Cryptocomplexity II

Kryptokomplexität II

Sommersemester 2024

Chapter 2: Diffie-Hellman and the Discrete Logarithm Problem

Dozent: Prof. Dr. J. Rothe

hhu.

Merkle, Hellman, and Diffie 1977 at Stanford University

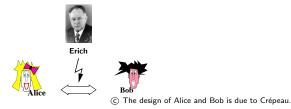
© Chuck Painter/Stanford News Service

Diffie and Hellman Receive the 2015 Turing Award

© ACM

Secret-Key Agreement Problem

• Key distribution for symmetric systems:



is an issue, and it is the more demanding, the more users are participating in the same system.

• Secret-key agreement problem:

How can Alice and Bob agree on such a joint secret key, without meeting in private prior to exchanging encrypted messages and without using an expensive secure channel for key distribution?

Secret-Key Agreement Problem

- The secret-key agreement problem has been considered unsolvable since the beginnings of cryptography.
- Thus, it caused much surprise when Diffie and Hellman came up with an ingenious, simple idea to solve it.
- Using their secret-key agreement protocol, Alice and Bob can agree on a joint secret key by exchanging some messages.
- Eavesdropper Erich, however, does not have a clue about their key, even though he knows every single bit exchanged, provided that he cannot solve the discrete logarithm problem.

Step	Alice	Erich	Bob							
1	Alice and Bob agree on a large	and a primitive element γ of p ;								
	p and γ are public									
2	chooses a large random num-		chooses a large random num-							
	ber a, keeps it secret, and com-		ber b , keeps it secret, and com-							
	putes		putes							
	$lpha=\gamma^{a} mod p$		$eta=\gamma^b egin{array}{c} p \end{array}$							
3		$\alpha \Rightarrow$								
		$\Leftarrow \beta$								
4	computes her key		computes his key							
	$k_A = \beta^a \mod p$		$k_B=lpha^b m {\sf mod} p$							

Recall the multiplicative group

$$\mathbb{Z}_n^* = \{i \, \big| \, 1 \leq i \leq n-1 ext{ and } \gcd(i,n) = 1\}$$

of order $\varphi(n) = |\mathbb{Z}_n^*|$, where φ is the Euler function.

Definition

A primitive element of a number $n \in \mathbb{N}$ is an element $\gamma \in \mathbb{Z}_n^*$ satisfying $\gamma^d \not\equiv 1 \mod n$

for each d with $1 \le d < \varphi(n)$.

Remark:

• A primitive element γ of *n* is a *generator* of the entire group \mathbb{Z}_n^* :

$$\mathbb{Z}_n^* = \langle \gamma \rangle = \{ \gamma^i \, \big| \, 0 \leq i < \varphi(n) \}.$$

Remark:

• Not every integer has a primitive element; the number 8 is the smallest such example:

$$\mathbb{Z}_8^* = \{1, 3, 5, 7\}$$
, so $\varphi(8) = 4$.
 $1^1 = 1$, $3^2 = 9 \equiv 1 \mod 8$, $5^2 = 25 \equiv 1 \mod 8$, $7^2 = 49 \equiv 1$

- It is known from elementary number theory that a number *n* has a primitive element if and only if
 - *n* either is in {1,2,4},
 - or is of the form $n = q^k$ or $n = 2q^k$ for some odd prime q.

mod 8.

Example (primitive element)

Consider
$$\mathbb{Z}_5^* = \{1, 2, 3, 4\}$$
, so $\varphi(5) = 4$.

5 has two primitive elements: 2 and 3, both generating \mathbb{Z}_5^* :

$$2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 \equiv 3 \mod 5;$$

 $3^0 = 1, 3^1 = 3, 3^2 \equiv 4 \mod 5, 3^3 \equiv 2 \mod 5.$

Fact

For each prime p, \mathbb{Z}_p^* has exactly $\varphi(p-1)$ primitive elements.

Proof: Since a primitive element γ of p generates \mathbb{Z}_p^* , every $x \in \mathbb{Z}_p^*$ can be uniquely written as

$$x = \gamma^i$$
 for some *i*, $0 \le i .$

The order of x is defined as the smallest k > 0 such that $x^k = 1$.

Note that $x = \gamma^i$ has order $\frac{p-1}{\gcd(p-1,i)}$ (see next slide).

It follows that x itself is a primitive element of p if and only if gcd(p-1,i) = 1, and hence there are exactly $\varphi(p-1)$ primitive elements of p.

The proof of this fact uses that the order of $x = \gamma^{i}$ is $\frac{p-1}{\gcd(p-1,i)}$.

Why?

Theorem

Let G be a multiplicative group with neutral element 1, let $g \in G$ be of finite order n, and let $k, \ell, m \in \mathbb{Z}$.

$$g^m = 1 \iff n \text{ divides } m.$$

$$g^{\ell} = g^k \iff \ell \equiv k \mod n.$$

Proof:

(
$$\Rightarrow$$
): Let $g^m = 1$ and $m = qn + r$ with $0 \le r < n$.

Since *n* is the smallest positive number with $g^n = 1$ and $0 \le r < n$, we must have r = 0. Hence, m = qn, so *n* divides *m*.

$$(\Leftarrow)$$
 : Assume $m = qn$. It follows that $g^m = g^{qn} = (g^n)^q = 1^q = 1.$

② follows from the first statement with $m = \ell - k$ because

$$g^{\ell} = g^k \iff \ell \equiv k \mod n$$

is equivalent to

$$g^m = g^{\ell-k} = 1 \iff m = \ell - k \equiv 0 \mod n.$$

Corollary

If $\gamma \in G$ is of finite order n and $i \in \mathbb{Z}$, then the order of γ^i is $\frac{n}{\gcd(n,i)}$.

Proof: We have
$$\left(\gamma^{i}
ight)^{n/\gcd(n,i)}=\left(\gamma^{n}
ight)^{i/\gcd(n,i)}=1.$$

By the theorem's first statement, the order of γ^i divides $\frac{n}{\gcd(n,i)}$.

Now let
$$k$$
 be the order of γ^i , i.e., $1=\left(\gamma^i
ight)^k=\gamma^{i\cdot k}.$

Again, it follows from the theorem's first statement that n divides $i \cdot k$.

Hence,
$$\frac{n}{\gcd(n,i)}$$
 divides k.
Since k divides $\frac{n}{\gcd(n,i)}$ and $\frac{n}{\gcd(n,i)}$ divides k, we have $k = \frac{n}{\gcd(n,i)}$.

Example $(\gamma^i$ has order $rac{p-1}{\gcd(p-1,i)})$

Let p = 17 be a given prime number.

Note that $\gamma = 3$ is a primitive element of 17 (see next slide).

$$13^4 \mod 17 = 13$$
 has order $\frac{16}{\gcd(16,4)} = 4$, since
 $13^1 = 13 \neq 1$,
 $13^2 = 169 \equiv -1 \mod 17 = 16 \neq 1$,
 $13^3 = -13 \mod 17 = 4 \neq 1$,
 $13^4 = (-1)(-1) \mod 17 = 1$.

How to Determine All Primitive Elements

Example (computing all primitive elements)

- Let p = 17 be a given prime number.
- Note that $\mathbb{Z}_{16}^* = \{1, 3, 5, 7, 9, 11, 13, 15\}$, so $\varphi(16) = 8$ is the number of primitive elements modulo 17.
- It can be verified that 3 is a primitive element of 17, since 3 generates $\mathbb{Z}_{17}^* = \{1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6\}.$
- The remaining primitive elements modulo 17 can be determined as follows. Recall from the previous proof that the order of $x = \gamma^i$ is

$$\frac{p-1}{\gcd(p-1,i)}$$

J. Rothe (HHU Düsseldorf)

Cryptocomplexity II

15 / 54

(1)

How to Determine All Primitive Elements

Example (computing all primitive elements: continued)

• First, compute all successive powers of 3 modulo 17:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3 ^{<i>i</i>} mod 17	1	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6

Table: Computing the primitive elements modulo 17

• By (1), an element $3^i \mod 17$ is primitive if and only if gcd(16, i) = 1.

• The above table shows these primitive elements in gray boxes.

- If p is very large, it can be costly to compute p-1 powers of $\gamma \in \mathbb{Z}_p^*$.
- This can be speeded up if the prime factorization of p-1 is known.

Theorem

Let p be prime. An element $\gamma \in \mathbb{Z}_p^*$ is primitive for p if and only if

$$\gamma^{\scriptscriptstyle (p-1)/q}
ot\equiv 1 mod p$$

for each prime q dividing p-1.

Proof: (\Rightarrow) : If γ is a primitive element of p, by definition we have

 $\gamma^i \not\equiv 1 \mod p$

for all *i*, $1 \le i \le p-2$, which implies the right-hand side.

(\Leftarrow): Suppose that γ is not a primitive element of p. Let k be the order of γ , i.e., the smallest positive number with $\gamma^k \equiv 1 \mod p$.

Then k < p-1 because γ is not primitive.

By Lagrange's theorem, k divides p-1, the order of the group \mathbb{Z}_p^* . Hence, $\frac{p-1}{k}$ is an integer larger than 1.

Let q be a prime divisor of $\frac{p-1}{k}$.

Then k divides $\frac{p-1}{q}$ because:

$$\frac{p-1}{k} = a \cdot q$$
 implies $\frac{p-1}{q} = a \cdot k$.

Since k divides $\frac{p-1}{q}$, it follows that

$$\left(\gamma^k
ight)^a=\gamma^{a\cdot k}=\gamma^{rac{p-1}{q}}\equiv 1 mod p$$

by the first statement of the previous theorem.

Example (for the previous theorem)

- Consider p = 17, so p − 1 = 16 = 2⁴, i.e., q = 2 is the only prime divisor of 16. γ = 3 is a primitive element of 17, since γ^{p-1}/_q = 3¹⁶/₂ = 3⁸ mod 17 = 16 ≠ 1 mod 17. However, γ = 4 is not a primitive element of 17, since 4⁸ mod 17 = 1.
 Now let p = 19, so p − 1 = 18 = 2 ⋅ 3². Check 2,3,...,17:
 - $2^9 \mod 19 = 18$ and $2^6 \mod 19 = 7$ $3^9 \mod 19 = 18$ and $3^6 \mod 19 = 7$ $4^9 \mod 19 = 1$ $5^9 \mod 19 = 1$ **X**

Step	Alice	Erich	Bob							
1	Alice and Bob agree on a large	and a primitive element γ of p ;								
	p and γ are public									
2	chooses a large random num-		chooses a large random num-							
	ber <i>a</i> , keeps it secret, and com-		ber b , keeps it secret, and com-							
	putes		putes							
	$lpha=\gamma^{a} mod p$		$eta=\gamma^b egin{array}{c} p \end{array}$							
3		$\alpha \Rightarrow$								
		$\Leftarrow \beta$								
4	computes her key	computes his key								
	$k_A = \beta^a \mod p$		$k_B=lpha^b m {\sf mod} p$							

Remark:

• The Diffie-Hellman protocol works, since in the arithmetics modulo p:

$$k_A = \beta^a = \gamma^{ba} = \gamma^{ab} = \alpha^b = k_B$$

- Thus, Alice and Bob indeed compute the same key.
- Using the "square-and-multiply" algorithm to perform exponentiation fast, both Alice and Bob can efficiently determine this key.

Example (Diffie-Hellman)

Suppose that Alice und Bob have chosen the prime number p = 17 and the primitive element $\gamma = 12$ of 17. (Check: $12^8 \not\equiv 1 \mod 17$.)

Further, Alice chooses the secret number a = 10 at random.

She wants to send the number $\alpha = 12^{10} \mod 17$ to Bob.

Applying the "square-and-multiply" algorithm, she first computes the binary expansion of the exponent, $10 = 2^1 + 2^3$, and then the values $12^{2^i} \mod 17$ for $0 \le i \le 3$:

$12^{2^0} \mod 17$	$12^{2^1} \mod 17$	$12^{2^2} \mod 17$	12 ²³ mod 17	$lpha=12^{10} \bmod 17$
12	8	13	16	9

Example (Diffie-Hellman: continued)

Multiplying the values in the gray boxes, she obtains

$$lpha = 12^{10} \equiv 9 \mod 17$$

and sends $\alpha = 9$ to Bob.

Meanwhile, Bob has chosen his secret exponent b = 15 and has computed his value $\beta = 12^{15} \equiv 10 \mod 17$ by the same procedure.

Bob sends $\beta = 10$ to Alice. Now, Alice and Bob compute

$$k_A = 10^{10} \equiv 2 \mod 17$$
 and $k_B = 9^{15} \equiv 2 \mod 17$

to determine their joint secret key, $k_A = 2 = k_B$.

Security of Diffie-Hellman

How secure is the Diffie–Hellman protocol?

Answer: Security of the Diffie-Hellman protocol rests on the hardness of computing discrete logarithms.

Direct (passive) attack on Diffie–Hellman:

Erich solves the "Diffie-Hellman problem."

Active "Man-in-the-Middle" attack:

Erich changes the protocol to his advantage.

Man-in-the-Middle Attack on Diffie-Hellman

Step	Alice	Erich	Bob							
1	Alice and Bob agree on	a primitive element γ of p ;								
	p and γ are public									
2	chooses a large ran-	chooses a secret	chooses a large ran-							
	dom number <i>a</i> , keeps	number e and com-	dom number <i>b</i> , keeps							
	it secret, and com-	putes $lpha_E=eta_E=$	it secret, and com-							
	putes $\alpha = \gamma^a \mod p$	$\gamma^e \mod p$	putes $eta=\gamma^b eta$ mod p							
3		$\alpha \Rightarrow \mid \alpha_E \Rightarrow$								
		$\Leftarrow \beta_E \mid \Leftarrow \beta$								
4	computes her key	computes his keys	computes his key							
	$k_{A,E}=(eta_E)^a mod p$	$k_{E,A} = \alpha^e \mod p$,	$k_{B,E} = (lpha_E)^b \mod p$							
		$k_{E,B} = \beta^e \mod p$								

Modular Exponentiation and Discrete Logarithm

Definition

Let p be a prime, and let γ be a primitive element of p.

The modular exponential function with base γ and modulus p is the function exp_{γ,p} mapping from Z_{p-1} to Z^{*}_p and defined by

$$\exp_{\gamma,p}(a)=\gamma^a mod p.$$

2 Its inverse function is called the *discrete logarithm* and maps, for fixed p and γ , the value $\alpha = \exp_{\gamma,p}(a)$ to a. If $\alpha = \exp_{\gamma,p}(a)$, we write

$$a = \log_\gamma lpha \mod (p-1)$$
 or, for short, $a = \log_\gamma lpha$.

The Discrete Logarithm Problem

Example

Let p = 13. A primitive element of 13 is 2. We have $2^4 = 16 \equiv 3 \mod 13$.

α												
$\log_2 \alpha$	0	1	4	2	9	5	11	3	8	10	7	6

Remark:

- In the following, we will consider only cyclic, multiplicative groups G of finite order n, such as Z^{*}_p with n = p − 1 for prime p.
- If G is not cyclic, the discrete logarithm may not always exist.
- Every cyclic group of finite order n is isomorphic to the additive group Z_n. However, this group is not suitable for implementing Diffie–Hellman, as discrete logarithms can be computed efficiently.

J. Rothe (HHU Düsseldorf)

Cryptocomplexity II

The Discrete Logarithm Problem

Definition

The (functional) *discrete logarithm problem*, denoted by DLOG, is defined as follows: Given

- a cyclic, multiplicative group (G, ·), represented by a primitive element γ∈ G of order n, and
- an element $lpha \in \langle \gamma
 angle$,

compute the unique element *a* with $0 \le a \le n-1$ such that

$$a = \log_{\gamma} \alpha.$$

Equivalently, given γ and α , compute the unique element *a* with

$$\gamma^a = \alpha$$
.

Direct Attack on Diffie-Hellman: Diffie-Hellman Problem

Definition

The (functional) *Diffie–Hellman problem*, denoted by DIFFIE-HELLMAN, is defined as follows: Given

- ullet an element $\gamma \in \mathbb{Z}_p^*$ of order n=p-1 for some prime number p, and
- two elements α and β in $\langle \gamma \rangle = \mathbb{Z}_{\rho}^{*}$,

compute an element $\delta \in \langle \gamma
angle$ such that

$$\log_{\gamma} \delta \equiv (\log_{\gamma} \alpha)(\log_{\gamma} \beta) \mod n.$$

Equivalently, given γ , $\alpha = \gamma^a \mod p$, and $\beta = \gamma^b \mod p$, compute

$$\gamma^{ab} \mod p$$

Discrete Logarithm Problem vs. Diffie-Hellman Problem

- If Erich were able to compute discrete logarithms efficiently, he would be able to solve the Diffie-Hellman problem, since he could determine
 - Alice's private exponent $a = \log_{\gamma} \alpha \mod (p-1)$ from p, γ , and α , and
 - Bob's private exponent $b = \log_{\gamma} \beta \mod (p-1)$ from p, γ , and β .
- Thus, computing discrete logarithms is no easier than solving the Diffie-Hellman problem.
- This argument can easily be generalized from Z^{*}_p to arbitrary cyclic, multiplicative groups and thus proves the following fact.

Discrete Logarithm Problem vs. Diffie-Hellman Problem

Fact

The Diffie–Hellman problem reduces to the discrete logarithm problem under polynomial-time Turing reductions: DIFFIE-HELLMAN *is in* FP^{DLOG}

- The converse question of whether the discrete logarithm problem is at least as hard as the Diffie–Hellman problem remains an unproven conjecture.
- The Diffie-Hellman protocol currently has no proof of security, not even in the sense that it is as hard as the discrete logarithm, which itself is a problem whose precise complexity is an open issue.

Exhaustive Search Algorithm

The discrete logarithm problem can be solved by exhaustive search:

• Given γ and α , successively compute

$$\gamma, \gamma^2, \gamma^3, \ldots,$$

until the unique exponent a with

$$\gamma^a = \alpha$$

is found.

- This can be done by computing $\gamma^i = \gamma \cdot \gamma^{i-1}$ for 1 < i < n.
- Hence, assuming that executing one group operation costs constant time, this naive brute-force algorithm requires time $\mathcal{O}(n)$, which is exponential in the length of n and thus exponential in the input size.

J. Rothe (HHU Düsseldorf)

Shanks' Baby-Step Giant-Step Algorithm

Shanks (n, γ, α) {

(* $G = \langle \gamma \rangle$ is a cyclic, multiplicative group, generated by a primitive element γ of order n, and $\alpha \in G$ *)

$$s := \left|\sqrt{n}\right|;$$

for $(i=0,1,\ldots,s-1)$ { add (γ^{is},i) to a list \mathscr{L}_1 ; }

Sort the elements of \mathscr{L}_1 with respect to their first coordinates; for (j = 0, 1, ..., s - 1) { add $(\alpha \gamma^{-j}, j)$ to a list \mathscr{L}_2 ; } Sort the elements of \mathscr{L}_2 with respect to their first coordinates;

Find a pair $(\delta, i) \in \mathscr{L}_1$ and a pair $(\delta, j) \in \mathscr{L}_2$, i.e., find two pairs with identical first coordinates;

return "
$$\log_{\gamma} \alpha = is + j$$
" and halt;

Figure: Shanks' baby-step giant-step algorithm

Shanks' Baby-Step Giant-Step Algorithm: Explanation

In order to compute $\log_{\gamma} \alpha$ for given values α and γ , where γ is a primitive element of order *n*, Shanks' algorithm first determines $s = \lfloor \sqrt{n} \rfloor$.

If we now set

$$a = is + j, \quad 0 \le j < s,$$

we have

$$\alpha = \gamma^a = \gamma^{is+j}.$$
 (2)

We want to determine $a = \log_{\gamma} \alpha$.

Equation (2) implies $\alpha \gamma^{-j} = (\gamma^s)^i$.

The pairs $(\alpha \gamma^{-j}, j)$ with $0 \le j < s$ are the elements of the list \mathcal{L}_2 , sorted with respect to the first coordinates, which represent the "baby steps."

Shanks' Baby-Step Giant-Step Algorithm: Explanation

If the pair (1,j) is in \mathscr{L}_2 for some j, we are done, since $\alpha \gamma^{-j} = 1$ implies $\alpha = \gamma^j$, so setting a = j solves the discrete logarithm problem in this case.

Otherwise, we determine

$$\mathfrak{H}=\gamma^s$$

and search for a group element δ^i , $1 \le i < s$, occurring as the first coordinate of some element in \mathscr{L}_2 .

The elements $(\gamma^s)^i = \gamma^{is}$ are collected in the list \mathscr{L}_1 , again sorted with respect to the first coordinates, and represent the "giant steps."

Once a pair (γ^{is}, i) is found in \mathscr{L}_1 such that (γ^{is}, j) occurs in the list \mathscr{L}_2 of baby steps, we have solved the discrete logarithm problem, since

$$lpha\gamma^{-j}=\delta^{i}=\gamma^{is}$$

implies $\alpha = \gamma^{is+j}$, so $a = \log_{\gamma} \alpha = is+j$.

Shanks' Baby-Step Giant-Step Algorithm: Example

Example

- Suppose we want to find $a = \log_2 47 \mod 100$ in the group \mathbb{Z}_{101}^* , using Shanks' algorithm. That is, p = 101, $\gamma = 2$, and $\alpha = 47$ are given.
- Note that 101 is a prime number and 2 is a primitive element of 101.
- Since n = p 1 = 100 is the order of 2, we have $s = \lfloor \sqrt{100} \rfloor = 10$.

It follows that

$$\gamma^{s} \mod p = 2^{10} \mod 101 = 14.$$

Shanks' Baby-Step Giant-Step Algorithm

Example (continued)

• Now, the sorted lists \mathscr{L}_1 and \mathscr{L}_2 can be determined as follows:

\mathscr{L}_1	(1,0)	(14,1)	(95,2)	(17,3)	(36,4)	(100,5)	(87,6)	(6,7)	(84,8)	(65,9)
\mathscr{L}_1 sorted	(1,0)	(6,7)	(14,1)	(17,3)	(36,4)	(65,9)	(84,8)	(87,6)	(95,2)	(100,5)
\mathscr{L}_2	(47,0)	(74,1)	(37,2)	(69,3)	(85,4)	(93,5)	(97,6)	(99,7)	(100,8)	(50,9)
\mathscr{L}_2 sorted	(37,2)	(47,0)	(50,9)	(69,3)	(74,1)	(85,4)	(93,5)	(97,6)	(99,7)	(100,8)

• Since (100,5) is in \mathscr{L}_1 and (100,8) is in \mathscr{L}_2 , we obtain

 $a = 5 \cdot 10 + 8 = 58.$

• It can be verified that $2^{58} \mod 101 = 47$, as desired.

Analysis of Shanks' Baby-Step Giant-Step Algorithm

- The first for loop can be implemented so as to first compute γ^s and then raising its powers by multiplying by γ^s .
- Similarly, the second for loop is performed by first computing the inverse element γ⁻¹ of γ in the group and then computing its powers.
- Both for loops require time $\mathscr{O}(s)$.
- Using an efficient sorting algorithm such as quicksort, the lists L₁ and L₂ can be sorted in time O(s log s).
- Finally, the two pairs whose first coordinate occurs in both lists can be found in time 𝒪(s) by simultaneously passing through both lists.

Analysis of Shanks' Baby-Step Giant-Step Algorithm

- Summing up, Shanks' algorithm can be implemented to run
 - in time $\mathscr{O}^*(s) = \mathscr{O}^*(\sqrt{n})$ and
 - to require the same amount of space,

where \mathcal{O}^* indicates that logarithmic factors are neglected as is usually done in the analysis of discrete logarithm algorithms.

- Although Shanks' algorithm is more efficient than the exhaustive search algorithm, it is not an efficient algorithm.
- There are many other (also inefficient) algorithms for the discrete logarithm problem, some of which are better than Shanks' algorithm:
 - Pollard's ho algorithm,
 - the Pohlig-Hellman algorithm,
 - the index calculus method, and variants thereof.

- Let a primitive element γ of a prime p and $lpha \in \langle \gamma
 angle$ be given.
- Suppose we know the factorization of the group order

$$n=\prod_{i=1}^k p_i^{c_i}=p-1$$

for distinct prime numbers p_i .

The value of

$$a = \log_{\gamma} \alpha \mod (p-1)$$

is uniquely determined.

If we can compute a = log_γ α mod p_i^{c_i} for each i, 1 ≤ i ≤ k, then we obtain a mod n by the Chinese Remainder Theorem.

• Let q be a prime number and $c \ge 1$ be a constant such that

$$n \equiv 0 \mod q^c$$
 and $n \not\equiv 0 \mod q^{c+1}$.

We show how to compute

$$x = a \mod q^c, \quad 0 \le x < q^c.$$

• In q-ary representation, we have

$$x=\sum_{i=0}^{c-1}a_i\cdot q^i,\quad 0\leq a_i\leq q-1 ext{ for } 0\leq i\leq c-1.$$

• Since $a = x + s \cdot q^c$ for some $s \in \mathbb{Z}$, we have

$$a = \left(\sum_{i=0}^{c-1} a_i \cdot q^i\right) + s \cdot q^c.$$

- So we have to determine the coefficients a_i , $0 \le i \le c-1$.
- Starting with *a*₀, we first show:

(

$$\alpha^{n/q} = \gamma^{a_0(n/q)}.$$
 (3)

Proof of (3):

$$\begin{aligned} \alpha^{n/q} &= (\gamma^{a})^{n/q} \\ &= \left(\gamma^{a_0+a_1\cdot q+\dots+a_{c-1}\cdot q^{c-1}+s\cdot q^c}\right)^{n/q} \\ &= \left(\gamma^{a_0+k\cdot q}\right)^{n/q}, \text{ where } k \in \mathbb{N} \\ &= \gamma^{a_0\cdot n/q} \cdot \gamma^{k\cdot n} \text{ and since } \gamma^n = 1 \\ &= \gamma^{a_0\cdot n/q}. \ \Box \end{aligned}$$

• By (3), we can determine a_0 as follows: Compute $\delta = \gamma^{n/q}, \ \delta^2, \ \dots$ until, for some $i \leq q-1$,

$$\delta^i = \alpha^{n/q}.$$

Then $a_0 = i$.

• If c = 1, we are done.

• If c > 1, we have to determine now $a_1, a_2, \ldots, a_{c-1}$, similarly to a_0 .

• Let
$$\alpha_0 = \alpha$$
. Define for $1 \le j \le c - 1$:
 $\alpha_j = \alpha \cdot \gamma^{-(a_0+a_1q+\dots+a_{j-1}q^{j-1})}$.
• Generalizing (3) (i.e., (4) is (3) for $j = 0$), we now show:
 $\alpha_j^{n/q^{j+1}} = \gamma^{a_j(n/q)}$.

Proof of (4):

$$\begin{split} \alpha_j^{n/q^{j+1}} &= \left(\gamma^{a_-(a_0+a_1\cdot q+\dots+a_{j-1}\cdot q^{j-1})}\right)^{n/q^{j+1}} \\ &= \left(\gamma^{a_j\cdot q^j+\dots+a_{c-1}\cdot q^{c-1}+s\cdot q^c}\right)^{n/q^{j+1}} \\ &= \left(\gamma^{a_j\cdot q^j+k_j\cdot q^{j+1}}\right)^{n/q^{j+1}}, \quad \text{where } k_j \in \mathbb{N} \\ &= \gamma^{a_j\cdot n/q}\cdot \gamma^{k_j\cdot n} \quad \text{and since } \gamma^n = 1 \\ &= \gamma^{a_j\cdot n/q}. \quad \Box \end{split}$$

(4)

• By (4), we can determine a_j from α_j as follows: Compute $\delta = \gamma^{n/q}, \ \delta^2, \ \dots$ until, for some $i \leq q-1$,

$$\delta^i = lpha_j^{n/q^{j+1}}$$

Then $a_j = i$.

- How do we get α_j ?
- If a_j is known, we can determine α_{j+1} from α_j using the recurrence

$$\alpha_{j+1} = \alpha_j \cdot \gamma^{-a_j q^j},\tag{5}$$

which follows immediately from the definition of α_j .

J. Rothe (HHU Düsseldorf)

Cryptocomplexity II

• Thus, applying (4) and (5) alternately, we can compute:

```
a_0, \ \alpha_1, \ a_1, \ \alpha_2, \ a_2, \ \ldots, \ \alpha_{c-1}, \ a_{c-1}.
```

 Summing up, if γ is a primitive element of order n and q is a prime such that

$$n \equiv 0 \mod q^c$$
 and $n \not\equiv 0 \mod q^{c+1}$,

then the Pohlig–Hellman algorithm computes coefficients $(a_0, a_1, \ldots, a_{c-1})$ with

$$\log_{\gamma} \alpha \mod q^c = \sum_{i=0}^{c-1} a_i \cdot q^i.$$

POHLIG-HELLMAN $(n, \gamma, \alpha, q, c)$ { (* γ is a primitive element of order n, $\alpha \in \langle \gamma \rangle$, q is a prime, and c is a constant satisfying $n \equiv 0 \mod q^c$ and $n \not\equiv 0 \mod q^{c+1}$ *) i := 0: $\alpha_i := \alpha;$ while $(j \leq c-1)$ { Set $\delta := lpha_i^{n/q^{j+1}}$ and find an i with $\delta = \gamma^{i(n/q)};$ $a_i := i$; (* according to (4) *) $\alpha_{i+1} := \alpha_i \cdot \gamma^{-a_j q^j}$; (* according to (5) *) i := i + 1: } return " $(a_0, a_1, \dots, a_{c-1})$ " and halt;

Analysis of the Pohlig-Hellman Algorithm

- Direct implemention of Pohlig-Hellman:
 - There are *c* while loops.
 - The most expensive step per loop is (4): "Find an i with $\delta = \gamma^{i(n/q)}$."
 - This step requires at most q multiplications, since $\gamma^{q(n/q)} = \gamma^n = 1$.
 - Thus, we have a running time of $\mathscr{O}^*(c \cdot q)$.
- This running time analysis can be improved, since $\delta = \gamma^{i(n/q)}$ is itself an instance of the discrete logarithm problem:

$$\delta = \gamma^{i(n/q)} \iff i = \log_{\gamma^{n/q}} \delta.$$

- The element $\gamma^{n/q}$ has order q.
- Thus, each *i* can be found in time $\mathcal{O}^*(\sqrt{q})$ (e.g., by Shanks' algorithm).
- This gives a total running time of $\mathcal{O}^*(c\sqrt{q})$.

Cryptocomplexity II

Analysis of the Pohlig–Hellman Algorithm

Remark: The running time is dominated by \sqrt{q} .

If q (the largest prime divisor of the group order n) is too small, discrete logarithms can be easily computed.

For example,

$$p = 2 \cdot 3 \cdot 5^{278} + 1$$

is a prime number of binary length 649.

 \mathbb{Z}_p^* has order

$$p-1=2\cdot 3\cdot 5^{278}.$$

But since 5 is the largest prime divisor, p cannot be used for cryptographic purposes.

Pohlig–Hellman Algorithm: Example

Example (Pohlig-Hellman Algorithm)

Let p = 29 and $\gamma = 2$ a primitive element of 29. We have

$$n = p - 1 = 28 = 2^2 \cdot 7^1.$$

Suppose $\alpha = 18$, so we want to determine

 $a = \log_2 18 \mod 28,$

by computing

first a mod 4,

then a mod 7.

Pohlig-Hellman Algorithm: Example

Example (Pohlig-Hellman Algorithm: continued)

• Computing a mod 4: q = 2 and c = 2.

j = 0:
$$\alpha_0 = \alpha = 18$$
 and $\delta = \alpha_0^{n/q^{i+1}} = 18^{28/2} = 18^{14} \equiv 28 \mod 29$.
 \Rightarrow For *i* = 1, we have $\delta = \gamma^{i \cdot n/q} = 2^{i \cdot 14} \equiv 28 \mod 29$.
 $\Rightarrow a_0 = 1$
 $\Rightarrow \alpha_1 = \alpha_0 \gamma^{-a_0 q^0} = 18 \cdot 2^{-1} \equiv 9 \mod 29$
j = 1: $\delta = \alpha_1^{n/q^{i+1}} = 9^{28/4} = 9^7 \equiv 28 \mod 29$.
 \Rightarrow For *i* = 1, we have $\delta = \gamma^{i \cdot n/q} = 2^{i \cdot 14} \equiv 28 \mod 29$.
 $\Rightarrow a_1 = 1$
Hence, $a = a_0 q^0 + a_1 q^1 = 1 \cdot 2^0 + 1 \cdot 2^1 = 3$, so $a \equiv 3 \mod 4$.

Pohlig–Hellman Algorithm: Example

Example (Pohlig-Hellman Algorithm: continued)

2 Computing a mod 7: q = 7 and c = 1.

$$j = 0: \ \alpha_0 = \alpha = 18 \text{ and } \delta = \alpha_0^{n/q^{j+1}} = 18^{28/7} = 18^4 \equiv 25 \text{ mod } 29.$$
$$\gamma^{n/q} = 2^{28/7} = 16$$
$$\Rightarrow \text{ For } i = 4, \text{ we have } \delta = \gamma^{j \cdot n/q} = 2^{4 \cdot 4} = 2^{16} \equiv 25 \text{ mod } 29.$$
$$\Rightarrow a_0 = 4, \text{ so } \mathbf{a} \equiv \mathbf{4} \text{ mod } \mathbf{7}.$$

Pohlig-Hellman Algorithm: Example

Example (Pohlig-Hellman Algorithm: continued) Applying the Chinese Remainder Theorem to

> $a \equiv 3 \mod 4$ $a \equiv 4 \mod 7$

with $q_1 = \frac{28}{4} = 7$ and $q_1^{-1} = 7$ (check: $7 \cdot 7 \equiv 1 \mod 4$) and with $q_2 = \frac{28}{7} = 4$ and $q_2^{-1} = 2$ (check: $4 \cdot 2 \equiv 1 \mod 7$), we get

$$a = 3 \cdot 7 \cdot 7 + 4 \cdot 4 \cdot 2 = 179 \equiv 11 \mod 28.$$

Check: $2^{11} \equiv 18 \mod 29$.