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Preliminary Remarks Websites

Vorlesungswebsite

Some information and material for this module can be found in

ILIAS.

In addition, slides, exercises, and other material can also be

downloaded from:

https : //ccc.cs.uni-duesseldorf.de/˜rothe/cryptocomp2
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Reminder: Tasks and Aims of Cryptology Reminder: What is Cryptology?

What is Cryptology?

Cryptology

is the art &

science of

Cryptography Cryptanalysis

encrypting texts and breaking existing cryptosystems

messages such that by determining the encryption

unauthorized decryption keys and deciphering encrypted

is prevented messages without authorization
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Reminder: Tasks and Aims of Cryptology Reminder: What is Cryptology?

Related Fields . . .

. . . we will not consider:

Steganography

Coding Theory

. . . whose notions, results, and methods will be used:

Complexity Theory

Number Theory and (Linear) Algebra

Probability Theory

Algorithmics
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Reminder: Tasks and Aims of Cryptology Reminder: Cryptography

A Typical Cryptographic Scenario

Erich

© The design of Alice and Bob is due to Crépeau.
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Reminder: Tasks and Aims of Cryptology Reminder: Cryptography

Why Alice and Bob?

© By Georges Biard, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=9054776.
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Reminder: Tasks and Aims of Cryptology Reminder: Cryptography

A Typical Cryptographic Scenario

Jennifer

Angelina Brad
© By Georges Biard, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=9054776.
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Reminder: Tasks and Aims of Cryptology Reminder: Cryptography

Cryptosystem

Definition

A cryptosystem is a quintuple S = (M,C ,K ,E ,D) such that:

1 M, C , and K are sets, where

M is the message space (or “plaintext space” or “cleartext space”),

C is the ciphertext space, and

K is the key space.

2 E = {Ek

∣∣k ∈ K} is a family of functions Ek : M → C that are used

for encryption, and

3 D = {Dk

∣∣k ∈ K} is a family of functions Dk : C →M that are used

for decryption.

4 For each key e ∈ K , there exists a key d ∈ K such that for each

message m ∈M:
Dd(Ee(m)) = m. (1)
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Reminder: Tasks and Aims of Cryptology Reminder: Cryptography

Cryptosystem

Definition

A cryptosystem is called symmetric (or “private-key”) if d = e, or if d

can at least be “easily” computed from e.

A cryptosystem is called asymmetric (or “public-key”) if d 6= e, and it

is “practically infeasible” to compute d from e. Here, d is the private

key, and e is the public key.
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Reminder: Tasks and Aims of Cryptology Reminder: Cryptanalysis

Types of Attack

Ciphertext-Only Attack

Known: some ciphertexts

Determine: the corresponding plaintext/keys

Known-Plaintext Attack

Known: (p1,c1),(p2,c2), . . . ,(pk ,ck)

Determine: the corresponding keys/other ciphertexts

Chosen-Plaintext Attack

Choose: some plaintexts at will

Obtain: the corresponding ciphertexts

Determine: the corresponding keys
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Reminder: Tasks and Aims of Cryptology Reminder: Cryptanalysis

Types of Attack and Kerckhoffs’s Principle

Chosen-Ciphertext Attack

Choose: some ciphertexts at will

Obtain: the corresponding plaintexts

Determine: the corresponding keys

Key-Only Attack (relevant only for public-key cryptosystems)

Known: the public keys

Determine: the corresponding private keys

Kerckhoffs’s Principle:

The security of a cryptosystem must not depend on the secrecy

of the system used. Rather, the security of a cryptosystem may

depend only on the secrecy of the keys used.
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Reminder: Tasks and Aims of Cryptology Reminder: Digital Signatures and Authentication

Digital Signatures and Authentication

Digital Signatures: Alice wants to sign her (encrypted) messages to

Bob such that

(a) Bob can verify that indeed she is the sender of the message, and

(b) also third parties (who perhaps do not trust Bob) can convince

themselves of the authenticity of her signature.

Property (a) is already achieved by symmetric authentication codes.

Authentication codes:

provide a method of ensuring the integrity of a message.

Active Attacks:

Substitution Attack: Erich might try to tamper with (i.e., to change or

replace) the messages transmitted.

Impersonation Attack (a.k.a. “Man-in-the-middle Attack”): Erich

might try to introduce a message of his own into the channel, hoping it

is accepted as authentic by Bob.
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Reminder: Tasks and Aims of Cryptology Reminder: Digital Signatures and Authentication

Authentication Problems

Message integrity: How can one be sure that no intruder has

tampered with the message received?

Message authentication: How can one be sure that a message

indeed originated from the sender asserted and was not introduced by

an intruder?

User authentication: How can one be sure of the identity of an

individual?
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Turing Award 2002 for Rivest, Shamir, and Adleman

Rivest, Shamir, and
Adleman Receive 
2002 Turing Award

800 NOTICES OF THE AMS VOLUME 50, NUMBER 7

The Association for Computing Machinery (ACM) has
named RONALD L. RIVEST, ADI SHAMIR, and LEONARD M.
ADLEMAN as winners of the 2002 A. M. Turing Award,
considered the “Nobel Prize of Computing”, for 
their contributions to public key cryptography. 
The Turing Award carries a $100,000 prize, with 
funding provided by Intel Corporation.

As researchers at the Massachusetts Institute of
Technology in 1977, the team developed the RSA
code, which has become the foundation for an en-
tire generation of technology security products. It
has also inspired important work in both theoret-
ical computer science and mathematics. RSA is an
algorithm—named for Rivest, Shamir, and Adle-
man—that uses number theory to provide a prag-
matic approach to secure transactions. It is today’s
most widely used encryption method, with appli-
cations in Internet browsers and servers, electronic
transactions in the credit card industry, and prod-
ucts providing email services.

Rivest is the Viterbi Professor of Computer Sci-
ence in MIT’s Department of Electrical Engineering
and Computer Science. He is a founder of MIT’s

Cryptography and Information Se-
curity Group. He received a B.A. in
mathematics from Yale University
and a Ph.D. in computer science
from Stanford University.

Shamir is the Borman Profes-
sor in the Applied Mathematics
Department of the Weizmann In-
stitute of Science in Israel. He re-
ceived a B.S. in mathematics from
Tel Aviv University and a Ph.D. in

computer science from the Weizmann Institute.
Adleman is the Distinguished Henry Salvatori

Professor of Computer Science and Professor of
Molecular Biology at the University of Southern
California. He earned a B.S. in mathematics at the
University of California, Berkeley, and a Ph.D. in
computer science, also at Berkeley.

The ACM presented the Turing Award on June 7,
2003, in conjunction with the Federated Computing
Research Conference in San Diego, California. The
award was named for Alan M. Turing, the British
mathematician who articulated the mathematical
foundation and limits of computing and who was a
key contributor to the Allied cryptanalysis of the
German Enigma cipher during World War II. Since
its inception in 1966, the ACM’s Turing Award has
honored the computer scientists and engineers who
created the systems and underlying theoretical foun-
dations that have propelled the information tech-
nology industry.

—From an ACM news release

Ronald L. Rivest Adi Shamir Leonard M. Adleman
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Historical Notes on RSA

The RSA public-key cryptosystem and the related digital signature

scheme are due to Rivest, Shamir, and Adleman (1978), who received

the Turing Award in 2002.

This is the very first public-key cryptosystem in the open literature.

The idea of public-key cryptography was first published by Diffie and

Hellman (1976).

Decades later, in December of 1997, the British Government

Communications Headquarters (GCHQ) revealed that Ellis, Cocks,

and Williamson, employed at the Communications Electronics Security

Group of GCHQ, had independently and even earlier discovered

the principle of public-key cryptography (1969 by Ellis),

the cryptosystem now called RSA (1973 by Cocks), and

the secret-key agreement protocol now called Diffie–Hellman (1976 by

Williamson).
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

For k ≥ 1, define the multiplicative group

Z∗k = {i
∣∣1≤ i ≤ k−1 and gcd(i ,k) = 1}.

Recall the extended Euclidean Algorithm.

Recall the Euler function ϕ, which gives the order of the group Z∗k ,

i.e., ϕ(k) = ‖Z∗k‖. By definition, we have:

ϕ(m ·n) = ϕ(m) ·ϕ(n) for each m,n ∈ N with gcd(m,n) = 1, and

ϕ(p) = p−1 for each prime p.

These properties immediately imply that if n = p ·q for prime

numbers p and q, then

ϕ(n) = (p−1)(q−1).
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

Theorem (Euler)

For each a with gcd(a,n) = 1, aϕ(n) ≡ 1 mod n. without proof

Example (application of Euler’s theorem)

What is 1031025 mod 51?

n = 51 = 3 ·17 = p ·q

ϕ(n) = ϕ(51) = (p−1)(q−1) = 2 ·16 = 32.

By Euler’s theorem, we have 10332 ≡ 1 mod 51, which implies

1031025 ≡ 10332·32+1 ≡ 132 ·103 ≡ 103 ≡ 1 mod 51.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

Remark:

Euler’s theorem is a special case of Lagrange’s theorem, which states

that for every finite group G of order k , the order of each subgroup of

G divides k .

Define the order of an element x of G to be the smallest positive

integer k such that xk = x ◦ x ◦ · · · ◦ x︸ ︷︷ ︸
k times

= e.

Since the order of any group element a is the order of the subgroup

generated by a, it follows that the order of a divides k. Letting e

denote the neutral element of G, we have ak = e. Since Z∗n is a finite

multiplicative group of order ϕ(n), we have proven Euler’s theorem.

The special case of Euler’s theorem with a prime number n coprime

with a is known as Fermat’s Little Theorem.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

Corollary (Fermat’s Little Theorem)

If p is prime and a an integer with gcd(a,p) = 1, then ap−1 ≡ 1 mod p.

Proof: To simplify the proof, we assume

first that 0≤ a≤ p−1 (otherwise, simply reduce a modulo p);

second that even 1≤ a≤ p−1 (indeed, ap−1 ≡ 1 mod p is the same

as ap ≡ a mod p, and if a = 0, this holds trivially).

Now, let k be the order of a, i.e., k is the smallest positive integer such

that ak ≡ 1 mod p.

Thus 1,a,a2, . . . ,ak−1 reduced modulo p form a subgroup of Z∗p whose

order is k.
J. Rothe (HHU Düsseldorf) Cryptocomplexity II 23 / 79



Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

By Lagrange’s theorem, k divides the order of Z∗p, which is p−1.

So p−1 = km for some positive integer m.

It follows that

ap−1 ≡ akm ≡ (ak)m ≡ 1m ≡ 1 mod p. q
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

Theorem (Chinese Remainder Theorem)

Let m1,m2, . . . ,mk be k positive integers that are pairwise relatively prime

(i.e., gcd(mi ,mj) = 1 for i 6= j), let

M =
k

∏
i=1

mi ,

and let a1,a2, . . . ,ak be any integers. For each i with 1≤ i ≤ k, define

qi = M/mi , and let q−1i denote the inverse element of qi in Z∗mi
.

Then, the system of k congruences x ≡ ai mod mi , where 1≤ i ≤ k, has

the unique solution

x =
k

∑
i=1

aiqiq
−1
i mod M.

without proof
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

Example (Chinese Remainder Theorem)

We want to solve the following system of congruences:

x ≡ 2 mod 4

x ≡ 1 mod 3

x ≡ 0 mod 5

Thus M = 4 ·3 ·5 = 60 and

q1 =
60

4
= 15, q2 =

60

3
= 20, q3 =

60

5
= 12.

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 26 / 79



Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

Example (Chinese Remainder Theorem, continued)

For each i ∈ {1,2,3}, solve

qiq
−1
i ≡ 1 mod mi .

That is,

−q−11 ≡ 1 mod 4 has the solution q−11 =−1,

−q−12 ≡ 1 mod 3 has the solution q−12 =−1,

2q−13 ≡ 1 mod 5 has the solution q−13 = 3.

Hence,

x =−2 ·15−1 ·20 =−50 = 10 mod 60.

That is, x = 10 solves the system of congruences simultaneously.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

Step Alice Erich Bob

1

chooses two large primes, p and q,

at random, computes n = pq and

ϕ(n) = (p− 1)(q− 1), his public

key (n,e), and his private key d

satisfying (2) and (3)

2 ⇐ (n,e)

3
encrypts m as

c = me mod n

4 c ⇒

5 decrypts c as m = cd mod n

Table: RSA protocol
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

1 Key Generation.

Bob chooses two distinct large prime numbers, p and q with p 6= q,

and computes their product n = pq.

Then, he chooses an exponent e ∈ N satisfying

1 < e < ϕ(n) = (p−1)(q−1) and gcd(e,ϕ(n)) = 1. (2)

Using the extended Euclidean Algorithm, he then determines the

inverse element of e mod ϕ(n), i.e., the unique number d satisfying

1 < d < ϕ(n) and e ·d ≡ 1 mod ϕ(n). (3)

The pair (n,e) is Bob’s public key, and d is Bob’s private key.

2 Communication. Bob makes his key (n,e) public.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

3 Encryption.

Messages are strings over an alphabet Σ, which can be viewed as

natural numbers in ‖Σ‖-adic representation.

Every message can be encoded block-wise with a fixed block length.

Let m < n be the number encoding one block of the message Alice

wants to send to Bob.

Alice knows Bob’s public key (n,e) and encrypts m as the number

c = E(n,e)(m), where the encryption function is defined by

E(n,e)(m) = me mod n. (4)

4 Communication. Alice sends her encrypted message c to Bob.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

5 Decryption.

Let c with 0≤ c < n be the number encoding one block of the

ciphertext that Bob receives.

The eavesdropper Erich may also know c , but he does not know Bob’s

private key d .

Bob decrypts c using d and the following decryption function:

Dd (c) = cd mod n. (5)
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

Theorem

Let (n,e) be the public key, and let d be the private key used in the RSA

protocol. Then, for each message m with 0≤m < n,

m = (me)d mod n.

Proof: By (3), we have e ·d ≡ 1 mod ϕ(n).

Thus, there exists an integer k such that

e ·d = 1 +k(p−1)(q−1),

where n = pq.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

Hence, we have

(me)d = me·d = m1+k(p−1)(q−1)

= m
(
mk(p−1)(q−1))

= m
(
mp−1)k(q−1) .

It follows that

(me)d ≡m mod p, (6)

since

if p divides m then both sides of (6) are congruent to 0 mod p, and

if p does not divide m (i.e., gcd(p,m) = 1) then we have

mp−1 ≡ 1 mod p (7)

by Fermat’s Little Theorem.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

A symmetric argument shows that

(me)d ≡m mod q. (8)

Since p and q are distinct primes, (7) and (8) imply via the Chinese

Remainder Theorem that

(me)d ≡m mod n.

Since m < n, the proof is complete. q
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

Example (applying the Chinese Remainder Theorem in the previous proof)

Consider x = me·d with p = 3 and q = 5 (so n = 3 ·5 = 15) and m = 11.

Then

5−1 mod 3 = 2 and 3−1 mod 5 = 2.

By the Chinese Remainder Theorem,

x = 11 ·5 ·2 + 11 ·3 ·2 = 110 + 66 = 176≡ 11 mod 15.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

Remark: Alice has to compute c = me mod n and Bob has to compute

m = cd mod n. Performed naively, these computations would require a

large number of multiplications depending on the size of the exponent.

Fortunately, however, the modular exponentiation function can be

computed efficiently by employing the “square-and-multiply.”
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

The “Square-and-Multiply” Algorithm

Square-and-Multiply(a,b,m) {
(* a is the exponent, b <m is the base, and m is the modulus *)

Determine the binary expansion of exponent a =
k

∑
i=0

ai2
i , ai ∈ {0,1};

Successively, compute b2
0
,b2

1
, . . . ,b2

k
by applying the congruence

b2
i+1 ≡

(
b2

i
)2

mod m;

(* the intermediate values b2
i

need not be stored *)

In the arithmetics modulo m, compute ba =
k

∏
i = 0
ai=1

b2
i
;

return ba;

}
Figure: The “square-and-multiply” algorithm

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 37 / 79



Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

Remark: The computation of ba mod m in this algorithm is correct, since

in the arithmetics modulo m,

ba = b∑
k
i=0 ai2

i
=

k

∏
i=0

(
b2

i
)ai

=
k

∏
i = 0
ai=1

b2
i
.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

Example (“square-and-multiply”)

Suppose we want to determine

217 mod 10.

Binary expansion of the exponent: 17 = 1 ·20 + 1 ·24.

Successively, compute the squares (modulo 10):

22
0

= 2

22
1

= 4

22
2

= 6

22
3

= 6

22
4

= 6

=⇒ 217 mod 10 = 2 ·6 = 12≡ 2 mod 10.

We have to compute four squares and one

multiplication (instead of 16 multiplications).

J. Rothe (HHU Düsseldorf) Cryptocomplexity II 39 / 79



Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Example of an RSA Encryption

Example

Bob chooses the primes p = 67 and q = 11 and computes

n = 67 ·11 = 737 and ϕ(n) = (p−1)(q−1) = 66 ·10 = 660.

If Bob now chooses the smallest possible exponent for ϕ(n) = 660,

which is e = 7, then his public key is the pair (n,e) = (737,7).

Using the extended Euclidean Algorithm, Bob determines his private

key d = 283, and we have:

e ·d = 7 ·283 = 1981≡ 1 mod 660.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Example of an RSA Encryption

Why? What is the greatest common divisor of n = 660 and m = 7?

n m g x y Remark

660 7 1 −3 283

7 2 1 1 −3

2 1 1 0 1 x := y ′; y := x ′−y ′ ∗
⌊
n
m

⌋
1 0 1 1 0 if (m = 0) return (n,1,0)

Table: Extended Euclidean Algorithm

This result indeed is correct, since

(−3) ·660 + 283 ·7 = 1 = gcd(660,7).
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Example of an RSA Encryption

Identify the alphabet Σ = {A,B, . . . ,Z} with the set

Z26 = {0,1, . . . ,25}.

Any block

b = b1b2 · · ·b`

of length ` with bi ∈ Z26 is represented by the integer

mb =
`

∑
i=1

bi ·26`−i .

From the definition of the block length ` = blog26 nc, we have

0≤mb ≤ 25 ·
`

∑
i=1

26`−i = 26`−1 < n.
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Example of an RSA Encryption

Using the RSA encryption function (4), the integer mb corresponding

to the block b is encrypted by

cb = (mb)e mod n,

where cb = c0c1 · · ·c` with ci ∈ Z26 is the ciphertext for block b.

RSA thus maps blocks of length ` injectively to blocks of length `+ 1.

The resulting integer cb is again written in 26-adic representation and

may have length `+ 1:

cb =
`

∑
i=0

ci ·26`−i ,

where ci ∈ Z26.
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Example of an RSA Encryption

Decryption also works block-wise, using the private key d and the

RSA decryption function (5):

mb = (cb)d mod n.

Concretely, consider the following RSA encryption:

R S A I S T H E K E Y T O P U B L I

mb 460 8 487 186 264 643 379 521 294

cb 697 387 229 340 165 223 586 5 189

C K E Y C R Y P T O G R A P H Y

mb 62 128 69 639 508 173 15 206

cb 600 325 262 100 689 354 665 673

Table: Example of an RSA encryption
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Example of an RSA Encryption

Consider the first block: b = RS =̂ 17 18, which is turned into an

integer as follows:

mb = 17 ·261 + 18 ·260 = 442 + 18 = 460,

which in turn is encrypted as (using square-and-multiply):

cb = (mb)e mod n = 4607 mod 737 = 697,

which again is written in 26-adic representation and may have length

`+ 1:

cb =
`

∑
i=0

ci ·26`−i ,

where ci ∈ Z26.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Example of an RSA Encryption

In particular, the first block

697 = 676 + 21 = 1 ·262 + 0 ·261 + 21 ·260

is turned into the ciphertext “BAV.”

Decryption also works block-wise. For instance, to decrypt the first

block using the private key d = 283, compute

697283 mod 737

again employing fast exponentiation (square-and-multiply).

It is useful to reduce modulo n = 737 after each multiplication to

prevent the integers from becoming too large.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Example of an RSA Encryption

The binary expansion of the exponent is

283 = 20 + 21 + 23 + 24 + 28,

and we obtain

697283 ≡ 6972
0 ·6972

1 ·6972
3 ·6972

4 ·6972
8

≡ 697 ·126 ·9 ·81 ·15

≡ 460 mod 737

as desired.
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RSA Digital Signature Scheme

Step Alice Erich Bob

1 chooses n = pq, her public

key (n,e) and her private

key d just as Bob does in

the RSA protocol

2 (n,e)⇒

3 signs the message m with

sigA(m) = md mod n

4 〈m,sigA(m)〉 ⇒

5 verifies Alice’s signature

by m ≡ (sigA(m))e mod n

Table: RSA digital signature scheme
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RSA Digital Signature Scheme

Remark: This method

PKCS =⇒ Digital Signature

works whenever encryption and decryption are exchangeable:

m = Ee(Dd(m)).

For RSA, this property is satisfied because

(md)e ≡ (me)d ≡m mod n.

Then s = Dd(m) is the signature of m.

Verification:

m = Ee(s) = Ee(Dd(m)).
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Factoring Attacks on RSA

Brute-force attack

Special-purpose factoring methods

Pollard’s p−1 method (works well if n = pq and p−1 has only small

prime factors)

Lenstra’s elliptic curve method (generalizes Pollard’s p−1 method and

is the more effective for breaking RSA, the smaller the smallest prime

factor of n is)

General-purpose factoring methods

quadratic sieve

number field sieve

Using the Euler function to factor n
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Using the Euler Function to Factor n

If the attacker can factor n = pq, he can efficiently determine

ϕ(n) = (p−1)(q−1) and thus break RSA.

Conversely, if he knows ϕ(n), he can efficiently factor n.

That is, factoring the RSA modul n and computing ϕ(n) are “equally

hard” problems.

Suppose the attacker knows both n = pq and ϕ(n).

He can then determine the prime factors of n = pq by solving the

following two equations for the unknowns p and q:

n = p ·q

ϕ(n) = (p−1)(q−1).
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Using the Euler Function to Factor n

Substituting q = n/p into the second equation gives a quadratic

equation in p:

p2− (n−ϕ(n) + 1)p+n = 0. (9)

By Vieta’s Theorem, p and q are the solutions of a quadratic

equation of the form p2 +ap+b = 0 if and only if

p+q =−a and

pq = b.

Since the prime factors p and q of n satisfy both pq = n and

p+q = pq−pq+p+q−1+1 = pq−(p−1)(q−1)+1 = n−ϕ(n)+1,

(9) has the roots p and q.

Thus a cryptanalyst who knows ϕ(n) can easily break RSA.
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Using the Euler Function to Factor n

Example: Let n = 60477719.

Suppose that Erich was able to determine the value ϕ(n) = 60462000.

By (9), he can determine the prime factors of n simply by solving the

quadratic equation

p2−15720p+ 60477719 = 0

as follows:

p =
15720

2
+

√(
15720

2

)2

−60477719 = 9001 and

q =
15720

2
−

√(
15720

2

)2

−60477719 = 6719.
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Other Attacks on RSA

Superencryption

Small-Message Attack

Wiener’s Attack

Low-Exponent Attack

Forging RSA Signatures by a Chosen-Plaintext Attack
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Superencryption

Simmons and Norris proposed an attack on RSA as early as 1977,

shortly after the invention of RSA.

Their attack, called superencryption, is based on the observation that

a sufficient number of encryptions, cycling through Zn, may

eventually recover the original message m.

This attack is a threat to the security of RSA, provided that the

number of encryptions required to recover m is small.

Fortunately, if the primes p and q are large and are chosen at random,

then superencryption is not a practical attack.
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Superencryption

Example

Let n = 5 ·7 = 35, so ϕ(n) = 4 ·6 = 24.

Choose the encryption exponent e = 5; note that

gcd(24,5) = 1.

Encrypting the message m = 11 yields

115 mod 35 = 16.

Now, encrypting the message m′ = 16 recovers the original message:

165 mod 35 = 11,
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Superencryption

which actually is not suprising, since the decryption key d happens to

be equal to e in this case: 52 mod 24 = 1, so d = 5 = e. In fact, every

number e with gcd(24,e) = 1 equals its inverse modulo 24.

So, let us now choose n = 11 ·13 = 143; thus, ϕ(n) = 10 ·12 = 120.

The encryption exponent e = 7 has the inverse d = 103 modulo 120,

so e 6= d in this case.

Still, encrypting the message m = 11 now yields

117 mod 143 = 132 and 1327 mod 143 = 11.

Thus, without knowing the private key d = 103, a cryptanalyst can

recover the original message simply by a double encryption.
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Small-Message Attack

If both the message m to be encrypted and the encryption exponent e

are small relative to the modulus n, then the RSA encryption is not

effective.

In particular, if the ciphertext c = me is smaller than n, then m can

be recovered from c by ordinary root extraction.

To prevent this from happening, the public exponent should be large

or the messages to be encrypted should always be large.

It is this latter suggestion that is more useful, since a small public

exponent is often preferred in order to speed up encryption and to

preclude Wiener’s attack.
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Wiener’s Attack: Rough Sketch of the Idea

Wiener’s attack (1990) uses a continued fraction approximation and

the public key (n,e) so as to compute the private key d .

It is a concern only if d is too small relative to n.

More precisely, Wiener’s attack works if and only if

3d < 4
√
n and q < p < 2q, (10)

where n = pq.

Since the encryption and decryption exponent satisfy

ed ≡ 1 mod ϕ(n),

there is some integer k < d such that

ed −kϕ(n) = 1,
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Wiener’s Attack: Rough Sketch of the Idea

which implies
∣∣∣∣ e

ϕ(n)
− k

d

∣∣∣∣ =
1

dϕ(n)
. (11)

Since n = pq > q2, we have q <
√
n.

Since q < p < 2q by (10), we have

0 < n−ϕ(n) = p+q−1 < 2q+q−1 < 3q < 3
√
n.

Hence,
∣∣∣∣en − k

d

∣∣∣∣ =

∣∣∣∣ed −kn

dn

∣∣∣∣=

∣∣∣∣1 +k(ϕ(n)−n)

dn

∣∣∣∣ (12)

<
3k
√
n

dn
=

3k

d
√
n
<

1

d 4
√
n
, (13)

where the latter inequality follows from 3k < 3d < 4
√
n, which is

implied by k < d and (10).
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Wiener’s Attack: Rough Sketch of the Idea

Again, since 3d < 4
√
n, we have∣∣∣∣en − k

d

∣∣∣∣ <
1

3d2
. (14)

Note that the encryption key (n,e) is public.

Inequality (14) says that the fraction k/d is a very close approximation

to the fraction e/n.

Hence, to recover the private key d from the public key (n,e), an

attacker might employ the following fact:

Every approximation of e/n that is as close as shown in (14) must be

one of the convergents of the continued fraction expansion of e/n.
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Wiener’s Attack: Rough Sketch of the Idea

A (finite) continued fraction is the rational number

c1 +
1

c2 + 1
c3+···+ 1

ct

, (15)

which is represented as the t-tuple

(c1,c2, . . . ,ct)

of nonnegative integers, where ct 6= 0.

For example, the continued fraction expansion of 101/37 is

(2,1,2,1,2,3),

which means that
101

37
= 2 +

1

1 + 1
2+ 1

1+ 1
2+ 1

3

.
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Wiener’s Attack: Rough Sketch of the Idea

Why? Suppose that a and b are positive integers satisfying

gcd(a,b) = 1, and let r0, r1, . . . , rt be the sequence of integers

generated by running Euclid(a,b).

That is, r0 = a, r1 = b, and for 1≤ i < t:

ri+1 ≡ ri−1 mod ri .

Let ci = b ri−1ri
c for 1≤ i ≤ t.

Then, a
b equals the continued fraction from (15), and

(c1,c2, . . . ,ct)

is said to be the continued fraction expansion of a
b .
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Wiener’s Attack: Rough Sketch of the Idea

(2,1,2,1,2,3) is the continued fraction expansion of 101
37 :

i 0 1 2 3 4 5 6

ri 101 37 27 10 7 3 1

ci 2 1 2 1 2 3

Ci = xi
yi

2
1

3
1

8
3

11
4

30
11

101
37

For each i , 1≤ i ≤ t, Ci = (c1,c2, . . . ,ci ) = xi
yi

is the i th convergent of

(c1,c2, . . . ,ct), where xi and yi are the solutions of these recurrences:

xi =


1 if i = 0

c1 if i = 1

cixi−1 + xi−2 if i ≥ 2

yi =


0 if i = 0

1 if i = 1

ciyi−1 + yi−2 if i ≥ 2.

(16)
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Wiener’s Attack: Rough Sketch of the Idea
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Wiener’s Attack: Rough Sketch of the Idea

Theorem

If a, b, c, and d are positive integers such that∣∣∣a
b
− c

d

∣∣∣< 1

2d2
and gcd(a,b) = gcd(c ,d) = 1,

then c
d is one of the convergents of the continued fraction expansion

of a
b . without proof

By this theorem, (14) implies that k
d is one of the convergents of the

continued fraction expansion of e
n .

Since e
n is known, all one has to do to determine k

d is to compute all

convergents of e
n and to check if one of them is the correct one.
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Wiener’s Attack: Rough Sketch of the Idea

To this end, if some convergent Ci = xi
yi

of e
n is suspected to be equal

to k
d , one computes the value of ϕ(n) by

ϕ(n) =
e ·d −1

k
=

e ·yi −1

xi
.

Once both n and ϕ(n) are known, n can be factored by solving the

quadratic equation (9), whose roots will be the prime factors of n.

If this test fails, then Ci was not the correct convergent, and one

proceeds to check the next suspect.

If none of the convergents of e
n was tested successfully, one concludes

that the assumptions made in (10) do not apply.
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Wiener’s Attack: Example

Let n = 60477719 and e = 47318087, so the public key is

(n,e) = (60477719,47318087).

Thus, a cryptanalyst knows the value

e

n
=

47318087

60477719
= 0.78240528549.

Running Euclid(47318087,60477719) and computing the values ri

and ci as above gives the following continued fraction expansion of e
n :

(0,1,3,1,1,2,8,1,9,4,1,4,1,1,4,2,1,1,2,2,3). (17)
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Wiener’s Attack: Example

Now, using the recurrences (16) to compute the xi and yi , one can

determine the 21 convergents Ci = xi
yi

of this continued fraction

expansion of e
n . The following table shows the first 10 convergents.

i 1 2 3 4 5 6 7 8 9 10 · · ·

ci 0 1 3 1 1 2 8 1 9 4 · · ·

Ci = xi
yi

0 1 3
4

4
5

7
9

18
23

151
193

169
216

1672
2137

6857
8764 · · ·

Each convergent is a suspect of being equal to k
d , and one after the

other is to be checked. The first five tests will fail.

However, when checking C6 = 18
23 , one obtains

ϕ(n) =
e ·y6−1

x6
=

47318087 ·23−1

18
= 60462000.
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Wiener’s Attack: Example

The cryptanalyst proceeds to compute the prime factors 6719 and

9001 of n = 60477719.

Note that Wiener’s attack works in this example, since the prime

factors of n are of roughly the same size and (10) is satisfied:

3 ·23 = 69 < 88 =
⌊

4
√

60477719
⌋
.
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Wiener’s Attack: Example

Remark:

Wiener’s attack is a real threat only if the hypotheses in (10) are

satisfied, in particular, only if 3d < 4
√
n.

Since the encryption exponent e is chosen first (usually small to speed

up encryption), it is unlikely that a small d will be generated.

That is, if e is small enough, then d is likely to be large enough to

resist Wiener’s attack.

One should keep in mind, though, that it might be dangerous if one

seeks to speed up decryption by using a small private key d .
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Low-Exponent Attack
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Low-Exponent Attack

A recommended value of the encryption exponent e that is commonly

used today is e = 216 + 1.

One advantage of this value for e is that its binary expansion has only

two ones, which implies that the “square-and-multiply” algorithm

requires very few operations. Thus, encryption is very efficient.

However, one should be cautious not to choose the public encryption

exponent too small.

A preferred value of e that has been used often in the past is e = 3.

Suppose that three parties participating in the same system encrypt

the same message m using the same public exponent e = 3, yet

distinct RSA moduli, say n1, n2, and n3.
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Low-Exponent Attack

Then, a cryptanalyst can easily compute m from the three ciphertexts:

c1 ≡ m3 mod n1

c2 ≡ m3 mod n2

c3 ≡ m3 mod n3.

Since the message m must be smaller than each of the moduli ni , it

follows that m3 must be smaller than n1n2n3.

Using the Chinese Remainder Theorem, one can compute the unique

solution

c ≡m3 mod n1n2n3 = m3.

Hence, one can recover m from c by ordinary root extraction.
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Low-Exponent Attack

More generally, suppose that k related plaintexts are encrypted with

the same exponent e:

c1 ≡ (a1m+b1)e mod n1

c2 ≡ (a2m+b2)e mod n2
...

ck ≡ (akm+bk)e mod nk ,

where ai and bi , 1≤ i ≤ k , are known constants, k > e(e+1)/2, and we

have

min(ni ) > 2e
2
.
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Low-Exponent Attack

Then, an attacker can solve the above system of k congruences for m

in polynomial time using so-called “lattice reduction techniques.”

This observation was made by Håstad in the late 1980s.

This attack is a concern if the messages are related in a known way.

In this case, they should not be encrypted with many RSA keys of the

form (ni ,e).

A recommended countermeasure, which prevents mounting this

attack in practice, is to pad the messages with pseudorandom strings

prior to encryption.
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Forging RSA Signatures

We present a chosen-plaintext attack that is based on the fact that

the RSA encryption function is a homomorphism: If (n,e) is the

public key and m1 and m2 are two messages, then

me
1 ·me

2 ≡ (m1 ·m2)e mod n. (18)

Another congruence that can easily be verified is

(m · r e)d ≡md · r mod n. (19)

The congruences (18) and (19) can be used to mount an attack on

the RSA digital signature scheme.
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Forging RSA Signatures

Given previous message-signature pairs

〈m1,sigA(m1)〉,〈m2,sigA(m2)〉, . . . ,〈mk ,sigA(mk)〉,

Erich can use the congruences (18) and (19) to compute a new

message-signature pair 〈m,sigA(m)〉 by

m = r e
k

∏
i=1

mei
i mod n;

sigA(m) = r
k

∏
i=1

(sigA(mi ))ei mod n,

where r and the ei are arbitrary.
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Forging RSA Signatures

Hence, Erich can forge Alice’s signature without knowing her private

key, and Bob will not detect the forgery, since

m ≡ (sigA(m))e mod n.

The above attack looks like a known-plaintext attack at first glance.

However, note that, in (18), even if m1 and m2 are meaningful

plaintexts, m1 ·m2 usually is not. Thus, Erich can forge Alice’s

signature only for messages that may or may not be useful.

However, he might choose the messages mi so as to generate a

meaningful message m with a forged digital signature.

This chosen-plaintext attack can again be avoided by pseudorandom

padding techniques that destroy the algebraic relations between

messages.
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A Chosen-Ciphertext Attack on RSA

Pseudorandom padding is also a useful countermeasure against the

following chosen-ciphertext attack:

Erich intercepts some ciphertext c, chooses r ∈ N at random, and

computes c · r e mod n, which he sends to the legitimate receiver Bob.

By (19), Bob will decrypt the string

ĉ = cd · r mod n,

which is likely to look like a random string.

Erich, however, if he were to get his hands on ĉ , could obtain the

original message m by computing

m = r−1 · cd · r mod n,

i.e., he multiplies by r−1, the inverse of r modulo n.
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