KRYPTOLOGIE I

Ausgewahlte Folien zur Vorlesung

Wintersemester 2009/2010

Dozent: Prof. Dr. J. Rothe

Heinrich-Heine-Universitat Dusseldorf

http://ccc.cs.uni-duesseldorf.de/ rothe/crypto2

Literatur

e JOrg Rothe: ,Komplexitatstheorie und Krypto-
logie. Eine Einfihrung in Kryptokomplexit at*,
eXamen.press, Springer-Verlag, 2008

e JOrg Rothe: , Complexity Theory and Cryptology. An
Introduction to Cryptocomplexity* , Springer-Verlag,
2005

e Douglas R. Stinson: , Cryptography: Theory and
Practice”, Chapman & Hall/CRC, 2. Auflage, 2002

e Johannes Buchmann;, EinflUhrung in die Kryptogra-
phie*, Springer-Verlag, 2. Auflage, 2001

e Oded Goldreich: ,Foundations of Cryptography*,
Cambridge University Press, 2001

e Neal Koblitz: ,, Algebraic Aspects of Cryptography”,
Springer-Verlag, 2. Auflage, 1999

e Bruce Schneier:, Applied Cryptography* , John Wiley
& Sons, 1996

e Arto Salomaa:,, Public-Key Cryptography” , Springer-
Verlag, 1990

Secret-Key Agreement

GO@

t—,
v

@O@

A ice <:> Bo

Alice and Bob want to agree on a joint secret ke
by communicating over an insecure channel that is eaves-
dropped byErich.

Method Square-and-multiply

SQUARE-AND-MULTIPLY (a,b,m) {

// exponent, base) < m, and modulusn
Determine the binary expansion of the exponent

k
a = 2%2@', wherea; € {0, 1};
1=0

Successively, compute

b B2 2

k

by applying the congruence
i A
p2 = (b2) mod m;

// the intermediate valuég need not be stored
In the arithmetics modul@:, compute

k
b =[] v

1 =10
CLZ':1

return b%;

}

Secret-Key Agreement Protocol

Diffie and Hellman:; 1976

GO@
U

Alice

Alice and Bob agree upon a prime
and a primitive rooty of p;
p and~ are public

chooses: at random
computes

a =~" mod p

choose9$ at random,
computes

8 =7"mod p

= o

computes her key
ka= 3 mod p

computes his key

kp = a’mod p

Shanks’ Baby-Step Giant-Step Algorithm

SHANKS (G, n, v, a) {
// G is a multiplicative groupy € G is a
// primitive element of orden, anda € (v)

s:=[ynl;

for (i =0,1,...,s — 1) { add(+*,7) to a listL;; }
Sort the elements of ; w.r.t. their first coordinates;
for (7=0,1,...,s—1){add(ay 7, j) toalistL,:; }
Sort the elements aof, w.r.t their first coordinates;

Find a pair(9,7) € £, and a paird, j) € Lo, i.e., find two
pairs with identical first coordinates;

return “log, a = is + j” and halt;

}

Example for Shanks’ Algorithm

e Letp =101,y =2, anda = 47.
e Suppose we want to find
a = log, 47 mod 101
In the groupZy;.
e Sincen = p — 1 = 100 Is the order oR, we have

S = {\/WW = 10.

e It follows that

~* mod p = 2! mod p = 14.

e Now, the sorted list£; and £, can be determined as
follows:

L. |(1,0)[(14, D|(95, 2)[(17, 3)[(36, 4)[(100, 5)|(87, 6)] (6, 7) (34, 8)] (65,9)
£, sorted(1,0)] (6,7)[(14, 1)|(17,3)/(36,4)| (65, 9) (84, 8)[(87, 6)[(95, 2) (100, 5)

85,4)[(93,5)[(97, 6)[(99, 7)[(100, 8)| (50, 9)

L, sorted|(37, 2) (4720) (50:9) (69:3) (74,1)[(85,4)[(93,5)(97, 6)| (99, 7) [(100, 8)

Pohlig-Hellman’s Algorithm

POHLIG-HELLMAN (G, n, v, a, q,¢) {
// G is a multiplicative group of ordet,
/]~ € G is a primitive elementy € (~), primeg,
//n = 0mod ¢¢ andn # 0 mod ¢“

7 :=0;

aj =

while (j <c—1){
0= oz?/qjﬂ;
Find i with § = ™/¢;
aj =1,
a1 = a4
J=J+1

h

return “(ag, ay, ..., a.1)" and halt;

Der Chinesische Restesatz (CRS)

Satz 1 (Chinese Remainder Theorem)
Letmy, mo, ..., m; bek positive integers that are pairwise
relatively prime (i.e.gcd(m;, m;) = 1 fori # j), let

k
M =][m,
1=1

and leta;, ao, . . ., a; be any integers.

For eachi with 1 < i < k, defineg; = M/m;, and letg;
denote the inverse elementgfn Z;, .

Then, the system éfcongruences

xr = a; mod m;,

wherel < < k, has the unigue solution
k

T = Zaiqz-qz-_l mod M.
i=1

ElGamal’s Public-Key Cryptosystem

n-

Step Alice Erich Bob
1 Alice and Bob agree upon a large prime
and a primitive element of p;
p and~ are public
2 chooses a large ra
dom numberb as
his private key ang
computes
8 =7"mod p
3 <= [
4 | chooses a large ran-
dom numbera and
encrypts message
m by:
a; = v mod p
as = mB® mod p
5 (041, Oég) =
6 decrypts by

s (1) mod p

10

ElGamal’s Digital Signature Scheme

e
S

a_

Step Alice Erich Bob

1 chooses a large prime
a primitive element~
of p, and a large privat
numberb and compute
B =+"mod p

2 < (p,7,0)

3 chooses a large randosy
with gcds,p — 1) = 1,
and computes his sign
ture for messagen by
sigz(m) = (o, p), where
o = v mod p
p —_—

(m —bo)s ' mod p — 1
m
) - { (0,p)
5 | verifies Bob’s

signature by
checking

’y —
5%0” mod p

T~

11

ElGamal’s Digital Signature Scheme
Verifying Bob’s Signature

eletp = 1367, and lety = 5 be a primitive element
of 1367.

e Bob chooses the private exponehts 513 ands = 129,
wheregcd(129, 1366) = 1.

e Bob computes

B = 5% mod 1367 =855 and
o = 5% mod 1367 = 1180.

e Suppose that Bob wants to sign the message 457.

20 21 22 23 24 25 26 27 28 29 210

5 25 625 | 1030 | 108 | 728 | 1955 | 236 | 1016 ~™ mod p
855 11047 1242 | 588 |/1260 | 513 | 705 1804 | 1192 | 551 | 127 | £° mod p
1180 |[794 | 249 | 486 | 1072 | 904 1117|985 | 1022 |96 o’ mod p

Thus,y" = 1280, 87 = 749, and o” = 750.

Gray Boxes contain the values to be multiplied according
the binary expansion of the exponents:

m = 457 =2V + 23 4 26 4 2T 4 25,

o = 1180 = 22 + 20 + 2' + 27 4 210,

p=955=2" 42 425424 1 25 4 2T 4 25 4 99

12

Discrete Logarithm Bit Problem

e Considerog, 47 mod 101 = 58,

e Since
58 =29 421 423 4 o,
the binary representation 6§ is
bin(58) = 111010
and has six bits, dropping leading zeros.

e Theleast significant bit obin(58) is the rightmost zero,
the coefficient of.

; 112[314[5]6]7
DLogBit((101,2,47,4))[0[1]0|1[1[1]0

13

Discrete Logarithm Reducing to DLogBiIt(. .., 2)

DISCRETELOG-BIT-2-ORACLE(p, 7,) {

// pis prime,
// ~ is a primitive root ofp,

/] ae{y)

// external: Algo for DLogBit(...,1) andDLogBit(...,2)

xo := DLogBit(p, v, a, 1);
a = a/¥" mod p;
1= 1;
while (a # 1)
x; = DLogBit(p, v, a, 2);
§ = aP*)/* mod p;
| f DLogBit(p,,9d,1) = x;
thena:=96
el sea :=p—9;
a = a/y" mod p;
1 =14+ 1;
h

return ” (%’-1, Li—25 - - >$0> ,

}

14

Example for DLog Reducing to DLogBiIt(. .., 2)

Letp =19, v = 2, anda = 6.
We want to computég., o mod p = log, 6 mod 19.

The following table gives the values DL.ogBit(19,2, 5, 1)
andDLogBit (19,2, 3,2) for eachl € Z3,:

3 [DLogBit (19,2, 3,1)|DLogBit(19,2, 3,2)
1 0 0
2 1 0
3 1 0
4 0 1
5! 0 0
§ 0 1
7 0 1
8 1 1
9 0 0
10 1 0
11 0 0
12 1 1
13 1 0
14 1 1
15 1 1
16 0 0
17 0 1
18 1 0

15

Types of Forgery

e Total Break: The cryptanalyst is able to determine the
private key of the sender in a digital signature scheme.

For example, Bob’s secret numben ElGamal’s digital
signature scheme.

Using this private key, cryptanalyst Erich can create
valid signature for any message of his choice.

e Selective Forgery: The cryptanalyst is able to create,
with nonnegligible probability of success, a valid signa
ture for some message chosen by somebody else.

If Erich intercepts a message that was previously not
signed by Bob, he is able to create a valid signature f
m With a certain success probability.

e Existential Forgery: The cryptanalyst is able to create
a valid signature for at least one message that was p
viously not signed by Bob.

Here, no specified probability of success is required.

16

Types of Attacks

e Key-Only Attack:
Cryptanalyst Erich only knows Bob’s public key.

e Known-Message Attack:

Erich knows some pairs of messages and corresponding
signatures in addition to the public key.

e Chosen-Message attack:

Erich knows the public key and obtains a list of Bob’s
sighatures corresponding to a list of messages he has
chosen at will.

17

Security of EIGamal Signatures
Key-Only Attack — Existential Forgery

e Let x andy be integers with
0<z<p—2 and 0<y<p-—2.

e Writing o aso = ~*(3Y mod p implies that the ElGamal
verification condition

~" = (37¢” mod p. (1)
IS of the form
"= 67 (v 8Y)" mod p,
which is equivalent to

AT = 37TYP mod p. (2)

e Equation (2) is true if and only if the following two con-
gruences are satisfied:

m—xp = 0mod (p — 1); (3)
oc+yp = 0mod (p —1). (4)

18

Security of EIGamal Signatures
Key-Only Attack — Existential Forgery
continued

e Givenz andy and assuming thaicd(y,p — 1) = 1, the
congruences (3) and (4) can easily be solvegfandm,
and we obtain:

o = v mod p;
p = —oy 'mod (p—1);
m = —xoy ' mod (p — 1).

e By way of construction(o, p) is a valid signature for the
messagen.

19

Security of EIGamal Signatures
Known-Message Attack — Existential Forgery

e Suppose that Erich knows a previous signatdre) for
some message.

e He can then sign new messages forging Bob’s signatul

e Let p be a prime number with primitive elemenf and
let 5 be Bob’s public key.

e letx,y,z € Z,_, be chosen such that
ged(xo —zp,p—1) = 1.
e Erich computes:
o = ¢'v/(* mod p;
p = polx6 — 2p) " mod (p — 1);
m = o(zm +yp)(xz6 — zp) "t mod (p — 1).

e One can check that the ElGamal verification conditio
(1) is satisfied:

A" = (370" mod p.

20

Security of EIGamal Signatures
Known-Message Attack — Total Break

e Bob’s secret exponentmust never be revealed!

e If Erich knowss, then it is a matter of routine for him to
compute, using

bo+ sp=mmod p—1,

Bob’s secret exponertfrom m and the signaturés, p)

by
b= (m—sp)o ' modp— 1.

e This known-message attack results in a total break of the
ElGamal digital signature scheme, and Erich can hence-
forth forge Bob’s signature at will.

e In particular, if the sames is used twice for
signing distinct messages,; andms,, we have

— a signaturéo, p;) for m; and
— a signaturéo, po) for ms.

e Writing o = +*, we have
B%c =~ modp and (%07 =~"2mod p

from which the unknown value can be determined.

21

Rabin’s Public-Key Cryptosystem

nd

T~y

Step Alice Erich Bob
1 chooses two large ral
dom primesp andq with
p=q = 3 mod 4,
keeps them secret, al
computes his public key
n =pq
2 E=n
3 |encrypts the
messagen by
¢ = m°modn
4 c =
5 decryptsc by computing

m = +/c mod n

22

A ZPP Computation

e Let A be any language in ZPP, and l&f and N be
NPTMs witnessing thatl € RP andA € RP.

e Define the machind/ o N as follows:
—On inputz, M o N first simulatesM (x) and then it
simulatesV (z).

— Thus, every path ofM o N)(x) has the form«, (),
whereq is a path ofM (x) andj is a path of N (x).

—For paths o and 3, denote acceptance by
and rejection by-.

— M o N assigns the final states, s,, ands- to each
possible paifa,) as follows:

a of M(x)

3 of N(x)

re A

|

& A

+

23

Security of Rabin’s System

RANDOM-FACTORPre2k™2bin () f
// Rabin modulus: = pqg with p = ¢ = 3 mod 4
Randomly choose a number € Z* under the uniform
distribution;
¢ = 2 mod n:
m := break-rabin((n, c));
// query the oracle about, ¢) to
// obtain anm with ¢ := m?* mod n

if (m = £2 mod n) return “failure” and halt;

else
p = gcd(m — x,n);
q=n/p;

return “p andq are the prime factors of” and halt;

24

How to Explain Zero-Knowledge
to Your Children

The Holy Grail ‘ Saruman ‘ The One Ring

left right
entrance enfrance

main entrance
Arthur

25

The Graph Isomorphism Problem

e (5 is iIsomorphic toH, but not toF'.

e An isomorphismn betweenG and H is given by

= (;if‘;g) or, in cyclic notation, byr = (13)(245).

e The graph isomorphism problem is neither known to b
polynomial-time solvable nor to be NP-complete.

26

Zero-Knowledge Protocol for Graph Isomorphism

Goldreich, Micali, and Wigderson (J.ACM, 1991)

Step

Merlin

Saruman

Arthur

chooses a large grapty,

with n vertices and a permu-

tationt € G, at random,
computess; = 7(Gy);
(G, G) is public, T secret

2 (GQ, G1> =
3 | picks a permutatiop in G,,
and a bitm in {0, 1} at ran-
dom, computes! = u(G,,)
4 H =
5 chooses a b
a € 40,1},
requestsa In
ISO(G,, H)
6 “a
7 | computesy = pif a = m;
a=7muif 0 =a#m=1,
a=r'pifl=a#m=0
38 o=
9 verifies

a(G,) =H

27

t

Simulation of the Goldreich—Micali-Wigderson

Zero-Knowledge Protocol for Graph Isomorphism

and a bits in {0, 1} at ran-
dom, computes! = o(Gy)

Step Saruman Arthur
1&2 Merlin’s pair (G, G1) of isomorphic
graphs is public information
3 | picks a permutation in G,

t

4 H =

5 chooses a b
a € 40,1},
requestsa In
ISO(G,, H)

6 < a

7 |sendsy=cif a = s;

deletes this round i # s
8 o=
9 a = s implies

a(G,) = H,

thus Arthur
accepts S

false identity

U)

28

Fiat—Shamir Zero-Knowledge

|dentification Scheme

Step Merlin Saruman Arthur

1 |chooses two large

primes p and ¢ and

a secrets € Z;, and

computesn = pq

andv = s mod n
2 (n,v) =
3 |choosesr € Z; at

random, computes

z =1’ mod n
4 r =
5 picks a random bi
ac€{0,1}
6 < a
7 | computes
y=r-s"modn

8 Yy =
9 verifies

y> =z - v mod n

29

