Multivariate Complexity of Swap Bribery

Britta Dorn1

joint work with

Ildikó Schlotter2

1Eberhard-Karls-Universität Tübingen/Universität Ulm, Germany
2Budapest University of Technology and Economics, Hungary

COMSOC 2010, Düsseldorf
Bribery in elections

spending money to influence the voters’ preferences

- pay money to voters/to chair
- campaigning

⇒ bad/good phenomenon

both hardness and tractability results interesting!
Bribery as a computational problem

Bribery

Input: \(\mathcal{E} \)-Election \(E = (C, V) \), preferred candidate \(p \in C \), cost function, budget \(\beta \).

Question: Is it possible to bribe voters such that \(p \) wins, respecting the budget?

In the following: \(m = |C| = \# \) candidates
\(n = |V| = \# \) votes.
Bribery as a computational problem

Special model considered here:

Swap Bribery [Elkind, Faliszewski, Slinko, SAGT 2009]

cost function: every voter assigns certain price for swapping the positions of two *consecutive* candidates in his preference list.

Example: \(v: a > b > p\)

\(v\)'s list of costs of swaps:

- \(c(a \bowtie b) = 2\)
- \(c(a \bowtie p) = 3\)
- \(c(b \bowtie p) = 1\)

briber wants \(\tilde{v}: p > b > a\)

cost of a set of swaps:

- \(v: a > b > p. \) swap \(a \bowtie b\) at cost 2
- \(\tilde{v}: b > a > p. \) swap \(a \bowtie p\) at cost 3
- \(b > p > a. \) swap \(b \bowtie p\) at cost 1
- \(p > b > a. \) total cost: 6
Bribery as a computational problem

Swap Bribery

Input: \(\mathcal{E} \)-Election \(E = (C, V) \), preferred candidate \(p \in C \), cost functions, budget \(\beta \).

Question: Is there a set of swaps with total cost \(\leq \beta \), such that \(p \) wins the bribed election?

for costs in \(\{0, \delta > 0\} \), budget \(\beta = 0 \): Possible Winner.
Some known results for **Swap Bribery**

[**Elkind, Faliszewski, Slinko, SAGT 2009**]

- hardness results for Borda: **NP-c**
 - (from **Possible Winner** [Xia, Conitzer, AAAI, 2008]),
 - Copeland$^\alpha$: **NP-c**, Maximin: **NP-c**

- case study for k-approval $(1,1,\ldots,1,0,\ldots,0)$
 - $k = 1$ (Plurality): P k-approval
 - $k = m - 1$ (Veto): P
 - $1 \leq k \leq m$, m or n constant: P
 - $k = 2$: **NP-c**
 - (from **Possible Winner**, [Betzler, Dorn, J.Comput.Syst.Sci., 2010])
 - $3 \leq k \leq m - 2$, k fixed, costs in $\{0,1,2\}$: **NP-c**

- k part of the input: **NP-c** even for 1 voter!
Multivariate complexity analysis of Swap Bribery

so far: complexity measured in size of the input (1-dimensional)

now: complexity measured in size of the input
and certain ‘parameters’ (multi-dimensional)

e.g.: # candidates
 # votes
 # candidates with special property
 cost
 budget
 ...

Which parameters have a significant influence on the hardness of the problem?
Multivariate complexity analysis of **Swap Bribery**

- **t - parameter**

NP-hard problems: presumably cannot avoid exp. running times.

But: Maybe we can restrict exponential part of running time to a certain parameter! E.g. $2^t \cdot |x|^2$

⇒ If value of t is small in certain settings: efficient algorithm!

fixed-parameter tractability

A problem is **fixed-parameter tractable** if it can be solved in

$$f(t) \cdot \text{poly}(|x|)$$

(time)

($|x|$ - size of the input)

corresponding complexity class: **FPT**

What about running time $|x|^t$? **not in FPT!**
Multivariate complexity analysis of Swap Bribery

Intractability results

Hardness classes
First level of fixed-parameter intractability: class $W[1]$

hardness/completeness via parameterized reduction.
Goal: Analyze complexity of Swap Bribery from a parameterized/multivariate point of view.

Special focus on \(k \)-approval.

Our investigations

Complexity depending on

\((1) \) cost function, budget
\((2) \) combined parameter \((n = \# \text{ votes}, \beta = \text{budget})\)
\((3) \) \(m = \# \text{ candidates} \)
1. Complexity depending on cost function

\(k \)-approval

Theorem 1

Costs uniform (every swap has the same cost):
\[\text{SWAP BRIBERY for } k \text{-approval is in } \mathbf{P} \]

\[\rightarrow \text{ network flow problem} \]

Theorem 2

As soon as there are two different costs:
\[\text{SWAP BRIBERY for } k \text{-approval is } \mathbf{NP} \text{-c.} \]
\[\text{SWAP BRIBERY for } k \text{-approval is } \mathbf{W[1]} \text{-hard with respect to } \beta \]

\[\rightarrow (\text{parameterized}) \text{ reduction from } \text{MULTICOLORED CLIQUE} \]
2. Complexity depending on combined parameter \((n, \beta)\)

\(k\)-approval

Theorem 3

If minimum cost of a swap is 1:

Swap Bribery for \(k\)-approval is in \textbf{FPT} with respect to \((n, \beta)\)
2. Complexity depending on combined parameter \((n, \beta)\)

\[
\begin{array}{c}
\underbrace{111\ldots111}_{k} \underbrace{000\ldots0}_{\beta} \\
\beta & \beta
\end{array}
\]

votes

minimum cost of a swap = 1: only candidates that can be swapped within budget \(\beta\) from 1- to 0-position or vice versa are interesting.

\(\Rightarrow\) cut votes (such that only relevant candidates stay)

\[
\begin{array}{c}
\underbrace{11\ldots100\ldots0}_{\beta} \\
\beta & \beta
\end{array}
\]

cut votes

\[\text{+}
\]

some more votes that take into account points of ‘lost’ positions
2. Complexity depending on combined parameter \((n, \beta)\)

\[
\begin{array}{c}
\beta \\
\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
0 & 0 & \ldots & 0 \\
\end{array}
\end{array}
\]

- cut votes

+ some more votes that take into account points of ‘lost’ positions

remaining profile is much smaller:
- only \(O(n^2 \beta^2)\) candidates left
- new votes, but only \(O(n^2 \beta)\) many of them

→ brute force on the smaller instance (‘problem kernel’), leads to an \textbf{FPT} running time
3. Complexity depending on $m =$ number of candidates

Any voting system that can be described by *linear inequalities*, e.g. scoring rules, Maximin, Copeland$^\alpha$, Bucklin, Ranked Pairs, . . .

Theorem 4

For all voting rules that can be described by linear inequalities:

\textbf{Swap Bribery} is in \textbf{FPT} with respect to m.

→ \textbf{ILP formulation}

In a similar way:

Many other problems are in \textbf{FPT} with respect to m as well, e.g.

- \textbf{Possible Winner}
- \textbf{Manipulation}
- \textbf{Control}
- \textbf{Lobbying}
Summary

Results

Complexity depending on

(1) cost function, budget: P/NP-c, $\mathsf{W}[1]$-hard (β)

(2) ($n = \# \text{ votes}, \beta = \text{ budget}$): FPT

(3) $m = \# \text{ candidates}: \mathsf{FPT}$

k-approval
What else is interesting?

- different parameters
- different voting systems
- destructive case
- different models?