Budgeted Social Choice: A Framework for Multiple Recommendations in Consensus Decision Making

Tyler Lu, Craig Boutilier

Department of Computer Science,

University of Toronto

Background

Lots of preference data generated nowadays

- Search clicks, movie ratings, product purchases, ...

amazon.com

© autobales/dutors com (2010 Acura ZDX 4dr AWD shown)

Add a Competitor

(2005 BMW 645 2dr Coupe

nd warranty into >	
\$45,495	\$69,900 - \$76,900
\$860	\$695
\$41,737	\$63,790 - \$70,160
300-hp 3.7-liter V-6 (premium)	325-hp 4.4-liter V-8 (premium)

Background

 Recommender systems facilitate personalized product suggestions

Motivation

- However sometimes cannot make personalized recommendations
 - Privacy concerns, lack of data
 - Limits on inventory, factory production limits
 - Public projects (e.g. new bus routes; park location)
- More generally, constraints on the number of recommendations ("items") that can be offered

Budgeted Social Choice

- Providing a middle ground: assume a budget; consensus decision must not exceed budget.
 - Can build 2 to 4 new bus routes given \$1 million
 - Can configure at most 5 different product lines
- Allows for a spectrum of problems:

 Comes in a variety of flavors depending on the nature of the budget

Our Contributions

- New class of problems bridging personalization vs. group decision making
- Generalization of proportional representation via a budget
- Algorithms & analysis
 - General budgeted social choice
 - Limited Choice/Proportional representation
- Experiments on real data

Model 1: Limited Choice

(Illustrative example of budgeted social choice)

- Alternatives $A = \{a_1, ..., a_m\}$
- Preference profile $V = (v_1, ..., v_n)$ where v_i is a ranking
- Positional scoring function α assigns rank position to a non-negative score (e.g. Borda), non-increasing
- Given $K \ge 1$, find Φ subset A size at most K
 - $-\Phi$ is the "recommendation set"

Goal:
$$\max_{\Phi} \sum_{\ell=1}^{n} \max_{a \in \Phi} \alpha(v_{\ell}(a))$$
 Score of $\phi_{S_{\alpha}(\Phi)}$

Limited Choice Examples

KingWestXpress.com

Your neighbourhood video store - re-invented!

February 17, 2010

FEB 16, 2010 - NEW RELEASE MOVIES

FEB 16, 2010 - NEW RELEASE MOVIES

Search Our News & Movie Reviews!

FOLLOW US

Get or Share Our Updates

Follow ME ON TWITTER

Video rental store must decide what new releases to procure.

Has budget to get 4 new movies.

Which 4 to choose??

New releases Feb. 16, 2010

Amreeka
Black Dynamite
Cabin Fever 2
Cairo Station
Coco Before Chanel
Contempt
Crude

Decision space Φ

N = # new movies
N choose 4 subsets

...

Limited Choice Examples

Which movies to get depends on what customers like

Rich
Cabin Fever 2
Law Abiding Citizen
Hunger
The Lady Killers
...

Craig
Law Abiding Citizen
Cabin Fever 2
The Lady Killers
Hunger
...

Tyler
Hunger
The Lady Killers
Cabin Fever 2
Law Abiding Citizen
...

- Single (social) choice: *K*=1, want to make as many customers as happy as possible
- Personalization: K is large, social choice less of an issue, just get movies people want

Limited Choice Example

Given what video rental store procures:

Movies $(\Phi) =$

Craig

Law Abiding Citizen
Cabin Fever 2
The Lady Killers
Lovecraft: Fear of Un..

Craig benefits from the *most*preferred, gets some "satisfaction"
e.g. Borda score of 3

Limited Choice Example

Movies $(\Phi) =$

Total Borda score = $S_{\alpha}(\Phi)$ = Rich's score + Craig's score + Tyler's score = 4 + 3 + 3

Observations on Limited Choice Model

- Corresponds to Chamberlin & Courant'83, on proportional representation
- Need not be utilitarian: can allow fairness

$$\max_{\Phi} \min_{\ell} \max_{a \in \Phi} \alpha(v_{\ell}(a))$$

- **Theorem** If α is the Borda score, given K, x, deciding if there is a slate Φ with $S_{\alpha}(\Phi) \ge x$ is NP-complete
 - Related but different result in Procaccia et al'08

Observations on Limited Choice Model

- How does LCM compare with general positional score ranking (including Borda)?
- Theorem If scores are Borda, then picking the top elements K of the Borda ranking is a 1/2approximation to the LCM-optimal slate (tight bound). For arbitrary positional scoring, then picking top K can be at least a factor of K worse than LCMopt.
- Reason: Positional ranking biases to popular alternatives, while limited choice aims for diversity of alternatives

Greedy Algorithm for LCM

- LCM-opt can be formulated as an IP with #vars,
 #constraints = O(#votes #items) [Potthoff & Brams'98]
- Easy to see that $S_{\alpha}(\Phi)$ is submodular
- Greedy approx. with ratio 1-1/e (Nemhauser et al.'78)
 - 1. $\Phi = empty set$
 - 2. Run for K steps:

Update Φ with $\underset{\alpha}{\operatorname{argmax}} S_{\alpha}(\Phi \cup \{a\})$

Budgeted Social Choice: General Form

What to have for banquet?

Budget B

Fixed costs (e.g., equipment, staff needed to cook): t_a Unit costs (e.g., cost to produce each dish): u_a

- Can't recommend a subset of dishes, because how many consumed matters (e.g. if everyone picks the most expensive dish it will deplete budget)
- Instead use a recommendation function: an assignment of people to dishes

Budgeted Social Choice: General Form

Alternatives (dishes)

Recommendation function **Φ**:

Cost:

$$C(\Phi)$$
 = Fixed + Unit = $(t_{eggplant} + t_{calamari}) + (u_{eggplant} + 2 \cdot u_{calamari})$

Total score: sum of individual scores (welfare)

$$S_{\alpha}(\Phi) = \alpha(\text{Barack eggplant rank}) + \alpha(\text{Kim calamari rank}) + \alpha(\text{Hugo calamari rank})$$

Budgeted Social Choice: General Form

• The goal: $\max_{\Phi} S_{\alpha}(\Phi)$ Φ $\mathrm{s.t.} \ C(\Phi) \leq B$

Specializations

- Limited choice: $t_a = 1$ and $u_a = 0$, B = K
- Limited choice with costs: fixed cost varies, $u_a = 0$
- Full personalization: if we can afford everyone's favourite item
- We can have "unassigned" agents by adding a dummy item d with no costs

Greedy Algorithm for BSC

- For each item a, sort agents according to preference for a
- Find "sweet spot": #agents from sorted list that maximizes ratio of marginal score increase vs. marginal cost increase if they were assigned a
- Find the item a^* that maximizes sweet spot ratio and assign a^* to the i^* agents that maximizes the marginal ratio
- Repeat until budget depletes.
 - If minimal fairness required (all agents must be assigned) then do simple backtracking when budget is depleted

- Limited Choice
- American Psychological Association 1980
 election data 5 candidates, ~5700 full votes
 - Academics and clinicians on "uneasy terms"
 - -K = 2, limited choice gives an academic and clinician as optimal set ("diversity").
 - Greedy is suboptimal (Borda scores) but almost optimal and also gives academic and clinician as solution.

SYCHOLOGICAL

- Sushi dataset 10 varieties of sushi, 5000 preference rankings from Japan
- Limited choice
 - Tried various K
 - Tried exponential, Borda, and cubic α
 - Greedy always finds optimal for all K (under 1 sec.)
 - Using Borda & Kemeny rankings gives good approximations
 - CPLEX is slow to solve IP, taking anywhere from 13-90 sec.

$\mid K \mid$	Greedy	Borda	Kemeny	Random	CPLEX (sec.)
2	1.0	1.0	0.932	0.531	49.1
3	1.0	0.986	0.949	0.729	90.38
5	1.0	0.989	0.970	0.813	20.32
7	1.0	1.0	1.0	0.856	13.16

- General Budgeted S.C.
 - Randomly generated fixed costs, unit costs were either zero or very small
 - Fixed budget, allowed for 2-5 unique items
 - Greedy is very good within 98-99% of optimal,
 with runtime 2-5 sec.
 - CPLEX is slow to solve IP, takes 2-5 min.

Conclusions

- Developed a class of problems that range from pure social choice to personalized choices
- Occurs in a variety of real life problems
 - Displaying products/items in electronic commerce
 - Search results, advertising, industrial optimization
- Fast greedy algorithms with excellent approx.
- Future work
 - Dealing with incomplete preferences
 - Using statistical inference/learning, robust inference
 - Trading off social welfare with budget, and other variations