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Tournaments

® T=(A,>)is atournament

» Ais a finite set of candidates or alternatives
» > is an asymmetric and complete binary
relation on the alternatives
- a > b means ‘a dominates b’ or ‘a is
preferred over b’
- pairwise majority outcome of an election

- > may be cyclic

® Corresponds to complete oriented
graph
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Components in Tournaments

® Alternatives in a tournament form a component if they
bear the same relationship to all outside alternatives
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Decompositions

® A graph can be decomposed into components

® A decomposition of T=(A, >) is a set of pairwise disjoint
components {B1,B,,...,.B} such that UB, = A

® The summary of T w.r.t this decomposition is the
tournament on the components T, induced by T.
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Decomposition Tree

There is a unique minimal decomposition
A component may be decomposable again

Represent this recursive decompositions as a
decomposition tree

The decomposition degree 9 is the maximum degree in
the decomposition tree



Example: Decomposition Tree
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Example: Decomposition Tree

® Decomposition degree O is
max. degree in decomp. tree
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Tournament Solutions

Given a tournament, what is the set of winners?

Intuitively easy if one alternative ¢ dominates all others

» cis a Condorcet winner
» does not exist in most tournaments

A tournament solution S returns a non-empty subset of

A ie., S(T)CA

Many solution concepts have been proposed in the past

Axiomatic approach: Do they have desirable properties?
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Zoo of Tournament Solutions

® Copeland set °
® Slater set °
®
o
o

Banks set

Uncovered Set

Minimal Covering Set (MC)
Bipartisan Set (BP)

TEQ

® Many tournament solutions are computationally hard

» Slater, Banks and TEQ are NP-hard. MC and BP are in P but existing
algorithms rely on linear programming and are thus rather inefficient.

» All of these except Copeland and Slater satisfy composition-consistency.
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Composition-Consistency

® A tournament solution S is composition-consistent if it
chooses the ‘best’ alternatives from the ‘best’ components.

® Formally: S is composition-consistent if for all T, T summary
of T w.r.t. some decomposition {Bj,...,Bi}

S(T)=UicshS(Te)
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Fixed-Parameter Tractability

® Use parametrized complexity to analyze whether the
hardness of a problem depends on the size of a certain

parameter

® Consider a problem with parameter k fixed-parameter
tractable (FPT) if there is an algorithm that solves it in
time f(k) - poly(InputLength) where f is independent of the

input length
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Algorithm

.
. Compute the decomposition tree

. Recursively compute tournament
solution on components

J

Decomposition tree computable in linear time!

» Follows from results by McConnell and de Montgolfier (2005);
Capelle et al. (2002) on modular decomposition of directed graphs

Number of tournaments to solve is bounded by |A|-1

Size of the largest tournament to solve equals the
decomposition degree
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Main Result

Given composition-consistent tournament solution S
where computing S(T) with |T|<k takes time <f(k)

Then, S(T) can be computed in O(|T|2)+f(0(T))- (|T|-1)

/ X \ maxX. no.

compute of tournaments

. worst-case time
decomposition tree

for solving a tournament

Corollary

Computing S(T) is fixed-parameter tractable w.r.t. 0(T).
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Experiments

® Generate majority tournaments according to voting

models
» Noise model:Voters give “correct” ranking of each pair of
alternatives with probability p > 2

» Spatial model: Alternatives and voters are located in [0,1]¢.
Preferences according to Euclidian distances between voters

and alternatives.

® a > b iff a majority prefersato b
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normalized decomposition degree

Noise model with p=0.55
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normalized decomposition degree

Spatial model with d=2
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normalized decomposition degree

Spatial model with d=20
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Conclusion

Exploiting composition-consistency can lead to dramatical
speed ups in algorithms for tournament solutions

All tournament solutions satisfying composition-
consistency are fixed-parameter tractable w.r.t. the
decomposition degree

0=0(log |A|) for some k allows polynomial-time
algorithms for tournament solutions that in general only
admit algorithms of time O(2")

Future work

» Measure positive effect by actual computation of composition-
consistent tournament solutions.

» Use parallelization and lookup tables.

- | e

— - o e —





