Approximate Judgement Aggregation
(for the case of the doctrinal paradox)

Ilan Nehama

Center for the Study of Rationality
The Selim and Rachel Benin School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

Third International Workshop on Computational Social Choice
Düsseldorf, Germany, September 14, 2010
Doctrinal Paradox

Research Question: Approximate Aggregation

Approximate Aggregation Results
 - for The Doctrinal Paradox
 - for Other Agendas
 - for a Class of Agendas

Conclusion
Suppose a defendant is accused in court of murder. In order to prove his guiltiness, one should convince the judge of two independent issues:

(A) The defendant killed the victim

(B) The defendant is sane

Conviction is defined to be the conjunction of the first two issues

\((A \land B)\) The defendant is guilty.
Doctrinal Paradox (Unpacking the court/Kornhauser and Sager 1986)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$A \land B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Killed)</td>
<td>(Sane)</td>
<td>(Guilty)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- $A \land B$ inconsistent

$$
\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 0 \\
\end{array}
$$
Doctrinal Paradox (Unpacking the court/Kornhauser and Sager 1986)

<table>
<thead>
<tr>
<th>A (Killed)</th>
<th>B (Sane)</th>
<th>$A \land B$ (Guilty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Agenda
Doctrinal Paradox (Unpacking the court/ Kornhauser and Sager 1986)

<table>
<thead>
<tr>
<th></th>
<th>A (Killed)</th>
<th>B (Sane)</th>
<th>$A \land B$ (Guilty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Judge 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Judge 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Judge 3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Majority</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
A profile \(X \in \{0, 1\}^{n \times m} \) where:

- \(n \) : Number of voters
- \(m = 3 \) : Number of issues

The opinion of the \(i^{th} \) voter on the 2\(^{nd} \) issue:

\[
\begin{bmatrix}
X_1^1 & X_2^1 & X_3^1 \\
\vdots & \vdots & \vdots \\
X_i^1 & X_i^2 & X_i^3 \\
\vdots & \vdots & \vdots \\
X_n^1 & X_n^2 & X_n^3
\end{bmatrix}
\]
Notations

\[X_1 \quad X_2 \quad X_3 = X_1 \land X_2 \]
\[\vdots \quad \vdots \quad \vdots \]
\[X_i^{1} \quad X_i^{2} \quad X_i^{3} = X_i^{1} \land X_i^{2} \]
\[\vdots \quad \vdots \quad \vdots \]
\[X_n^{1} \quad X_n^{2} \quad X_n^{3} = X_n^{1} \land X_n^{2} \]

The \(i^{th} \) row \(X_i \) represents the **consistent** opinion of the \(i^{th} \) voter.
Notations

A profile $X \in \{0, 1\}^{n \times m}$

$F \left[\begin{array}{cccc}
X_1^1 & X_1^2 & \ldots & X_1^m \\
\vdots & \vdots & \ddots & \vdots \\
X_i^1 & X_i^2 & \ldots & X_i^m \\
\vdots & \vdots & \ddots & \vdots \\
X_n^1 & X_n^2 & \ldots & X_n^m
\end{array} \right] = (a_1, a_2, a_3)$

The j^{th} column X^j represents the opinions of all voters on the j^{th} issue
Notations

A profile $X \in \{0, 1\}^{n \times m}$ (n: Number of voters, m: Number of issues)

$$F \left(\begin{array}{ccc}
X_1^1 & X_1^2 & X_1^3 = X_1^1 \wedge X_1^2 \\
\vdots & \vdots & \vdots \\
X_i^1 & X_i^2 & X_i^3 = X_i^1 \wedge X_i^2 \\
\vdots & \vdots & \vdots \\
X_n^1 & X_n^2 & X_n^3 = X_n^1 \wedge X_n^2
\end{array} \right) = (a_1, a_2, a_3)$$

An aggregation mechanism returns for every profile an aggregated opinion

$$F : \left\{ \{0, 1\}^m \right\}^n \rightarrow \{0, 1\}^m$$
Notations

\[F \left(\begin{array}{ccc} X_1^1 & X_1^2 & X_i^3 = X_i^1 \land X_i^2 \\ \vdots & \vdots & \vdots \\ X_i^1 & X_i^2 & X_i^3 = X_i^1 \land X_i^2 \\ \vdots & \vdots & \vdots \\ X_n^1 & X_n^2 & X_n^3 = X_n^1 \land X_n^2 \end{array} \right) = (a_1, a_2, a_3) \]

Definition (Consistency)

\(F \) is **consistent** if it returns a consistent result whenever all voters voted consistently

\[a_3 = a_1 \land a_2 \]
Notations

A profile \(X \in \{0, 1\}^{n \times m} \) (\(n \): Number of voters, \(m = 3 \): Number of issues)

\[
F \begin{pmatrix}
X_1^1 & X_1^2 & X_1^3 = X_1^1 \land X_1^2 \\
\vdots & \vdots & \vdots \\
X_i^1 & X_i^2 & X_i^3 = X_i^1 \land X_i^2 \\
\vdots & \vdots & \vdots \\
X_n^1 & X_n^2 & X_n^3 = X_n^1 \land X_n^2
\end{pmatrix} = (a_1, a_2, a_3)
\]

Definition (Independence)

\(F \) is \textbf{independent} if the aggregated opinion of the \(j^{th} \) issue depends solely on the votes for the \(j^{th} \) issue.
Notations

A profile $X \in \{0, 1\}^{n \times m}$ (n: Number of voters, $m = 3$: Number of issues)

$$F\begin{pmatrix}
X_1^1 & X_1^2 & X_i^3 = X_i^1 \land X_i^2 \\
\vdots & \vdots & \vdots \\
X_i^1 & X_i^2 & X_i^3 = X_i^1 \land X_i^2 \\
\vdots & \vdots & \vdots \\
X_n^1 & X_n^2 & X_n^3 = X_n^1 \land X_n^2
\end{pmatrix} = (a_1, a_2, a_3)$$

Definition (Independence)

F is **independent** if the aggregated opinion of the j^{th} issue depends solely on the votes for the j^{th} issue
Notations

\[F \left(\begin{array}{ccc}
X_1^1 & X_1^2 & X_i^3 = X_i^1 \land X_i^2 \\
\vdots & \vdots & \vdots \\
X_i^1 & X_i^2 & X_i^3 = X_i^1 \land X_i^2 \\
\vdots & \vdots & \vdots \\
X_n^1 & X_n^2 & X_n^3 = X_n^1 \land X_n^2
\end{array} \right) = (a_1, a_2, a_3) \]

Definition (Independence)

\(F \) is independent if the aggregated opinion of the \(j^{th} \) issue depends solely on the votes for the \(j^{th} \) issue.
Notations

\[F \left(\begin{array}{ccc}
X_1^1 & X_1^2 & X_i^3 = X_i^1 \land X_i^2 \\
\vdots & \vdots & \vdots \\
X_i^1 & X_i^2 & X_i^3 = X_i^1 \land X_i^2 \\
\vdots & \vdots & \vdots \\
X_n^1 & X_n^2 & X_n^3 = X_n^1 \land X_n^2
\end{array} \right) = (a_1, a_2, a_3) \]

Definition (Independence)

\(F \) is **independent** if the aggregated opinion of the \(j^{\text{th}} \) issue depends solely on the votes for the \(j^{\text{th}} \) issue.
Aggregation Mechanism - Examples

\[X_1^1 \quad X_2^1 \quad \cdots \quad X_3^1 = X_1^1 \land X_2^1 \]
\[\vdots \quad \vdots \quad \cdots \quad \vdots \]
\[X_i^1 \quad X_i^2 \quad \cdots \quad X_i^3 = X_i^1 \land X_i^2 \]
\[\vdots \quad \vdots \quad \cdots \quad \vdots \]
\[X_n^1 \quad X_n^2 \quad \cdots \quad X_n^3 = X_n^1 \land X_n^2 \]

Independence:
Consistency:

Are there any other consistent and independent aggregation mechanisms?
Aggregation Mechanism - Examples

\[
\begin{align*}
X_1^1 & = X_1^1 \land X_1^2 \\
\vdots & \quad \vdots \\
X_i^1 & = X_i^1 \land X_i^2 \\
\vdots & \quad \vdots \\
X_n^1 & = X_n^1 \land X_n^2
\end{align*}
\]

Issue-wise Majority : \(Maj(X^1) \quad Maj(X^2) \quad Maj(X^3) \)

Independence: ✓
Consistency: X
Aggregation Mechanism - Examples

\[
\begin{array}{ccc}
X_1^1 & X_1^2 & X_1^3 = X_1^1 \land X_1^2 \\
\vdots & \vdots & \vdots \\
X_i^1 & X_i^2 & X_i^3 = X_i^1 \land X_i^2 \\
\vdots & \vdots & \vdots \\
X_n^1 & X_n^2 & X_n^3 = X_n^1 \land X_n^2 \\
\end{array}
\]

Premise Majority: \(Maj(X^1) \quad Maj(X^2) \quad Maj(X^1) \land Maj(X^2) \)

Independence: \(\times \)
Consistency: \(\checkmark \)
Aggregation Mechanism - Examples

\[
\begin{align*}
X_1^1 & = X_1^2 & X_3^1 & = X_1^1 \land X_1^2 \\
\vdots & & \vdots & \\
X_i^1 & = X_i^2 & X_i^3 & = X_i^1 \land X_i^2 \\
\vdots & & \vdots & \\
X_n^1 & = X_n^2 & X_n^3 & = X_n^1 \land X_n^2
\end{align*}
\]

Constant:

| 0 | $g(X^2)$ | 0 |

Independence: ✔
Consistency: ✔
Aggregation Mechanism - Examples

<table>
<thead>
<tr>
<th>X_1^1</th>
<th>X_1^2</th>
<th>X_1^3 = X_1^1 \land X_1^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>X_i^1</td>
<td>X_i^2</td>
<td>X_i^3 = X_i^1 \land X_i^2</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>X_n^1</td>
<td>X_n^2</td>
<td>X_n^3 = X_n^1 \land X_n^2</td>
</tr>
</tbody>
</table>

| Oligarchy: | \land X^1 | \land X^2 | \land X^3 |

- **Independence:** ✓
- **Consistency:** ✓
Aggregation Mechanism - Examples

\[
\begin{align*}
X_1^1 &\quad X_2^1 &\quad X_3^1 = X_1^1 \land X_2^1 \\
\vdots &\quad \vdots &\quad \vdots \\
X_i^1 &\quad X_i^2 &\quad X_i^3 = X_i^1 \land X_i^2 \\
\vdots &\quad \vdots &\quad \vdots \\
X_n^1 &\quad X_n^2 &\quad X_n^3 = X_n^1 \land X_n^2
\end{align*}
\]

Independence:
Consistency:

Are there any other consistent and independent aggregation mechanisms?
Definition (Oligarchy)

An oligarchy of S returns 1 iff all the members of S voted 1.

$$u_S(\bar{x}) = \bigwedge_{i \in S} x_i$$
Theorem

Let F be an independent and consistent aggregation mechanism for $\langle A, B, A \land B \rangle$. Then there exists three boolean functions $f, g, h : \{0, 1\}^n \to \{0, 1\}$ s.t. $F(X) = \langle f(X^1), g(X^2), h(X^3) \rangle$ and

- $f = h \equiv 0$
- or $g = h \equiv 0$
- or $f = g = h$ and it is an oligarchy.

This theorem is a direct corollary from a series of works in the more general framework of aggregation. (E.g., Nehring&Puppe 2007, Holzman&Dokow 2008)
Let F be a δ-independent and δ-consistent aggregation mechanism for $\langle A, B, A \land B \rangle$. Then
Theorem

Let F be a δ-independent and δ-consistent aggregation mechanism for $\langle A, B, A \land B \rangle$. Then

Definition (δ-consistent)

F is δ-consistent if the following test fails with probability at most δ:

Choose a consistent profile X uniformly at random. Check whether $F(X)$ is a consistent opinion.
Theorem

Let F be a δ-independent and δ-consistent aggregation mechanism for $\langle A, B, A \land B \rangle$. Then

Definition (δ-independent)

F is δ-independent if the following test fails with probability at most δ:

- Choose a consistent profile X uniformly at random.
- Choose an issue j uniformly at random.
- Choose a random consistent profile Y s.t. $X^j = Y^j$.
- Check whether $(F(X))^j$ equals $(F(Y))^j$.

Research Question

Theorem

Let F be a δ-independent and δ-consistent aggregation mechanism for $\langle A, B, A \land B \rangle$. Then

Notice that

0-consistency \equiv Consistency

0-independence \equiv Independence
Let F be a δ-independent and δ-consistent aggregation mechanism for $\langle A, B, A \land B \rangle$. Then

Notice that

0-consistency \equiv Consistency
0-independence \equiv Independence

Moreover, for $\delta < C \cdot 4^{-n} \approx \frac{1}{\text{Number of profiles}}$,

δ-consistency \equiv Consistency
δ-independence \equiv Independence
Theorem

Let $\delta > \exp(n, \epsilon)$

Let F be a δ-independent and δ-consistent aggregation mechanism for $\langle A, B, A \land B \rangle$.

Then there exists an independent and consistent aggregation mechanism G that agrees with F on at least $1 - \epsilon$ of the profiles.

Notice that

0-consistency \equiv Consistency
0-independence \equiv Independence

Moreover, for $\delta < C \cdot 4^{-n} \approx \frac{1}{\text{Number of profiles}}$

δ-consistency \equiv Consistency
δ-independence \equiv Independence
Theorem

Let F be a δ-independent and δ-consistent aggregation mechanism for $\langle A, B, A \land B \rangle$. Then there exists an independent and consistent aggregation mechanism G that agrees with F on at least $1 - \epsilon$ of the profiles.

The other direction is trivial.

Theorem

Let F and G be two aggregation mechanisms for $\langle A, B, A \land B \rangle$ such that:

- G is independent and consistent
- F and G agree on at least $1 - \epsilon$ of the profiles

Then F is ϵ-independent and 6ϵ-consistent.
Main result for $\langle A, B, A \land B \rangle$

Theorem

For any $\epsilon > 0$ and $\delta = \text{poly}(\epsilon, n)$:
$(\delta \approx C \cdot n^{-2} \epsilon^5)$

Let F be a δ-independent and δ-consistent aggregation mechanism for $\langle A, B, A \land B \rangle$.

Then there exists an independent and consistent aggregation mechanism G that agrees with F on at least $1 - \epsilon$ of the profiles.
Techniques - How did we get this result?

- Restricting ourself to independent mechanisms.
- Applying an (agenda independent) technique to extend the result to δ-independence and δ-consistency.
Techniques - How did we get this result?

Given an independent δ-consistent aggregation mechanism $F = \langle f, g, h \rangle$
Given an independent \(\delta \)-consistent aggregation mechanism \(F = \langle f, g, h \rangle \)

Definition (Influence (Banzhaf Power Index))

The **influence** of the \(i^{\text{th}} \) voter on \(f \) is the probability he can change the result by changing his vote.

\[
I_i(f) = \Pr[f(x) \neq f(x \oplus e_i)]
\]

Definition (Ignorability)

The **ignorability** of the \(i^{\text{th}} \) voter on \(f \) is the probability \(f \) returns 1 although \(i \) voted 0.

\[
P_i(f) = \Pr[f(x) = 1|x_i = 0]
\]
Given an independent δ-consistent aggregation mechanism $F = \langle f, g, h \rangle$

We show that

- f is an oligarchy iff

$$\forall i : I_i(f) P_i(f) = 0$$
Given an independent δ-consistent aggregation mechanism $F = \langle f, g, h \rangle$

We show that

- f is an oligarchy iff

$$\forall i : I_i(f)P_i(f) = 0$$

- $$\forall i : I_i(f)P_i(g) \leq 4\delta$$
Given an independent δ-consistent aggregation mechanism $F = \langle f, g, h \rangle$

We show that

- f is an oligarchy iff

 $$\forall i : I_i(f)P_i(f) = 0$$

- $$\forall i : I_i(f)P_i(g) \leq 4\delta$$

Let u be the oligarchy of the voters with small ignorability (either $P_i(f)$ or $P_i(g)$). Then,

- f and g are close to u
- F is close to $\langle u, u, u \rangle$.

Techniques - How did we get this result?
Agenda

- Doctrinal Paradox
- Research Question: Approximate Aggregation
- Approximate Aggregation Results
 - for The Doctrinal Paradox
 - for Other Agendas
 - for a Class of Agendas
- Conclusion
Doctrinal Paradox

Research Question: Approximate Aggregation

Approximate Aggregation Results
- for The Doctrinal Paradox
- for Other Agendas
 - Preference Agenda
 - XOR Agenda $\langle A, B, A \oplus B \rangle$
- for a Class of Agendas

Conclusion
Other Agendas - Preference Aggregation

<table>
<thead>
<tr>
<th>$a > b$</th>
<th>$b > c$</th>
<th>$c > a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Other Agendas - Preference Aggregation

<table>
<thead>
<tr>
<th></th>
<th>a > b</th>
<th>b > c</th>
<th>c > a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voter 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Voter 2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Voter 3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Majority</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Theorem (Condorcet Paradox)

Pair-wise majority might lead to inconsistent outcome.
Theorem (Condorcet Paradox)
Pair-wise majority might lead to inconsistent outcome.

Theorem (Arrow’s Theorem 1950)
So is any other non-dictatorial aggregation mechanism that satisfies independence and Pareto.
Theorem (Condorcet Paradox)

Pair-wise majority might lead to inconsistent outcome.

Theorem (Arrow’s Theorem 1950)

So is any other non-dictatorial aggregation mechanism that satisfies independence and Pareto.

Theorem (Kalai 2002, Mossel 2009)

*For any $\epsilon > 0$:
Let F be an independent, $K\epsilon$-consistent (and balanced) preference aggregation mechanism. Then there exists an independent and consistent aggregation mechanism G (i.e., dictatorship) that agrees with F on at least $1 - \epsilon$ of the profiles.*
Other Agendas - $\langle A, B, A \oplus B \rangle$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$A \oplus B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0 \leftarrow inconsistent</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 \leftarrow inconsistent</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 \leftarrow inconsistent</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1 \leftarrow inconsistent</td>
</tr>
</tbody>
</table>
Other Agendas - $\langle A, B, A \oplus B \rangle$

Theorem

For any $\epsilon > 0$ and $\delta = \text{poly}(\epsilon, n)$:
$(\delta = C \cdot \epsilon)$

Let F be a δ-independent and δ-consistent aggregation mechanism for $\langle A, B, A \oplus B \rangle$.

Then there exists an independent and consistent aggregation mechanism G that agrees with F on at least $1 - \epsilon$ of the profiles.
Techniques - How did we get this result?

- Restricting ourself to independent mechanisms.
- Applying an (agenda independent) technique to extend the result to δ-independence and δ-consistency.
Techniques - How did we get this result?

Given an independent δ-consistent aggregation mechanism $F = \langle f, g, h \rangle$
We describe f, g, h using Fourier representation and prove that

$$1 - 2\delta = \sum_{\chi} \hat{f}(\chi) \hat{g}(\chi) \hat{h}(\chi)$$

when

- The summation is over all functions χ s.t. $\langle \chi, \chi, \chi \rangle$ is consistent
- $\left| \hat{f}(\chi) \right|$ equals $1 - 2d$ for d being the distance between f and χ.

in order to get that F is ‘close to’ $\langle \chi, \chi, \chi \rangle$.
Main result

Theorem

For any $\epsilon > 0$, $m, n \geq 1$, and $\delta = \text{poly} \left(\frac{1}{n}, \epsilon, m \right)$:
Let X be a premise-conclusion agenda over m issues in which each issue is either a premise, or a conclusion of at most two premises.
Let F be a δ-independent and δ-consistent aggregation mechanism for X.
Then there exists an independent and consistent aggregation mechanism G that agrees with F on at least $1 - \epsilon$ of the profiles.
Main result

Theorem

For any $\epsilon > 0$, $m, n \geq 1$, and $\delta = \text{poly} \left(\frac{1}{n}, \epsilon, m \right)$:

Let X be a premise-conclusion agenda over m issues in which each issue is either a premise, or a conclusion of at most two premises.

Let F be a δ-independent and δ-consistent aggregation mechanism for X.

Then there exists an independent and consistent aggregation mechanism G that agrees with F on at least $1 - \epsilon$ of the profiles.

For instance:

\[
\langle A, B, A \oplus B \rangle \\
\langle A, B, A \land B, A \lor B \rangle \\
\langle A, B, C, A \land B \lor C \rangle \\
\langle A, B, C, A \land B, B \oplus C, A \land C \rangle \\
\langle A \land B, B \land C, C \land A \rangle
\]
Theorem

For any $\epsilon > 0$, $m, n \geq 1$, and $\delta = \text{poly}\left(\frac{1}{n}, \epsilon, m\right)$:

Let \mathbb{X} be a premise-conclusion agenda over m issues in which each issue is either a premise, or a conclusion of at most two premises.

Let F be a δ-independent and δ-consistent aggregation mechanism for \mathbb{X}.

Then there exists an independent and consistent aggregation mechanism G that agrees with F on at least $1 - \epsilon$ of the profiles.

For instance:

$\langle A, B, A \oplus B \rangle$

$\langle A, B, A \land B, A \lor B \rangle$

$\langle A, B, C, A \land B \lor C \rangle$

$\langle A, B, C, A \land B, B \oplus C, A \land C \rangle$

$\langle A \land B, B \land C, C \land A \rangle$
Theorem

For any $\epsilon > 0$, $m, n \geq 1$, and $\delta = poly \left(\frac{1}{n}, \epsilon, m \right)$:

Let X be a premise-conclusion agenda over m issues in which each issue is either a premise, or a conclusion of at most two premises.

Let F be a δ-independent and δ-consistent aggregation mechanism for X.

Then there exists an independent and consistent aggregation mechanism G that agrees with F on at least $1 - \epsilon$ of the profiles.
Main result

Theorem

For any $\epsilon > 0$, $m, n \geq 1$, and $\delta = \text{poly} \left(\frac{1}{n}, \epsilon, m \right)$:

Let X be a premise-conclusion agenda over m issues in which each issue is either a premise, or a conclusion of at most two premises.

Let F be a δ-independent and δ-consistent aggregation mechanism for X.

Then there exists an independent and consistent aggregation mechanism G that agrees with F on at least $1 - \epsilon$ of the profiles.

Technique: • \land and \oplus represent all boolean functions of two arguments.

• Induction over the number of issues.
We defined the question of approximate aggregation.
Summary

- We defined the question of approximate aggregation.
- We proved approximate aggregation theorems for \(\langle A, B, A \land B \rangle \) and \(\langle A, B, A \oplus B \rangle \).

Open question: Find an agenda and an aggregation mechanism that is \(\delta \)-independent and \(\delta \)-consistent but is far from any independent consistent aggregation mechanism.
• We defined the question of approximate aggregation.
• We proved approximate aggregation theorems for $\langle A, B, A \land B \rangle$ and $\langle A, B, A \oplus B \rangle$.
• We proved approximate aggregation theorems for a class of premise conclusion agendas.

Open question:
Find an agenda and an aggregation mechanism that is δ-independent and δ-consistent but is far from any independent consistent aggregation mechanism.
We defined the question of approximate aggregation.
We proved approximate aggregation theorems for \(\langle A, B, A \land B \rangle \) and \(\langle A, B, A \oplus B \rangle \).
We proved approximate aggregation theorems for a class of premise conclusion agendas.
Open question:
Summary

- We defined the question of approximate aggregation.
- We proved approximate aggregation theorems for $\langle A, B, A \land B \rangle$ and $\langle A, B, A \oplus B \rangle$.
- We proved approximate aggregation theorems for a class of premise conclusion agendas.
- Open question:
 - Find an agenda and an aggregation mechanism that is δ-independent and δ-consistent but is far from any independent consistent aggregation mechanism.
Summary

- We defined the question of approximate aggregation.
- We proved approximate aggregation theorems for $\langle A, B, A \land B \rangle$ and $\langle A, B, A \oplus B \rangle$.
- We proved approximate aggregation theorems for a class of premise conclusion agendas.
- Open question:
 - Find an agenda and an aggregation mechanism that is δ-independent and δ-consistent but is far from any independent consistent aggregation mechanism.

Thank You
email: ilan.nehama@mail.huji.ac.il
Homepage: www.cs.huji.ac.il/~ilan_n

Please write me any comments/questions/suggestions you have.