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Substitution and Permutation Ciphers
Block Cipher and Substitution Cipher

Definition
@ A block cipher is a cryptosystem in which both the plaintext space
and the ciphertext space is X", the set of length n strings over some
alphabet . The number n is called the block length (or sometimes
the period) of the system.

o A substitution cipher is a block cipher with block length one.

Observation:

The encryption functions of a block cipher are permutations.

Because every encryption function has some corresponding decryption
function, the encryption functions of a block cipher are injective, and an

injective function mapping from X" onto X" is a bijection.
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Substitution and Permutation Ciphers
Block Cipher and Substitution Cipher

By this observation, the most general block cipher can be described as

follows:
@ Fix an alphabet ¥ and a block length n, and define the message space
and ciphertext space by M =C=%".
@ Let the key space K be given by the set of all permutations of ¥".

@ For each key w € K, the encryption function E; and the decryption
function Dy, which both map from X" to X", are defined by:

E(X) = (),
Dr(y) = 7(7),

1

where 77" is the inverse permutation.
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Substitution and Permutation Ciphers
Block Cipher and Substitution Cipher

However, this cryptosystem is impracticable, since one needs the

permutation 7 to decrypt the message.

Representing 7 € K by a table containing 7(X) for each X € X", one

obtains a table of size m".

That is why it is more reasonable to use only those permutations that

result from interchanging the position of cleartext letters.

This is the permutation cipher, also known as the transposition cipher.
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers

Permutation Cipher, a.k.a. Transposition Cipher
@ Let ¥ be some alphabet, and let n € N be the block length.

o Let M=C=2%", and let the key space K = &, be the permutation

group on n elements.

@ For each key m € G, the encryption function E; and the decryption
function Dy, which both map from X" to X", are defined by:

Ex(xixo " Xn) = Xg@)Xa(2) " Xa(n):
Dr(yriy2-+-yn) = Yarq)Ya 1) Yai(n)
@ Here, the key space has n! elements, and every key can be encoded by

a sequence of n numbers.
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers
Arithmetics in Zy

o Let ke N, and x,y,z € Z. The number x is congruent to y modulo k
(x =y mod k, for short) if and only if k divides the difference y — x.
For example, —3 =16 mod 19 and 8 =0 mod 2.

@ The congruence = modulo k defines an equivalence relation on Z,
ie,itis
o reflexive (x = x mod k),
e symmetric (x =y mod k implies y = x mod k), and
e transitive (if x =y mod k and y = z mod k, then x =z mod k).

o The set x+ kZ = {y € Z| y = x mod k} is said to be the remainder
class of x mod k. For example, the remainder class of 3 mod 7 is

3+72=1{3,3+7,3+2-7,...} = {3,10,—4,17,—11,...}.
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers
Arithmetics in Zy

@ We always choose the smallest natural number in x+ kZ to represent

the remainder class of x mod k; e.g., 3 represents the class 3 mod 7.

@ The set of all remainder classes modulo k is Z; = {0,1,.... k—1}.

@ On Zy, define the

e addition modulo k by (x+ kZ)+ (y + kZ) = (x +y) + kZ and the
o multiplication modulo k by (x+kZ)-(y + kZ) = (x-y) + kZ.

For example, in the arithmetics modulo 7, we have

(3+7Z)+(6+7Z) = (3+6)+7Z = 2+7Z
(3+7Z)-(4+7Z) (3-4)+7Z = 5+7Z.
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers
Shift Cipher

@ The shift cipher is a monoalphabetic symmetric cryptosystem.
Let K =M = C = Zog.

@ The shift cipher encrypts messages by shifting (modulo 26) each
character of the plaintext by the same number k of letters in the
alphabet, where k € Zyg is the key. Shifting each character of the
ciphertext back using the same key k reveals the original message.

@ For each key k € Zog, the encryption function E, and the decryption
function Dy, which both map from Zyg to Zyg, are defined by:

Ex(x) = (x+k) mod 26;
Di(y) = (y—k) mod 26.
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers
Shift Cipher

Example

If we choose the key k =17 =R, the message
“BRUTUS FORCE EASILY BREAKS CAESAR”

is encrypted as follows:

m |BRUTUS FORCEEASILYBREAKS CAESAR
c|SILKLIJWFITVVRIJZCPSIVRBJTRVIJRI

Table: Example of an encryption by the shift cipher with key kK =17
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers
Affine Cipher

@ The affine cipher is a monoalphabetic symmetric cryptosystem.
Let M= C =7y and K = {(a,b) € Zoe X Ziog } gcd(a,26) = 1}.

@ The affine cipher encrypts messages letter by letter. For each key
(a,b) € Zog x Zoe with ged(a,26) =1, the encryption function E(, )
and the decryption function D(,-1 ), which both map from Ze
to Zyg, are defined by:

Eap)(x) = ax+bmod 26;
Dioiply) = a (y — b) mod 26,

where a~1 is the inverse element of a in Zog, i.€.,
aal=ala=1 mod 26. Note that a—! can easily be determined by
the extended algorithm of Euclid.
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers

Greatest Common Divisor and Euclidian Algorithm

Definition

The greatest common divisor (gcd(m, n)) of two given integers m and n is
the greatest number k € N for which there are numbers a, b € Z with
m=a-kand n=b-k.

Eucrip(n,m) {
(* m and n are integers with m < n *)
if (m=0) return n;
else return EucLID(m,n mod m);

}

Figure: Computing gcd(m, n) by the Euclidian Algorithm
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers

Greatest Common Divisor and Euclidian Algorithm

Example: What is the greatest common divisor of n =170 and m = 1027

n m | nmod m
170 | 102 68
102 | 68 34

68 | 34 0
34 0

Table: Test run of the Euclidean Algorithm

The algorithm indeed computes the correct solution, since
gcd(170,102) = 34 because 3-34 =102 and 5-34 = 170.
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers

Extended Euclidian Algorithm

EXTENDED-EUCLID(n,m) {
(* m and n are integers with m < n *)

if (m=0) return (n,1,0);
else {
(g,x',y") := EXTENDED-EUCLID(m, n mod m);
x =y’
yi=x =y |5 ];
return (g,x,y);

Figure: Extended Euclidean Algorithm
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L T
Extended Euclidian Algorithm

Example: What is the greatest common divisor of n =170 and m = 1027

n m g X y Remark

Table: Test run of the extended Euclidean Algorithm
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L T
Extended Euclidian Algorithm

Example: What is the greatest common divisor of n =170 and m = 1027

n m g X y Remark
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Substitution and Permutation Ciphers
Extended Euclidian Algorithm

Example: What is the greatest common divisor of n =170 and m = 1027

n m g X y Remark

170 | 102

Table: Test run of the extended Euclidean Algorithm
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Substitution and Permutation Ciphers
Extended Euclidian Algorithm

Example: What is the greatest common divisor of n =170 and m = 1027

n m g X y Remark
170 | 102
102 | 68

Table: Test run of the extended Euclidean Algorithm
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Substitution and Permutation Ciphers
Extended Euclidian Algorithm

Example: What is the greatest common divisor of n =170 and m = 1027

n m g X y Remark
170 | 102
102 | 68

68 | 34

Table: Test run of the extended Euclidean Algorithm
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Substitution and Permutation Ciphers
Extended Euclidian Algorithm

Example: What is the greatest common divisor of n =170 and m = 1027
n m g X y Remark
170 | 102
102 | 68
68 | 34
34 0 34 ‘ 1 ‘ 0 | if (m=0) return (n,1,0)
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Table: Test run of the extended Euclidean Algorithm
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Substitution and Permutation Ciphers
Extended Euclidian Algorithm

Example: What is the greatest common divisor of n =170 and m = 1027
n m g X y Remark
170 | 102
102 | 68
68 | 34 34 0 1 | x=y; y=x—yx|2]
34 0 34 1 0 | if (m=0) return (n,1,0)
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Table: Test run of the extended Euclidean Algorithm
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Substitution and Permutation Ciphers
Extended Euclidian Algorithm

Example: What is the greatest common divisor of n =170 and m = 1027
n m g X y Remark
170 | 102
102 | 68 34 1 -1
68 | 34 34 0 1 | x=y; y=x—yx|2]
34 0 34 1 0 | if (m=0) return (n,1,0)
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Table: Test run of the extended Euclidean Algorithm
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers

Extended Euclidian Algorithm

What is the greatest common divisor of n =170 and m = 1027

Example:
n m g X y Remark
170 | 102 34 -1 2
102 | 68 34 1 -1
68 | 34 34 0 1 | x:=y; y=x'—yx L%J
34 0 34 1 0 | if (m=0) return (n,1,0)

Table: Test run of the extended Euclidean Algorithm

14 /118
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Substitution and Permutation Ciphers
Extended Euclidian Algorithm

Example: What is the greatest common divisor of n =170 and m = 1027
n m g X y Remark
170 | 102 34 -1 2
102 | 68 34 1 -1
68 | 34 34 0 1 | x=y; y=x—yx|2]
34 0 34 1 0 | if (m=0) return (n,1,0)

This result indeed is correct, since
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Table: Test run of the extended Euclidean Algorithm

(—1)-170+2-102 = 34 = gcd(170,102).
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Substitution and Permutation Ciphers
Algebra and Number Theory: Group, Ring, and Field

Definition
e A group & =(S,0) is defined by a nonempty set S and a binary
operation o on S satisfying the following axioms:
o Closure: (Vx € S)(Vy € S)[xoy € S].
o Associativity: (Vx € S)(Vy € S)(Vze S)[(xoy)oz=x0o(yoz)].
o Neutral element: (Je € S)(Vx € S)[eox =x0e=x].
o Inverse element: (Vx € S)(Ix 1€ S)[xox 1=xlox=¢].

@ The element e is called the neutral element of the group &.
@ The element x~ ! is called the inverse element of x.

@ Define the order of an element x of & to be the smallest positive

integer k such that x* = xoxo---ox=e.
—

k times
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Substitution and Permutation Ciphers
Algebra and Number Theory: Group, Ring, and Field

Definition
e M = (S,0) is a semi-group if it satisfies associativity and closure
under o. A semi-group 9t might have no neutral element (if it does,

it is a monoid), and not every element in 9t might have an inverse.
@ A group & = (S,0) (respectively, a semi-group or monoid 9 = (S, 0))
is said to be commutative (or abelian) if and only if for each x,y € S,
Xoy =yox.

The number of elements of a finite group & is said to be the order of
& and is denoted by ||&]|.

@ $H=(T,o) is said to be a subgroup of & = (S5,0) (denoted by ) < &)
if and only if T C S and $) satisfies the group axioms.

V.
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Substitution and Permutation Ciphers
Algebra and Number Theory: Group, Ring, and Field

Definition
e A ring is a triple R = (S,+,-) such that
e (5,+) is an abelian group,
e (S,) is a semi-group, and
o the distributive laws are satisfied for all x, y, and z in S:

x-(y+2) (x-y)+(x-2);
(x+y)-z = (x-2)+(y 2).

o Aring R=(S,+,) is said to be commutative if and only if the
semi-group (S,) is commutative.
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Substitution and Permutation Ciphers
Algebra and Number Theory: Group, Ring, and Field

Definition
o Let R=(S,+,:) be a ring.
o The neutral element of the group (S,+) is said to be the zero element
(the zero, for short) of 9.
e The neutral element of the semi-group (S,-), if it exists, is said to be
the one element (the one, for short) of R.

o Let R=(S,+,-) be a ring with one. An element x of R is invertible
if and only if it is invertible in the monoid (S,").

o A field is a commutative ring with one in which each element distinct

from zero is invertible.
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Substitution and Permutation Ciphers
Algebra and Number Theory: Group, Ring, and Field

Example:
o Let ke N,
o Theset Z;, ={0,1,...,k—1} is a finite group with respect to addition
modulo k, and with the neutral element 0.
o With respect to addition and multiplication modulo k, Zj is a
commutative ring with one.
o If pis a prime number (i.e., p> 2 is divisible by 1 and by p only), then

Zp is a field with respect to addition and multiplication modulo p.

o For any fixed k € N, define the set
r={i|1<i<k—1and gcd(i,k) =1}.

With respect to multiplication modulo k, Zj is a finite group with the

neutral element 1.
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Substitution and Permutation Ciphers
Algebra and Number Theory: Group, Ring, and Field

@ How do we find the inverse of  in Z;?
@ With the extended Euclidean Algorithm!
o Recall from our example: (—1)-170+2-102 = 34 = gcd(170,102).

o However, if we have gcd(n,m)=1=x-n+y-m, then in the
arithmetics modulo n:
y-m=1 mod n,
soy=m1l.
@ For example, with the extended Euclidean Algorithm we get:

gcd(26,11) =1=3-26+(-7)-11 =78 77, so
1171 = (~7) =19 mod 26.
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L T
Back to the Affine Cipher

let M=C = ZZG and K = {(a,b) S Z26 X ZQG | ng(a726) = ]‘}

For each key (a,b) € Zye X Zae with gcd(a,26) =1, the encryption
function E(, ) and the decryption function D,-1 ), which both map from

Zoe to Zoe, are defined by:

Eap)(x) = ax+bmod 26;
Di1p)(y) = a '(y—b)mod 26,

where a1 is the inverse element of a in Zs, i.e.,
aa!=a'a=1mod 26. Note that a~! can easily be determined by the

extended algorithm of Euclid.
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L T
Back to the Affine Cipher

Example:

@ Choose the encryption key k = (5,7).

@ Note that 21 is the inverse element of 5 modulo 26, since

5.21=105=1+4-26 =1 mod 26.

@ Hence, the decryption key is k' = (21,7).

@ Consider the message m and determine its encryption c:

m|THEELECTIVEAFFINITIESBY GOETHE

Cc

Table: Example of an encryption by the affine cipher with key k = (5,7)
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L T
Back to the Affine Cipher

@ The first plaintext letter is a “T,” which is encoded as 19.

@ The corresponding first letter of the ciphertext is determined by

Thus the ciphertext letter “Y,” which corresponds to 24, encrypts “T.”
e With decryption key k' = (21,7) we can correctly decipher this letter:

D(21,7)(24) = 21(24 —7) = 357 = 19 mod 26.

@ Overall, we obtain:

m|THEELECTIVEAFFINITIES BYGOETHE
c |[YQBBKBRYVIBHGGVUVYVBTMXLZBYQB

Table: Example of an encryption by the affine cipher with key k = (5,7)
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers

Back to the Affine Cipher

In general, if y is a ciphertext letter encrypting a plaintext letter x with
key (a,b), we have
y=ax+bmod26 <= ax=y—bmod?26
— alax=al(y—b)mod?26

— x=a (y—b)mod 26,

which shows that the affine cipher indeed is a cryptosystem.
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Substitution and Permutation Ciphers
Cryptanalysis of the Affine Cipher

Observation:

@ For the alphabet Zyg, the affine cipher has only
26-0(26) =26-12 =312

keys, since

o the number of choices for b € Zyg is 26 and

o the number of choices for a € Zye coprime with 26 is ¢(26) =12,
where ¢(k) = ||Z;| is the Euler function.
Thus, a ciphertext-only attack breaks the affine cipher by brute force,

i.e., by an exhaustive search of the key space.

@ The affine cipher can also be broken by a known-plaintext attack in

which two plaintext letters and their encryptions are known.
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Substitution and Permutation Ciphers
Cryptanalysis of the Affine Cipher

Example (Known-Plaintext Attack Against the Affine Cipher)

Suppose that the cryptanalyst knows the ciphertext ¢ from our previous
example, and he also knows the first two plaintext symbols, “T” and “H,”
corresponding to the first two ciphertext letters, “Y” and “Q.”

He can then determine the keys as follows:

@ Since “Y” encrypts “T” and “Q” encrypts “H,” one obtains the

congruences:

19a+b = 24 mod 26; (1)
7a+b = 16 mod 26; (2)
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Substitution and Permutation Ciphers
Cryptanalysis of the Affine Cipher

@ (2) is equivalent to b= 16 —7a mod 26.

@ Substituting this into (1) gives 19a+ 16 — 7a = 24 mod 26 and thus
12a =8 mod 26, which implies
6a = 4 mod13. (3)

Why? Because we can cancel modulo m as follows:

crce=c-fmodm <— e=f mod ——.
gcd(c, m)

e Multiplying (3) with the inverse element 11 of 6 modulo 13 yields
a = 44=5mod 13.

o It follows that a=5 and b=7.
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers

Solving Congruences modulo m

c-a=dmodm (4)
is solvable in a if and only if g = gcd(c, m) divides d.

The number of solutions mod m of (4) then is g and all solutions are

congruent to each other mod m/g:
g=x-c+y-m by the extended Euclidian Algorithm

gives the following solutions for (4):

_xd

4

ai and a;:a;ﬁ—(i—l)E fori=2,...,g.
g
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Substitution and Permutation Ciphers
The Method of Frequency Counts

The method of frequency counts is often useful for breaking
monoalphabetic cryptosystems (e.g., the shift cipher and the affine cipher).

It exploits the redundancy of the natural language used for encryption.

Letters occurring with high frequency Total

Letter E T A (0] N | S R H

Frequency in % |{12.31| 9.59 |8.05| 7.94 |7.19| 7.18 |6.59| 6.03 |5.14 || 70.02%

Letters occurring with medium frequency

Letter L D C u P F M W Y

Frequency in % || 4.03 | 3.65 |3.20| 3.10 [2.29| 2.28 |2.25| 2.03 |1.88| 24.71%

Letters occurring with low frequency
Letter B G \% K Q X J yA

Frequency in % || 1.62 | 1.61 {0.93| 0.52 |0.20| 0.20 |0.10| 0.09 5.27%
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Substitution and Permutation Ciphers
Cryptanalysis of the Affine Cipher by Frequency Counts

In our previous example:

c|lYQRBBKBRYVIBHGGVUVYVBT MXLZBYQB

we have:
Letter B YV Q GK R I HUTMX L Z
Frequency | 7 4 4 2 2 1 1 1 1 1 1 1 1 1 1

Table: Frequencies of letters in the ciphertext from the above example

= Erich guesses that “B"” encrypts “E,” and that “Y" and “V" each
encrypt one of the letters “T,” “A,” "0O,” "N,” or “L."
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Substitution and Permutation Ciphers
Cryptanalysis of the Affine Cipher by Frequency Counts

’ c ‘YQBBKBRYVIBHGGVUVYVBTMXLZBYQB

VisA|THEE?E?TA?E??7?7A?ATAE? 2?77 ?7ETHE
VisO | THEE?E?TO?E??7?70?0TOE? ?? ??ETHE
VisN | THEE?E?TN?E ?77?7?N?NTNE? ?27? ?2?7ETHE
Vis|l ITHEE?E?TI?E???2 1?21 TIE? 7?77 ?7?2ETHE

Table: Guessing in the frequency counts method: Bis E, Yis T, Q is H
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Substitution and Permutation Ciphers
Cryptanalysis of the Affine Cipher by Frequency Counts

’ c ‘YQBBKBRYVIBHGGVUVYVBTMXLZBYQB

VisA|THEE?E?TA?E??7?7A?ATAE? 2?77 ?7ETHE
VisO | THEE?E?TO?E??7?70?0TOE? ?? ??ETHE
VisN | THEE?E?TN?E ?77?7?N?NTNE? ?27? ?2?7ETHE
Visl I THEE?E?TI?E???2 1?1 TIE? 277 ?2?7ETHE

Table: Guessing in the frequency counts method: Bis E, Yis T, Q is H
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Substitution and Permutation Ciphers
Cryptanalysis of the Affine Cipher by Frequency Counts

e

\YQB

BKBRYVIB

HGGVUVYVBT

LZBYQB‘

Vis A

THE

E?E?TA?E

?

?T?7TA?ATAE?

?7?7ETHE

Vis O

THE

E?E?TO?E

?

?77070TOE?

?77ETHE

Vis N

THE

E?E?TN?E

?

?T?PTN?NTNE?

?7?7ETHE

Vis |

THE

E?E?T I ?E

?

7?71?21 TIE?

?77ETHE

’ m ‘ THEELECTIVEAFFINITIES BYGOETHE

Table: Guessing in the frequency counts method: Bis E, Yis T, Q is H
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Substitution and Permutation Ciphers
Cryptanalysis of the Affine Cipher by Frequency Counts

Example (Stinson (2002))

c|[FMXVEDKAPHFERBNDKRXRSREFMORUD
SDKDVSHVUFEDKAPRKDLYEVLRHHRH

Now we have:

Letter RDEHKFVSALMPUXBNOY
Frequency | 8 755 5 4432222221111

Table: Frequencies of letters in the ciphertext from the above example

Our goal is to determine the key (a, b) used in the encryption by the

affine cipher:

E(a7b)(X) = ax+ b mod 26.
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Substitution and Permutation Ciphers
Cryptanalysis of the Affine Cipher by Frequency Counts

Example (Stinson (2002) continued)

o Hypothesis 1: R encrypts E and D encrypts T.
Thus E(a,b)(4) =17 and E(a,b)(]-g) =3.

This gives a system of equations with two unknowns:
4a+b = 17

19a+b = 3

Subtracting the first from the second equation modulo 26 gives:
15a =12,

and since 1571 = 7 mod 26, we have the solution
a=7-12=84=6mod26 and b=19 in Zoyg.
However, (6,19) is not an allowed key because gcd(6,26) =2 > 1.

v
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Substitution and Permutation Ciphers
Cryptanalysis of the Affine Cipher by Frequency Counts

Example (Stinson (2002) continued)

o Hypothesis 2: R encrypts E and E encrypts T.
Thus E(a,b)(4) =17 and E(a,b)(]-g) =4

This gives a system of equations with two unknowns:
4a+b = 17

19a+b = 4

Subtracting the first from the second equation modulo 26 gives:
15a =13,

and since 1571 = 7 mod 26, we have the solution
a=7-13=91=13mod26 and b=17 in Zps.
However, (13,17) is not an allowed key because gcd(13,26) =13 > 1.

v
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Substitution and Permutation Ciphers
Cryptanalysis of the Affine Cipher by Frequency Counts

Example (Stinson (2002) continued)
o Hypothesis 3: R encrypts E and H encrypts T.
Then a=8. However, gcd(8,26) =2 > 1.

@ Hypothesis 4: R encrypts E and K encrypts T.
Then a=3 and b=5. BINGO! (3,5) is the key used:
To verify, determine a~* =371 =9 mod 26, so

al-b=9-5=45=19 mod 26.
Now decrypt the ciphertext with the decryption function

Di1py(y) = al(y—b)=9-y—19 mod 26:

m|ALGORITHMSAREQU ITEGENERALDEFI
NITIONSOFARITHMETICPROCESSES
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Substitution and Permutation Ciphers
Cryptanalysis of a Substitution Cipher by Frequency Counts

YI FQFMZRWQFYVECFMDZPCVMRZWNM
DZVEJBTXCDDUMJNDI FEFMDZCDMQZ
KCEYFCJMYRNCWIJCSZREXCHZUNMXZ
NZUCDRJXYYSMRTMEY I FZWDYVZVYF
ZUMRZCRWNZDZ JJXZWGCHSMRNMDHN

CMFQCHZJMXJZWIEJYUCFWDIJNZDIR

Table: Example due to Stinson (2002)
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Substitution and Permutation Ciphers
Cryptanalysis of a Substitution Cipher by Frequency Counts

Example (Stinson (2002))
@ Z occurs 20 times, more often than any other letter, so we guess that
Z encrypts the plaintext letter e. (NOTE: In this example, plaintext

letters are lower-case and ciphertext letters are UPPER-case.)

o C,D, F, J, M, R, Y occur at least 10 times each, so we guess that
they encrypt (a subset of) t, a, o, i, n, s, h, r.
It is unclear, though, which encrypts which letter.

@ Let’s have a look at digrams, especially those containing Z:

o DZ and ZW occur 4 times each;
e NZ and ZU occur 3 times each;
o RZ, HZ, XZ, FZ and ZR, ZV, ZC, ZD, ZJ occur 2 times each.

v
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Substitution and Permutation Ciphers
Cryptanalysis of a Substitution Cipher by Frequency Counts

YI FQFMZRWQFYVECFMDZPCVMRZWNM
DZVEJBTXCDDUMIJNDI FEFMDZCDMQZ
KCEYFCJMYRNCWIJCSZREXCHZUNMXZ
NZUCDRJXYYSMRTMEY I FZWDYVZVYF
ZUMRZCRWNZDZ JJXZWGCHSMRNMDHN

CMFQCHZ JMXJZWIEJYUCFWDUIJNZDIR

Table: Looking for digrams containing Z
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Substitution and Permutation Ciphers
Cryptanalysis of a Substitution Cipher by Frequency Counts

Example (Stinson (2002) continued)
@ Since ZW occurs 4 times and WZ occurs not at all, we guess that
W encrypts d.

@ Since DZ occurs 4 times and ZD twice, we guess that

D encrypts one of r, s, t. It is unclear, though, which letter exactly.

@ Under our assumption that Z encrypts e and W encrypts d, we look
at trigrams, especially those containing Z and W:

o ZRW and RZW occur in the first line;

o Later, we also have . Since nd is a frequently used digram in

English, we guess that R encrypts n.
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Substitution and Permutation Ciphers
Cryptanalysis of a Substitution Cipher by Frequency Counts

YI FQFMZRWQFYVECFMDZPCVMRZWNM
DZVEJBTXCDDUMJNDI FEFMDZCDMQZ
KCEYFCJMYRNCWIJCSZREXCHZUNMXZ
NZUCDRJXYYSMRTMEY I FZWDYVZVYF
ZUMRZC NZDZ JIJXZWGCHSMRNMDHN

CMFQCHZJMXJZWIEJYUCFWDIJNZDIR

Table: Looking for trigrams containing Z and W and the digram
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Substitution and Permutation Ciphers
Cryptanalysis of a Substitution Cipher by Frequency Counts

en d e ned

YI FQFMZRWQFYVECFMDZPCVMRZWNM

e e e
DZVEJBTXCDDUMIJIJNDI FEFMDZCDMQ Z
n d en e

KCEYFCIJMYRNCWIJCSZREXCHZUNMXZ
e n n ed e
NZUCDRJXYYSMRTMEYIFZWDYVZVYF
ne nd e e e d n
ZUMRZCRWNZDZ JJXZWGCHSMRNMDHN
e e d d e n

CMFQCHZJMXJZWIEJYUCFWDIJNZDIR

Table: Guessing: Z encrypts e, W encrypts d, and R encrypts n
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Substitution and Permutation Ciphers
Cryptanalysis of a Substitution Cipher by Frequency Counts

Example (Stinson (2002) continued)
@ Since NZ occurs 3 times and ZN only once and since he occurs more
often than eh in typical English texts, we guess that N encrypts h.

@ Now, the string n e — n d h e in the (guessed) plaintext suggests that
C encrypts a.
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Substitution and Permutation Ciphers
Cryptanalysis of a Substitution Cipher by Frequency Counts

end
YI FQFMZRWQF
e a
DZVEJBTXCDD
a a n h

CEYFCJMYRN

=Z - X
)
)
=)

ZUCDRIJXYYS
andhe
Z CRWNZD

(0]
=]

N
(-
<
2]

a a e

CMFQCHZJMX]J

Y V E

Z T 0O w

uM J
ad
cwJ

[

@)
wn
N

MRTMEY
e e d

ZJ JXZW

e d
ZW 1l EJY

U

Table: Guessing: Zise, Wisd, Risn,

J. Rothe (HHU Diisseldorf)
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Substitution and Permutation Ciphers
Cryptanalysis of a Substitution Cipher by Frequency Counts

Example (Stinson (2002) continued)
o Consider M, the letter occurring with the second-most frequency in
the ciphertext (after Z).

@ RNM (which we guess encrypts n h ?) suggests that

h starts a new word.

@ Thus M very likely encrypts a vowel. Since

e e and a are (very likely) gone and
e u is rare but M occurs 16 times,

it is very likely that M encrypts either i or o.

@ ai is more likely than ao.
Thus CM (last line, left) suggests that M encrypts i.

v
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Substitution and Permutation Ciphers
Cryptanalysis of a Substitution Cipher by Frequency Counts

i end a i e a inedh.i
YI FQFMZRWQFYVECFMDZPCVMRZWNM
e a i h i e a i e
DZVEJBTXCDDUMIJNDI FEFMDZCDMQ Z
a a i nhad a n a e h i e
KCEYFCJMYRNCWIJCSZREXCHZUNMXZ
h e a n i n i e d e
NZUCDRJXYYSMRTMEY I FZWDYV ZVYF
ineandhe e e d a in h i h
ZUMRZCRWNZDZJJXZWGCHSMRNMDHN
a i a e i e d a d h e n

CMFQCHZ JMXJZWIEJYUCFWDIJNZDIR
Table: Guessing: Zise, Wisd, Risn, Nish, Cisa, and M is i
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Substitution and Permutation Ciphers
Cryptanalysis of a Substitution Cipher by Frequency Counts

Example (Stinson (2002) continued)
@ Which letter encrypts o?

@ Since o is a frequent letter, we suspect D, F, J, Y—each are similarly

frequent in English.

@ Among those, Y is most likely to encrypt o, for otherwise we would

have “vowel worms” like aoi because of CFM and CJM.

@ We now suspect D, F, J to each encrypt one of r, s, t:

o NMD (i.e., h i ?) occurs twice, suggesting that D encrypts s.
o Also, HNCMF (i.e., ? h ai ?) looks like c h air, so H is likely to
encrypt ¢ and F to encrypt r.

e Thus J very likely encrypts t.

v
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Substitution and Permutation Ciphers
Cryptanalysis of a Substitution Cipher by Frequency Counts

0 <

Z - X < O

N
c £ N

a

N

o

m © O =

Cc £ mwo < 3 T
< o

in

r
E
t
J

MR Z

r f

a

CMFQC

J. Rothe (HHU Diisseldorf)
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RJXYYSMRTM
andhesett]|
CRWNZDZ JJX
cet il tedup
HZJMXJZWIE
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MDZP CV
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| FEFMD
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Table: Example due to Stinson (2002)
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Some Classical Cryptosystems and Their Cryptanalysis Substitution and Permutation Ciphers

Cryptanalysis of a Substitution Cipher by Frequency Counts

Our friend from Paris examined his empty glass with surprise, as
if evaporation had taken place while he wasn’t looking. | poured
some more wine and he settled back in his chair, face tilted up
towards the sun.

P. Mayle, A Year in Provence, A. Knopf, Inc., 1989
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Affine Linear Block Ciphers

Some Classical Cryptosystems and Their Cryptanalysis

Vigenere Cipher

This symmetric polyalphabetic cryptosystem uses a Vigenére square:

N|<|o|v|la|lw|lw|lo|z|-|-|x|=|S|z|0|a|o|a
>IN|<|o|v|[ajlw|w|[v|Z|—|>|X|2|S|2|0|a|C
X|>|N|<|o|v|lo|lw|w|o|Z|-|>|x|=2|S|z|0]|a
ZIX|>[(N|[<|o|v|o|lw|jw|o|z|=-|-|x|=|[=S|z]|C
>SIZIX|>|N|<|o|jv|o|lu|ju|o|lz|-|2|x|[2|S|=z
SI>|2|X|>|N|<|o|juv|o|lw|w|o|lzT|—|>|x]|=]|=
Flo|>|2|X|>[N|[<|o|v|o|jw|w|lo|T|—|-|Xx]|-
wiF|[D|>[2|X|>|N|<|ojv|a|lw|w|olT|—|>|x
xlun|lF[D|>|2[X|[>|N|<|o|v|ajw|w|o|T|—|-
glx|wn|F|D|>|Z2|X|>|N|<|n|v|o|jw|w|o|T|-
alole|ln|F|D[>[2|X|>|N|<|o|jv|o|w|w oz
ola|o|le|un|F|D|>|2[X|>|N|<|o|jv|o|w|w|C
z|o|a|ojx|vn|F[D|>|Z2|X|>|N|<|o|v|o|w|u
S|z|lo|la|o|x|un|[F|D|>|2|X|[>|N|<|oju|a|uw
dlsS|z|o|la|olx|un|F|D|>|Z2[X|[>|N|<|n|u|c
¥ als|z|o|a|ole|lu|lF|D|>[2[X|>|N|[<|o|C
Slx|a|S|z|ola|o|le|lun|F|D|[>[2|X|>|N|<|a
—|-|x|a|sS|z|o|la|o|lx|un|+[D[>|2|X|[>|N|<
I|—[-|x|=|S|z|0|a|O|lx|un|F[D[>|Z2|X]|>]|~
olz|-|~|x|a|S|z|o|la|o|lx|un|+|[D|[>]|Z|x]|>
Lliolz|—|-|x|[=2|=|z|o|a|ojx|n|F|D]|>]|2
wjlw|ojz|—|(~|x|2|(Z|Z2|0|a|C|lx|n|F|D|>]S
olulu|o|lz|=|-|x|2|s|z|o|a|o|x|un|r]|D
Vlog|lw|lu|jo|z|—|-|x|a|S|z|o|a|o|x|wn|F
o|lulajwljw|lo|lz|=|-|x|2|S|z|0|a|o|x|wn
< ||| O|W|(wL|V|IZ|—|"|(X|[2|=|2|0|a|C|x
0123456789muummwmn..
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers
o N 0
Vigenere Cipher

@ Messages are subdivided into blocks of length n, and are then
encrypted block-wise. That is, K = M = C = Zzg, where n is the
block length of the system.

@ For each key ke Zyg, the encryption function E; and the decryption
function Dy, both mapping from Z34 to Z7g, are defined by:

E/(%) = (%+k)mod26

D.(y) = (¥—k) mod 26,

where addition and subtraction with k modulo 26 are carried out

character-wise.
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Vigenere Cipher
@ More concretely, the key k € Z5 is written symbol by symbol above

each block X € Zgg of the plaintext. If the last block has less than n

symbols, use less symbols of the key accordingly.
o Let s; denote the /™ symbol of any given string 5.

e To encrypt the i™ plaintext symbol x;, with the i key symbol k;
sitting on top of it, use the /™ row of the Vigenere square as if it were

the shift cipher with key k;.

@ Observe that one and the same plaintext symbol can thus be

encrypted by distinct ciphertext symbols.
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers
o N 0
Vigenere Cipher

@ For example, choose the period n =4 and the key k =ELLA.
The table:

key ELLAELLAELLAEL LAELLAELLAELLA
message HUNGARIAN IS ALL GREEKTO GERMANS
ciphertext | LFYGECTAR TD APWRRIPVTS RPRQLYS

Table: Example of an encryption by the Vigenere cipher with key ELLA

shows the encryption of a plaintext consisting of seven blocks into a

ciphertext using the Vigenere cipher with this key.
@ The first letter of the plaintext, “H,” has the key symbol “E” above it.

@ The “H”-column intersects with the “E”-row of the Vigenére square
at “L.” which is thus the first symbol of the ciphertext.
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers
o N 0
Vigenere Cipher

@ Distinct ciphertext symbols encrypt the same plaintext symbol:
o the plaintext letter “A” occurs four times and is encrypted by “A” twice,
by “E” once, and by “L” once;
o the plaintext letter “E” occurs three times and is encrypted by “I”” once
and by “P” twice;
o the plaintext letter “G” occurs three times and is encrypted by “G”
once and by “R” twice;
o the plaintext letter “N” occurs three times and is encrypted by “R”
once and by “Y” twice;
o the plaintext letter “R” occurs three times and is encrypted by “C”
once and by “R” twice.
@ This observation also shows two weaknesses of the key chosen:
o two letters of the key ELLA are equal, and
e one letter of the key is “A,” which does not alter the corresponding

cleartext letters.
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A TR =
Affine Linear Block Ciphers

@ The Vigenere cipher is a special case of an affine linear block cipher,
which generalizes the affine cipher.

o Before defining affine linear block ciphers, we recall some elementary
notions from linear algebra.

@ In particular, affine linear block ciphers require operations on matrices
over the ring Zn,, i.e.,

o the matrix entries are elements of Z,, and

e the matrix operations are based on the arithmetics modulo m.
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Inverse Matrix, Determinant, and Adjoint Matrix

Definition
e Let &i; = (0,...,0,1,0,...,0) denote the i unity vector of length n:

o the i™ coordinate of T; is one, and
o the j" coordinate of &; is zero for all j # i.

e The (nx n) unity matrix is defined by U, = (Uj)1<i<n, where

the i row (and column) of U, is the i™ unity vector of length n.

e Consider an (nx n) matrix A over the ring Z,,. The (multiplicative)
inverse of A, denoted by A~ is an (n x n) matrix satisfying that
AAL=ATTA

is the (n x n) unity matrix U,.

v
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Inverse Matrix, Determinant, and Adjoint Matrix

Definition
@ The determinant of A can be defined recursively:
o for n=1and A=(a), detA=g;
o for n>1 and for each i € {1,2,...,n},

n . .
detA= Z(*l)’+lainetA,',j,
j=1

where a; ; is the (i,j)-entry of A, and the ((n—1) x (n—1)) matrix A;;

results from A by canceling out the /™ row and the j® column.

o Define the adjoint matrix of A by Aaq; = ((—1) detA; ;).
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Inverse Matrix, Determinant, and Adjoint Matrix

Remark:
@ ZI*"is a ring with one (in general, not commutative) with respect to
e addition: A+ B = (a;j+ bij mod m) for A= (a;;),B = (bij) € Zp",
and .
o multiplication: A-B =(¢;;) with ¢;j = Z aj k- bxj mod m
k=1

@ An (nx n) matrix A over the ring Z, has a multiplicative inverse

matrix if and only if gcd(detA,m) =1.

@ In general, an (n x n) matrix over the reals is invertible if and only if

its determinant is nonzero.
@ The determinant of a matrix can be computed efficiently.

o It can be shown that A~! = (det A) " Aaq;.

J. Rothe (HHU Diisseldorf) Cryptocomplexity | 59/118



Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Inverse Matrix, Determinant, and Adjoint Matrix

Example
1 2 4 5
Let m=7 and A= and B= . Then
2 3 6 0
5 0 4412mod7 5+0mod7 2 5
A+B= and A-B = =
1 3 8+18mod7 104+0mod7 5 3
Since B-A = , we see that multiplication is not commutative.

6 5

We write A= B mod m if a; j = bjj mod m for 1 <i,j < m.
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Inverse Matrix, Determinant, and Adjoint Matrix

Example

a1 a2
For A= , we have

a1 a2

Arx=(a22), Ai2=(a21), Ac1=1(a12), Axo2=(a1,1).

Thus
detA=a11-a2—a12 a1
and
a2 —aip
Aadj =
—ax1 a1
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Inverse Matrix, Determinant, and Adjoint Matrix
Example
2

Let m=11. We want to determine the inverse of A= , l.e., we
want to solve the congruence

A-A"1 = U, mod 11.
This solution (and A™1) exists if and only if gcd(detA,11) =1.
Since det A=4—6= —2, we indeed have gcd(detA,11) = gcd(9,11) = 1.

Moreover, (—2)(—6) =12 =1 mod 11, so

(detA)"'=9"1=_6=5mod 11.

4
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Inverse Matrix, Determinant, and Adjoint Matrix

Example (continued)

It follows that

Al = (detA) 'Auq; mod 11
4 -2 9 1
= 5. mod 11 =
-3 1 75

This is indeed correct because

w
N
\]
o1
o
=

v
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A TR =
Affine Linear Block Ciphers

Definition

A block cipher with plaintext and ciphertext space Z7, and block length n
is said to be affine linear if and only if all its encryption functions are
affine linear. That is, they all are of the following form:

E

ap(X) = AZ+bmod m, (5)

where A is an (n x n) matrix with entries from Z, such that
gcd(detA,m) =1, and %, ¥, and b are vectors in Z" : all arithmetics is

done modulo m. The corresponding decryption function is

D(A—lj))(y) = A*l(y’_ B) mod m,

where A~1 is the inverse matrix for A. )
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A TR =
Linear and Affine Linear Block Ciphers

Definition

A linear block cipher is an affine linear block cipher for which b in (5) is
the zero vector.

Example

@ The Vigenere cipher is affine linear.

@ A classical example of a linear cipher is the Hill cipher, invented by

Lester Hill in 1929:

In fact, the Hill cipher is the most general linear block cipher.

v
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers
Hill Cipher

@ Let X be an alphabet with m letters, and let n be the block length.
@ The plaintext and cipher text space is M = C=7Z]..

@ The key space K is the set of all (nx n) matrices A with entries from
Zm such that gcd(det A,m) = 1. This condition ensures that the
matrices are invertible, since the inverse matrix A1 is used as the
decryption key corresponding to the encryption key A.

@ The encryption function Ea and the decryption function D,-1 are
defined by:

Ea(X) = AX mod m;
Da1(y) = Ay mod m.
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers
Hill Cipher

The Hill cipher works best if the size m of the alphabet is a prime number.
To achieve this, one usually adds to the 26 letters of the English alphabet:

@ the blank O (encoded as 26),
@ the comma (encoded as 27), and
o the full stop (encoded as 28)

Thus, m=29 is a prime number and all arithmetics is done over Zyg.
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers
Hill Cipher

Example

@ Choose the block length n=2 and
@ an invertible (2 x 2) matrix A, and

@ compute the inverse matrix A~! in the arithmetics modulo 29.

For example, choose

— detA=3.2—-4.7=-22=7 mod 29

and, using the extended Euclidean algorithm, we obtain

1-29—4.-7=1mod 29, so (detA)™!=7"1=—4=25mod?29.
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Hill Cipher
Example (continued)
1 1 2 -4
A™" = (detA) “A,gj mod29 = 25- mod 29
-7 3
-8 16 21 16
= = mod 29.
28 -—12 28 17
Check: Modulo 29, we have
3 4 21 16 10
7 2 28 17 01

v
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Hill Cipher

Example (continued)
Suppose you want to encrypt the message:

“THE FOOL ON THE HILL."
Encrypting T =19 and H =7 modulo 29:

Decrypting , =27 and C =2 modulo 29:

21 16 27 —10 19
28 17 2 7 7

T

y
J. Rothe (HHU Diisseldorf) Cryptocomplexity | 70/118



Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Hill Cipher

Example (continued)

The following table shows the encryption of this plaintext with key A.

plaintext THEO|FO|OL|DOINO|THIEO|HI|LL
plaintext encoded [|197|426|5 14|/1411|2614|1326(197|426|7 8|1111
ciphertext encoded (|27 2(022|13 5 |28 4 (18 7 |2727|27 2022|247 (1912
ciphertext , CIAW|N F EISH|, ,|, CCAW|YHTM

J. Rothe (HHU Diisseldorf)
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Permutation Cipher

Theorem

The permutation cipher is linear. J

Proof: Let m € &, be a permutation. Let U, = (1)1<i<n be the (nx n)

unity matrix whose i

row is @;, the i™ unity vector of length n.
Let My be the matrix whose /™ row is Zig;).

This matrix can be obtained from U, by permutating its rows according
to . Hence,

(Xa(1):Xa(2)s - - -+ Xn(n)) = MaX

for each vector X = (x1,x2,...,Xp) in X" Q
Corollary
The permutation cipher is a special case of the Hill cipher. J
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i o
Kasiski's Method: Cryptanalysis of the Vigenere Cipher

@ This method was invented by Friedrich Wilhelm Kasiski in 1863.

It was also invented, independently, by Charles Babbage (around
1854, unpublished).

o If the period is known, the problem of breaking the polyalphabetic
cryptosystem can be reduced to the problem of breaking a
monoalphabetic cryptosystem by the method of frequency counts.

Example:
@ Suppose that the period is n=7.

@ Arrange the ciphertext CoC1Co--- Cy, where each G is a letter, in
seven columns such that the /™ column consists of the letters G with
subscript j € {i,i+7,i+2-7,...}, where i € Z7 and j < k.
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i o
Kasiski's Method: Cryptanalysis of the Vigenere Cipher

Table: Cryptanalysis of a polyalphabetic system with period 7

@ Apply the method of frequency counts to each single column.
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Some Classical Cryptosystems and Their Cryptanalysis

Kasiski's Method: Cryptanalysis of the Vigenere Cipher

Table: Kasiski's method: ciphertext obtained by the Vigenére cipher
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Kasiski's Method: Cryptanalysis of the Vigenere Cipher

@ Suppose you have intercepted the ciphertext shown in the table on
the previous slide, and you know that it has been encrypted by the

Vigenere cipher.

@ The ciphertext has 373 letters, and you do not know the period (i.e.,
the length of the key) used.

@ Analyzing the ciphertext carefully, you will find that some sequences
of letters occur repeatedly in the text.

@ Some of these repeated three-letter patterns are highlighted using

different colors in the table on the next slide.
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Some Classical Cryptosystems and Their Cryptanalysis

Kasiski's Method: Cryptanalysis of the Vigenere Cipher

Table: Kasiski's method: three-letter patterns occurring repeatedly in the text
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Kasiski's Method: Cryptanalysis of the Vigenere Cipher

@ If one such pattern occurs repeatedly, this can be
o either due to the fact that the same plaintext string was encrypted
using the same letters of the key,

e or it may be a pure coincidence.

@ Suppose it is not coincidental.
Hence, the distance between repeatedly occurring patterns will tell
you something about the key length used.

e By "distance” we mean the number of positions some pattern has to
be shifted to coincide with another one. For example,

o the pattern “ " occurs three times with distances 20 and 30;

o the pattern “U Y D" occurs three times with distances 55 and 125;

the pattern “A C D" occurs twice with distance 30;

“ "

occurs twice with distance 20;

the pattern

the pattern “B L D" occurs twice with distance 165.
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Kasiski's Method: Cryptanalysis of the Vigenere Cipher

Determine the block length:
o If the repeated occurrence of a pattern is no coincidence, then the key

length (i.e., the period of the system) must divide all distances.

@ For example, a distance of 20 means that the period is either 2 or 4
or 5 or 10 or 20.

@ Since also 30 is a distance between patterns, the potential periods 4

and 20 are eliminated.

@ Among the remaining possible periods, 2 and 5 and 10, only the
period 5 divides the distances 55, 125, and 165.

@ Thus, we have determined the key length 5.
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Kasiski's Method: Cryptanalysis of the Vigenere Cipher

Determine the key:

@ Now we can try to find the key and to decipher the message.

@ Knowing the period, we can reduce this task to the task of breaking a

monoalphabetic system by frequency counts.

@ Rearranging the ciphertext in five columns, we obtain five

monoalphabetic encryptions.

@ In particular, the second column has 75 letters, see the table on the

next slide.

J. Rothe (HHU Diisseldorf) Cryptocomplexity | 80/118



i o
Kasiski's Method: Cryptanalysis of the Vigenere Cipher

Determine the key:

ERUPHAWVDRNIYMAIDGUSEHDEA
EFIEGUECIETOPTEHTEESSEVRT
DRBSWRNIFAIKGAEUOXLARENES

Table: Kasiski's method: second column of the ciphertext rearranged
o Note that the letter “E" occurs most frequently: 14 times (10.5%).

@ But this means that the letters in the second column have not been
encrypted at alll Analyzing the fifth column gives the same result.

@ Thus, the second and the fifth letter of the key is an “A.”

@ Continuing in this way, we finally obtain the key used: "PAULA."

J. Rothe (HHU Diisseldorf) Cryptocomplexity | 81/118



i o
Kasiski's Method: Cryptanalysis of the Vigenere Cipher

Decipher the ciphertext:

key | PAULAPAULAPAULAPAULA|
plaintet | WEHADGREATFUNINSPA I N
ciphertext | LEBLDV RYLTUUHTNHPUT N
plaintet | THATYEARANDWETRAVEL L
ciphertext | | HUEY TALLNSWYERPVYW L
plaintext | EDANDWROTEANDHEMINGW
ciphertext | TDUYD LR IEEPNXSEB | HR W
plaintext | AYTOOKMETUNAFISHINGA
ciphertext | P YNZ O ZMYEUCAZTSWIHR A
plaintext | ND I CAUGHTFOURCANSAND
ciphertext | CDCNA J GBEFDULNACSUY D
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Kasiski's Method: Cryptanalysis of the Vigenere Cipher

Decipher the ciphertext:

key |PAULAPAULAPAULAPAULA|
plaintet |WE LAUGHEDANDAL ICETOK
ciphertext | LE FLUVHYOACDUW I REN Z K
plaintext | LASASKEDME I FIWASINLDO
ciphertext | AAMLS ZEXXEXFCHAKIHWO
plaintext | VEW I THGERTRUDESTE I NB
ciphertext | K EQ TTWGY CTGUXPSIECYB
plaintext | EC AUSE IHADDED I CATED A
ciphertext | TCUF ST IBLDSEXTCPTYOA
plaintext | BOOKOFPOEMSTOHEREVEN
ciphertext | QO | VOUP I PMHT I SEGEP P N

J. Rothe (HHU Diisseldorf)
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Kasiski's Method: Cryptanalysis of the Vigenere Cipher

Decipher the ciphertext:

key |[PAULAPAULAPAULAPAULA|
plaintet | THOUGHTHEYWERETSEL IO
ciphertext | [HI FGWTBPYLELPTHEFTO
plaintext | TSAND | SAIDY ES | LOVEDH
ciphertext | | SUYD X SUTDNEMTLDVY OH
plaintext | ERBUT I TCOULDNEV ERWOR
ciphertext | TRVFTX TWZUADHPVTRQ ZR
plaintext | KBECAUSESHEWASFARTOO
ciphertext | ZBYNA J SYDHTWUDFPRN ZO
plaintext | INTELL I GENTFORMEANDA
ciphertext | XNXPLA T APNI F I CMTAHOA

J. Rothe (HHU Diisseldorf)
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Kasiski's Method: Cryptanalysis of the Vigenere Cipher

Decipher the ciphertext:

key PAULAPAULAPAULAPAULA
plaintext LI CETOKLASAGREEDANDT
ciphertext | Al WP TDKFLSPGLPESAHOT
plaintext HENWEPUTONSOMEBOX | NG
ciphertext  WEH HEEUNZNHOGPBDXCYG
plaintext GLOVESANDGERTRUDESTE
ciphertext | VL | GEHAHOGTRNCUSEMEE
plaintext I NB ROKEMYNOSE

ciphertext | X NV COZEGJNDSY
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Kasiski's Method: Cryptanalysis of the Vigenere Cipher

We had great fun in Spain that year and we travelled and wrote
and Hemingway took me tuna fishing and | caught four cans and
we laughed and Alice Toklas asked me if | was in love with Gertrude
Stein because | had dedicated a book of poems to her even though
they were T.S. Eliot’s and | said, yes, | loved her, but it could never
work because she was far too intelligent for me and Alice Toklas
agreed and then we put on some boxing gloves and Gertrude Stein

broke my nose.

Woody Allen, A Twenties Memory,
Random House, Inc., 1971
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Cryptanalysis of the Affine Linear Block Cipher

Affine Linear Block Ciphers can be broken by known-plaintext attacks:
@ Suppose that some key (A,B) has been fixed, that is, the plaintext

X € Z7, is encrypted as
¥ = E4.5(X) = A%+ b mod m,

where A is an (n x n) matrix over Z,, with gcd(detA,m) =1, and y
and b are vectors in Zn.
@ Suppose we know n+1 plaintexts Xg,X1,...,X, and the corresponding
ciphertexts o, y1,..., ¥, with
vi = AX; + b mod m.

o It follows that

Vi— Yo = A(X; — Xo) mod m. (6)
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Cryptanalysis of the Affine Linear Block Cipher

@ Define the matrices X and Y by

X = ()?1—)?0,)?2—)?0,...,)?,,—)?0) mod mj
Y = (}71—?07)72—y07---7yn—}70) mod m.

That is,

o the /™ column of X is the difference X; — X mod m, and
o the /" column of Y is the difference ¥; — yo mod m,

where 1 < <n.
e It follows from (6) that

AX =Y mod m.
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Cryptanalysis of the Affine Linear Block Cipher

o If det X is coprime to m, then
X1 = (det X) " Xaqj,
where (det X)~! denotes the inverse of detX mod m.

@ Thus, we have
A= Y((detX) ' Xaq3) mod m.

@ Furthermore, since
b = (3o — AXp) mod m,

we have determined the key (A,B) from n-+1 pairs of plaintexts and

corresponding ciphertexts.
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Cryptanalysis of Linear Block Ciphers and the Hill Cipher

o If the cryptosystem is even linear, then b=0, and we may choose

-

X0:_)70:6.

@ In particular, if n =2, the Hill cipher can be broken when two pairs,

(x1,y1) and (x2,y2), are known.

@ For example, suppose you have intercepted two pairs of plaintexts and
corresponding ciphertexts, say the first two blocks of the encryption

by the Hill cipher given in our previous example.
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Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Cryptanalysis of Linear Block Ciphers and the Hill Cipher

@ The following table shows these two known pairs:

Table: Breaking the Hill cipher with a known-plaintext attack

J. Rothe (HHU Diisseldorf)

X1

(19,7) and y; =(27,2), and
% =(4,26) and ¥, =(0,22).

plaintext T H O
plaintext encoded 19 7 26
ciphertext encoded || 27 2 22
ciphertext C W
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Cryptanalysis of Linear Block Ciphers and the Hill Cipher

19 4 27 0
@ Thus, you obtain the matrices X = and Y =

7 26 2 22

@ Since
detX =19-26—-4.7=2

and m = 29 are coprime, you further obtain (det X)~! = 15 and

26 —4 26 25
Xadj = = mod 29.
-7 19 22 19

J. Rothe (HHU Diisseldorf) Cryptocomplexity | 92 /118



i o
Cryptanalysis of Linear Block Ciphers and the Hill Cipher

@ Hence, the key used can be deciphered by

A

J. Rothe (HHU Diisseldorf)

Y ((det X) " Xaa;) mod 29

27 0 26 25
15 mod 29

2 22 22 19

27 0 13 27

mod 29
2 22 11 24
mod 29.
7 2
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Triple Encryption

@ The security of a block cipher can be increased by applying it
repeatedly with distinct keys.

@ This measure can increase the key space considerably. A common way
of doing so is the triple encryption. After choosing three keys, say ki,
ko, and ks, a given plaintext x is encrypted by

Yy = Ekl(Dkz(E/Q(X)))v

where Ej; are the encryption functions and Dy, the decryption

functions for k;. The ciphertext y can then be decrypted by
X = Dk3(Ek2(Dk1(y)))'
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Block and Stream Ciphers
Electronic Codebook Mode (ECB)

@ Suppose we are given a block cipher with block length n.

@ Messages are strings in ¥*, where X is an alphabet. The key space
is K.

@ To encode a plaintext m in the electronic codebook mode (ECB),

subdivide it into blocks of length n:
BI7BZa .- '7Bk7

where the last block may have to be padded by random letters to

ensure that n divides |m|.
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Block and Stream Ciphers
Electronic Codebook Mode (ECB)

o If e € K is the encryption key, every block of length n is encrypted
by e:
& =Eq(bj), 1<i<k.

@ The ciphertext is the resulting sequence of ciphertext blocks:

CZEl 52 Ek.

o If d € K is the decryption key corresponding to e, the ciphertext
blocks are decrypted with d one after another, yielding the original

plaintext:
m= Dd((_fl) Dd(EQ) Dd((_fk).

@ All previous examples of block ciphers have been encrypted in the
ECB mode.
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Block and Stream Ciphers
Electronic Codebook Mode (ECB): Disadvantages

© The same plaintext blocks are encrypted into the same ciphertext
blocks. Thus, regularities in the plaintext yield regularities in the
ciphertext. A cryptanalysist can exploit this information obtained

from the ciphertext, which may be sufficient to break the cipher.

For instance, in the previous example for how to break the Vigenére
cipher by Kasiski’'s method, the highlighted ciphertext patterns

" ;" "UYD,” and “A CD" each encrypt the plaintext “AND,”
which results from using the ECB mode for the Vigenere cipher.

@ An attacker can easily tamper with the encrypted messages by

o deleting ciphertext blocks,
e inserting additional ciphertext blocks, or
e altering the order of the ciphertext blocks.
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Block and Stream Ciphers
Cipherblock Chaining Mode (CBC)

e The cipherblock chaining mode (CBC) avoids the disadvantages of
the ECB mode by working in a “context-sensitive” way: The
encryption of a plaintext block in the CBC mode depends not only on
the block being encrypted and the key, but also on preceding blocks.

@ Hence, depending on their context, identical patterns in the plaintext

are encrypted differently.

o If an attacker was tampering with the ciphertext, it can no longer be
decrypted properly, which reveals that someone was trying to do
something nasty.

@ The CBC mode is explained for the permutation cipher.
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Block and Stream Ciphers
Cipherblock Chaining Mode (CBC)

o Let ¥ ={0,1} be an alphabet, n be the block length, and &, be the
key space (of the permutation cipher). Let E; be the encryption
function and D,-1 be the decryption function for key 7 € &,,.

@ Define the logical exclusive-or x |y || xoy
operation @ : {0,1}% — {0,1} i I
by its truth table: 1] o0 1
1 1 0
e For X,y €{0,1}" with X = (x1,x2,...,Xp) = x1 X2 - - X, and

—

Y=W1,Y2,--,¥Yn) =y1¥2 " ¥n, let

XYy =(x18y1,By2,.... % BYn) =x1By1 X2B Y2 -+ XnB Yp.
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Block and Stream Ciphers
Cipherblock Chaining Mode (CBC)

@ To encode a plaintext m in the cipherblock chaining code (CBC),
subdivide it into blocks of length n (assuming n divides |m|):
b17 b27 7bk

@ Choose an initial vector ¢ € {0,1}".
e For m € G, every block b; is encrypted as follows:

& =Ex(G1@b), 1<i<k

@ The ciphertext is the resulting sequence of ciphertext blocks:

C:81 82 8k.

e For n71 € &, every ciphertext block ¢ is decrypted by:
bi=¢ 1®Dz1(g), 1<i<k.
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Block and Stream Ciphers
Cipherblock Chaining Mode (CBC): Disadvantages

@ The receiver has to wait for the next ciphertext block before starting

with the decryption.

@ These delays result in a certain inefficiency, in particular if the block

length is large.

This disadvantage can be avoided by the cipher feedback mode (CFB).
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Block and Stream Ciphers
Cipher Feedback Mode (CFB)

Idea:

@ Subdivide the message into blocks shorter than the block length n of
the block cipher used.

@ Do not use only the block cipher's own encryption function, but
encrypt these shorter blocks by adding certain key blocks modulo 2.

@ These key blocks can almost simultaneously be generated by the

sender and the receiver of the ciphertext.

@ The CFB mode is again explained for the permutation cipher.
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Block and Stream Ciphers
Cipher Feedback Mode (CFB)

e Consider the permutation cipher with alphabet ¥ ={0,1}, block
length n, and key space G,,. Let w € &, the encryption key.
@ Choose some k with 1 < k < n and an initial vector Z € {0,1}".
@ Subdivide message m into d = [Iml|/k] blocks b1, by, ..., by of
length k. For each i with 1 <i<d:
Step 1: Compute X; = Ex(Zi_1).
Step 2: Let y; be the string in {0,1}* consisting of the first k bits of
X € {0, l}n.
Step 3: Compute ¢; = B;@f/,-.
Step 4: Compute Zj = 2KZ;_1 +& mod 2", i.e., the first k bits are deleted in

Zi_1 and ¢; is attached as a suffix.

@ The resulting ciphertext consists of the blocks ¢;,¢»,...,cq.
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Block and Stream Ciphers
Cipher Feedback Mode (CFB)

Example: Let n=5 and k =4, and consider the message
m=10011 10101 01001 00100.
@ Subdivide the message into five blocks of length k:
by = 1001, b, = 1101, b3 = 0101, by = 0010, bs = 0100.

o If m=(12°*%) € G5 is our key and Z; = 11010 our initial vector, we
35124

encrypt these blocks as follows:

—
b - — - -

! i Xj Yi Ci Zi

— — — — 11010
1001 | 00111 | 0011 | 1010 | 01010
1101 | 00011 | 0001 | 1100 | 01100
0101 | 10010 | 1001 | 1100 | 01100
0010 | 10010 | 1001 | 1011 | 01011
0100 | 01011 | 0101 | 0OO1 | 10001

g~ W NN~ O
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Block and Stream Ciphers
Cipher Feedback Mode (CFB)

@ Decryption works almost like the encryption. The only difference

occurs in the third step. For each / with 1 </ < d:

Step 1: Compute X; = Ex(Zj-1).

Step 2: Let y; be the string in {0,1}X consisting of the first k bits of
X; €40,1}".

Step 3: Compute b; =& @ ;.

Step 4: Compute Z; = 2kKZ;_; 4+ & mod 2", i.e., the first k bits are
deleted in Z;_; and ¢; is attached as a suffix.

@ The decrypted message obtained consists of the blocks 51,52,...,Bd.
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Block and Stream Ciphers
Cipher Feedback Mode (CFB)

Remark:

@ Both the sender and the receiver can determine y; as soon as the

initial vector Zy is chosen.

@ Then, the sender computes ¢; = Bl @ y1 and sends it, and the receiver

computes by = & @ 1.
@ Then, they can both determine y», and so on.

e Advantage (in comparison with the CBC mode): The block
length k can be much shorter than the actual block length n.

—> less idle time during which the receiver has to wait for the

sender, so both can encrypt and decrypt almost simultaneously.
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Block and Stream Ciphers
Output Feedback Mode (OFB)

e The output feedback mode (OFB) is quite similar to the CFB mode:

e The initialization and

o the first three steps of both the encryption and the decryption
procedure are identical.

e The only difference occurs in the fourth step, which determines the
vector Z; for 1 </ <d.

@ For encryption, the OFB mode works as follows:
Step 1: Compute X; = Ez(Zj_1).
Step 2: Let y; be the string in {0,1}* consisting of the first k bits of
X; € {0,1}".
Step 3: Compute & = b; B y;.

!

-

Step 4: Compute Z; = X;.
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Block and Stream Ciphers
Output Feedback Mode (OFB)

Example: Let n=05 and k =4. The block encryption in the CFB mode
shown in the previous example gives the following block encryption in the
OFB mode for the same message m = 10011 10101 01001 00100,
subdivided into five blocks of length k:

by = 1001, b, = 1101, b3 = 0101, by = 0010, bs = 0100,

the same key 7 = (;zj;’i) € G5, and the same initial vector Zy = 11010:

i b; Xi % ¢ Z;
— — — — 11010
1001 | 00111 | 0011 | 1010 | OO111
1101 | 11001 | 1100 | 0001 | 11001
01110 | 0111 | 0010 | 01110
0010 | 10011 | 1001 | 1011 | 10011
0100 | 01101 | 0110 | 0010 | O1101

cl B~ W NN = O
o
=
o
=
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Block and Stream Ciphers
Output Feedback Mode (OFB)

@ Decryption works again almost like the encryption. The only
difference occurs in the third step:
Step 3: Compute b = ¢ DYy,
Remark: Advantage (in comparison with the CFB mode):
@ If there are transmission errors in the ciphertext of a message

encrypted in the OFB mode, then this error occurs after decryption

only at exactly the same position.

@ In contrast, transmission errors in ciphertexts encrypted in the CFB
mode occur after decryption as long as it takes to shift the erroneous
block out of the vector Z;, which depends on the block lengths n

and k.

J. Rothe (HHU Diisseldorf) Cryptocomplexity | 109 /118



Some Classical Cryptosystems and Their Cryptanalysis Block and Stream Ciphers
Stream Ciphers

@ The principle of the CBC mode is generalized by the notion of a
stream cipher.

@ Stream ciphers generate a continuous stream of keys such that each
key may depend on the preceding keys and on the context of the
plaintext already encrypted.

@ We now introduce a popular stream cipher that is based on a /inear

feedback shift register, and thus explains the general idea of stream

ciphers.
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Stream Cipher Based on a Linear Feedback Shift Register

o Let ¥ ={0,1} be the alphabet used. ¥* is both the plaintext space
and the ciphertext space. For fixed n € N, the key space is ¥".

@ Any message m= myimy---m, in ¥* is encrypted symbol by symbol

as follows.
o Suppose that z > n. Given a key k = (ki,ka,...,kn) in X", generate a
key stream § = (s1,p,...,Sz,...), initialized by k for the first n bits:

ss = ki for1<i<n,

and continuing according to the following linear recursion of order n:

n
Si = Z ajsj_j mod 2 for i > n, (7)
j=1
where a1, ap,...,a, € {0,1} are fixed coefficients.
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Block and Stream Ciphers
Stream Cipher Based on a Linear Feedback Shift Register

@ Denoting the first z bits of the key stream s by 5(z), the encryption
function E; and the decryption function D, both mapping from %
to ¥, are defined by:

Ex(m) = mas({m]);
Dy(e) = eas(f¢

ol

where @ denotes the addition of bit vectors modulo 2.
That is, the i bit of M@ 3 is m; @ s;, the exclusive-or of m; and s;.

J. Rothe (HHU Diisseldorf) Cryptocomplexity | 112 /118



Block and Stream Ciphers
Stream Cipher Based on a Linear Feedback Shift Register

Example:
@ For a concrete example, let n =5, and fix the coefficients

ai=a3=as=0and ap = a5 =1.

@ Then, the key stream § is generated by the recursion

Sits = Sir3+s; mod 2. (8)

@ Choosing the key k= (1,0,0,1,1), one obtains
§=(1,0,0,1,1,0,1,0,0,1,0,0,0,0,1,0,1,0,1,1,1,...).

@ The linear recursion from (8) can be efficiently realized by a building
block of hardware, namely a linear feedback shift register as shown on

the next slide.
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Block and Stream Ciphers
Stream Cipher Based on a Linear Feedback Shift Register

{1

Figure: A linear feedback shift register

@ The registers store the last four bits of the key stream s generated.

@ In each recursion step, the bit from the leftmost register is used as
the current key. Then, the bits from the other registers are shifted by
one position to the left.

@ The rightmost register is now fed the bit that results from adding

modulo 2 the bits from those registers with coefficient a; = 1.
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Block and Stream Ciphers
Stream Cipher Based on a Linear Feedback Shift Register

Known-Plaintext Attack for Breaking this Stream Cipher:

@ This attack is similar to the cryptanalysis of affine linear block ciphers
such as the Hill cipher.

@ Note that all operations used in this stream cipher are linear.
@ Thus, knowing a string of plaintext and a corresponding string of

ciphertext, you can solve a system of linear equations to determine

the values of the n unknown coefficients in the linear recursion (7).
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Block and Stream Ciphers
Stream Cipher Used in the Enigma

@ This stream cipher realizes one of the ideas from the infamous
encryption machine Enigma that the Deutsche Wehrmacht used
during World War 1.

@ The key space is Zys.

@ For some fixed key k € Zys and for each i > 1, generate the key
stream § by defining its /™ element by the rule

si=(k+i—1) mod 26.
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Block and Stream Ciphers
Stream Cipher Used in the Enigma

o Let @ be some fixed permutation of Zog.

@ If s € Zyg is the current element of the key stream and x is the
current plaintext letter, the encryption function Eg, which maps from
Zog to Zog, uses both @ and s as follows:

Es(x) = m((x+s) mod 26).

@ Similarly, the decryption function Ds, which also maps from Zyg
to Zog, uses both s and the inverse permutation 77! to decrypt the
current ciphertext symbol y:

Ds(y) = (m Y(y)—s) mod 26.
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Block and Stream Ciphers
Stream Cipher Used in the Enigma: A Puzzle

Suppose that the permutation & of Zyg is given by

01234567 8 910111213141516171819202122232425
118613459102 7 0 1412201325211517241816221923

The following ciphertext was produced by the above stream cipher with 7:

FRRMXCBEWMJWDDH TKO UACYKUK QAMT ASVZWO

@ Find the key used by exhaustive search of the key space,
o determine the complete key stream, and

@ decrypt the ciphertext.
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