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Preliminary Remarks [IRUEGHIEES

Vorlesungswebsite

@ Some information and material for this module can be found in
ILIAS.

@ In addition, slides, exercises, and other material can also be

downloaded from:

https: //ccc.cs.uni-duesseldorf.de/ "rothe/cryptocomp?2
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Preliminary Remarks Literature
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Jorg Rothe: “Komplexitatstheorie
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Preliminary Remarks Literature
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e A
What is Cryptology?

Cryptology
is the art &

science of

Cryptography Cryptanalysis
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Reminder: Tasks and Aims of Cryptology Reminder: What is Cryptology?

What is Cryptology?

Cryptology
is the art &

science of

Cryptography

encrypting texts and
messages such that
unauthorized decryption

is prevented

Cryptanalysis
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e A
What is Cryptology?

Cryptology

is the art &

science of

Cryptography Cryptanalysis

encrypting texts and breaking existing cryptosystems
messages such that by determining the encryption
unauthorized decryption keys and deciphering encrypted
is prevented messages without authorization
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Reminder: What is Cryptology?
Related Fields . ..

@ ... we will not consider:
e Steganography
e Coding Theory

@ ... whose notions, results, and methods will be used:

Complexity Theory

o Number Theory and (Linear) Algebra
Probability Theory

Algorithmics
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o R e
A Typical Cryptographic Scenario

GOG)

UA ice <:> Bo

(© The design of Alice and Bob is due to Crépeau.
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o R e
Why Alice and Bob?

(© By Georges Biard, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=9054776.
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o R e
A Typical Cryptographic Scenario
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(© By Georges Biard, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=9054776.
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Reminder: Tasks and Aims of Cryptology Reminder: Cryptography

Cryptosystem

Definition

A cryptosystem is a quintuple S = (M, C,K,&,2) such that:
Q@ M, C, and K are sets, where

o M is the message space (or “plaintext space” or “cleartext space”),
o C is the ciphertext space, and
e K is the key space.

Q@ & ={Ex| ke K} is a family of functions Ej : M — C that are used
for encryption, and

@ 2 ={Dx|k € K} is a family of functions Dy : C — M that are used
for decryption.

@ For each key e € K, there exists a key d € K such that for each
message m € M:
Dg(Ee(m)) = m. (1)
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o R e
Cryptosystem

Definition
@ A cryptosystem is called symmetric (or “private-key”) if d =e, or if d

can at least be “easily” computed from e.

@ A cryptosystem is called asymmetric (or “public-key”) if d # e, and it
is “practically infeasible” to compute d from e. Here, d is the private
key, and e is the public key.
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A
Types of Attack

o Ciphertext-Only Attack

e Known: some ciphertexts

o Determine: the corresponding plaintext/keys

o Known-Plaintext Attack

o Known: (p17 C1)7 (p27 C2)a [EE) (pk7 Ck)
o Determine: the corresponding keys/other ciphertexts

@ Chosen-Plaintext Attack

o Choose: some plaintexts at will
o Obtain: the corresponding ciphertexts
e Determine: the corresponding keys
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IR G
Types of Attack and Kerckhoffs's Principle

@ Chosen-Ciphertext Attack
o Choose: some ciphertexts at will
e Obtain: the corresponding plaintexts
o Determine: the corresponding keys

@ Key-Only Attack (relevant only for public-key cryptosystems)
e Known: the public keys
o Determine: the corresponding private keys

Kerckhoffs’s Principle:

The security of a cryptosystem must not depend on the secrecy
of the system used. Rather, the security of a cryptosystem may
depend only on the secrecy of the keys used.
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Reminder: Digital Signatures and Authentication
Digital Signatures and Authentication

e Digital Signatures: Alice wants to sign her (encrypted) messages to
Bob such that
(a) Bob can verify that indeed she is the sender of the message, and
(b) also third parties (who perhaps do not trust Bob) can convince
themselves of the authenticity of her signature.

Property (a) is already achieved by symmetric authentication codes.

@ Authentication codes:
e provide a method of ensuring the integrity of a message.
o Active Attacks:
e Substitution Attack: Erich might try to tamper with (i.e., to change or
replace) the messages transmitted.
o Impersonation Attack (a.k.a. “Man-in-the-middle Attack): Erich
might try to introduce a message of his own into the channel, hoping it
is accepted as authentic by Bob.
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Reminder: Tasks and Aims of Cryptology Reminder: Digital Signatures and Authentication

Authentication Problems

o Message integrity: How can one be sure that no intruder has

tampered with the message received?

@ Message authentication: How can one be sure that a message
indeed originated from the sender asserted and was not introduced by

an intruder?

@ User authentication: How can one be sure of the identity of an
individual?
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Reminder: RSA Public-Key Cryptosystem
Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman
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Reminder: RSA Public-Key Cryptosystem
Turing Award 2002 for Rivest, Shamir, and Adleman

Rivest, Shamir, and
Adleman Receive
2002 Turing Award

Cryptography and Information Se-
curity Group. He received a BA. in
mathematics from Yale Unisersity

from Stanford University

‘Shamir is the Borman Profes.
sor in the Applied Mathematics,
Department of the Weizmann In
sttute of Science in Israc

Ronald L. Rivest AdiShamir  Leonard M. Adlemanccived a .S, in mathematics from
¢l Aviv University and a Ph.D. in

CMhas i from the Weizmann Institute.
‘named RowALD L. RESt, Apt Sy, and Loxaan M. Adleman is the Distinguished Henry Satvator

Aotz as winners of the 2002 A M. Turing Award,  Professor of Computer Science and of
Considered the -NobelPize of Computig®. for | Molecular Biology at the University of Southern
thelrcontrbutons 0 public ke cryptography. - Callorni e camed .3 I mathemats o he
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“Turing Award carries a $100,000 prize, with
Toningpron ided by ntl Corporation.

Universityof Clfonia, Berkely,and a P in
mputer science, also at Berl
e AC June

Techmology n 1977, the v developed he RSA
code, which has become the foundation for an en-

ical computer science and mathematics. RSA is an
algorithm—named for Rivest, Shamir, and Adle-
man—that uses number theory to provide a prag-

s today's

2003, in conjunction with the Federated Computing
Rescarch Conference in San Diego, California. The
award was named for Alah M. Turng, the Britsh

tictan who articulated the mathematical
foundation and limits of computing and who was a
Kkey conrbutor o the Alied cryptanalyssof the
German Enigma cipher during World War L. Since
65 Inception i 1966, the ACYs Turing Award has

‘most widely used encryption method, with appli-
cations in Internet browsers and servers, clectronic
dind dprod-

ereated the systems and underlying theoretical foun-
dations that have propelled the information tech-

uets providing emai
Riest s the Viterb Professor of Computer St

enceInNITs Deparmentof et niecring

and Computer Science. He is a founder of MIT's

)
—From an ACM news release

800 Nomicrs or e AMS Vouune 50, Nowars 7
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Historical Notes on RSA
@ The RSA public-key cryptosystem and the related digital signature

scheme are due to Rivest, Shamir, and Adleman (1978), who received
the Turing Award in 2002.

@ This is the very first public-key cryptosystem in the open literature.

@ The idea of public-key cryptography was first published by Diffie and
Hellman (1976).

@ Decades later, in December of 1997, the British Government
Communications Headquarters (GCHQ) revealed that , ,
and , employed at the Communications Electronics Security
Group of GCHQ), had independently and even earlier discovered

o the principle of public-key cryptography (1969 by ),

o the cryptosystem now called RSA (1973 by ), and
o the secret-key agreement protocol now called Diffie-Hellman (1976 by
).
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

@ For k > 1, define the multiplicative group
Zy={i|1<i<k—1and gecd(i,k) =1}.
o Recall the extended Euclidean Algorithm.

o Recall the Euler function ¢, which gives the order of the group Z7,
i.e., (k) =||Z}||. By definition, we have:
o o(m-n)=@(m)-@(n) for each m,n € N with gcd(m,n) =1, and
o ¢(p) =p—1 for each prime p.
These properties immediately imply that if n=p- g for prime

numbers p and g, then

o(n)=(p—1)(g—1).
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

Theorem (Euler)

For each a with gcd(a,n) =1, a®(") =1 mod n. without proof J

Example (application of Euler's theorem)
What is 103192° mod 517

n = 5l =317 = p-q
¢(n) = ¢(51) = (p—1)(g—1) = 2-16 = 32.

By Euler's theorem, we have 10332 = 1 mod 51, which implies

1031025 = 1033232+1 = 132,103 = 103 = 1 mod 51.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

Remark:
@ Euler’s theorem is a special case of Lagrange's theorem, which states
that for every finite group & of order k, the order of each subgroup of
& divides k.

@ Define the order of an element x of & to be the smallest positive

integer k such that xK =xoxo---ox=e.
7
k times

@ Since the order of any group element a is the order of the subgroup

generated by a, it follows that the order of a divides k. Letting e

denote the neutral element of &, we have ak = e. Since Z is a finite

multiplicative group of order ¢(n), we have proven Euler's theorem.

@ The special case of Euler's theorem with a prime number n coprime

with a is known as Fermat's Little Theorem.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

Corollary (Fermat's Little Theorem)

If p is prime and a an integer with gcd(a,p) = 1, then aP~* =1 mod p.

Proof: To simplify the proof, we assume
o first that 0 < a < p—1 (otherwise, simply reduce a modulo p);

@ second that even 1 < a<p—1 (indeed, aP1 =1 mod p is the same

as aP = amod p, and if a=0, this holds trivially).

Now, let k be the order of a, i.e., k is the smallest positive integer such
that ak =1 mod p.

Thus 1,a,a2,...,a* ! reduced modulo p form a subgroup of Z,, whose

order is k.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

By Lagrange's theorem, k divides the order of Z%, which is p—1.
So p—1= km for some positive integer m.

It follows that

Pl =" =" =1" =1modp. Q
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

Theorem (Chinese Remainder Theorem)

Let my,my,...,my be k positive integers that are pairwise relatively prime
(i.e., gcd(mj,m;) =1 for i #j), let

k
M= H m;,
i=1

and let ay,an,...,ax be any integers. For each i with 1 <i < k, define
qi = M/m;, and let qi_1 denote the inverse element of q; in Zn,..

Then, the system of k congruences x = a; mod m;, where 1 <i < k, has

the unique solution
k
X = a,-q,-qi_1 mod M.
i=1

without proof
J. Rothe (HHU Diisseldorf) Cryptocomplexity 11
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

Example (Chinese Remainder Theorem)

We want to solve the following system of congruences:

X = 2mod4
x = 1mod3
x = 0modb
Thus M=4-3-5=60 and
60 60 60
q1 2 5, q2 3 O’ q3 5
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Reminder: Some Mathematical Foundations

Example (Chinese Remainder Theorem, continued)
For each i € {1,2,3}, solve

q,-ql.*1 =1 mod m;.

That is,
—ql_1 = 1mod4 has the solution ql_1 =-1,
—g,} = 1mod3 has the solution g, = —1,
2g;' = 1mod5 has the solution g3+ = 3.
Hence,

x=—2-15—1-20 = —50 = 10 mod 60.

That is, x = 10 solves the system of congruences simultaneously.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

Step Alice Erich Bob

chooses two large primes, p and g,
at random, computes n = pg and

1 o(n) = (p—1)(g—1), his public
key (n,e), and his private key d
satisfying (2) and (3)

2 < (n,e)

3 encrypts m as

c=m°® mod n

4 c=

decrypts ¢ as m= ¢ mod n

J. Rothe (HHU Diisseldorf)

Table: RSA protocol
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A A R G O
RSA Public-Key Cryptosystem

@ Key Generation.

e Bob chooses two distinct large prime numbers, p and g with p # g,
and computes their product n = pq.

e Then, he chooses an exponent e € N satisfying

l<e<o(n)=(p—1)(g—1) and ged(e,@(n)=1.  (2)

o Using the extended Euclidean Algorithm, he then determines the
inverse element of e mod ¢(n), i.e., the unique number d satisfying

l1<d<o@o(n) and e-d=1mod¢(n). (3)

o The pair (n,e) is Bob's public key, and d is Bob's private key.

@ Communication. Bob makes his key (n,e) public.
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A A R G O
RSA Public-Key Cryptosystem

© Encryption.

o Messages are strings over an alphabet X, which can be viewed as

natural numbers in |X||-adic representation.
e Every message can be encoded block-wise with a fixed block length.

e Let m < n be the number encoding one block of the message Alice

wants to send to Bob.

o Alice knows Bob's public key (n,e) and encrypts m as the number
¢ = E(n,e)(m), where the encryption function is defined by

E(n,e)(m) = m® mod n. (4)

@ Communication. Alice sends her encrypted message ¢ to Bob.
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A A R G O
RSA Public-Key Cryptosystem

© Decryption.

e Let c with 0 < ¢ < n be the number encoding one block of the
ciphertext that Bob receives.

o The eavesdropper Erich may also know ¢, but he does not know Bob’s

private key d.

e Bob decrypts ¢ using d and the following decryption function:

Dy(c) = ¢ mod n. (5)
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A A R G O
RSA Public-Key Cryptosystem

Theorem

Let (n,e) be the public key, and let d be the private key used in the RSA
protocol. Then, for each message m with 0 < m < n,

4 mod n.

m=(m’)

Proof: By (3), we have e-d =1 mod ¢(n).
Thus, there exists an integer k such that

e-d=1+k(p—1)(q—1),
where n= pq.
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A A R G O
RSA Public-Key Cryptosystem

Hence, we have
(me)d — med — mitk(p-1)(g-1)
= m (mk(p—l)(q—l))
_ m(mpfl)k(q—l).
It follows that
(m®)? = m mod p, (6)
since
e if p divides m then both sides of (6) are congruent to 0 mod p, and
e if p does not divide m (i.e., gcd(p,m) = 1) then we have
mP~l =1 mod p (7)

by Fermat's Little Theorem.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

RSA Public-Key Cryptosystem

A symmetric argument shows that
(m®)? = m mod q. (8)

Since p and q are distinct primes, (7) and (8) imply via the Chinese
Remainder Theorem that

(m®)? = m mod n.
Since m < n, the proof is complete. a
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A A R G O
RSA Public-Key Cryptosystem

Example (applying the Chinese Remainder Theorem in the previous proof)

Consider x =m®9 with p=3 and g=5 (so n=3-5=15) and m=11.

Then
51mod3=2 and 3 !'mod5=2.

By the Chinese Remainder Theorem,

x=11-5-2411-3-2=1104+66 =176 = 11 mod 15. )
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A A R G O
RSA Public-Key Cryptosystem

Remark: Alice has to compute ¢ = m® mod n and Bob has to compute
m = c? mod n. Performed naively, these computations would require a

large number of multiplications depending on the size of the exponent.

Fortunately, however, the modular exponentiation function can be
computed efficiently by employing the “square-and-multiply.”
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Reminder: RSA Publc-Key Cryptosystem
The “Square-and-Multiply” Algorithm

SQUARE-AND-MULTIPLY(a, b, m) {

(* a is the exponent, b < m is the base, and m is the modulus *)

K
Determine the binary expansion of exponent a = Z a;2', a;€{0,1};
i=0
Successively, compute b20, bzl,...,bzk by applying the congruence

b2i+1 = <b2i)2 mod m;

(* the intermediate values b® need not be stored *)
k i
In the arithmetics modulo m, compute b? = H b2 :
i=0
a,—:l
return b?;

Figure: The “square-and-multiply” algorithm
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A A R G O
RSA Public-Key Cryptosystem

Remark: The computation of b mod m in this algorithm is correct, since
p

in the arithmetics modulo m,

b7 — pEioa? _ Hk (v)" = |k| b
i=0 i=
aj=
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A A R G O
RSA Public-Key Cryptosystem

Example (“square-and-multiply”)

Suppose we want to determine
217 mod 10.

Binary expansion of the exponent: 17 =1-204+1.2%

Successively, compute the squares (modulo 10):

027 =2

21 _
° 2% =4 — 27 mod 10=2-6 =12 =2 mod 10.
022 =6
022 _g We have to compute four squares and one

" multiplication (instead of 16 multiplications).
@2 =6
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GEBIEER GER R0y G
Example of an RSA Encryption

Example
@ Bob chooses the primes p =67 and g = 11 and computes
n=67-11=737 and @(n) =(p—1)(g—1) =66-10 = 660.

o If Bob now chooses the smallest possible exponent for ¢(n) = 660,
which is e = 7, then his public key is the pair (n,e) = (737,7).

@ Using the extended Euclidean Algorithm, Bob determines his private
key d = 283, and we have:

e-d=17-283=1981 =1 mod 660.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Example of an RSA Encryption

Why? What is the greatest common divisor of n =660 and m =77

n

m

g

X

y

Remark

Table: Extended Euclidean Algorithm

J. Rothe (HHU Diisseldorf)
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Example of an RSA Encryption

Why? What is the greatest common divisor of n =660 and m =77

n

m

g

X

y

Remark

Table: Extended Euclidean Algorithm
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A A R G O
Example of an RSA Encryption

Why? What is the greatest common divisor of n =660 and m =77

n m g X y Remark

660 | 7

Table: Extended Euclidean Algorithm

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11
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A A R G O
Example of an RSA Encryption

Why? What is the greatest common divisor of n =660 and m =77

n m g X y Remark
660 | 7
7 ]2

Table: Extended Euclidean Algorithm

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11

41/79



A A R G O
Example of an RSA Encryption

Why? What is the greatest common divisor of n =660 and m =77

n g X y Remark

m
660 | 7
2
1

Table: Extended Euclidean Algorithm
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Example of an RSA Encryption

Why? What is the greatest common divisor of n =660 and m =77

n m g X y Remark
660 | 7
7 12
2 |1
1 |0 1 ‘ 1 ‘ 0 if (m=0) return (n,1,0)

J. Rothe (HHU Diisseldorf)

Table: Extended Euclidean Algorithm
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A A R G O
Example of an RSA Encryption

Why? What is the greatest common divisor of n =660 and m =77

n m g X y Remark
660 | 7

7T |2

2 |1 1 0 1 x=y y=x—-yx|2]
1 |0 1 1 0 if (m=0) return (n,1,0)

Table: Extended Euclidean Algorithm
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A A R G O
Example of an RSA Encryption

Why? What is the greatest common divisor of n =660 and m =77

n m g X y Remark
660 | 7

7 2 1 1 -3

2 |1 1 0 1 x=y y=x—-yx|2]
1 |0 1 1 0 if (m=0) return (n,1,0)

Table: Extended Euclidean Algorithm
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A A R G O
Example of an RSA Encryption

Why? What is the greatest common divisor of n =660 and m =77

n m g X y Remark
660 | 7 1 -3 283

7 2 1 1 -3

2 |1 1 0 1 x=y, y=x—-yx|2]
1 |0 1 1 0 if (m=0) return (n,1,0)

Table: Extended Euclidean Algorithm
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: RSA Public-Key Cryptosystem

Example of an RSA Encryption

Why? What is the greatest common divisor of n =660 and m =77

n m g X y Remark
660 | 7 1 -3 283

7 2 1 1 -3

2 |1 1 0 1 x=y, y=x—-yx|2]
1 |0 1 1 0 if (m=0) return (n,1,0)

Table: Extended Euclidean Algorithm

This result indeed is correct, since

(—3)-660+283-7 =1 =gcd(660,7).
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A A R G O
Example of an RSA Encryption

o Identify the alphabet > = {A B,...,Z} with the set
Zos = {0,1,...,25}.

@ Any block
b=biby---by

of length £ with b; € Zyg is represented by the integer
[ .
mp=Y b;j-26"".
i=1
@ From the definition of the block length ¢ = |logyg n|, we have
Z .
0<m,<25-Y 267" =26"—1<n.
i=1
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A A R G O
Example of an RSA Encryption

@ Using the RSA encryption function (4), the integer my, corresponding
to the block b is encrypted by
cp = (mp)® mod n,

where ¢, = cgcy - -+ ¢ with ¢; € Zpg is the ciphertext for block b.

@ RSA thus maps blocks of length ¢ injectively to blocks of length ¢+ 1.

@ The resulting integer ¢, is again written in 26-adic representation and

may have length £+ 1:

4

Cp = Z G- 2627’,
i=0

where ¢; € Zog.
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A A R G O
Example of an RSA Encryption

@ Decryption also works block-wise, using the private key d and the
RSA decryption function (5):

mp = (cp)? mod n.

o Concretely, consider the following RSA encryption:

RSIAIISTHEIKE| YT OP|UBI|L I

460 8| 487| 186| 264| 643| 379| 521| 294

Chb

697| 387| 229| 340| 165| 223| 586

5| 189

CKIEY CRIYPTOIGRI|AP

HY

mp

62| 128| 69| 639| 508| 173| 15

206

Ch

600| 325| 262| 100| 689| 354| 665

673

Table: Example of an RSA encryption
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A A R G O
Example of an RSA Encryption

o Consider the first block: b= RS = 17 18, which is turned into an

integer as follows:
mp = 17-26% +18-26° = 442 + 18 = 460,
which in turn is encrypted as (using square-and-multiply):
cp = (mp)® mod n= 460" mod 737 = 697,

which again is written in 26-adic representation and may have length
£+ 1:

14
Cp = Z G- 26€7’,
i=0
where ¢; € Zog.
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A A R G O
Example of an RSA Encryption

@ In particular, the first block
697 = 676 +21 = 1-26%+0-26* + 21 - 26°
is turned into the ciphertext “BAV.”

@ Decryption also works block-wise. For instance, to decrypt the first
block using the private key d =283, compute

69728 mod 737
again employing fast exponentiation (square-and-multiply).

o It is useful to reduce modulo n =737 after each multiplication to

prevent the integers from becoming too large.
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A A R G O
Example of an RSA Encryption

@ The binary expansion of the exponent is
283 =20421 1 23 4 0% 4 08
and we obtain

69783 = 697%.6972'-697%" 697" - 697%°
= 697-126-9-81-15
= 460 mod 737

as desired.
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Reminder: RSA Digital Signature Scheme
RSA Digital Signature Scheme

Step Alice Erich Bob
1 chooses n = pq, her public
key (n,e) and her private
key d just as Bob does in
the RSA protocol
2 (n,e)=
3 signs the message m with
siga(m) = m9 mod n
4 (m,siga(m)) =
verifies Alice's signature
by m = (siga(m))® mod n

J. Rothe (HHU Diisseldorf)

Table: RSA digital signature scheme
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Reminder: RSA Digital Signature Scheme
RSA Digital Signature Scheme

Remark: This method
PKCS = Digital Signature

works whenever encryption and decryption are exchangeable:
m = E.(Dgy(m)).
For RSA, this property is satisfied because
(m9)® = (m®)? = m mod n.

Then s = Dy(m) is the signature of m.
Verification:

m = Eq(s) = Eo(Dg(m)).
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b el
Factoring Attacks on RSA

@ Brute-force attack

@ Special-purpose factoring methods
o Pollard’'s p—1 method (works well if n= pg and p—1 has only small
prime factors)
e Lenstra's elliptic curve method (generalizes Pollard’s p— 1 method and
is the more effective for breaking RSA, the smaller the smallest prime
factor of n is)

@ General-purpose factoring methods

e quadratic sieve

o number field sieve

@ Using the Euler function to factor n
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA

Using the Euler Function to Factor n

@ If the attacker can factor n = pgq, he can efficiently determine
¢o(n)=(p—1)(g—1) and thus break RSA.

e Conversely, if he knows ¢(n), he can efficiently factor n.

e That is, factoring the RSA modul n and computing ¢@(n) are “equally
hard” problems.

@ Suppose the attacker knows both n= pg and @(n).
@ He can then determine the prime factors of n= pqg by solving the
following two equations for the unknowns p and g:
n = p-q
¢(n) = (p—1)(g—1).
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA

Using the Euler Function to Factor n

@ Substituting ¢ = n/p into the second equation gives a quadratic

equation in p:

p?—(n—@(n)+1)p+n=0. (9)

By Vieta's Theorem, p and g are the solutions of a quadratic
equation of the form p?>+ap+ b =0 if and only if

e p+g=—aand

e pg=b.
Since the prime factors p and g of n satisfy both pg = n and

p+q=pq—pq+p+q—-1+1=pg—(p—1)(q—1)+1=n—¢@(n)+1,
(9) has the roots p and gq.

@ Thus a cryptanalyst who knows @(n) can easily break RSA.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA

Using the Euler Function to Factor n

Example: Let n=60477719.
Suppose that Erich was able to determine the value ¢(n) = 60462000.

By (9), he can determine the prime factors of n simply by solving the
quadratic equation

p? —15720p + 60477719 =0

as follows:
1572 15720\ 2
p = 5; 0+\/< 5; 0) — 60477719 = 9001 and
2
g - 15;20\/(15;20) 60477710 — 6710.
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Reminder: Security of RSA
Other Attacks on RSA

@ Superencryption
@ Small-Message Attack
o Wiener's Attack
o Low-Exponent Attack

o Forging RSA Signatures by a Chosen-Plaintext Attack
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA

Superencryption

@ Simmons and Norris proposed an attack on RSA as early as 1977,
shortly after the invention of RSA.

@ Their attack, called superencryption, is based on the observation that
a sufficient number of encryptions, cycling through Z,, may

eventually recover the original message m.

@ This attack is a threat to the security of RSA, provided that the

number of encryptions required to recover m is small.

@ Fortunately, if the primes p and q are large and are chosen at random,

then superencryption is not a practical attack.
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Reminder: RSA Cryptosystem, Primality, and Factoring RGN TSI a1l aSY-N

Superencryption

Example
o Let n=5-7=35,s0 ¢(n)=4-6=24.

@ Choose the encryption exponent e =5; note that

gcd(24,5) =1.

@ Encrypting the message m = 11 yields

11° mod 35 = 16.

@ Now, encrypting the message m’ = 16 recovers the original message:

16° mod 35 =11,

J. Rothe (HHU Diisseldorf) Cryptocomplexity 11 56 /79



Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA

Superencryption

@ which actually is not suprising, since the decryption key d happens to
be equal to e in this case: 52mod24=1,sod=5=¢e. In fact, every

number e with gcd(24,e) =1 equals its inverse modulo 24.
@ So, let us now choose n=11-13 = 143; thus, ¢(n) =10-12 = 120.

@ The encryption exponent e =7 has the inverse d = 103 modulo 120,

so e # d in this case.

@ Still, encrypting the message m = 11 now yields
11" mod 143=132 and 132" mod 143 =11.

@ Thus, without knowing the private key d = 103, a cryptanalyst can

recover the original message simply by a double encryption.
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b el
Small-Message Attack

@ If both the message m to be encrypted and the encryption exponent e
are small relative to the modulus n, then the RSA encryption is not

effective.

@ In particular, if the ciphertext ¢ = m€ is smaller than n, then m can

be recovered from ¢ by ordinary root extraction.

@ To prevent this from happening, the public exponent should be large

or the messages to be encrypted should always be large.

@ It is this latter suggestion that is more useful, since a small public
exponent is often preferred in order to speed up encryption and to

preclude Wiener's attack.
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Wiener's Attack: Rough Sketch of the Idea
e Wiener's attack (1990) uses a continued fraction approximation and
the public key (n,e) so as to compute the private key d.

@ It is a concern only if d is too small relative to n.

@ More precisely, Wiener's attack works if and only if
3d <+/n and q<p<2q, (10)

where n= pq.

@ Since the encryption and decryption exponent satisfy
ed =1 mod ¢(n),
there is some integer k < d such that

ed—ko(n)=1,
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Wiener's Attack: Rough Sketch of the Idea

@ which implies ‘ e k‘ 1

—__C = — 11

o(n) d| ~ do(n) ()
@ Since n= pg > g°, we have g < /n.
@ Since g < p < 2q by (10), we have

0<n—@(n)=p+qg—1<29+qg—1<3q9<3/n.
@ Hence, e k| _ |ed—kn| _|1+k(e(n)—n) (12)
n d| dn | dn
3k 3k 1
vr_ (13)

dn dyn " d¥n’
where the latter inequality follows from 3k < 3d < /n, which is
implied by k < d and (10).
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Wiener's Attack: Rough Sketch of the Idea

@ Again, since 3d < {/n, we have

e k

Pl (14)

o Note that the encryption key (n,e) is public.

@ Inequality (14) says that the fraction k/d is a very close approximation
to the fraction ¢/n.

@ Hence, to recover the private key d from the public key (n,€), an

attacker might employ the following fact:

Every approximation of €/n that is as close as shown in (14) must be

one of the convergents of the continued fraction expansion of €/n.
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Wiener's Attack: Rough Sketch of the ldea

o A (finite) continued fraction is the rational number
1

a -+ %, (15)
which is represented as the t-tuple
(c1,62,...,Ct)
of nonnegative integers, where ¢; # 0.
@ For example, the continued fraction expansion of 101/37 is
(2,1,2,1,2,3),

which means that % = 24+
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Wiener's Attack: Rough Sketch of the Idea

@ Why? Suppose that a and b are positive integers satisfying
gcd(a,b) =1, and let ry, r1,...,r: be the sequence of integers
generated by running EucLID(a, b).

@ Thatis, p=a, n =>b, and for 1 </ < t:

riv1 ="ri-1 mod ri.

o letg=|"t]forl1<i<t.

ri

@ Then, 2 equals the continued fraction from (15), and

(c1,62,...,Ct)

is said to be the continued fraction expansion of .
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Wiener's Attack: Rough Sketch of the Idea

e (2,1,2,1,2,3) is the continued fraction expansion of

101.
37

|

ENESENENRIENEN

ri

101

37

27

10

7

3

1

Cj

2

1

2

1

2

3
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b el
Wiener's Attack: Rough Sketch of the Idea

e (2,1,2,1,2,3) is the continued fraction expansion of

101.
37

|

ENESENENRIENEN

ri

101

37

27

10

7

3

1

Cj

2

1

2

1

2

3

@ Foreach i, 1<i<t, C;=(c,c,...,¢)

— X

;: is the /™ convergent of
1

(c1,62,...,¢t), where x; and y; are the solutions of these recurrences:
1 ifi=0 0 ifi=0
Xi=4 a ifi=1 yi=4q 1 if i=1 (16)
Cixi—1+xji—p ifi>2 Gyi-1t+yi2 ifi>2
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b el
Wiener's Attack: Rough Sketch of the Idea

e (2,1,2,1,2,3) is the continued fraction expansion of %:

L Jolafafslefs]e]
ri 101 |37 |27|10| 7 | 3 1
Ci 2 | 1] 2 3
c=x| [:[:[s[e[nl®

@ Foreach i, 1<i<t, Ci=(c,c,...,¢) = ? is the /™ convergent of

(c1,62,...,¢t), where x; and y; are the solutions of these recurrences:
1 ifi=0 0 if i=0
Xi=4 a ifi=1 yi=4q 1 ifi=1 (16)
Cixi—1+xji—p ifi>2 Gyi-1t+yi2 ifi>2
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA

Wiener's Attack: Rough Sketch of the Idea

Theorem

If a, b, c, and d are positive integers such that

a c 1
)B - H‘ < 32 and gcd(a, b) = ged(c,d) =1,
then 5 is one of the convergents of the continued fraction expansion
without proof

.

a
OfE

By this theorem, (14) implies that X is one of the convergents of the

continued fraction expansion of =.

@ Since 7 is known, all one has to do to determine 5 is to compute all

convergents of £ and to check if one of them is the correct one.
65 /79
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b el
Wiener's Attack: Rough Sketch of the ldea

@ To this end, if some convergent C; = ? of = is suspected to be equal

to s, one computes the value of ¢(n) by

e-d—1 e- ,'—1
p(n) = = — ==,

Xj

@ Once both n and ¢(n) are known, n can be factored by solving the

quadratic equation (9), whose roots will be the prime factors of n.

o If this test fails, then C; was not the correct convergent, and one

proceeds to check the next suspect.

o If none of the convergents of £ was tested successfully, one concludes

that the assumptions made in (10) do not apply.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA
. '
Wiener's Attack: Example

@ Let n=060477719 and e = 47318087, so the public key is
(n,e) = (60477719,47318087).
@ Thus, a cryptanalyst knows the value

e 47318087
Z = T 0.78240528549.
— = i — 078240528549

e Running EUCLID(47318087,60477719) and computing the values r;
and ¢; as above gives the following continued fraction expansion of £:

(0,1,3,1,1,2,8,1,9,4,1,4,1,1,4,2,1,1,2,2,3). (17)
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA
. '
Wiener's Attack: Example

@ Now, using the recurrences (16) to compute the x; and y;, one can
determine the 21 convergents C; = § of this continued fraction

expansion of £. The following table shows the first 10 convergents.

i 1123|456 7| 8] 9 | 10

G ol1]/3|1|1/2]8 | 1] 9 | a

_ X 3 4 7 18 151 169 1672 6857
Ci=2110|1|3|5|5 |53 | 153|216 | 215 | sves

@ Each convergent is a suspect of being equal to 5, and one after the
other is to be checked. The first five tests will fail.

@ However, when checking Cg = %, one obtains

_e-ye—1 47318087-23-—1
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA
. '
Wiener's Attack: Example

@ The cryptanalyst proceeds to compute the prime factors 6719 and
9001 of n=60477719.

@ Note that Wiener's attack works in this example, since the prime

factors of n are of roughly the same size and (10) is satisfied:

3.23 =69 < 88 = L\4/6O477719J .
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA
. '
Wiener's Attack: Example

Remark:

@ Wiener's attack is a real threat only if the hypotheses in (10) are
satisfied, in particular, only if 3d < /n.

@ Since the encryption exponent e is chosen first (usually small to speed

up encryption), it is unlikely that a small d will be generated.

@ That is, if e is small enough, then d is likely to be large enough to

resist Wiener's attack.

@ One should keep in mind, though, that it might be dangerous if one
seeks to speed up decryption by using a small private key d.
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Low-Exponent Attack
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA
Low-Exponent Attack

@ A recommended value of the encryption exponent e that is commonly
used today is e =20 41,

@ One advantage of this value for e is that its binary expansion has only
two ones, which implies that the “square-and-multiply” algorithm

requires very few operations. Thus, encryption is very efficient.

@ However, one should be cautious not to choose the public encryption

exponent too small.
@ A preferred value of e that has been used often in the past is e = 3.

@ Suppose that three parties participating in the same system encrypt
the same message m using the same public exponent e =3, yet
distinct RSA moduli, say ni, np, and ns.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA
Low-Exponent Attack

@ Then, a cryptanalyst can easily compute m from the three ciphertexts:

3

¢t = m’>modm
¢ = m>mod n
a3 = m® mod ns.

@ Since the message m must be smaller than each of the moduli n;, it

follows that m® must be smaller than nynans.

@ Using the Chinese Remainder Theorem, one can compute the unique
solution

¢ = m® mod ninon3 = m3.

@ Hence, one can recover m from c¢ by ordinary root extraction.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA
Low-Exponent Attack

@ More generally, suppose that k related plaintexts are encrypted with

the same exponent e:

= (31m+ bl)e mod m
& = (aam+by)¢ mod ny
ck = (akm+ by)® mod ny,

where a; and b;, 1 <i <k, are known constants, k > e(e+1)/2, and we
have
. 2
min(n;) > 2°.
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Reminder: RSA Cryptosystem, Primality, and Factoring Reminder: Security of RSA
Low-Exponent Attack

@ Then, an attacker can solve the above system of k congruences for m

in polynomial time using so-called “lattice reduction techniques.”
@ This observation was made by Hastad in the late 1980s.
@ This attack is a concern if the messages are related in a known way.

@ In this case, they should not be encrypted with many RSA keys of the

form (nj,e).

@ A recommended countermeasure, which prevents mounting this
attack in practice, is to pad the messages with pseudorandom strings

prior to encryption.
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Reminder: Security of RSA
Forging RSA Signatures

@ We present a chosen-plaintext attack that is based on the fact that
the RSA encryption function is a homomorphism: If (n,e) is the

public key and m; and my are two messages, then
m§ - m§ = (my-my)° mod n. (18)
@ Another congruence that can easily be verified is

d

(m-r$)?=m?-r mod n. (19)

@ The congruences (18) and (19) can be used to mount an attack on
the RSA digital signature scheme.

J. Rothe (HHU Diisseldorf) Cryptocomplexity |1 76 /79



Reminder: Security of RSA
Forging RSA Signatures

@ Given previous message-signature pairs

(m1,siga(m1)), (ma,siga(ma2)), ..., (mk,siga(mx)),

Erich can use the congruences (18) and (19) to compute a new

message-signature pair (m,siga(m)) by

K
m = reHmf" mod n;
i=1
K
siga(m) = r[](siga(mi))* mod n,
i=1

where r and the e; are arbitrary.
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Reminder: Security of RSA
Forging RSA Signatures

@ Hence, Erich can forge Alice's signature without knowing her private

key, and Bob will not detect the forgery, since
m = (siga(m))® mod n.
@ The above attack looks like a known-plaintext attack at first glance.
@ However, note that, in (18), even if m; and my are meaningful

plaintexts, my - my usually is not. Thus, Erich can forge Alice’s

signature only for messages that may or may not be useful.

@ However, he might choose the messages m; so as to generate a

meaningful message m with a forged digital signature.

@ This chosen-plaintext attack can again be avoided by pseudorandom
padding techniques that destroy the algebraic relations between

messages.
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EIEER 2T/ e
A Chosen-Ciphertext Attack on RSA

@ Pseudorandom padding is also a useful countermeasure against the

following chosen-ciphertext attack:

@ Erich intercepts some ciphertext ¢, chooses r € N at random, and

computes c-r® mod n, which he sends to the legitimate receiver Bob.

e By (19), Bob will decrypt the string

é=c? rmod n,

which is likely to look like a random string.

@ Erich, however, if he were to get his hands on &, could obtain the
original message m by computing

m=r"1-c? rmod n,

i.e., he multiplies by r~1 the inverse of r modulo n.
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