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Diffie–Hellman and the Discrete Logarithm Problem Secret-Key Agreement Problem

Merkle, Hellman, and Diffie 1977 at Stanford University

c© Chuck Painter/Stanford News Service
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Diffie–Hellman and the Discrete Logarithm Problem Secret-Key Agreement Problem

Diffie and Hellman Receive the 2015 Turing Award

c© ACM

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 3 / 54



Diffie–Hellman and the Discrete Logarithm Problem Secret-Key Agreement Problem

Secret-Key Agreement Problem

Key distribution for symmetric systems:

Erich

c© The design of Alice and Bob is due to Crépeau.

is an issue, and it is the more demanding, the more users are

participating in the same system.

Secret-key agreement problem:

How can Alice and Bob agree on such a joint secret key, without

meeting in private prior to exchanging encrypted messages and

without using an expensive secure channel for key distribution?
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Diffie–Hellman and the Discrete Logarithm Problem Secret-Key Agreement Problem

Secret-Key Agreement Problem

The secret-key agreement problem has been considered unsolvable

since the beginnings of cryptography.

Thus, it caused much surprise when Diffie and Hellman came up with

an ingenious, simple idea to solve it.

Using their secret-key agreement protocol, Alice and Bob can agree

on a joint secret key by exchanging some messages.

Eavesdropper Erich, however, does not have a clue about their key,

even though he knows every single bit exchanged, provided that he

cannot solve the discrete logarithm problem.
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Diffie–Hellman and the Discrete Logarithm Problem Secret-Key Agreement Problem

Diffie–Hellman Secret-Key Agreement Protocol

Step Alice Erich Bob

1 Alice and Bob agree on a large prime p and a primitive element γ of p;

p and γ are public

2 chooses a large random num-

ber a, keeps it secret, and com-

putes

α = γ
a mod p

chooses a large random num-

ber b, keeps it secret, and com-

putes

β = γ
b mod p

3 α ⇒

⇐ β

4 computes her key

kA = β
a mod p

computes his key

kB = α
b mod p

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 6 / 54



Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Recall the multiplicative group

Z∗n = {i
∣∣1≤ i ≤ n−1 and gcd(i ,n) = 1}

of order ϕ(n) = |Z∗n|, where ϕ is the Euler function.

Definition

A primitive element of a number n ∈ N is an element γ ∈ Z∗n satisfying

γd 6≡ 1 mod n

for each d with 1≤ d < ϕ(n).

Remark:

A primitive element γ of n is a generator of the entire group Z∗n:

Z∗n = 〈γ〉= {γ i
∣∣0≤ i < ϕ(n)}.
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Remark:

Not every integer has a primitive element; the number 8 is the

smallest such example:

Z∗8 = {1,3,5,7}, so ϕ(8) = 4.

11 = 1, 32 = 9≡ 1 mod 8, 52 = 25≡ 1 mod 8, 72 = 49≡ 1 mod 8.

It is known from elementary number theory that a number n has a

primitive element if and only if

n either is in {1,2,4},
or is of the form n = qk or n = 2qk for some odd prime q.
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Example (primitive element)

Consider Z∗5 = {1,2,3,4}, so ϕ(5) = 4.

5 has two primitive elements: 2 and 3, both generating Z∗5:

20 = 1, 21 = 2, 22 = 4, 23 ≡ 3 mod 5;

30 = 1, 31 = 3, 32 ≡ 4 mod 5, 33 ≡ 2 mod 5.
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Fact

For each prime p, Z∗p has exactly ϕ(p−1) primitive elements.

Proof: Since a primitive element γ of p generates Z∗p, every x ∈ Z∗p can

be uniquely written as

x = γ
i for some i , 0≤ i < p−1.

The order of x is defined as the smallest k > 0 such that xk = 1.

Note that x = γ i has order p−1
gcd(p−1,i) (see next slide).

It follows that x itself is a primitive element of p if and only if

gcd(p−1, i) = 1, and hence there are exactly ϕ(p−1) primitive elements

of p. q
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

The proof of this fact uses that the order of x = γ i is p−1
gcd(p−1,i) .

Why?

Theorem

Let G be a multiplicative group with neutral element 1, let g ∈ G be of

finite order n, and let k , `,m ∈ Z.

1 gm = 1 ⇐⇒ n divides m.

2 g ` = gk ⇐⇒ `≡ k mod n.
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Proof:

1 (⇒) : Let gm = 1 and m = qn+ r with 0≤ r < n.

Since n is the smallest positive number with gn = 1 and 0≤ r < n,

we must have r = 0. Hence, m = qn, so n divides m.

(⇐) : Assume m = qn. It follows that

gm = gqn = (gn)q = 1q = 1.

2 follows from the first statement with m = `−k because

g ` = gk ⇐⇒ `≡ k mod n

is equivalent to

gm = g `−k = 1 ⇐⇒ m = `−k ≡ 0 mod n. q
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Corollary

If γ ∈ G is of finite order n and i ∈ Z, then the order of γ i is n
gcd(n,i) .

Proof: We have
(
γ i
)n/gcd(n,i)

= (γn)
i/gcd(n,i) = 1.

By the theorem’s first statement, the order of γ i divides n
gcd(n,i) .

Now let k be the order of γ i , i.e., 1 =
(
γ i
)k

= γ i ·k .

Again, it follows from the theorem’s first statement that n divides i ·k .

Hence, n
gcd(n,i) divides k.

Since k divides n
gcd(n,i) and n

gcd(n,i) divides k, we have k = n
gcd(n,i) . q
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

Primitive Elements

Example (γ i has order p−1
gcd(p−1,i) )

Let p = 17 be a given prime number.

Note that γ = 3 is a primitive element of 17 (see next slide).

34 mod 17 = 13 has order 16
gcd(16,4) = 4, since

131 = 13 6= 1,

132 = 169≡−1 mod 17 = 16 6= 1,

133 = −13 mod 17 = 4 6= 1,

134 = (−1)(−1) mod 17 = 1.
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

How to Determine All Primitive Elements

Example (computing all primitive elements)

Let p = 17 be a given prime number.

Note that Z∗16 = {1,3,5,7,9,11,13,15}, so ϕ(16) = 8 is the number

of primitive elements modulo 17.

It can be verified that 3 is a primitive element of 17, since 3

generates Z∗17 = {1,3,9,10,13,5,15,11,16,14,8,7,4,12,2,6}.

The remaining primitive elements modulo 17 can be determined as

follows. Recall from the previous proof that the order of x = γ i is

p−1

gcd(p−1, i)
. (1)
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

How to Determine All Primitive Elements

Example (computing all primitive elements: continued)

First, compute all successive powers of 3 modulo 17:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3i mod 17 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6

Table: Computing the primitive elements modulo 17

By (1), an element 3i mod 17 is primitive if and only if gcd(16, i) = 1.

The above table shows these primitive elements in gray boxes.
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

How to Test if a Given Element is Primitive

If p is very large, it can be costly to compute p−1 powers of γ ∈ Z∗p.

This can be speeded up if the prime factorization of p−1 is known.

Theorem

Let p be prime. An element γ ∈ Z∗p is primitive for p if and only if

γ
(p−1)/q 6≡ 1 mod p

for each prime q dividing p−1.
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

How to Test if a Given Element is Primitive

Proof: (⇒) : If γ is a primitive element of p, by definition we have

γ
i 6≡ 1 mod p

for all i , 1≤ i ≤ p−2, which implies the right-hand side.

(⇐) : Suppose that γ is not a primitive element of p. Let k be the order

of γ, i.e., the smallest positive number with γk ≡ 1 mod p.

Then k < p−1 because γ is not primitive.

By Lagrange’s theorem, k divides p−1, the order of the group Z∗p.

Hence, p−1
k is an integer larger than 1.
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

How to Test if a Given Element is Primitive

Let q be a prime divisor of p−1
k .

Then k divides p−1
q because:

p−1

k
= a ·q implies

p−1

q
= a ·k .

Since k divides p−1
q , it follows that(

γ
k
)a

= γ
a·k = γ

p−1
q ≡ 1 mod p

by the first statement of the previous theorem. q
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Diffie–Hellman and the Discrete Logarithm Problem Some Number-Theoretic Notions

How to Test if a Given Element is Primitive

Example (for the previous theorem)

1 Consider p = 17, so p−1 = 16 = 24, i.e., q = 2 is the only prime

divisor of 16. γ = 3 is a primitive element of 17, since

γ
p−1
q = 3

16
2 = 38 mod 17 = 16 6≡ 1 mod 17.

However, γ = 4 is not a primitive element of 17, since 48 mod 17 = 1.

2 Now let p = 19, so p−1 = 18 = 2 ·32. Check 2,3, . . . ,17:

29 mod 19 = 18 and 26 mod 19 = 7 3

39 mod 19 = 18 and 36 mod 19 = 7 3

49 mod 19 = 1 7

59 mod 19 = 1 7
...
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Diffie–Hellman and the Discrete Logarithm Problem Diffie and Hellman’s Secret-Key Agreement Protocol

Diffie–Hellman Secret-Key Agreement Protocol

Step Alice Erich Bob

1 Alice and Bob agree on a large prime p and a primitive element γ of p;

p and γ are public

2 chooses a large random num-

ber a, keeps it secret, and com-

putes

α = γ
a mod p

chooses a large random num-

ber b, keeps it secret, and com-

putes

β = γ
b mod p

3 α ⇒

⇐ β

4 computes her key

kA = β
a mod p

computes his key

kB = α
b mod p
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Diffie–Hellman and the Discrete Logarithm Problem Diffie and Hellman’s Secret-Key Agreement Protocol

Diffie–Hellman Secret-Key Agreement Protocol

Remark:

The Diffie–Hellman protocol works, since in the arithmetics modulo p:

kA = β
a = γ

ba = γ
ab = α

b = kB

Thus, Alice and Bob indeed compute the same key.

Using the “square-and-multiply” algorithm to perform exponentiation

fast, both Alice and Bob can efficiently determine this key.
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Diffie–Hellman and the Discrete Logarithm Problem Diffie and Hellman’s Secret-Key Agreement Protocol

Diffie–Hellman Secret-Key Agreement Protocol

Example (Diffie–Hellman)

Suppose that Alice und Bob have chosen the prime number p = 17 and

the primitive element γ = 12 of 17. (Check: 128 6≡ 1 mod 17.)

Further, Alice chooses the secret number a = 10 at random.

She wants to send the number α = 1210 mod 17 to Bob.

Applying the “square-and-multiply” algorithm, she first computes the

binary expansion of the exponent, 10 = 21 + 23, and then the values

122i mod 17 for 0≤ i ≤ 3:

1220
mod 17 1221

mod 17 1222
mod 17 1223

mod 17 α = 1210 mod 17

12 8 13 16 9
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Diffie–Hellman and the Discrete Logarithm Problem Diffie and Hellman’s Secret-Key Agreement Protocol

Diffie–Hellman Secret-Key Agreement Protocol

Example (Diffie–Hellman: continued)

Multiplying the values in the gray boxes, she obtains

α = 1210 ≡ 9 mod 17

and sends α = 9 to Bob.

Meanwhile, Bob has chosen his secret exponent b = 15 and has computed

his value β = 1215 ≡ 10 mod 17 by the same procedure.

Bob sends β = 10 to Alice. Now, Alice and Bob compute

kA = 1010 ≡ 2 mod 17 and kB = 915 ≡ 2 mod 17

to determine their joint secret key, kA = 2 = kB .
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Diffie–Hellman and the Discrete Logarithm Problem Diffie and Hellman’s Secret-Key Agreement Protocol

Security of Diffie–Hellman

How secure is the Diffie–Hellman protocol?

Answer: Security of the Diffie–Hellman protocol rests on the hardness of

computing discrete logarithms.

Direct (passive) attack on Diffie–Hellman:

Erich solves the “Diffie–Hellman problem.”

Active “Man-in-the-Middle” attack:

Erich changes the protocol to his advantage.
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Diffie–Hellman and the Discrete Logarithm Problem Diffie and Hellman’s Secret-Key Agreement Protocol

Man-in-the-Middle Attack on Diffie–Hellman

Step Alice Erich Bob

1 Alice and Bob agree on a large prime p and a primitive element γ of p;

p and γ are public

2 chooses a large ran-

dom number a, keeps

it secret, and com-

putes α = γa mod p

chooses a secret

number e and com-

putes αE = βE =

γe mod p

chooses a large ran-

dom number b, keeps

it secret, and com-

putes β = γb mod p

3 α ⇒ | αE ⇒

⇐ βE | ⇐ β

4 computes her key

kA,E = (βE )a mod p

computes his keys

kE ,A = αe mod p,

kE ,B = β e mod p

computes his key

kB,E = (αE )b mod p

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 26 / 54



Diffie–Hellman and the Discrete Logarithm Problem Discrete Logarithm and the Diffie–Hellman Problem

Modular Exponentiation and Discrete Logarithm

Definition

Let p be a prime, and let γ be a primitive element of p.

1 The modular exponential function with base γ and modulus p is the

function expγ,p mapping from Zp−1 to Z∗p and defined by

expγ,p(a) = γ
a mod p.

2 Its inverse function is called the discrete logarithm and maps, for fixed

p and γ, the value α = expγ,p(a) to a. If α = expγ,p(a), we write

a = logγ α mod (p−1) or, for short, a = logγ α.
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Diffie–Hellman and the Discrete Logarithm Problem Discrete Logarithm and the Diffie–Hellman Problem

The Discrete Logarithm Problem

Example

Let p = 13. A primitive element of 13 is 2. We have 24 = 16≡ 3 mod 13.

α 1 2 3 4 5 6 7 8 9 10 11 12

log2 α 0 1 4 2 9 5 11 3 8 10 7 6

Remark:

In the following, we will consider only cyclic, multiplicative groups G

of finite order n, such as Z∗p with n = p−1 for prime p.

If G is not cyclic, the discrete logarithm may not always exist.

Every cyclic group of finite order n is isomorphic to the additive group

Zn. However, this group is not suitable for implementing

Diffie–Hellman, as discrete logarithms can be computed efficiently.
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Diffie–Hellman and the Discrete Logarithm Problem Discrete Logarithm and the Diffie–Hellman Problem

The Discrete Logarithm Problem

Definition

The (functional) discrete logarithm problem, denoted by dlog, is defined

as follows: Given

a cyclic, multiplicative group (G , ·), represented by a primitive

element γ ∈ G of order n, and

an element α ∈ 〈γ〉,

compute the unique element a with 0≤ a≤ n−1 such that

a = logγ α.

Equivalently, given γ and α, compute the unique element a with

γ
a = α.
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Diffie–Hellman and the Discrete Logarithm Problem Discrete Logarithm and the Diffie–Hellman Problem

Direct Attack on Diffie–Hellman: Diffie–Hellman Problem

Definition

The (functional) Diffie–Hellman problem, denoted by diffie-hellman, is

defined as follows: Given

an element γ ∈ Z∗p of order n = p−1 for some prime number p, and

two elements α and β in 〈γ〉= Z∗p,

compute an element δ ∈ 〈γ〉 such that

logγ δ ≡ (logγ α)(logγ β ) mod n.

Equivalently, given γ, α = γa mod p, and β = γb mod p, compute

γ
ab mod p.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 30 / 54



Diffie–Hellman and the Discrete Logarithm Problem Discrete Logarithm and the Diffie–Hellman Problem

Discrete Logarithm Problem vs. Diffie–Hellman Problem

If Erich were able to compute discrete logarithms efficiently, he would

be able to solve the Diffie–Hellman problem, since he could determine

Alice’s private exponent a = logγ α mod (p−1) from p, γ, and α, and

Bob’s private exponent b = logγ β mod (p−1) from p, γ, and β .

Thus, computing discrete logarithms is no easier than solving the

Diffie–Hellman problem.

This argument can easily be generalized from Z∗p to arbitrary cyclic,

multiplicative groups and thus proves the following fact.
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Diffie–Hellman and the Discrete Logarithm Problem Discrete Logarithm and the Diffie–Hellman Problem

Discrete Logarithm Problem vs. Diffie–Hellman Problem

Fact

The Diffie–Hellman problem reduces to the discrete logarithm problem

under polynomial-time Turing reductions: diffie-hellman is in FPdlog.

The converse question of whether the discrete logarithm problem is at

least as hard as the Diffie–Hellman problem remains an unproven

conjecture.

The Diffie–Hellman protocol currently has no proof of security, not

even in the sense that it is as hard as the discrete logarithm, which

itself is a problem whose precise complexity is an open issue.
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Diffie–Hellman and the Discrete Logarithm Problem Algorithms for the Discrete Logarithm Problem

Exhaustive Search Algorithm

The discrete logarithm problem can be solved by exhaustive search:

Given γ and α, successively compute

γ, γ
2, γ

3, . . . ,

until the unique exponent a with

γ
a = α

is found.

This can be done by computing γ i = γ · γ i−1 for 1 < i < n.

Hence, assuming that executing one group operation costs constant

time, this naive brute-force algorithm requires time O(n), which is

exponential in the length of n and thus exponential in the input size.
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Diffie–Hellman and the Discrete Logarithm Problem Algorithms for the Discrete Logarithm Problem

Shanks’ Baby-Step Giant-Step Algorithm

Shanks(n,γ,α) {
(* G = 〈γ〉 is a cyclic, multiplicative group, generated by a primitive

element γ of order n, and α ∈ G *)

s :=
⌈√

n
⌉
;

for (i = 0,1, . . . ,s−1) { add (γ is , i) to a list L1;}
Sort the elements of L1 with respect to their first coordinates;

for (j = 0,1, . . . ,s−1) { add (αγ−j , j) to a list L2;}
Sort the elements of L2 with respect to their first coordinates;

Find a pair (δ , i) ∈L1 and a pair (δ , j) ∈L2, i.e., find two pairs

with identical first coordinates;

return “logγ α = is + j” and halt;

}

Figure: Shanks’ baby-step giant-step algorithm
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Diffie–Hellman and the Discrete Logarithm Problem Algorithms for the Discrete Logarithm Problem

Shanks’ Baby-Step Giant-Step Algorithm: Explanation

In order to compute logγ α for given values α and γ, where γ is a primitive

element of order n, Shanks’ algorithm first determines s =
⌈√

n
⌉
.

If we now set

a = is + j , 0≤ j < s,

we have

α = γ
a = γ

is+j . (2)

We want to determine a = logγ α.

Equation (2) implies αγ−j = (γs)i .

The pairs (αγ−j , j) with 0≤ j < s are the elements of the list L2, sorted

with respect to the first coordinates, which represent the “baby steps.”
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Diffie–Hellman and the Discrete Logarithm Problem Algorithms for the Discrete Logarithm Problem

Shanks’ Baby-Step Giant-Step Algorithm: Explanation

If the pair (1, j) is in L2 for some j , we are done, since αγ−j = 1 implies

α = γ j , so setting a = j solves the discrete logarithm problem in this case.

Otherwise, we determine
δ = γ

s

and search for a group element δ i , 1≤ i < s, occurring as the first

coordinate of some element in L2.

The elements (γs)i = γ is are collected in the list L1, again sorted with

respect to the first coordinates, and represent the “giant steps.”

Once a pair (γ is , i) is found in L1 such that (γ is , j) occurs in the list L2 of

baby steps, we have solved the discrete logarithm problem, since

αγ
−j = δ

i = γ
is

implies α = γ is+j , so a = logγ α = is + j .
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Diffie–Hellman and the Discrete Logarithm Problem Algorithms for the Discrete Logarithm Problem

Shanks’ Baby-Step Giant-Step Algorithm: Example

Example

Suppose we want to find a = log2 47 mod 100 in the group Z∗101, using

Shanks’ algorithm. That is, p = 101, γ = 2, and α = 47 are given.

Note that 101 is a prime number and 2 is a primitive element of 101.

Since n = p−1 = 100 is the order of 2, we have s =
⌈√

100
⌉

= 10.

It follows that

γ
s mod p = 210 mod 101 = 14.
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Diffie–Hellman and the Discrete Logarithm Problem Algorithms for the Discrete Logarithm Problem

Shanks’ Baby-Step Giant-Step Algorithm

Example (continued)

Now, the sorted lists L1 and L2 can be determined as follows:

L1 (1,0) (14,1) (95,2) (17,3) (36,4) (100,5) (87,6) (6,7) (84,8) (65,9)

L1 sorted (1,0) (6,7) (14,1) (17,3) (36,4) (65,9) (84,8) (87,6) (95,2) (100,5)

L2 (47,0) (74,1) (37,2) (69,3) (85,4) (93,5) (97,6) (99,7) (100,8) (50,9)

L2 sorted (37,2) (47,0) (50,9) (69,3) (74,1) (85,4) (93,5) (97,6) (99,7) (100,8)

Since (100,5) is in L1 and (100,8) is in L2, we obtain

a = 5 ·10 + 8 = 58.

It can be verified that 258 mod 101 = 47, as desired.
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Diffie–Hellman and the Discrete Logarithm Problem Algorithms for the Discrete Logarithm Problem

Analysis of Shanks’ Baby-Step Giant-Step Algorithm

The first for loop can be implemented so as to first compute γs and

then raising its powers by multiplying by γs .

Similarly, the second for loop is performed by first computing the

inverse element γ−1 of γ in the group and then computing its powers.

Both for loops require time O(s).

Using an efficient sorting algorithm such as quicksort, the lists L1

and L2 can be sorted in time O(s log s).

Finally, the two pairs whose first coordinate occurs in both lists can

be found in time O(s) by simultaneously passing through both lists.
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Diffie–Hellman and the Discrete Logarithm Problem Algorithms for the Discrete Logarithm Problem

Analysis of Shanks’ Baby-Step Giant-Step Algorithm

Summing up, Shanks’ algorithm can be implemented to run

in time O∗(s) = O∗(
√
n) and

to require the same amount of space,

where O∗ indicates that logarithmic factors are neglected as is

usually done in the analysis of discrete logarithm algorithms.

Although Shanks’ algorithm is more efficient than the exhaustive

search algorithm, it is not an efficient algorithm.

There are many other (also inefficient) algorithms for the discrete

logarithm problem, some of which are better than Shanks’ algorithm:

Pollard’s ρ algorithm,

the Pohlig–Hellman algorithm,

the index calculus method, and variants thereof.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 40 / 54



Diffie–Hellman and the Discrete Logarithm Problem Algorithms for the Discrete Logarithm Problem

The Pohlig–Hellman Algorithm

Let a primitive element γ of a prime p and α ∈ 〈γ〉 be given.

Suppose we know the factorization of the group order

n =
k

∏
i=1

pcii = p−1

for distinct prime numbers pi .

The value of

a = logγ α mod (p−1)

is uniquely determined.

If we can compute a = logγ α mod pcii for each i , 1≤ i ≤ k , then we

obtain a mod n by the Chinese Remainder Theorem.
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Let q be a prime number and c ≥ 1 be a constant such that

n ≡ 0 mod qc and n 6≡ 0 mod qc+1.

We show how to compute

x = a mod qc , 0≤ x < qc .

In q-ary representation, we have

x =
c−1

∑
i=0

ai ·qi , 0≤ ai ≤ q−1 for 0≤ i ≤ c−1.

Since a = x + s ·qc for some s ∈ Z, we have

a =

(
c−1

∑
i=0

ai ·qi
)

+ s ·qc .
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So we have to determine the coefficients ai , 0≤ i ≤ c−1.

Starting with a0, we first show:

α
n/q = γ

a0(n/q). (3)

Proof of (3):

α
n/q = (γ

a)
n/q

=
(

γ
a0+a1·q+···+ac−1·qc−1+s·qc

)n/q

=
(

γ
a0+k·q

)n/q
, where k ∈ N

= γ
a0·n/q · γk·n and since γ

n = 1

= γ
a0·n/q. q
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By (3), we can determine a0 as follows:

Compute δ = γ
n/q, δ 2, . . . until, for some i ≤ q−1,

δ
i = α

n/q.

Then a0 = i .

If c = 1, we are done.

If c > 1, we have to determine now a1,a2, . . . ,ac−1, similarly to a0.
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Let α0 = α. Define for 1≤ j ≤ c−1:

αj = α · γ−(a0+a1q+···+aj−1q
j−1).

Generalizing (3) (i.e., (4) is (3) for j = 0), we now show:

α
n/qj+1

j = γ
aj (n/q). (4)

Proof of (4):

α
n/qj+1

j =
(

γ
a−(a0+a1·q+···+aj−1·qj−1)

)n/qj+1

=
(

γ
aj ·qj+···+ac−1·qc−1+s·qc

)n/qj+1

=
(

γ
aj ·qj+kj ·qj+1

)n/qj+1

, where kj ∈ N

= γ
aj ·n/q · γkj ·n and since γ

n = 1

= γ
aj ·n/q. q
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By (4), we can determine aj from αj as follows:

Compute δ = γ
n/q, δ 2, . . . until, for some i ≤ q−1,

δ
i = α

n/qj+1

j .

Then aj = i .

How do we get α j?

If aj is known, we can determine αj+1 from αj using the recurrence

αj+1 = αj · γ−ajq
j
, (5)

which follows immediately from the definition of αj .
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Thus, applying (4) and (5) alternately, we can compute:

a0, α1, a1, α2, a2, . . . , αc−1, ac−1.

Summing up, if γ is a primitive element of order n and q is a prime

such that

n ≡ 0 mod qc and n 6≡ 0 mod qc+1,

then the Pohlig–Hellman algorithm computes coefficients

(a0,a1, . . . ,ac−1) with

logγ α mod qc =
c−1

∑
i=0

ai ·qi .
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Pohlig-Hellman(n,γ,α,q,c) {
(* γ is a primitive element of order n, α ∈ 〈γ〉, q is a prime, and c is

a constant satisfying n ≡ 0 mod qc and n 6≡ 0 mod qc+1 *)

j := 0;

αj := α;

while (j ≤ c−1) {
Set δ := α

n/qj+1

j and find an i with δ = γ i(
n/q);

aj := i ; (* according to (4) *)

αj+1 := αj · γ−ajq
j
; (* according to (5) *)

j := j + 1;

}
return “(a0,a1, . . . ,ac−1)” and halt;

}

Figure: Pohlig–Hellman algorithm
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Direct implemention of Pohlig–Hellman:

There are c while loops.

The most expensive step per loop is (4): “Find an i with δ = γ i(
n/q).”

This step requires at most q multiplications, since γq(n/q) = γn = 1.

Thus, we have a running time of O∗(c ·q).

This running time analysis can be improved, since δ = γ i(
n/q) is itself

an instance of the discrete logarithm problem:

δ = γ
i(n/q) ⇐⇒ i = log

γ
n/q δ .

The element γ
n/q has order q.

Thus, each i can be found in time O∗(
√
q) (e.g., by Shanks’

algorithm).

This gives a total running time of O∗(c
√
q).
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Remark: The running time is dominated by
√
q.

If q (the largest prime divisor of the group order n) is too small, discrete

logarithms can be easily computed.

For example,

p = 2 ·3 ·5278 + 1

is a prime number of binary length 649.

Z∗p has order

p−1 = 2 ·3 ·5278.

But since 5 is the largest prime divisor, p cannot be used for cryptographic

purposes.
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Example (Pohlig–Hellman Algorithm)

Let p = 29 and γ = 2 a primitive element of 29. We have

n = p−1 = 28 = 22 ·71.

Suppose α = 18, so we want to determine

a = log2 18 mod 28,

by computing

1 first a mod 4,

2 then a mod 7.
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Example (Pohlig–Hellman Algorithm: continued)

1 Computing a mod 4: q = 2 and c = 2.

j = 0: α0 = α = 18 and δ = α
n/qj+1

0 = 1828/2 = 1814 ≡ 28 mod 29.

⇒ For i = 1, we have δ = γ i ·n/q = 2i ·14 ≡ 28 mod 29.

⇒ a0 = 1

⇒ α1 = α0γ−a0q
0

= 18 ·2−1 ≡ 9 mod 29

j = 1: δ = α
n/qj+1

1 = 928/4 = 97 ≡ 28 mod 29.

⇒ For i = 1, we have δ = γ i ·n/q = 2i ·14 ≡ 28 mod 29.

⇒ a1 = 1

Hence, a = a0q
0 +a1q

1 = 1 ·20 + 1 ·21 = 3, so a≡ 3 mod 4.
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Example (Pohlig–Hellman Algorithm: continued)

2 Computing a mod 7: q = 7 and c = 1.

j = 0: α0 = α = 18 and δ = α
n/qj+1

0 = 1828/7 = 184 ≡ 25 mod 29.

γ
n/q = 228/7 = 16

⇒ For i = 4, we have δ = γ i ·n/q = 24·4 = 216 ≡ 25 mod 29.

⇒ a0 = 4, so a≡ 4 mod 7.
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Example (Pohlig–Hellman Algorithm: continued)

Applying the Chinese Remainder Theorem to

a≡ 3 mod 4

a≡ 4 mod 7

with q1 = 28/4 = 7 and q−1
1 = 7 (check: 7 ·7≡ 1 mod 4) and

with q2 = 28/7 = 4 and q−1
2 = 2 (check: 4 ·2≡ 1 mod 7), we get

a = 3 ·7 ·7 + 4 ·4 ·2 = 179≡ 11 mod 28.

Check: 211 ≡ 18 mod 29.
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