KRYPTOLOGIE II

Ausgewählte Folien zur Vorlesung

Wintersemester 2009/2010

Dozent: Prof. Dr. J. Rothe

Heinrich-Heine-Universität Düsseldorf

http://ccc.cs.uni-duesseldorf.de/~rothe/crypto2

Literatur

- Jörg Rothe: "Komplexitätstheorie und Kryptologie. Eine Einführung in Kryptokomplexität", eXamen.press, Springer-Verlag, 2008
- Jörg Rothe: "Complexity Theory and Cryptology. An Introduction to Cryptocomplexity", Springer-Verlag, 2005
- Douglas R. Stinson: "Cryptography: Theory and Practice", Chapman & Hall/CRC, 2. Auflage, 2002
- Johannes Buchmann: "Einführung in die Kryptographie", Springer-Verlag, 2. Auflage, 2001
- Oded Goldreich: "Foundations of Cryptography", Cambridge University Press, 2001
- Neal Koblitz: "Algebraic Aspects of Cryptography", Springer-Verlag, 2. Auflage, 1999
- Bruce Schneier: "Applied Cryptography", John Wiley & Sons, 1996
- Arto Salomaa: "Public-Key Cryptography", Springer-Verlag, 1990

Secret-Key Agreement

Alice and Bob want to agree on a joint secret key k, by communicating over an insecure channel that is eavesdropped by **Erich**.

Method Square-and-multiply

Square-and-Multiply (a, b, m) {

// exponent a, base b < m, and modulus mDetermine the binary expansion of the exponent

$$a = \sum_{i=0}^{k} a_i 2^i$$
, where $a_i \in \{0, 1\}$;

Successively, compute

$$b^{2^0}, b^{2^1}, \dots, b^{2^k}$$

by applying the congruence

$$b^{2^{i+1}} \equiv \left(b^{2^i}\right)^2 \bmod m;$$

// the intermediate values b^{2^i} need not be stored In the arithmetics modulo m, compute

$$b^a = \prod_{\substack{i=0\\a_i=1}}^k b^{2^i};$$

return b^a ;

}

Secret-Key Agreement Protocol Diffie and Hellman; 1976

 $\begin{array}{l} \mathsf{SHANKS}(G,n,\gamma,\alpha) \ \{ \\ //\ G \text{ is a multiplicative group, } \gamma \in G \text{ is a} \\ //\ \mathsf{primitive element of order } n \text{, and } \alpha \in \langle \gamma \rangle \end{array}$

 $s := \lceil \sqrt{n} \, \rceil;$

for $(i = 0, 1, \dots, s - 1)$ { add (γ^{is}, i) to a list \mathcal{L}_1 ; }

Sort the elements of \mathcal{L}_1 w.r.t. their first coordinates;

for $(j = 0, 1, \ldots, s - 1)$ { add $(\alpha \gamma^{-j}, j)$ to a list \mathcal{L}_2 ; }

Sort the elements of \mathcal{L}_2 w.r.t their first coordinates;

Find a pair $(\delta, i) \in \mathcal{L}_1$ and a pair $(\delta, j) \in \mathcal{L}_2$, i.e., find two pairs with identical first coordinates;

return " $\log_\gamma \alpha = is + j$ " and halt; }

Example for Shanks' Algorithm

- Let p = 101, $\gamma = 2$, and $\alpha = 47$.
- Suppose we want to find

$$a = \log_2 47 \mod 101$$

in the group \mathbb{Z}_{101}^* .

• Since n = p - 1 = 100 is the order of 2, we have

$$s = \left\lceil \sqrt{100} \right\rceil = 10.$$

• It follows that

$$\gamma^s \bmod p = 2^{10} \bmod p = 14.$$

• Now, the sorted lists \mathcal{L}_1 and \mathcal{L}_2 can be determined as follows:

\mathcal{L}_1	(1, 0)	(14, 1)	(95, 2)	(17, 3)	(36, 4)	(100, 5)	(87, 6)	(6,7)	(84, 8)	(65, 9)
\mathcal{L}_1 sorted	(1, 0)	(6,7)	(14, 1)	(17, 3)	(36, 4)	(65, 9)	(84, 8)	(87, 6)	(95, 2)	(100, 5)

\mathcal{L}_2	(47, 0)	(74, 1)	(37, 2)	(69, 3)	(85, 4)	(93, 5)	(97, 6)	(99,7)	(100, 8)	(50, 9)
\mathcal{L}_2 sorted	(37, 2)	(47, 0)	(50, 9)	(69, 3)	(74, 1)	(85, 4)	(93, 5)	(97, 6)	(99, 7)	(100, 8)

Pohlig-Hellman's Algorithm

POHLIG-HELLMAN
$$(G, n, \gamma, \alpha, q, c)$$
 {
// G is a multiplicative group of order n,
// $\gamma \in G$ is a primitive element, $\alpha \in \langle \gamma \rangle$, prime q,
// $n \equiv 0 \mod q^c$ and $n \not\equiv 0 \mod q^{c+1}$

$$\begin{array}{l} j := 0; \\ \alpha_{j} := \alpha; \\ \texttt{while} \ (j \leq c - 1) \ \{ \\ \delta := \alpha_{j}^{n/q^{j+1}}; \\ \texttt{Find} \ i \ \texttt{with} \ \delta = \gamma^{in/q}; \\ a_{j} := i; \\ \alpha_{j+1} := \alpha_{j} \gamma^{-a_{j}q^{j}}; \\ j := j + 1; \\ \end{array} \\ \mathbf{for eturn} \ ``(a_{0}, a_{1}, \dots, a_{c-1})`` \text{ and halt;} \end{array}$$

Satz 1 (Chinese Remainder Theorem)

Let m_1, m_2, \ldots, m_k be k positive integers that are pairwise relatively prime (i.e., $gcd(m_i, m_j) = 1$ for $i \neq j$), let

$$M = \prod_{i=1}^{\kappa} m_i,$$

and let a_1, a_2, \ldots, a_k be any integers. For each *i* with $1 \le i \le k$, define $q_i = M/m_i$, and let q_i^{-1} denote the inverse element of q_i in $\mathbb{Z}_{m_i}^*$. Then, the system of *k* congruences

 $x \equiv a_i \mod m_i$,

where $1 \le i \le k$, has the unique solution

$$x = \sum_{i=1}^{k} a_i q_i q_i^{-1} \mod M.$$

ElGamal's Public-Key Cryptosystem

Step	Alice	Erich	Bob				
1	Alice and Bob	agree upon	a large prime p				
	and a prin	and a primitive element γ of p ;					
	p a	and γ are pub	olic				
2			chooses a large ran-				
			dom number b as				
			his private key and				
			computes				
			$\beta = \gamma^b \bmod p$				
3		$\Leftarrow \beta$					
4	chooses a large ran-						
	dom number a and						
	encrypts message						
	m by:						
	$\alpha_1 = \gamma^a \mod p$						
	$\alpha_2 = m\beta^a \bmod p$						
5		$(\alpha_1, \alpha_2) \Rightarrow$					
6			decrypts by				
			$\alpha_2 \left(\alpha_1 \right)^{-b} \bmod p$				

ElGamal's Digital Signature Scheme

Step	Alice	Erich	Bob
1			chooses a large prime p , a primitive element γ of p , and a large private number b and computes $\beta = \gamma^b \mod p$
2		$\Leftarrow (p, \gamma, \beta)$	
3			chooses a large random s with $gcd(s, p - 1) = 1$, and computes his signa- ture for message m by $sig_B(m) = (\sigma, \rho)$, where $\sigma = \gamma^s \mod p$ $\rho = (m - b\sigma)s^{-1} \mod p - 1$
4		$\Leftarrow \left\{ \begin{array}{l} m \\ (\sigma, \rho) \end{array} \right.$	
5	verifies Bob's signature by checking $\gamma^m \equiv \beta^\sigma \sigma^\rho \mod p$		

ElGamal's Digital Signature Scheme Verifying Bob's Signature

- Let p = 1367, and let $\gamma = 5$ be a primitive element of 1367.
- Bob chooses the private exponents b = 513 and s = 129, where gcd(129, 1366) = 1.
- Bob computes

 $\beta = 5^{513} \mod 1367 = 855$ and $\sigma = 5^{129} \mod 1367 = 1180.$

• Suppose that Bob wants to sign the message m = 457.

2^{0}	2^{1}	2^{2}	2^{3}	2^4	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	2^{10}	
5	25	625	1030	108	728	955	236	1016			$\gamma^m \mod p$
855	1047	1242	588	1260	513	705	804	1192	551	127	$\beta^{\sigma} \bmod p$
1180	794	249	486	1072	904	1117	985	1022	96		$\sigma^{\rho} \mod p$

Thus, $\gamma^m = 1280$, $\beta^\sigma = 749$, and $\sigma^\rho = 750$.

Gray Boxes contain the values to be multiplied according to the binary expansion of the exponents:

$$m = 457 = 2^{0} + 2^{3} + 2^{6} + 2^{7} + 2^{8};$$

$$\sigma = 1180 = 2^{2} + 2^{3} + 2^{4} + 2^{7} + 2^{10};$$

$$\rho = 955 = 2^{0} + 2^{1} + 2^{3} + 2^{4} + 2^{5} + 2^{7} + 2^{8} + 2^{9}.$$

Discrete Logarithm Bit Problem

- **Consider** $\log_2 47 \mod 101 = 58$.
- Since

$$58 = 2^5 + 2^4 + 2^3 + 2^1,$$

the binary representation of 58 is

$$bin(58) = 111010$$

and has six bits, dropping leading zeros.

• The *least significant bit of* bin(58) is the rightmost zero, the coefficient of 2^0 .

i	1	2	3	4	5	6	7
$\boxed{\texttt{DLogBit}(\langle 101,2,47,i\rangle)}$	0	1	0	1	1	1	0

DISCRETE-LOG-BIT-2-ORACLE (p, γ, α) {

// p is prime,

// γ is a primitive root of p,

 $// \alpha \in \langle \gamma \rangle$

// external: Algo for DLogBit(..., 1) and DLogBit(..., 2)

```
\begin{array}{l} x_0 := \texttt{DLogBit}(p, \gamma, \alpha, 1); \\ \alpha := \alpha / \gamma^{x_0} \mod p; \\ i := 1; \\ \texttt{while} \ (\alpha \neq 1) \ \{ \\ x_i := \texttt{DLogBit}(p, \gamma, \alpha, 2); \\ \delta := \alpha^{(p+1)/4} \mod p; \\ \texttt{if DLogBit}(p, \gamma, \delta, 1) = x_i \\ \texttt{then } \alpha := \delta \\ \texttt{else } \alpha := p - \delta; \\ \alpha := \alpha / \gamma^{x_i} \mod p; \\ i := i + 1; \\ \end{array} \right\} \\ \texttt{return } ``(x_{i-1}, x_{i-2}, \dots, x_0)``; \end{array}
```

}

Example for DLog Reducing to DLogBit(..., 2)

Let p = 19, $\gamma = 2$, and $\alpha = 6$.

We want to compute $\log_{\gamma} \alpha \mod p = \log_2 6 \mod 19$.

The following table gives the values of $DLogBit(19, 2, \beta, 1)$ and $DLogBit(19, 2, \beta, 2)$ for each $\beta \in \mathbb{Z}_{19}^*$:

β	$\texttt{DLogBit}(19,2,\beta,1)$	$\texttt{DLogBit}(19,2,\beta,2)$
1	0	0
2 3	1	0
3	1	0
4	0	1
5	0	0
6	0	1
7	0	1
8	1	1
9	0	0
10	1	0
11	0	0
12	1	1
13	1	0
14	1	1
15	1	1
16	0	0
17	0	1
18	1	0

Types of Forgery

Total Break: The cryptanalyst is able to determine the private key of the sender in a digital signature scheme.
For example, Bob's secret number *b* in ElGamal's digital signature scheme.

Using this private key, cryptanalyst Erich can create a valid signature for any message of his choice.

• Selective Forgery: The cryptanalyst is able to create, with nonnegligible probability of success, a valid signature for some message chosen by somebody else.

If Erich intercepts a message m that was previously not signed by Bob, he is able to create a valid signature for m with a certain success probability.

• Existential Forgery: The cryptanalyst is able to create a valid signature for at least one message that was pre-viously not signed by Bob.

Here, no specified probability of success is required.

Types of Attacks

• Key-Only Attack:

Cryptanalyst Erich only knows Bob's public key.

• Known-Message Attack:

Erich knows some pairs of messages and corresponding signatures in addition to the public key.

• Chosen-Message attack:

Erich knows the public key and obtains a list of Bob's signatures corresponding to a list of messages he has chosen at will.

Security of ElGamal Signatures Key-Only Attack – Existential Forgery

• Let x and y be integers with

 $0 \le x \le p-2$ and $0 \le y \le p-2$.

• Writing σ as $\sigma = \gamma^x \beta^y \mod p$ implies that the ElGamal verification condition

$$\gamma^m \equiv \beta^\sigma \sigma^\rho \bmod p. \tag{1}$$

is of the form

$$\gamma^m \equiv \beta^\sigma \, (\gamma^x \beta^y)^\rho \bmod p,$$

which is equivalent to

$$\gamma^{m-x\rho} \equiv \beta^{\sigma+y\rho} \mod p.$$
 (2)

• Equation (2) is true if and only if the following two congruences are satisfied:

$$m - x\rho \equiv 0 \mod (p - 1); \tag{3}$$

$$\sigma + y\rho \equiv 0 \mod (p-1). \tag{4}$$

Security of ElGamal Signatures Key-Only Attack – Existential Forgery <u>continued</u>

Given x and y and assuming that gcd(y, p - 1) = 1, the congruences (3) and (4) can easily be solved for ρ and m, and we obtain:

$$\sigma = \gamma^x \beta^y \mod p;$$

$$\rho = -\sigma y^{-1} \mod (p-1);$$

$$m = -x\sigma y^{-1} \mod (p-1).$$

By way of construction, (σ, ρ) is a valid signature for the message m.

Security of ElGamal Signatures Known-Message Attack – Existential Forgery

- Suppose that Erich knows a previous signature $(\hat{\sigma}, \hat{\rho})$ for some message \hat{m} .
- He can then sign new messages forging Bob's signature.
- Let p be a prime number with primitive element γ , and let β be Bob's public key.
- Let $x, y, z \in \mathbb{Z}_{p-1}$ be chosen such that

$$\gcd(x\hat{\sigma} - z\hat{\rho}, p - 1) = 1.$$

• Erich computes:

$$\sigma = \hat{\sigma}^x \gamma^y \beta^z \mod p;$$

$$\rho = \hat{\rho} \sigma (x \hat{\sigma} - z \hat{\rho})^{-1} \mod (p-1);$$

$$m = \sigma (x \hat{m} + y \hat{\rho}) (x \hat{\sigma} - z \hat{\rho})^{-1} \mod (p-1).$$

• One can check that the ElGamal verification condition (1) is satisfied:

$$\gamma^m \equiv \beta^\sigma \sigma^\rho \bmod p.$$

Security of ElGamal Signatures Known-Message Attack – Total Break

- Bob's secret exponent s must never be revealed!
- If Erich knows *s*, then it is a matter of routine for him to compute, using

$$b\sigma + s\rho \equiv m \mod p - 1,$$

Bob's secret exponent b from m and the signature (σ,ρ) by

$$b \equiv (m - s\rho)\sigma^{-1} \mod p - 1.$$

- This known-message attack results in a total break of the ElGamal digital signature scheme, and Erich can hence-forth forge Bob's signature at will.
- In particular, if the same s is used twice for signing distinct messages, m_1 and m_2 , we have

– a signature
$$(\sigma, \rho_1)$$
 for m_1 and

- a signature (σ, ρ_2) for m_2 .
- Writing $\sigma = \gamma^s$, we have

 $\beta^{\sigma} \sigma^{\rho_1} \equiv \gamma^{m_1} \mod p \quad \text{and} \quad \beta^{\sigma} \sigma^{\rho_2} \equiv \gamma^{m_2} \mod p$

from which the unknown value s can be determined.

Rabin's Public-Key Cryptosystem

Step	Alice	Erich	Bob
1			chooses two large ran-
			dom primes, p and q with
			$p \equiv q \equiv 3 \mod 4,$
			keeps them secret, and
			computes his public key
			n = pq
2		$\Leftarrow n$	
3	encrypts the		
	message m by		
	$c = m^2 \mod n$		
4		$c \Rightarrow$	
5			decrypts c by computing
			$m = \sqrt{c} \mod n$

A ZPP Computation

- Let A be any language in ZPP, and let M and N be NPTMs witnessing that $A \in \text{RP}$ and $\overline{A} \in \text{RP}$.
- Define the machine $M \circ N$ as follows:
 - On input $x, M \circ N$ first simulates M(x) and then it simulates N(x).
 - Thus, every path of $(M \circ N)(x)$ has the form (α, β) , where α is a path of M(x) and β is a path of N(x).
 - For paths α and β , denote acceptance by + and rejection by –.
 - $M \circ N$ assigns the final states s_a , s_r , and $s_?$ to each possible pair (α, β) as follows:

	α of $M(x)$	β of $N(x)$	(α,β) of $(M \circ N)(x)$
$x \in A$	+		$(+,-) = s_a$
		_	$(-,-) = s_?$
$x \not\in A$	_	+	$(-,+) = s_r$
	—		$(-,-) = s_?$

Security of Rabin's System

RANDOM-FACTOR break-rabin(n) {

q := n/p;

}

// Rabin modulus n = pq with $p \equiv q \equiv 3 \mod 4$ Randomly choose a number $x \in \mathbb{Z}_n^*$ under the uniform distribution; $c := x^2 \mod n$; $m := \texttt{break-rabin}(\langle n, c \rangle)$; $// query the oracle about \langle n, c \rangle$ to // obtain an m with $c := m^2 \mod n$ if $(m \equiv \pm x \mod n)$ return "failure" and halt; else $p := \gcd(m - x, n)$;

return "p and q are the prime factors of n" and halt;

How to Explain Zero-Knowledge <u>to Your Children</u>

- G is isomorphic to H, but not to F.
- An isomorphism π between G and H is given by $\pi = \begin{pmatrix} 12345 \\ 34152 \end{pmatrix}$ or, in cyclic notation, by $\pi = (13)(245)$.
- The graph isomorphism problem is neither known to be polynomial-time solvable nor to be NP-complete.

Zero-Knowledge Protocol for Graph Isomorphism

Goldreich, Micali, and Wigderson (J.ACM, 1991)

Step	Merlin	Saruman	Arthur
1	chooses a large graph G_0		
	with n vertices and a permu-		
	tation $\pi \in \mathfrak{S}_n$ at random,		
	computes $G_1 = \pi(G_0)$;		
	(G_0, G_1) is public, π secret		
2		$(G_0,G_1) \Rightarrow$	
3	picks a permutation μ in \mathfrak{S}_n		
	and a bit m in $\{0,1\}$ at ran-		
	dom, computes $H = \mu(G_m)$		
4		$H \Rightarrow$	
5			chooses a bit
			$a \in \{0, 1\},$
			requests α in
			$ISO(G_a, H)$
6		$\Leftarrow a$	
7	computes $\alpha = \mu$ if $a = m$;		
	$\alpha = \pi \mu$ if $0 = a \neq m = 1$;		
	$\alpha = \pi^{-1}\mu$ if $1 = a \neq m = 0$		
8		$\alpha \Rightarrow$	
9			verifies
			$\alpha(G_a) = H$

Simulation of the Goldreich–Micali–Wigderson Zero-Knowledge Protocol for Graph Isomorphism

Step	Saruman		Arthur
1 & 2	Merlin's pair (G_0, G_1)) of iso	morphic
	graphs is public in	nforma	tion
3	picks a permutation σ in \mathfrak{S}_n		
	and a bit s in $\{0,1\}$ at ran-		
	dom, computes $H = \sigma(G_s)$		
4		$H \Rightarrow$	
5			chooses a bit
			$a \in \{0, 1\},$
			requests α in
			$ISO(G_a, H)$
6		$\Leftarrow a$	
7	sends $\alpha = \sigma$ if $a = s$;		
	deletes this round if $a \neq s$		
8		$\alpha \Rightarrow$	
9			a = s implies
			$\alpha(G_a) = H,$
			thus Arthur
			accepts S's
			false identity

Fiat–Shamir Zero-Knowledge Identification Scheme

Step	Merlin	Saruman	Arthur
1	chooses two large		
	primes p and q and		
	a secret $s \in \mathbb{Z}_n^*$, and		
	computes $n = pq$		
	and $v = s^2 \mod n$		
2		$(n,v) \Rightarrow$	
3	chooses $r \in \mathbb{Z}_n^*$ at		
	random, computes		
	$x = r^2 \mod n$		
4		$x \Rightarrow$	
5			picks a random bit
			$a \in \{0, 1\}$
6		$\Leftarrow a$	
7	computes		
	$y = r \cdot s^a \mod n$		
8		$y \Rightarrow$	
9			verifies
			$y^2 \equiv x \cdot v^a \mod n$