
Problem Solving on Simple Games via Bdds

Rudolf Berghammer and Stefan Bolus

University of Kiel, Germany

13. Sept. 2010



Yes-No-Voting

A pair (N,W) is called a simple game, if N is a set of players
and W ⊆ 2N , s.t.

∀S ,T ∈ 2N : S ∈ W ∧ S ⊆ T ⇒ T ∈ W .

Subsets of N are called coalitions. Coalitions in W are called
winning, and losing otherwise.

Weighted Voting Game (WVG): There has to be a weight
wi ∈ N for each player i , a quota Q ∈ N s.t. a coalition S wins, iff∑

i∈S
wi ≥ Q .

Multiple Weighted Voting Game (MWVG): There are multiple
WVGs and a winning coalition has to win in all of them.



Representation of Simple Games

Representations include the enumeration of ...

I ... Winning coalitions W.

I ... Minimal winning coalitions Wmin.

I ... Shift-minimal winning coalitions Wshift.

Gap

I Weights and quota(s) of (multiple) weighted voting games.

Problems: Enumeration of coalitions is practically impossible for
many real world games. There is no apparent and exploitable
relation between structure of e.g. winning coalitions and classes of
simple games which is usable in algorithms.



Representation of Simple Games

We want something that is explicit like the winning coalitions,
that is compact in size and that maintains properties (at least
some) of the simple game’s class.



Binary Decision Diagrams (BDDs)

I Can be used to represent Boolean functions and sets of
subsets (⇒ simple games).

I Is a labeled, binary and directed acyclic graph
G = (V ∪ {I,O},E ) with exactly one source (root) and two
designated sinks.

I Labels are names of Boolean variables 1, . . . , n (and n + 1 for
the sinks).

I Sinks are called the 1-sink and 0-sink (denoted by I,O).

I Non-sinks v ∈ V (inner nodes) have a yes-edge and a no-edge.

I Can have exponential size in n. But: Restricted classes can
have polynomial size.

Special class: Qobdd.



Quasi-Reduced and Ordered BDDs (Qobdds) by Example

We start with Boolean variables N = {1, 2, 3} and a truth table.

variable 1 2 3 f -value
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

1 0

3 3 3 3

2 2

1

The red nodes are equivalent and could be merged.



Quasi-Reduced and Ordered BDDs (Qobdds) by Example

This corresponds to the following binary decision tree with 2|N|− 1
nodes.

variable 1 2 3 f -value
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
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Quasi-Reduced and Ordered BDDs (Qobdds)

We obtain the Qobdd from an (ordered) binary decision tree by
applying the following rule until no longer applicable.

Merging Rule: If two nodes u, v have the same label, the same
yes- and no-successors, all edges leading to v can be redirected to
lead to u and v can be eliminated.

1 0

3 3 3

2 2

1

The variable ordering can make the Qobdd vary from
polynomial to exponential size and vice-versa.



Qobdd Notions

The Qobdd G for the US Electoral College 2008 with 51 players,
quota 270, 4558 nodes and > 1.117 · 1012 winning coalitions:

The rhombus like form is typical for Qobdds. Some notions:

I level i =̂ all nodes with a given variable. E.g. level 1 has
always one node (the root).

I width(G) =̂ maximum number of nodes over all levels.

I size(G) =̂ number of all inner nodes.



What can Qobdds do for us?

Decouple classes of simple games and algorithms for solving
problems. Building the Qobdd is now self-containted. Algorithms
can be applied to any simple game:

Instead, use derived properties (like size, structure) of the simple
game’s class to prove something without changing the algorithm.
Let’s see ...



Some results

Given the Qobdd G of a simple game:

1. Banzhaf indices of all players is in O(size(G )).

2. Shapley-Shubik indices of all players is in O(n2 · size(G )).

3. Computation of the Qobdd for the blocking coalitions (dual
game) is in O(size(G )).

4. The test if player i is at least as desirable as player j is in
O(n · width(G )2).

5. Computation of the Qobdd for the minimal winning
coalition (in general) seems to be hard, though.

Some of them can be found in (Bolus 2010).



Some results (cont.)

Upper bounds of Qobdd sizes for simple game classes:

1. WVG with quota Q: size(G ) ≤ n(Q + 1).

2. WVG in general: size(G ) ∈ O(2
n
2 ) (Hosaka, Takenaga, and

Yajima 1994)

3. MWVG with quotas Q1 ≥ · · · ≥ Qm:
size(G ) ≤ n

∏m
t=1(Qt + 1).

4. If additionally any player in any sub-WVG has non-zero weight
then size(G ) ≤ nQ1 · · ·Qm.

5. Unbalanced WVGs*: size(G ) ∈ O(n).

6. Sequential WVGs*: size(G ) ∈ O(n2).

*: With a special ordering of the players.



Some results (cont.)

Structural properties of Qobdd for simple game classes:

1. Computation of the minimal winning coalitions for a WVGs
(with a special ordering of the players) is in O(size(G )).

2. Hence, Public Good Index of all players is in O(size(G )) for
WVGs and

3. Deegan-Packel indices of all players is in O(n2 · size(G )) for
WVGs.

The algorithm for the minimal winning coalitions has slightly
changed here. However, the idea hasn’t changed.



Example: Minimal winning coalitions

Applicable to any QOBDD representing a simple game:

MinWin(v)
if v = O or v = I then return v
else if T (v) = E (v) then

return ite(var(v), Ovar(v)+1, MinWin(E (v)))
else return ite(var(v), MinWin(T (v)) \ e), e)

where e := MinWin(E (v))



Example: Minimal winning coalitions

Applicable only to QOBDDs representing a WVG:

MinWin(v)
if v = O or v = I then return v
else if T (v) = E (v) then

return ite(var(v), Ovar(v)+1, MinWin(E (v)))
else return ite(var(v), MinWin(T (v)), e)

where e := MinWin(E (v))



Open problems and future work

I Identification of key players (dominant, veto, dummy, ...).

I Computation of shift-minimal winning coalitons and the
recently proposed shift power index (Alonso-Meijide and
Freixas 2010).

I Power indices for simple games with a-priori unions
(Alonso-Meijide and Fiestras-Janeiro 2002).

I A practicable test for being a WVG or trade-robustness
(maybe similar to (Coates and Lewis 1961)).

I Consider more classes of simple games. E.g., are there classes
which are harder to manipulate?

I Consider n-ary decision diagrams. Especially 3-ary DDs for
ternary voting games (Felsenthal and Machover 1997).
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Thank you!
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