°® mod 101 = 47, as desired.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 38 /54

Algorithms for the Discrete Logarithm Problem
Analysis of Shanks' Baby-Step Giant-Step Algorithm

@ The first for loop can be implemented so as to first compute ¥° and
then raising its powers by multiplying by v°.

@ Similarly, the second for loop is performed by first computing the

inverse element ¥~ of ¥ in the group and then computing its powers.
@ Both for loops require time &(s).

@ Using an efficient sorting algorithm such as quicksort, the lists .£}

and %, can be sorted in time O(slogs).

e Finally, the two pairs whose first coordinate occurs in both lists can
be found in time &(s) by simultaneously passing through both lists.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 39 /54

Algorithms for the Discrete Logarithm Problem
Analysis of Shanks' Baby-Step Giant-Step Algorithm

@ Summing up, Shanks’ algorithm can be implemented to run
e in time 0*(s) = 0*(\/n) and
e to require the same amount of space,
where 0 indicates that logarithmic factors are neglected as is

usually done in the analysis of discrete logarithm algorithms.

@ Although Shanks’ algorithm is more efficient than the exhaustive

search algorithm, it is not an efficient algorithm.

@ There are many other (also inefficient) algorithms for the discrete
logarithm problem, some of which are better than Shanks' algorithm:
e Pollard’'s p algorithm,
o the Pohlig—Hellman algorithm,

e the index calculus method, and variants thereof.
J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 40 /54

Algorithms for the Discrete Logarithm Problem
The Pohlig—Hellman Algorithm

@ Let a primitive element y of a prime p and a € (y) be given.

@ Suppose we know the factorization of the group order

for distinct prime numbers p;.

@ The value of

a=log, o mod (p—1)
is uniquely determined.

e If we can compute a = log, & mod p:" for each i, 1 </ < k, then we
obtain a mod n by the Chinese Remainder Theorem.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 41 /54

Algorithms for the Discrete Logarithm Problem
The Pohlig—Hellman Algorithm

@ Let g be a prime number and ¢ > 1 be a constant such that
n=0mod g and n#0mod gtL.
@ We show how to compute
x=amod g%, 0<x<q°".

@ In g-ary representation, we have

c—1
X:Za,--q’, 0<a<g—1for0<i<c-—1.
i=0

@ Since a=x+s- ¢ for some s € Z, we have
c—1 .
a= Za,-‘q’ +s-q°.
i=0

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 42 /54

Algorithms for the Discrete Logarithm Problem
The Pohlig—Hellman Algorithm

@ So we have to determine the coefficients a;, 0 <i<c—1.

@ Starting with ag, we first show:
an/q — yag("/q). (3)
Proof of (3):
ot = ()
- <Ya0+‘91'q+'"+3c71'qcfl+5-qc)"/q
"/

= <Va°+k'q> q, where k € N
= Yo7/ and since y" =1

yo a0

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 43 /54

Algorithms for the Discrete Logarithm Problem
The Pohlig—Hellman Algorithm

@ By (3), we can determine ag as follows:

Compute § =979, 82, ... until, for some i < g—1,
8 =as.
Then ag = 1.
o If c=1, we are done.

o If ¢ > 1, we have to determine now a3, ay,...,ac—1, similarly to ag.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 44 /54

Diffie—=Hellman and the Discrete Logarithm Problem Algorithms for the Discrete Logarithm Problem

The Pohlig—Hellman Algorithm

o Let ag = 0. Definefor 1 <j<c—1:

oj=a- y(aotaat-taiig™)

e Generalizing (3) (i.e., (4) is (3) for j =0), we now show:

Proof of (4):

n/qj+l
%

J. Rothe (HHU Diisseldorf)

o/ = i),

(f7(30+31'Q+---+aj71.¢—1))"/qf+1
(yaj'qur"'*ac—l-q“*lJrs-qc) "

j i nfgi+1
(yaj‘qj-l-kj.q/ﬂ) where k€N

Y39 /5" and since ¢7 =1
Y Q

Cryptocomplexity |l

45 /54

Algorithms for the Discrete Logarithm Problem
The Pohlig—Hellman Algorithm

@ By (4), we can determine a; from ¢ as follows:
Compute & =977, 82, ... until, for some i < g—1,

H n/gj+1
6’:ocj/"d .

Then a; = /.
e How do we get «;?

e If aj is known, we can determine o1 from ¢ using the recurrence

o1 =05y 47, (5)
which follows immediately from the definition of o;.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 46 /54

Algorithms for the Discrete Logarithm Problem
The Pohlig—Hellman Algorithm

@ Thus, applying (4) and (5) alternately, we can compute:
o, 01, a1, O, az, ..., Oc—1, dc—1.

@ Summing up, if ¥ is a primitive element of order n and q is a prime
such that
n=0mod g and n#0 mod gt

then the Pohlig—Hellman algorithm computes coefficients

(a0,a1,...,3c—1) with

c—1
log, & mod q° = Z ai-q.
i=0

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 47 /54

Algorithms for the Discrete Logarithm Problem
The Pohlig—Hellman Algorithm

PoHLIG-HELLMAN(n,7,,q,c) {

(* v is a primitive element of order n, o € (), q is a prime, and c is
a constant satisfying n=0mod g° and n#0 mod gt *)
j:=0;

(Xj =,

while (j<c—1){
Set § ;= oc;/"jJrl and find an / with 6 = }’i("/q);
aj :=i; (* according to (4) *)
Oji1 = aj'y_aqu; (* according to (5) *)

return “(ag,a1,...,ac—1)" and halt;

}

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 48 /54

Algorithms for the Discrete Logarithm Problem
Analysis of the Pohlig—Hellman Algorithm

@ Direct implemention of Pohlig—Hellman:
o There are ¢ while loops.
o The most expensive step per loop is (4): “Find an i with § = y/("/9) "
e This step requires at most g multiplications, since y"(”/q) =y"=1.
o Thus, we have a running time of 0*(c-q).

@ This running time analysis can be improved, since 0 = }/i("/") is itself

an instance of the discrete logarithm problem:
o = 'J/i(n/q) — = |Og7"/q d.

o The element Y79 has order q.

o Thus, each i can be found in time 0*(,/q) (e.g., by Shanks’
algorithm).

e This gives a total running time of 0"(c,/q).

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 49 /54

Algorithms for the Discrete Logarithm Problem
Analysis of the Pohlig—Hellman Algorithm

Remark: The running time is dominated by /q.

If g (the largest prime divisor of the group order n) is too small, discrete
logarithms can be easily computed.

For example,
p=2-3-52"8 411
is a prime number of binary length 649.

Z;; has order
p—1=2.3.5%"8

But since 5 is the largest prime divisor, p cannot be used for cryptographic

purposes.
J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 50 /54

Algorithms for the Discrete Logarithm Problem
Pohlig—Hellman Algorithm: Example

Example (Pohlig—Hellman Algorithm)
Let p =29 and y=2 a primitive element of 29. We have

n=p—1=28=22.7%
Suppose o = 18, so we want to determine

a=log, 18 mod 28,

by computing
@ first a mod 4,
@ then amod7.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 51 /54

Diffie—=Hellman and the Discrete Logarithm Problem Algorithms for the Discrete Logarithm Problem

Pohlig—Hellman Algorithm: Example
Example (Pohlig—Hellman Algorithm: continued)
@ Computing amod4: g=2and c=2
j=0: p=0=18and § = o =182 = 18% =28 mod 29.
= For i =1, we have § = y""/7 = 21 = 28 mod 29.
= a0=1
= oy = otpy 9 =18-2"1 =9 mod 29
j=1: 5 =0"" = 9" = 97 = 28 mod 29.
= For i=1, we have 6 = }/’ "a = 214 = 28 mod 29.

= a1 =1

Hence, a=apq® +a1q* =1-2°4+1.2' =3, so a=3 mod 4.

-
J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 52 /54

Algorithms for the Discrete Logarithm Problem
Pohlig—Hellman Algorithm: Example

Example (Pohlig-Hellman Algorithm: continued)
@ Computingamod7: g=7and c=1.

j=0 ap=a=18and § =a)”" =18 =18* = 25 mod 29.
y"/q —2%/71_ 16

= For i =4, we have § = y""/7 = 244 = 216 = 25 mod 29.

= ag=4,soa=4mod7.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 53 /54

Algorithms for the Discrete Logarithm Problem
Pohlig—Hellman Algorithm: Example

Example (Pohlig-Hellman Algorithm: continued)
Applying the Chinese Remainder Theorem to

a=3mod4
a=4mod7

with g1 =28/4=7 and g; ' =7 (check: 7-7=1 mod 4) and
with g2 =28/7 =4 and q,* =2 (check: 4-2=1 mod 7), we get

a=3-7-7+4-4.-2=179 =11 mod 28.

Check: 211 =18 mod 29.

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 54 /54

	Diffie–Hellman and the Discrete Logarithm Problem
	Secret-Key Agreement Problem
	Some Number-Theoretic Notions
	Diffie and Hellman's Secret-Key Agreement Protocol
	Discrete Logarithm and the Diffie–Hellman Problem
	Algorithms for the Discrete Logarithm Problem

