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Block Cipher and Substitution Cipher

Definition

A block cipher is a cryptosystem in which both the plaintext space

and the ciphertext space is Σn, the set of length n strings over some

alphabet Σ. The number n is called the block length (or sometimes

the period) of the system.

A substitution cipher is a block cipher with block length one.

Observation:

The encryption functions of a block cipher are permutations.

Because every encryption function has some corresponding decryption

function, the encryption functions of a block cipher are injective, and an

injective function mapping from Σn onto Σn is a bijection.
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Block Cipher and Substitution Cipher

By this observation, the most general block cipher can be described as

follows:

Fix an alphabet Σ and a block length n, and define the message space

and ciphertext space by M = C = Σn.

Let the key space K be given by the set of all permutations of Σn.

For each key π ∈ K , the encryption function Eπ and the decryption

function Dπ , which both map from Σn to Σn, are defined by:

Eπ(~x) = π(~x);

Dπ(~y) = π
−1(~y),

where π−1 is the inverse permutation.
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Block Cipher and Substitution Cipher

However, this cryptosystem is impracticable, since one needs the

permutation π to decrypt the message.

Representing π ∈ K by a table containing π(~x) for each ~x ∈ Σn, one

obtains a table of size mn.

That is why it is more reasonable to use only those permutations that

result from interchanging the position of cleartext letters.

This is the permutation cipher, also known as the transposition cipher.
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Permutation Cipher, a.k.a. Transposition Cipher

Let Σ be some alphabet, and let n ∈ N be the block length.

Let M = C = Σn, and let the key space K = Sn be the permutation

group on n elements.

For each key π ∈Sn, the encryption function Eπ and the decryption

function Dπ , which both map from Σn to Σn, are defined by:

Eπ(x1x2 · · ·xn) = xπ(1)xπ(2) · · ·xπ(n);

Dπ(y1y2 · · ·yn) = yπ−1(1)yπ−1(2) · · ·yπ−1(n).

Here, the key space has n! elements, and every key can be encoded by

a sequence of n numbers.
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Arithmetics in Zk

Let k ∈N+ and x ,y ,z ∈ Z. The number x is congruent to y modulo k

(x ≡ y mod k, for short) if and only if k divides the difference y −x .

For example, −3≡ 16 mod 19 and 8≡ 0 mod 2.

The congruence ≡ modulo k defines an equivalence relation on Z,

i.e., it is

reflexive (x ≡ x mod k),

symmetric (x ≡ y mod k implies y ≡ x mod k), and

transitive (if x ≡ y mod k and y ≡ z mod k , then x ≡ z mod k).

The set x +kZ = {y ∈ Z
∣∣ y ≡ x mod k} is said to be the remainder

class of x mod k . For example, the remainder class of 3 mod 7 is

3 + 7Z = {3,3±7,3±2 ·7, . . .}= {3,10,−4,17,−11, . . .}.
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Arithmetics in Zk

We always choose the smallest natural number in x +kZ to represent

the remainder class of x mod k; e.g., 3 represents the class 3 mod 7.

The set of all remainder classes modulo k is Zk = {0,1, . . . ,k−1}.

On Zk , define the

addition modulo k by (x +kZ) + (y +kZ) = (x + y) +kZ and the

multiplication modulo k by (x +kZ) · (y +kZ) = (x ·y) +kZ.

For example, in the arithmetics modulo 7, we have

(3 + 7Z) + (6 + 7Z) = (3 + 6) + 7Z = 2 + 7Z

(3 + 7Z) · (4 + 7Z) = (3 ·4) + 7Z = 5 + 7Z.
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Shift Cipher

The shift cipher is a monoalphabetic symmetric cryptosystem.

Let K = M = C = Z26.

The shift cipher encrypts messages by shifting (modulo 26) each

character of the plaintext by the same number k of letters in the

alphabet, where k ∈ Z26 is the key. Shifting each character of the

ciphertext back using the same key k reveals the original message.

For each key k ∈ Z26, the encryption function Ek and the decryption

function Dk , which both map from Z26 to Z26, are defined by:

Ek(x) = (x +k) mod 26;

Dk(y) = (y −k) mod 26.
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Shift Cipher

Example

If we choose the key k = 17 = R, the message

“BRUTUS FORCE EASILY BREAKS CAESAR”

is encrypted as follows:

m B R U T U S F O R C E E A S I L Y B R E A K S C A E S A R

c S I L K L J W F I T V V R J Z C P S I V R B J T R V J R I

Table: Example of an encryption by the shift cipher with key k = 17
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Affine Cipher

The affine cipher is a monoalphabetic symmetric cryptosystem.

Let M = C = Z26 and K = {(a,b) ∈ Z26×Z26

∣∣gcd(a,26) = 1}.

The affine cipher encrypts messages letter by letter. For each key

(a,b) ∈ Z26×Z26 with gcd(a,26) = 1, the encryption function E(a,b)

and the decryption function D(a−1,b), which both map from Z26

to Z26, are defined by:

E(a,b)(x) = ax +b mod 26;

D(a−1,b)(y) = a−1(y −b) mod 26,

where a−1 is the inverse element of a in Z26, i.e.,

aa−1 ≡ a−1a≡ 1 mod 26. Note that a−1 can easily be determined by

the extended algorithm of Euclid.
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Greatest Common Divisor and Euclidian Algorithm

Definition

The greatest common divisor (gcd(m,n)) of two given integers m and n is

the greatest number k ∈ N for which there are numbers a,b ∈ Z with

m = a ·k and n = b ·k .

Euclid(n,m) {
(* m and n are integers with m ≤ n *)

if (m = 0) return n;

else return Euclid(m,n mod m);

}

Figure: Computing gcd(m,n) by the Euclidian Algorithm
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Greatest Common Divisor and Euclidian Algorithm

Example: What is the greatest common divisor of n = 170 and m = 102?

n m n mod m

170 102 68

102 68 34

68 34 0

34 0

Table: Test run of the Euclidean Algorithm

The algorithm indeed computes the correct solution, since

gcd(170,102) = 34 because 3 ·34 = 102 and 5 ·34 = 170.
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Extended Euclidian Algorithm

Extended-Euclid(n,m) {
(* m and n are integers with m ≤ n *)

if (m = 0) return (n,1,0);

else {
(g ,x ′,y ′) := Extended-Euclid(m,n mod m);

x := y ′;

y := x ′−y ′ ∗
⌊
n
m

⌋
;

return (g ,x ,y);

}
}

Figure: Extended Euclidean Algorithm
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Extended Euclidian Algorithm

Example: What is the greatest common divisor of n = 170 and m = 102?

n m g x y Remark

170 102 34 −1 2

102 68 34 1 −1

68 34 34 0 1 x := y ′; y := x ′−y ′ ∗
⌊
n
m

⌋
34 0 34 1 0 if (m = 0) return (n,1,0)

Table: Test run of the extended Euclidean Algorithm

This result indeed is correct, since

(−1) ·170 +2 ·102 = 34 = gcd(170,102).
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Algebra and Number Theory: Group, Ring, and Field

Definition

A group G = (S ,◦) is defined by a nonempty set S and a binary

operation ◦ on S satisfying the following axioms:

Closure: (∀x ∈ S)(∀y ∈ S) [x ◦ y ∈ S ].

Associativity: (∀x ∈ S)(∀y ∈ S)(∀z ∈ S) [(x ◦ y)◦ z = x ◦ (y ◦ z)].

Neutral element: (∃e ∈ S)(∀x ∈ S) [e ◦ x = x ◦ e = x ].

Inverse element: (∀x ∈ S)(∃x−1 ∈ S) [x ◦ x−1 = x−1 ◦ x = e].

The element e is called the neutral element of the group G.

The element x−1 is called the inverse element of x .

Define the order of an element x of G to be the smallest positive

integer k such that xk = x ◦ x ◦ · · · ◦ x︸ ︷︷ ︸
k times

= e.
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Algebra and Number Theory: Group, Ring, and Field

Definition

M = (S ,◦) is a semi-group if it satisfies associativity and closure

under ◦. A semi-group M might have no neutral element (if it does,

it is a monoid), and not every element in M might have an inverse.

A group G = (S ,◦) (respectively, a semi-group or monoid M = (S ,◦))

is said to be commutative (or abelian) if and only if for each x ,y ∈ S ,

x ◦ y = y ◦ x .

The number of elements of a finite group G is said to be the order of

G and is denoted by ‖G‖.

H = (T ,◦) is said to be a subgroup of G = (S ,◦) (denoted by H≤G)

if and only if T ⊆ S and H satisfies the group axioms.
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Algebra and Number Theory: Group, Ring, and Field

Definition

A ring is a triple R = (S ,+, ·) such that

(S ,+) is an abelian group,

(S , ·) is a semi-group, and

the distributive laws are satisfied for all x , y , and z in S :

x · (y + z) = (x ·y) + (x · z);

(x + y) · z = (x · z) + (y · z).

A ring R = (S ,+, ·) is said to be commutative if and only if the

semi-group (S , ·) is commutative.
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Algebra and Number Theory: Group, Ring, and Field

Definition

Let R = (S ,+, ·) be a ring.

The neutral element of the group (S ,+) is said to be the zero element

(the zero, for short) of R.

The neutral element of the semi-group (S , ·), if it exists, is said to be

the one element (the one, for short) of R.

Let R = (S ,+, ·) be a ring with one. An element x of R is invertible

if and only if it is invertible in the monoid (S , ·).

A field is a commutative ring with one in which each element distinct

from zero is invertible.
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Algebra and Number Theory: Group, Ring, and Field

Example:

Let k ∈ N+.

The set Zk = {0,1, . . . ,k−1} is a finite group with respect to addition

modulo k , and with the neutral element 0.

With respect to addition and multiplication modulo k, Zk is a

commutative ring with one.

If p is a prime number (i.e., p ≥ 2 is divisible by 1 and by p only), then

Zp is a field with respect to addition and multiplication modulo p.

For any fixed k ∈ N+, define the set

Z∗k = {i
∣∣1≤ i ≤ k−1 and gcd(i ,k) = 1}.

With respect to multiplication modulo k , Z∗k is a finite group with the

neutral element 1.
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Algebra and Number Theory: Group, Ring, and Field

How do we find the inverse of i in Z∗k?

With the extended Euclidean Algorithm!

Recall from our example: (−1) ·170 +2 ·102 = 34 = gcd(170,102).

However, if we have gcd(n,m) = 1 = x ·n+y ·m, then in the

arithmetics modulo n:

y ·m ≡ 1 mod n,

so y = m−1.

For example, with the extended Euclidean Algorithm we get:

gcd(26,11) = 1 = 3 ·26 + (−7) ·11 = 78−77, so

11−1 = (−7)≡ 19 mod 26.
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Back to the Affine Cipher

Let M = C = Z26 and K = {(a,b) ∈ Z26×Z26

∣∣gcd(a,26) = 1}.

For each key (a,b) ∈ Z26×Z26 with gcd(a,26) = 1, the encryption

function E(a,b) and the decryption function D(a−1,b), which both map from

Z26 to Z26, are defined by:

E(a,b)(x) = ax +b mod 26;

D(a−1,b)(y) = a−1(y −b) mod 26,

where a−1 is the inverse element of a in Z26, i.e.,

aa−1 ≡ a−1a≡ 1 mod 26. Note that a−1 can easily be determined by the

extended algorithm of Euclid.
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Back to the Affine Cipher

Example:

Choose the encryption key k = (5,7).

Note that 21 is the inverse element of 5 modulo 26, since

5 ·21 = 105 = 1 + 4 ·26≡ 1 mod 26.

Hence, the decryption key is k ′ = (21,7).

Consider the message m and determine its encryption c :

m T H E E L E C T I V E A F F I N I T I E S B Y G O E T H E

c

Table: Example of an encryption by the affine cipher with key k = (5,7)
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Back to the Affine Cipher

The first plaintext letter is a “T,” which is encoded as 19.

The corresponding first letter of the ciphertext is determined by

E(5,7)(19) = 5 ·19 + 7≡ 24 mod 26.

Thus the ciphertext letter “Y,” which corresponds to 24, encrypts “T.”
With decryption key k ′ = (21,7) we can correctly decipher this letter:

D(21,7)(24) = 21(24−7) = 357≡ 19 mod 26.

Overall, we obtain:

m T H E E L E C T I V E A F F I N I T I E S B Y G O E T H E

c Y Q B B K B R Y V I B H G G V U V Y V B T M X L Z B Y Q B

Table: Example of an encryption by the affine cipher with key k = (5,7)
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Back to the Affine Cipher

In general, if y is a ciphertext letter encrypting a plaintext letter x with

key (a,b), we have

y ≡ ax +b mod 26 ⇐⇒ ax ≡ y −b mod 26

⇐⇒ a−1ax ≡ a−1(y −b) mod 26

⇐⇒ x ≡ a−1(y −b) mod 26,

which shows that the affine cipher indeed is a cryptosystem.
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Cryptanalysis of the Affine Cipher

Observation:

For the alphabet Z26, the affine cipher has only

26 ·ϕ(26) = 26 ·12 = 312

keys, since

the number of choices for b ∈ Z26 is 26 and

the number of choices for a ∈ Z26 coprime with 26 is ϕ(26) = 12,

where ϕ(k) = ‖Z∗k‖ is the Euler function.

Thus, a ciphertext-only attack breaks the affine cipher by brute force,

i.e., by an exhaustive search of the key space.

The affine cipher can also be broken by a known-plaintext attack in

which two plaintext letters and their encryptions are known.
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Cryptanalysis of the Affine Cipher

Example (Known-Plaintext Attack Against the Affine Cipher)

Suppose that the cryptanalyst knows the ciphertext c from our previous

example, and he also knows the first two plaintext symbols, “T” and “H,”
corresponding to the first two ciphertext letters, “Y” and “Q.”

He can then determine the keys as follows:

Since “Y” encrypts “T” and “Q” encrypts “H,” one obtains the

congruences:

19a+b ≡ 24 mod 26; (1)

7a+b ≡ 16 mod 26; (2)
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Cryptanalysis of the Affine Cipher

(2) is equivalent to b ≡ 16−7a mod 26.

Substituting this into (1) gives 19a+ 16−7a≡ 24 mod 26 and thus

12a≡ 8 mod 26, which implies

6a ≡ 4 mod 13. (3)

Why? Because we can cancel modulo m as follows:

c · e ≡ c · f mod m ⇐⇒ e ≡ f mod
m

gcd(c ,m)
.

Multiplying (3) with the inverse element 11 of 6 modulo 13 yields

a ≡ 44≡ 5 mod 13.

It follows that a = 5 and b = 7.
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Solving Congruences modulo m

c ·a≡ d mod m (4)

is solvable in a if and only if g = gcd(c ,m) divides d .

The number of solutions modm of (4) then is g and all solutions are

congruent to each other modm/g:

g = x · c + y ·m by the extended Euclidian Algorithm

gives the following solutions for (4):

a1 =
x ·d
g

and ai = a1 + (i −1)
m

g
for i = 2, . . . ,g .
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The Method of Frequency Counts

The method of frequency counts is often useful for breaking

monoalphabetic cryptosystems (e.g., the shift cipher and the affine cipher).

It exploits the redundancy of the natural language used for encryption.

Letters occurring with high frequency Total

Letter E T A O N I S R H

Frequency in % 12.31 9.59 8.05 7.94 7.19 7.18 6.59 6.03 5.14 70.02%

Letters occurring with medium frequency

Letter L D C U P F M W Y

Frequency in % 4.03 3.65 3.20 3.10 2.29 2.28 2.25 2.03 1.88 24.71%

Letters occurring with low frequency

Letter B G V K Q X J Z

Frequency in % 1.62 1.61 0.93 0.52 0.20 0.20 0.10 0.09 5.27%
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Cryptanalysis of the Affine Cipher by Frequency Counts

In our previous example:

c Y Q B B K B R Y V I B H G G V U V Y V B T M X L Z B Y Q B

we have:

Letter B Y V Q G K R I H U T M X L Z

Frequency 7 4 4 2 2 1 1 1 1 1 1 1 1 1 1

Table: Frequencies of letters in the ciphertext from the above example

=⇒ Erich guesses that “B” encrypts “E,” and that “Y” and “V” each

encrypt one of the letters “T,” “A,” “O,” “N,” or “I.”
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Cryptanalysis of the Affine Cipher by Frequency Counts

c Y Q B B K B R Y V I B H G G V U V Y V B T M X L Z B Y Q B

V is A T H E E ? E ? T A ? E ? ? ? A ? A T A E ? ? ? ? ? E T H E

V is O T H E E ? E ? T O ? E ? ? ? O ? O T O E ? ? ? ? ? E T H E

V is N T H E E ? E ? T N ? E ? ? ? N ? N T N E ? ? ? ? ? E T H E

V is I T H E E ? E ? T I ? E ? ? ? I ? I T I E ? ? ? ? ? E T H E

Table: Guessing in the frequency counts method: B is E, Y is T, Q is H
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Cryptanalysis of the Affine Cipher by Frequency Counts

c Y Q B B K B R Y V I B H G G V U V Y V B T M X L Z B Y Q B

V is A T H E E ? E ? T A ? E ? ? ? A ? A T A E ? ? ? ? ? E T H E

V is O T H E E ? E ? T O ? E ? ? ? O ? O T O E ? ? ? ? ? E T H E

V is N T H E E ? E ? T N ? E ? ? ? N ? N T N E ? ? ? ? ? E T H E

V is I T H E E ? E ? T I ? E ? ? ? I ? I T I E ? ? ? ? ? E T H E

Table: Guessing in the frequency counts method: B is E, Y is T, Q is H
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Cryptanalysis of the Affine Cipher by Frequency Counts

c Y Q B B K B R Y V I B H G G V U V Y V B T M X L Z B Y Q B

V is A T H E E ? E ? T A ? E ? ? ? A ? A T A E ? ? ? ? ? E T H E

V is O T H E E ? E ? T O ? E ? ? ? O ? O T O E ? ? ? ? ? E T H E

V is N T H E E ? E ? T N ? E ? ? ? N ? N T N E ? ? ? ? ? E T H E

V is I T H E E ? E ? T I ? E ? ? ? I ? I T I E ? ? ? ? ? E T H E

...

m T H E E L E C T I V E A F F I N I T I E S B Y G O E T H E

Table: Guessing in the frequency counts method: B is E, Y is T, Q is H
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Cryptanalysis of the Affine Cipher by Frequency Counts

Example (Stinson (2002))

c F M X V E D K A P H F E R B N D K R X R S R E F M O R U D

S D K D V S H V U F E D K A P R K D L Y E V L R H H R H

Now we have:

Letter R D E H K F V S A L M P U X B N O Y

Frequency 8 7 5 5 5 4 4 3 2 2 2 2 2 2 1 1 1 1

Table: Frequencies of letters in the ciphertext from the above example

Our goal is to determine the key (a,b) used in the encryption by the

affine cipher:

E(a,b)(x) = ax +b mod 26.
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Cryptanalysis of the Affine Cipher by Frequency Counts

Example (Stinson (2002) continued)

Hypothesis 1: R encrypts E and D encrypts T.

Thus E(a,b)(4) = 17 and E(a,b)(19) = 3.

This gives a system of equations with two unknowns:
4a+b = 17

19a+b = 3

Subtracting the first from the second equation modulo 26 gives:

15a = 12,

and since 15−1 = 7 mod 26, we have the solution

a = 7 ·12 = 84≡ 6 mod 26 and b = 19 in Z26.

However, (6,19) is not an allowed key because gcd(6,26) = 2 > 1.
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Cryptanalysis of the Affine Cipher by Frequency Counts

Example (Stinson (2002) continued)

Hypothesis 2: R encrypts E and E encrypts T.

Thus E(a,b)(4) = 17 and E(a,b)(19) = 4.

This gives a system of equations with two unknowns:
4a+b = 17

19a+b = 4

Subtracting the first from the second equation modulo 26 gives:

15a = 13,

and since 15−1 = 7 mod 26, we have the solution

a = 7 ·13 = 91≡ 13 mod 26 and b = 17 in Z26.

However, (13,17) is not an allowed key because gcd(13,26) = 13 > 1.
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Cryptanalysis of the Affine Cipher by Frequency Counts

Example (Stinson (2002) continued)

Hypothesis 3: R encrypts E and H encrypts T.

Then a = 8. However, gcd(8,26) = 2 > 1.

Hypothesis 4: R encrypts E and K encrypts T.

Then a = 3 and b = 5. BINGO! (3,5) is the key used:

To verify, determine a−1 = 3−1 = 9 mod 26, so

a−1 ·b = 9 ·5 = 45≡ 19 mod 26.

Now decrypt the ciphertext with the decryption function

D(a−1,b)(y) = a−1(y −b) = 9 ·y −19 mod 26:

m A L G O R I T H M S A R E Q U I T E G E N E R A L D E F I

N I T I O N S O F A R I T H M E T I C P R O C E S S E S
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Cryptanalysis of a Substitution Cipher by Frequency Counts

Y I F Q F M Z R W Q F Y V E C F M D Z P C V M R Z W N M

D Z V E J B T X C D D U M J N D I F E F M D Z C D M Q Z

K C E Y F C J M Y R N C W J C S Z R E X C H Z U N M X Z

N Z U C D R J X Y Y S M R T M E Y I F Z W D Y V Z V Y F

Z U M R Z C R W N Z D Z J J X Z W G C H S M R N M D H N

C M F Q C H Z J M X J Z W I E J Y U C F W D J N Z D I R

Table: Example due to Stinson (2002)
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Cryptanalysis of a Substitution Cipher by Frequency Counts

Example (Stinson (2002))

Z occurs 20 times, more often than any other letter, so we guess that

Z encrypts the plaintext letter e. (NOTE: In this example, plaintext

letters are lower-case and ciphertext letters are UPPER-case.)

C, D, F, J, M, R, Y occur at least 10 times each, so we guess that

they encrypt (a subset of) t, a, o, i, n, s, h, r.

It is unclear, though, which encrypts which letter.

Let’s have a look at digrams, especially those containing Z:

DZ and ZW occur 4 times each;

NZ and ZU occur 3 times each;

RZ, HZ, XZ, FZ and ZR, ZV, ZC, ZD, ZJ occur 2 times each.
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Cryptanalysis of a Substitution Cipher by Frequency Counts

Y I F Q F M Z R W Q F Y V E C F M D Z P C V M R Z W N M

D Z V E J B T X C D D U M J N D I F E F M D Z C D M Q Z

K C E Y F C J M Y R N C W J C S Z R E X C H Z U N M X Z

N Z U C D R J X Y Y S M R T M E Y I F Z W D Y V Z V Y F

Z U M R Z C R W N Z D Z J J X Z W G C H S M R N M D H N

C M F Q C H Z J M X J Z W I E J Y U C F W D J N Z D I R

Table: Looking for digrams containing Z
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Cryptanalysis of a Substitution Cipher by Frequency Counts

Example (Stinson (2002) continued)

Since ZW occurs 4 times and WZ occurs not at all, we guess that

W encrypts d.

Since DZ occurs 4 times and ZD twice, we guess that

D encrypts one of r, s, t. It is unclear, though, which letter exactly.

Under our assumption that Z encrypts e and W encrypts d, we look

at trigrams, especially those containing Z and W:

ZRW and RZW occur in the first line;

Later, we also have RW. Since nd is a frequently used digram in

English, we guess that R encrypts n.
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Cryptanalysis of a Substitution Cipher by Frequency Counts

Y I F Q F M Z R W Q F Y V E C F M D Z P C V M R Z W N M

D Z V E J B T X C D D U M J N D I F E F M D Z C D M Q Z

K C E Y F C J M Y R N C W J C S Z R E X C H Z U N M X Z

N Z U C D R J X Y Y S M R T M E Y I F Z W D Y V Z V Y F

Z U M R Z C R W N Z D Z J J X Z W G C H S M R N M D H N

C M F Q C H Z J M X J Z W I E J Y U C F W D J N Z D I R

Table: Looking for trigrams containing Z and W and the digram RW
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Cryptanalysis of a Substitution Cipher by Frequency Counts

e n d e n e d

Y I F Q F M Z R W Q F Y V E C F M D Z P C V M R Z W N M

e e e

D Z V E J B T X C D D U M J N D I F E F M D Z C D M Q Z

n d e n e e

K C E Y F C J M Y R N C W J C S Z R E X C H Z U N M X Z

e n n e d e

N Z U C D R J X Y Y S M R T M E Y I F Z W D Y V Z V Y F

e n e n d e e e d n

Z U M R Z C R W N Z D Z J J X Z W G C H S M R N M D H N

e e d d e n

C M F Q C H Z J M X J Z W I E J Y U C F W D J N Z D I R

Table: Guessing: Z encrypts e, W encrypts d, and R encrypts n
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Cryptanalysis of a Substitution Cipher by Frequency Counts

Example (Stinson (2002) continued)

Since NZ occurs 3 times and ZN only once and since he occurs more

often than eh in typical English texts, we guess that N encrypts h.

Now, the string n e – n d h e in the (guessed) plaintext suggests that

C encrypts a.
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Cryptanalysis of a Substitution Cipher by Frequency Counts

e n d a e a n e d h

Y I F Q F M Z R W Q F Y V E C F M D Z P C V M R Z W N M

e a h e a e

D Z V E J B T X C D D U M J N D I F E F M D Z C D M Q Z

a a n h a d a e n a e h e

K C E Y F C J M Y R N C W J C S Z R E X C H Z U N M X Z

h e a n n e d e

N Z U C D R J X Y Y S M R T M E Y I F Z W D Y V Z V Y F

e n e a n d h e e e d a n h h

Z U M R Z C R W N Z D Z J J X Z W G C H S M R N M D H N

a a e e d a d h e n

C M F Q C H Z J M X J Z W I E J Y U C F W D J N Z D I R

Table: Guessing: Z is e, W is d, R is n, N is h, and C is a
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Cryptanalysis of a Substitution Cipher by Frequency Counts

Example (Stinson (2002) continued)

Consider M, the letter occurring with the second-most frequency in

the ciphertext (after Z).

RNM (which we guess encrypts n h ?) suggests that

h starts a new word.

Thus M very likely encrypts a vowel. Since

e and a are (very likely) gone and

u is rare but M occurs 16 times,

it is very likely that M encrypts either i or o.

ai is more likely than ao.

Thus CM (last line, left) suggests that M encrypts i.
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Cryptanalysis of a Substitution Cipher by Frequency Counts

i e n d a i e a i n e d h i

Y I F Q F M Z R W Q F Y V E C F M D Z P C V M R Z W N M

e a i h i e a i e

D Z V E J B T X C D D U M J N D I F E F M D Z C D M Q Z

a a i n h a d a e n a e h i e

K C E Y F C J M Y R N C W J C S Z R E X C H Z U N M X Z

h e a n i n i e d e

N Z U C D R J X Y Y S M R T M E Y I F Z W D Y V Z V Y F

e i n e a n d h e e e d a i n h i h

Z U M R Z C R W N Z D Z J J X Z W G C H S M R N M D H N

a i a e i e d a d h e n

C M F Q C H Z J M X J Z W I E J Y U C F W D J N Z D I R

Table: Guessing: Z is e, W is d, R is n, N is h, C is a, and M is i
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Cryptanalysis of a Substitution Cipher by Frequency Counts

Example (Stinson (2002) continued)

Which letter encrypts o?

Since o is a frequent letter, we suspect D, F, J, Y—each are similarly

frequent in English.

Among those, Y is most likely to encrypt o, for otherwise we would

have “vowel worms” like aoi because of CFM and CJM.

We now suspect D, F, J to each encrypt one of r, s, t:

NMD (i.e., h i ?) occurs twice, suggesting that D encrypts s.

Also, HNCMF (i.e., ? h a i ?) looks like c h a i r, so H is likely to

encrypt c and F to encrypt r.

Thus J very likely encrypts t.
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Cryptanalysis of a Substitution Cipher by Frequency Counts

o u r f r i e n d f r o m p a r i s e x a m i n e d h i

Y I F Q F M Z R W Q F Y V E C F M D Z P C V M R Z W N M

s e m p t y g l a s s w i t h s u r p r i s e a s i f e

D Z V E J B T X C D D U M J N D I F E F M D Z C D M Q Z

v a p o r a t i o n h a d t a k e n p l a c e w h i l e

K C E Y F C J M Y R N C W J C S Z R E X C H Z U N M X Z

h e w a s n t l o o k i n g i p o u r e d s o m e m o r

N Z U C D R J X Y Y S M R T M E Y I F Z W D Y V Z V Y F

e w i n e a n d h e s e t t l e d b a c k i n h i s c h

Z U M R Z C R W N Z D Z J J X Z W G C H S M R N M D H N

a i r f a c e t i l t e d u p t o w a r d s t h e s u n

C M F Q C H Z J M X J Z W I E J Y U C F W D J N Z D I R

Table: Example due to Stinson (2002)
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Cryptanalysis of a Substitution Cipher by Frequency Counts

Our friend from Paris examined his empty glass with surprise, as

if evaporation had taken place while he wasn’t looking. I poured

some more wine and he settled back in his chair, face tilted up

towards the sun.

P. Mayle, A Year in Provence, A. Knopf, Inc., 1989
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Vigenère Cipher

This symmetric polyalphabetic cryptosystem uses a Vigenère square:

0 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

2 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

3 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

4 E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

5 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

6 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

7 H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

8 I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

9 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

10 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

11 L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

12 M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

13 N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

14 O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

15 P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

16 Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

17 R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

18 S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

19 T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

20 U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

21 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

22 W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

23 X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

24 Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

25 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Table: Vigenère square: Plaintext “H” is encrypted with key “E” as “L”
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Vigenère Cipher

Messages are subdivided into blocks of length n, and are then

encrypted block-wise. That is, K = M = C = Zn
26, where n is the

block length of the system.

For each key ~k ∈ Zn
26, the encryption function E~k and the decryption

function D~k , both mapping from Zn
26 to Zn

26, are defined by:

E~k(~x) = (~x +~k) mod 26

D~k(~y) = (~y −~k) mod 26,

where addition and subtraction with ~k modulo 26 are carried out

character-wise.
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Vigenère Cipher

More concretely, the key ~k ∈ Zn
26 is written symbol by symbol above

each block ~x ∈ Zn
26 of the plaintext. If the last block has less than n

symbols, use less symbols of the key accordingly.

Let si denote the i th symbol of any given string ~s.

To encrypt the i th plaintext symbol xi , with the i th key symbol ki

sitting on top of it, use the i th row of the Vigenère square as if it were

the shift cipher with key ki .

Observe that one and the same plaintext symbol can thus be

encrypted by distinct ciphertext symbols.
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Vigenère Cipher

For example, choose the period n = 4 and the key ~k = ELLA.

The table:

key E L L A E L L A E L L A E L L A E L L A E L L A E L L A

message H U N G A R I A N I S A L L G R E E K T O G E R M A N S

ciphertext L F Y G E C T A R T D A P W R R I P V T S R P R Q L Y S

Table: Example of an encryption by the Vigenère cipher with key ELLA

shows the encryption of a plaintext consisting of seven blocks into a

ciphertext using the Vigenère cipher with this key.

The first letter of the plaintext, “H,” has the key symbol “E” above it.

The “H”-column intersects with the “E”-row of the Vigenère square

at “L,” which is thus the first symbol of the ciphertext.
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Vigenère Cipher

Distinct ciphertext symbols encrypt the same plaintext symbol:

the plaintext letter “A” occurs four times and is encrypted by “A” twice,

by “E” once, and by “L” once;

the plaintext letter “E” occurs three times and is encrypted by “I” once

and by “P” twice;

the plaintext letter “G” occurs three times and is encrypted by “G”
once and by “R” twice;

the plaintext letter “N” occurs three times and is encrypted by “R”
once and by “Y” twice;

the plaintext letter “R” occurs three times and is encrypted by “C”
once and by “R” twice.

This observation also shows two weaknesses of the key chosen:

two letters of the key ELLA are equal, and

one letter of the key is “A,” which does not alter the corresponding

cleartext letters.
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Affine Linear Block Ciphers

The Vigenère cipher is a special case of an affine linear block cipher,

which generalizes the affine cipher.

Before defining affine linear block ciphers, we recall some elementary

notions from linear algebra.

In particular, affine linear block ciphers require operations on matrices

over the ring Zm, i.e.,

the matrix entries are elements of Zm and

the matrix operations are based on the arithmetics modulo m.
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Inverse Matrix, Determinant, and Adjoint Matrix

Definition

Let ~ui = (0, . . . ,0,1,0, . . . ,0) denote the i th unity vector of length n:

the i th coordinate of ~ui is one, and

the j th coordinate of ~ui is zero for all j 6= i .

The (n×n) unity matrix is defined by Un = (~ui )1≤i≤n, where

the i th row (and column) of Un is the i th unity vector of length n.

Consider an (n×n) matrix A over the ring Zm. The (multiplicative)

inverse of A, denoted by A−1, is an (n×n) matrix satisfying that

AA−1 = A−1A

is the (n×n) unity matrix Un.
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Inverse Matrix, Determinant, and Adjoint Matrix

Definition

The determinant of A can be defined recursively:

for n = 1 and A = (a), detA = a;

for n > 1 and for each i ∈ {1,2, . . . ,n},

detA =
n

∑
j=1

(−1)i+jai ,j detAi ,j ,

where ai ,j is the (i , j)-entry of A, and the ((n−1)× (n−1)) matrix Ai ,j

results from A by canceling out the i th row and the j th column.

Define the adjoint matrix of A by Aadj = ((−1)i+j detAj ,i ).
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Inverse Matrix, Determinant, and Adjoint Matrix

Remark:

Zn×n
m is a ring with one (in general, not commutative) with respect to

addition: A+B = (ai ,j +bi ,j mod m) for A = (ai ,j ),B = (bi ,j ) ∈ Zn×n
m ,

and

multiplication: A ·B = (ci ,j ) with ci ,j =
n

∑
k=1

ai ,k ·bk,j mod m

An (n×n) matrix A over the ring Zm has a multiplicative inverse

matrix if and only if gcd(detA,m) = 1.

In general, an (n×n) matrix over the reals is invertible if and only if

its determinant is nonzero.

The determinant of a matrix can be computed efficiently.

It can be shown that A−1 = (detA)−1Aadj.
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Inverse Matrix, Determinant, and Adjoint Matrix

Example

Let m = 7 and A =

1 2

2 3

 and B =

4 5

6 0

. Then

A+B =

5 0

1 3

 and A ·B =

4 + 12 mod 7 5 + 0 mod 7

8 + 18 mod 7 10 + 0 mod 7

=

2 5

5 3

.

Since B ·A =

0 2

6 5

, we see that multiplication is not commutative.

We write A≡ B mod m if ai ,j ≡ bi ,j mod m for 1≤ i , j ≤m.
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Inverse Matrix, Determinant, and Adjoint Matrix

Example

For A =

a1,1 a1,2

a2,1 a2,2

, we have

A1,1 = (a2,2), A1,2 = (a2,1), A2,1 = (a1,2), A2,2 = (a1,1).

Thus

detA = a1,1 ·a2,2−a1,2 ·a2,1

and

Aadj =

 a2,2 −a1,2

−a2,1 a1,1

 .
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Inverse Matrix, Determinant, and Adjoint Matrix

Example

Let m = 11. We want to determine the inverse of A =

1 2

3 4

, i.e., we

want to solve the congruence

A ·A−1 ≡ U2 mod 11.

This solution (and A−1) exists if and only if gcd(detA,11) = 1.

Since detA = 4−6 =−2, we indeed have gcd(detA,11) = gcd(9,11) = 1.

Moreover, (−2)(−6) = 12≡ 1 mod 11, so

(detA)−1 = 9−1 =−6≡ 5 mod 11.
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Inverse Matrix, Determinant, and Adjoint Matrix

Example (continued)

It follows that

A−1 = (detA)−1Aadj mod 11

= 5 ·

 4 −2

−3 1

 mod 11 =

9 1

7 5

 .

This is indeed correct because1 2

3 4

9 1

7 5

 mod 11 =

1 0

0 1

 .
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Affine Linear Block Ciphers

Definition

A block cipher with plaintext and ciphertext space Zn
m and block length n

is said to be affine linear if and only if all its encryption functions are

affine linear. That is, they all are of the following form:

E(A,~b)(~x) = A~x +~b mod m, (5)

where A is an (n×n) matrix with entries from Zm such that

gcd(detA,m) = 1, and ~x , ~y , and ~b are vectors in Zn
m; all arithmetics is

done modulo m. The corresponding decryption function is

D(A−1,~b)(~y) = A−1(~y −~b) mod m,

where A−1 is the inverse matrix for A.
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Linear and Affine Linear Block Ciphers

Definition

A linear block cipher is an affine linear block cipher for which ~b in (5) is

the zero vector.

Example

The Vigenère cipher is affine linear.

A classical example of a linear cipher is the Hill cipher, invented by

Lester Hill in 1929:

In fact, the Hill cipher is the most general linear block cipher.
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Hill Cipher

Let Σ be an alphabet with m letters, and let n be the block length.

The plaintext and cipher text space is M = C = Zn
m.

The key space K is the set of all (n×n) matrices A with entries from

Zm such that gcd(detA,m) = 1. This condition ensures that the

matrices are invertible, since the inverse matrix A−1 is used as the

decryption key corresponding to the encryption key A.

The encryption function EA and the decryption function DA−1 are

defined by:

EA(~x) = A~x mod m;

DA−1(~y) = A−1~y mod m.
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Hill Cipher

The Hill cipher works best if the size m of the alphabet is a prime number.

To achieve this, one usually adds to the 26 letters of the English alphabet:

the blank 2 (encoded as 26),

the comma (encoded as 27), and

the full stop (encoded as 28)

Thus, m = 29 is a prime number and all arithmetics is done over Z29.
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Hill Cipher

Example

Choose the block length n = 2 and

an invertible (2×2) matrix A, and

compute the inverse matrix A−1 in the arithmetics modulo 29.

For example, choose

A =

3 4

7 2


=⇒ detA = 3 ·2−4 ·7 =−22≡ 7 mod 29

and, using the extended Euclidean algorithm, we obtain

1 ·29−4 ·7≡ 1 mod 29, so (detA)−1 = 7−1 =−4≡ 25 mod 29.
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Hill Cipher

Example (continued)

A−1 ≡ (detA)−1Aadj mod 29 ≡ 25 ·

 2 −4

−7 3

 mod 29

≡

−8 16

28 −12

 ≡

21 16

28 17

 mod 29.

Check: Modulo 29, we have3 4

7 2

21 16

28 17

 =

1 0

0 1

 .
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Hill Cipher

Example (continued)

Suppose you want to encrypt the message:

“THE FOOL ON THE HILL.”

Encrypting T = 19 and H = 7 modulo 29:

3 4

7 2

19

7

 =

−2

2

 =

27

2

 =

 ,

C

 .

Decrypting , = 27 and C = 2 modulo 29:21 16

28 17

27

2

 =

−10

7

 =

19

7

 =

T

H

 .
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Hill Cipher

Example (continued)

The following table shows the encryption of this plaintext with key A.

plaintext T H E 2 F O O L 2 O N 2 T H E 2 H I L L

plaintext encoded 19 7 4 26 5 14 14 11 26 14 13 26 19 7 4 26 7 8 11 11

ciphertext encoded 27 2 0 22 13 5 28 4 18 7 27 27 27 2 0 22 24 7 19 12

ciphertext , C A W N F . E S H , , , C A W Y H T M
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Permutation Cipher

Theorem

The permutation cipher is linear.

Proof: Let π ∈Sn be a permutation. Let Un = (~ui )1≤i≤n be the (n×n)

unity matrix whose i th row is ~ui , the i th unity vector of length n.

Let Mπ be the matrix whose i th row is ~uπ(i).

This matrix can be obtained from Un by permutating its rows according

to π. Hence,

(xπ(1),xπ(2), . . . ,xπ(n)) = Mπ~x

for each vector ~x = (x1,x2, . . . ,xn) in Σn. q

Corollary

The permutation cipher is a special case of the Hill cipher.

J. Rothe (HHU Düsseldorf) Cryptocomplexity I 72 / 118



Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Kasiski’s Method: Cryptanalysis of the Vigenère Cipher

This method was invented by Friedrich Wilhelm Kasiski in 1863.

It was also invented, independently, by Charles Babbage (around

1854, unpublished).

If the period is known, the problem of breaking the polyalphabetic

cryptosystem can be reduced to the problem of breaking a

monoalphabetic cryptosystem by the method of frequency counts.

Example:

Suppose that the period is n = 7.

Arrange the ciphertext C0C1C2 · · ·Ck , where each Cj is a letter, in

seven columns such that the i th column consists of the letters Cj with

subscript j ∈ {i , i + 7, i + 2 ·7, . . .}, where i ∈ Z7 and j ≤ k.
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Kasiski’s Method: Cryptanalysis of the Vigenère Cipher

C0 C1 C2 C3 C4 C5 C6

C7 C8 C9 C10 C11 C12 C13

C14 C15 C16 C17 C18 C19 C20

...
...

...
...

...
...

...

Ck−8 Ck−7 Ck−6 Ck−5 Ck−4 Ck−3 Ck−2

Ck−1 Ck

Table: Cryptanalysis of a polyalphabetic system with period 7

Apply the method of frequency counts to each single column.

J. Rothe (HHU Düsseldorf) Cryptocomplexity I 74 / 118



Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Kasiski’s Method: Cryptanalysis of the Vigenère Cipher
L E B L D V R Y L T U U H T N H P U T N

I H U E Y T A L L N S W Y E R P V Y W L

T D U Y D L R I E E P N X S E B I H R W

P Y N Z O Z M Y E U C A Z T S W I H R A

C D C N A J G B E F D U L N A C S U Y D

L E F L U V H Y O A C D U W I R E N Z K

A A M L S Z E X X E X F C H A K I H W O

K E Q T T W G Y C T G U X P S I E C Y B

T C U F S T I B L D S E X T C P T Y O A

Q O I V O U P I P M H T I S E G E P P N

I H I F G W T B P Y L E L P T H E F T O

I S U Y D X S U T D N E M T L D V Y O H

T R V F T X T W Z U A D H P V T R Q Z R

Z B Y N A J S Y D H T W U D F P R N Z O

X N X P L A I A P N I F I C M T A H O A

A I W P T D K F L S P G L P E S A H O T

W E H H E E U N Z N H O G P B D X C Y G

V L I G E H A H O G T R N C U S E M E E

X N V C O Z E G J N D S Y

Table: Kasiski’s method: ciphertext obtained by the Vigenère cipher
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Kasiski’s Method: Cryptanalysis of the Vigenère Cipher

Suppose you have intercepted the ciphertext shown in the table on

the previous slide, and you know that it has been encrypted by the

Vigenère cipher.

The ciphertext has 373 letters, and you do not know the period (i.e.,

the length of the key) used.

Analyzing the ciphertext carefully, you will find that some sequences

of letters occur repeatedly in the text.

Some of these repeated three-letter patterns are highlighted using

different colors in the table on the next slide.
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Kasiski’s Method: Cryptanalysis of the Vigenère Cipher
L E B L D V R Y L T U U H T N H P U T N

I H U E Y T A L L N S W Y E R P V Y W L

T D U Y D L R I E E P N X S E B I H R W

P Y N Z O Z M Y E U C A Z T S W I H R A

C D C N A J G B E F D U L N A C S U Y D

L E F L U V H Y O A C D U W I R E N Z K

A A M L S Z E X X E X F C H A K I H W O

K E Q T T W G Y C T G U X P S I E C Y B

T C U F S T I B L D S E X T C P T Y O A

Q O I V O U P I P M H T I S E G E P P N

I H I F G W T B P Y L E L P T H E F T O

I S U Y D X S U T D N E M T L D V Y O H

T R V F T X T W Z U A D H P V T R Q Z R

Z B Y N A J S Y D H T W U D F P R N Z O

X N X P L A I A P N I F I C M T A H O A

A I W P T D K F L S P G L P E S A H O T

W E H H E E U N Z N H O G P B D X C Y G

V L I G E H A H O G T R N C U S E M E E

X N V C O Z E G J N D S Y

Table: Kasiski’s method: three-letter patterns occurring repeatedly in the text
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Kasiski’s Method: Cryptanalysis of the Vigenère Cipher

If one such pattern occurs repeatedly, this can be

either due to the fact that the same plaintext string was encrypted

using the same letters of the key,

or it may be a pure coincidence.

Suppose it is not coincidental.

Hence, the distance between repeatedly occurring patterns will tell

you something about the key length used.

By “distance” we mean the number of positions some pattern has to

be shifted to coincide with another one. For example,

the pattern “A H O” occurs three times with distances 20 and 30;

the pattern “U Y D” occurs three times with distances 55 and 125;

the pattern “A C D” occurs twice with distance 30;

the pattern “I H R” occurs twice with distance 20;

the pattern “B L D” occurs twice with distance 165.
J. Rothe (HHU Düsseldorf) Cryptocomplexity I 78 / 118



Some Classical Cryptosystems and Their Cryptanalysis Affine Linear Block Ciphers

Kasiski’s Method: Cryptanalysis of the Vigenère Cipher

Determine the block length:

If the repeated occurrence of a pattern is no coincidence, then the key

length (i.e., the period of the system) must divide all distances.

For example, a distance of 20 means that the period is either 2 or 4

or 5 or 10 or 20.

Since also 30 is a distance between patterns, the potential periods 4

and 20 are eliminated.

Among the remaining possible periods, 2 and 5 and 10, only the

period 5 divides the distances 55, 125, and 165.

Thus, we have determined the key length 5.
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Kasiski’s Method: Cryptanalysis of the Vigenère Cipher

Determine the key:

Now we can try to find the key and to decipher the message.

Knowing the period, we can reduce this task to the task of breaking a

monoalphabetic system by frequency counts.

Rearranging the ciphertext in five columns, we obtain five

monoalphabetic encryptions.

In particular, the second column has 75 letters, see the table on the

next slide.
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Kasiski’s Method: Cryptanalysis of the Vigenère Cipher

Determine the key:

E R U P H A W V D R N I Y M A I D G U S E H D E A

E F I E G U E C I E T O P T E H T E E S S E V R T

D R B S W R N I F A I K G A E U O X L A R E N E S

Table: Kasiski’s method: second column of the ciphertext rearranged

Note that the letter “E” occurs most frequently: 14 times (10.5%).

But this means that the letters in the second column have not been

encrypted at all! Analyzing the fifth column gives the same result.

Thus, the second and the fifth letter of the key is an “A.”

Continuing in this way, we finally obtain the key used: “PAULA.”
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Kasiski’s Method: Cryptanalysis of the Vigenère Cipher

Decipher the ciphertext:

key P A U L A P A U L A P A U L A P A U L A

plaintext W E H A D G R E A T F U N I N S P A I N

ciphertext L E B L D V R Y L T U U H T N H P U T N

plaintext T H A T Y E A R A N D W E T R A V E L L

ciphertext I H U E Y T A L L N S W Y E R P V Y W L

plaintext E D A N D W R O T E A N D H E M I N G W

ciphertext T D U Y D L R I E E P N X S E B I H R W

plaintext A Y T O O K M E T U N A F I S H I N G A

ciphertext P Y N Z O Z M Y E U C A Z T S W I H R A

plaintext N D I C A U G H T F O U R C A N S A N D

ciphertext C D C N A J G B E F D U L N A C S U Y D
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Kasiski’s Method: Cryptanalysis of the Vigenère Cipher

Decipher the ciphertext:

key P A U L A P A U L A P A U L A P A U L A

plaintext W E L A U G H E D A N D A L I C E T O K

ciphertext L E F L U V H Y O A C D U W I R E N Z K

plaintext L A S A S K E D M E I F I W A S I N L O

ciphertext A A M L S Z E X X E X F C H A K I H W O

plaintext V E W I T H G E R T R U D E S T E I N B

ciphertext K E Q T T W G Y C T G U X P S I E C Y B

plaintext E C A U S E I H A D D E D I C A T E D A

ciphertext T C U F S T I B L D S E X T C P T Y O A

plaintext B O O K O F P O E M S T O H E R E V E N

ciphertext Q O I V O U P I P M H T I S E G E P P N
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Kasiski’s Method: Cryptanalysis of the Vigenère Cipher

Decipher the ciphertext:

key P A U L A P A U L A P A U L A P A U L A

plaintext T H O U G H T H E Y W E R E T S E L I O

ciphertext I H I F G W T B P Y L E L P T H E F T O

plaintext T S A N D I S A I D Y E S I L O V E D H

ciphertext I S U Y D X S U T D N E M T L D V Y O H

plaintext E R B U T I T C O U L D N E V E R W O R

ciphertext T R V F T X T W Z U A D H P V T R Q Z R

plaintext K B E C A U S E S H E W A S F A R T O O

ciphertext Z B Y N A J S Y D H T W U D F P R N Z O

plaintext I N T E L L I G E N T F O R M E A N D A

ciphertext X N X P L A I A P N I F I C M T A H O A
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Kasiski’s Method: Cryptanalysis of the Vigenère Cipher

Decipher the ciphertext:

key P A U L A P A U L A P A U L A P A U L A

plaintext L I C E T O K L A S A G R E E D A N D T

ciphertext A I W P T D K F L S P G L P E S A H O T

plaintext H E N W E P U T O N S O M E B O X I N G

ciphertext W E H H E E U N Z N H O G P B D X C Y G

plaintext G L O V E S A N D G E R T R U D E S T E

ciphertext V L I G E H A H O G T R N C U S E M E E

plaintext I N B R O K E M Y N O S E

ciphertext X N V C O Z E G J N D S Y
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Kasiski’s Method: Cryptanalysis of the Vigenère Cipher

We had great fun in Spain that year and we travelled and wrote

and Hemingway took me tuna fishing and I caught four cans and

we laughed and Alice Toklas asked me if I was in love with Gertrude

Stein because I had dedicated a book of poems to her even though

they were T.S. Eliot’s and I said, yes, I loved her, but it could never

work because she was far too intelligent for me and Alice Toklas

agreed and then we put on some boxing gloves and Gertrude Stein

broke my nose.

Woody Allen, A Twenties Memory,

Random House, Inc., 1971
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Cryptanalysis of the Affine Linear Block Cipher

Affine Linear Block Ciphers can be broken by known-plaintext attacks:

Suppose that some key (A,~b) has been fixed, that is, the plaintext

~x ∈ Zn
m is encrypted as

~y = E(A,~b)(~x) = A~x +~b mod m,

where A is an (n×n) matrix over Zm with gcd(detA,m) = 1, and ~y

and ~b are vectors in Zn
m.

Suppose we know n+ 1 plaintexts ~x0,~x1, . . . ,~xn and the corresponding

ciphertexts ~y0,~y1, . . . ,~yn with

~yi = A~xi +~b mod m.

It follows that

~yi −~y0 ≡ A(~xi −~x0) mod m. (6)
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Cryptanalysis of the Affine Linear Block Cipher

Define the matrices X and Y by

X = (~x1−~x0,~x2−~x0, . . . ,~xn−~x0) mod m;

Y = (~y1−~y0,~y2−~y0, . . . ,~yn−~y0) mod m.

That is,

the i th column of X is the difference ~xi −~x0 mod m, and

the i th column of Y is the difference ~yi −~y0 mod m,

where 1≤ i ≤ n.

It follows from (6) that

AX ≡ Y mod m.
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Cryptanalysis of the Affine Linear Block Cipher

If detX is coprime to m, then

X−1 = (detX )−1Xadj,

where (detX )−1 denotes the inverse of detX mod m.

Thus, we have

A≡ Y ((detX )−1Xadj) mod m.

Furthermore, since
~b = (~y0−A~x0) mod m,

we have determined the key (A,~b) from n+ 1 pairs of plaintexts and

corresponding ciphertexts.
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Cryptanalysis of Linear Block Ciphers and the Hill Cipher

If the cryptosystem is even linear, then ~b =~0, and we may choose

~x0 =~y0 =~0.

In particular, if n = 2, the Hill cipher can be broken when two pairs,

(x1,y1) and (x2,y2), are known.

For example, suppose you have intercepted two pairs of plaintexts and

corresponding ciphertexts, say the first two blocks of the encryption

by the Hill cipher given in our previous example.
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Cryptanalysis of Linear Block Ciphers and the Hill Cipher

The following table shows these two known pairs:

~x1 = (19,7) and ~y1 = (27,2), and

~x2 = (4,26) and ~y2 = (0,22).

plaintext T H E 2

plaintext encoded 19 7 4 26

ciphertext encoded 27 2 0 22

ciphertext , C A W

Table: Breaking the Hill cipher with a known-plaintext attack
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Cryptanalysis of Linear Block Ciphers and the Hill Cipher

Thus, you obtain the matrices X =

19 4

7 26

 and Y =

27 0

2 22

.

Since

detX = 19 ·26−4 ·7 = 2

and m = 29 are coprime, you further obtain (detX )−1 = 15 and

Xadj =

26 −4

−7 19

≡
26 25

22 19

 mod 29.
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Cryptanalysis of Linear Block Ciphers and the Hill Cipher

Hence, the key used can be deciphered by

A ≡ Y
(
(detX )−1Xadj

)
mod 29

≡

27 0

2 22

15

26 25

22 19

 mod 29

≡

27 0

2 22

13 27

11 24

 mod 29

≡

3 4

7 2

 mod 29.
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Triple Encryption

The security of a block cipher can be increased by applying it

repeatedly with distinct keys.

This measure can increase the key space considerably. A common way

of doing so is the triple encryption. After choosing three keys, say k1,

k2, and k3, a given plaintext x is encrypted by

y = Ek1(Dk2(Ek3(x))),

where Eki are the encryption functions and Dki the decryption

functions for ki . The ciphertext y can then be decrypted by

x = Dk3(Ek2(Dk1(y))).
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Electronic Codebook Mode (ECB)

Suppose we are given a block cipher with block length n.

Messages are strings in Σ∗, where Σ is an alphabet. The key space

is K .

To encode a plaintext m in the electronic codebook mode (ECB),

subdivide it into blocks of length n:

~b1,~b2, . . . ,~bk ,

where the last block may have to be padded by random letters to

ensure that n divides |m|.
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Electronic Codebook Mode (ECB)

If e ∈ K is the encryption key, every block of length n is encrypted

by e:

~ci = Ee(~bi ), 1≤ i ≤ k .

The ciphertext is the resulting sequence of ciphertext blocks:

c =~c1 ~c2 · · · ~ck .

If d ∈ K is the decryption key corresponding to e, the ciphertext

blocks are decrypted with d one after another, yielding the original

plaintext:

m = Dd(~c1) Dd(~c2) · · · Dd(~ck).

All previous examples of block ciphers have been encrypted in the

ECB mode.
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Electronic Codebook Mode (ECB): Disadvantages

1 The same plaintext blocks are encrypted into the same ciphertext

blocks. Thus, regularities in the plaintext yield regularities in the

ciphertext. A cryptanalysist can exploit this information obtained

from the ciphertext, which may be sufficient to break the cipher.

For instance, in the previous example for how to break the Vigenère

cipher by Kasiski’s method, the highlighted ciphertext patterns

“AHO,” “UYD,” and “ACD” each encrypt the plaintext “AND,”

which results from using the ECB mode for the Vigenère cipher.

2 An attacker can easily tamper with the encrypted messages by

deleting ciphertext blocks,

inserting additional ciphertext blocks, or

altering the order of the ciphertext blocks.
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Cipherblock Chaining Mode (CBC)

The cipherblock chaining mode (CBC) avoids the disadvantages of

the ECB mode by working in a “context-sensitive” way: The

encryption of a plaintext block in the CBC mode depends not only on

the block being encrypted and the key, but also on preceding blocks.

Hence, depending on their context, identical patterns in the plaintext

are encrypted differently.

If an attacker was tampering with the ciphertext, it can no longer be

decrypted properly, which reveals that someone was trying to do

something nasty.

The CBC mode is explained for the permutation cipher.
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Cipherblock Chaining Mode (CBC)

Let Σ = {0,1} be an alphabet, n be the block length, and Sn be the

key space (of the permutation cipher). Let Eπ be the encryption

function and Dπ−1 be the decryption function for key π ∈Sn.

Define the logical exclusive-or

operation ⊕ : {0,1}2 → {0,1}
by its truth table:

x y x⊕y

0 0 0

0 1 1

1 0 1

1 1 0

For ~x ,~y ∈ {0,1}n with ~x = (x1,x2, . . . ,xn) = x1 x2 · · · xn and

~y = (y1,y2, . . . ,yn) = y1 y2 · · · yn, let

~x⊕~y = (x1⊕y1,x2⊕y2, . . . ,xn⊕yn) = x1⊕y1 x2⊕y2 · · · xn⊕yn.
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Cipherblock Chaining Mode (CBC)

To encode a plaintext m in the cipherblock chaining code (CBC),

subdivide it into blocks of length n (assuming n divides |m|):

~b1,~b2, . . . ,~bk .

Choose an initial vector ~c0 ∈ {0,1}n.

For π ∈Sn, every block ~bi is encrypted as follows:

~ci = Eπ(~ci−1⊕~bi ), 1≤ i ≤ k .

The ciphertext is the resulting sequence of ciphertext blocks:

c =~c1 ~c2 · · · ~ck .

For π−1 ∈Sn, every ciphertext block ~ci is decrypted by:

~bi =~ci−1⊕Dπ−1(~ci ), 1≤ i ≤ k .
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Cipherblock Chaining Mode (CBC): Disadvantages

The receiver has to wait for the next ciphertext block before starting

with the decryption.

These delays result in a certain inefficiency, in particular if the block

length is large.

This disadvantage can be avoided by the cipher feedback mode (CFB).
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Cipher Feedback Mode (CFB)

Idea:

Subdivide the message into blocks shorter than the block length n of

the block cipher used.

Do not use only the block cipher’s own encryption function, but

encrypt these shorter blocks by adding certain key blocks modulo 2.

These key blocks can almost simultaneously be generated by the

sender and the receiver of the ciphertext.

The CFB mode is again explained for the permutation cipher.
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Cipher Feedback Mode (CFB)

Consider the permutation cipher with alphabet Σ = {0,1}, block

length n, and key space Sn. Let π ∈Sn the encryption key.

Choose some k with 1≤ k ≤ n and an initial vector ~z0 ∈ {0,1}n.

Subdivide message m into d = d|m|/ke blocks ~b1,~b2, . . . ,~bd of

length k . For each i with 1≤ i ≤ d :

Step 1: Compute ~xi = Eπ (~zi−1).

Step 2: Let ~yi be the string in {0,1}k consisting of the first k bits of

~xi ∈ {0,1}n.

Step 3: Compute ~ci =~bi ⊕~yi .
Step 4: Compute ~zi = 2k~zi−1 +~ci mod 2n, i.e., the first k bits are deleted in

~zi−1 and ~ci is attached as a suffix.

The resulting ciphertext consists of the blocks ~c1,~c2, . . . ,~cd .
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Cipher Feedback Mode (CFB)

Example: Let n = 5 and k = 4, and consider the message

m = 10011 10101 01001 00100.

Subdivide the message into five blocks of length k :
~b1 = 1001, ~b2 = 1101, ~b3 = 0101, ~b4 = 0010, ~b5 = 0100.

If π = (1 2 3 4 5

3 5 1 2 4
) ∈S5 is our key and ~z0 = 11010 our initial vector, we

encrypt these blocks as follows:

i ~bi ~xi ~yi ~ci ~zi

0 — — — — 11010

1 1001 00111 0011 1010 01010

2 1101 00011 0001 1100 01100

3 0101 10010 1001 1100 01100

4 0010 10010 1001 1011 01011

5 0100 01011 0101 0001 10001
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Cipher Feedback Mode (CFB)

Decryption works almost like the encryption. The only difference

occurs in the third step. For each i with 1≤ i ≤ d :

Step 1: Compute ~xi = Eπ(~zi−1).

Step 2: Let ~yi be the string in {0,1}k consisting of the first k bits of

~xi ∈ {0,1}n.

Step 3: Compute ~bi =~ci ⊕~yi .
Step 4: Compute ~zi = 2k~zi−1 +~ci mod 2n, i.e., the first k bits are

deleted in ~zi−1 and ~ci is attached as a suffix.

The decrypted message obtained consists of the blocks ~b1,~b2, . . . ,~bd .
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Cipher Feedback Mode (CFB)

Remark:

Both the sender and the receiver can determine ~y1 as soon as the

initial vector ~z0 is chosen.

Then, the sender computes ~c1 =~b1⊕~y1 and sends it, and the receiver

computes ~b1 =~c1⊕~y1.

Then, they can both determine ~y2, and so on.

Advantage (in comparison with the CBC mode): The block

length k can be much shorter than the actual block length n.

=⇒ less idle time during which the receiver has to wait for the

sender, so both can encrypt and decrypt almost simultaneously.
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Output Feedback Mode (OFB)

The output feedback mode (OFB) is quite similar to the CFB mode:

The initialization and

the first three steps of both the encryption and the decryption

procedure are identical.

The only difference occurs in the fourth step, which determines the

vector ~zi for 1≤ i ≤ d .

For encryption, the OFB mode works as follows:

Step 1: Compute ~xi = Eπ(~zi−1).

Step 2: Let ~yi be the string in {0,1}k consisting of the first k bits of

~xi ∈ {0,1}n.

Step 3: Compute ~ci =~bi ⊕~yi .
Step 4: Compute ~zi =~xi .
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Output Feedback Mode (OFB)

Example: Let n = 5 and k = 4. The block encryption in the CFB mode

shown in the previous example gives the following block encryption in the

OFB mode for the same message m = 10011 10101 01001 00100,

subdivided into five blocks of length k :

~b1 = 1001, ~b2 = 1101, ~b3 = 0101, ~b4 = 0010, ~b5 = 0100,

the same key π = (1 2 3 4 5

3 5 1 2 4
) ∈S5, and the same initial vector ~z0 = 11010:

i ~bi ~xi ~yi ~ci ~zi

0 — — — — 11010

1 1001 00111 0011 1010 00111

2 1101 11001 1100 0001 11001

3 0101 01110 0111 0010 01110

4 0010 10011 1001 1011 10011

5 0100 01101 0110 0010 01101
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Output Feedback Mode (OFB)

Decryption works again almost like the encryption. The only

difference occurs in the third step:

Step 3: Compute ~bi =~ci ⊕~yi .

Remark: Advantage (in comparison with the CFB mode):

If there are transmission errors in the ciphertext of a message

encrypted in the OFB mode, then this error occurs after decryption

only at exactly the same position.

In contrast, transmission errors in ciphertexts encrypted in the CFB

mode occur after decryption as long as it takes to shift the erroneous

block out of the vector ~zi , which depends on the block lengths n

and k .
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Stream Ciphers

The principle of the CBC mode is generalized by the notion of a

stream cipher.

Stream ciphers generate a continuous stream of keys such that each

key may depend on the preceding keys and on the context of the

plaintext already encrypted.

We now introduce a popular stream cipher that is based on a linear

feedback shift register, and thus explains the general idea of stream

ciphers.
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Stream Cipher Based on a Linear Feedback Shift Register

Let Σ = {0,1} be the alphabet used. Σ∗ is both the plaintext space

and the ciphertext space. For fixed n ∈ N, the key space is Σn.

Any message ~m = m1m2 · · ·mz in Σ∗ is encrypted symbol by symbol

as follows.

Suppose that z ≥ n. Given a key ~k = (k1,k2, . . . ,kn) in Σn, generate a

key stream ~s = (s1,s2, . . . ,sz , . . .), initialized by ~k for the first n bits:

si = ki for 1≤ i ≤ n,

and continuing according to the following linear recursion of order n:

si =
n

∑
j=1

ajsi−j mod 2 for i > n, (7)

where a1,a2, . . . ,an ∈ {0,1} are fixed coefficients.
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Stream Cipher Based on a Linear Feedback Shift Register

Denoting the first z bits of the key stream ~s by ~s(z), the encryption

function E~k and the decryption function D~k , both mapping from Σ∗

to Σ∗, are defined by:

E~k(~m) = ~m⊕~s(|~m|);

D~k(~c) = ~c⊕~s(|~c|),

where ⊕ denotes the addition of bit vectors modulo 2.

That is, the i th bit of ~m⊕~s is mi ⊕ si , the exclusive-or of mi and si .
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Stream Cipher Based on a Linear Feedback Shift Register

Example:

For a concrete example, let n = 5, and fix the coefficients

a1 = a3 = a4 = 0 and a2 = a5 = 1.

Then, the key stream ~s is generated by the recursion

si+5 = si+3 + si mod 2. (8)

Choosing the key ~k = (1,0,0,1,1), one obtains

~s = (1,0,0,1,1,0,1,0,0,1,0,0,0,0,1,0,1,0,1,1,1, . . .).

The linear recursion from (8) can be efficiently realized by a building

block of hardware, namely a linear feedback shift register as shown on

the next slide.
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Stream Cipher Based on a Linear Feedback Shift Register

i
s s s s s

i +1 i +2 i +3 i +4

Figure: A linear feedback shift register

The registers store the last four bits of the key stream ~s generated.

In each recursion step, the bit from the leftmost register is used as

the current key. Then, the bits from the other registers are shifted by

one position to the left.

The rightmost register is now fed the bit that results from adding

modulo 2 the bits from those registers with coefficient ai = 1.
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Stream Cipher Based on a Linear Feedback Shift Register

Known-Plaintext Attack for Breaking this Stream Cipher:

This attack is similar to the cryptanalysis of affine linear block ciphers

such as the Hill cipher.

Note that all operations used in this stream cipher are linear.

Thus, knowing a string of plaintext and a corresponding string of

ciphertext, you can solve a system of linear equations to determine

the values of the n unknown coefficients in the linear recursion (7).
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Stream Cipher Used in the Enigma

This stream cipher realizes one of the ideas from the infamous

encryption machine Enigma that the Deutsche Wehrmacht used

during World War II.

The key space is Z26.

For some fixed key k ∈ Z26 and for each i ≥ 1, generate the key

stream ~s by defining its i th element by the rule

si = (k + i −1) mod 26.
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Stream Cipher Used in the Enigma

Let π be some fixed permutation of Z26.

If s ∈ Z26 is the current element of the key stream and x is the

current plaintext letter, the encryption function Es , which maps from

Z26 to Z26, uses both π and s as follows:

Es(x) = π((x + s) mod 26).

Similarly, the decryption function Ds , which also maps from Z26

to Z26, uses both s and the inverse permutation π−1 to decrypt the

current ciphertext symbol y :

Ds(y) = (π
−1(y)− s) mod 26.
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Stream Cipher Used in the Enigma: A Puzzle

Suppose that the permutation π of Z26 is given by 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

11 8 6 1 3 4 5 9 10 2 7 0 14 12 20 13 25 21 15 17 24 18 16 22 19 23

 .

The following ciphertext was produced by the above stream cipher with π:

FRRMXCBEWMJWDDH TKO UACYKUK QAMT ASVZWO

Find the key used by exhaustive search of the key space,

determine the complete key stream, and

decrypt the ciphertext.

J. Rothe (HHU Düsseldorf) Cryptocomplexity I 118 / 118


	Some Classical Cryptosystems and Their Cryptanalysis
	Substitution and Permutation Ciphers
	Affine Linear Block Ciphers
	Block and Stream Ciphers


