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Abstract

We study the parameterized control complexity of Bucklin voting and of fallback voting, a voting
system that combines Bucklin voting with approval voting. Electoral control is one of many different
ways for an external agent to tamper with the outcome of an election. We show that even though the
representation of the votes and the winner determination isdifferent, the parameterized complexity of
some standard control attacks is the same. In particular, weshow that adding and deleting candidates in
both voting systems are W[2]-hard for both the constructive and destructive case, parameterized by the
amount of action taken by the external agent. Furthermore, we show that adding and deleting voters in
both Bucklin voting and fallback voting are W[2]-hard for the constructive case, parameterized again
by the amount of action taken by the external agent, and are inFPT for the destructive case.

1 Introduction

The study of algorithmic issues related to voting systems has become an important topic in contemporary
computer science, due to the many applications of deciding between alternatives, or ranking information, in
a wide variety of contexts.

Rich questions inevitably arise about the tractability of the election processes, and their susceptibility to
manipulation. This paper is about this context of research.

We study the complexity of manipulation of elections based on Bucklin voting, and offallback voting, a
voting system that combines Bucklin voting with approval voting.

2 Preliminaries

Many different ways of changing the outcome of an election have been studied with respect to the compu-
tational complexity of the strategy, such asmanipulation[BTT89, BO91, CSL07, HH07, FHHR09b], where
a group of voters casts their votes strategically,bribery [FHH09, FHHR09a], where an external agent bribes
a group of voters in order to change their votes, andcontrol [BTT92, HHR07, FHHR09a, HHR09, ENR09,
FHHR09b, EPR10], where an external agent—which is referredto as “The Chair”—changes the structure of
the election (for example, by adding/deleting/partitioning either candidates or voters).

In this paper, we are concerned withcontrol issuesfor the relatively recently introduced system offallback
voting(FV, for short) [BS09] andBucklin voting(BV, for short). A voting system is said to beimmuneagainst
a certain type of control if it is impossible to affect the outcome of the election via that type of control. If a
voting system is not immune to a type of control, then it is said to besusceptible. When control is possible,
the task of exerting control may still be NP-hard. In this case the voting system is said to beresistantagainst
that type of control. If the chair’s task can be solved in polynomial-time for a type of control then the voting
system is said to bevulnerableto that type of control.

1This work was supported in part by the DFG under grants RO 1202/12-1 (within the European Science Foundation’s EUROCORES
program LogICCC: “Computational Foundations of Social Choice”) and RO 1202/11-1. Work done in part while the first author was
visiting the University of Newcastle.



We investigate the issues in the framework parameterized complexity. Many voting systems present
NP-hard algorithmic challenges. Parameterized complexity is a particularly appropriate framework in many
contexts of voting systems because it is concerned with exact results that exploit the structure of input dis-
tributions. It is not appropriate in political contexts, for example, to algorithmically determine a winner
“approximately”. The computational complexity of controlproblems under the parameterized complexity
framework has been studied before. Betzler and Uhlmann [BU08] proved that constructive control by delet-
ing candidates in plurality voting is W[2]-hard with respect to the number of deleted candidates, and destruc-
tive control by deleting candidates in plurality voting is W[1]-hard with respect to the number of deleted
candidates. They also proved that constructive control by adding/deleting candidates in Copeland voting is
W[2]-complete with respect to the number of added/deleted candidates. Recently, Liu et al. [LFZL09] proved
that both constructive and destructive control by adding candidates in plurality voting is W[2]-hard with re-
spect to the number of added candidates, constructive control by adding/deleting voters in Condorcet voting
is W[1]-hard, constructive control by adding voters in approval voting is W[1]-hard, and constructive control
by deleting voters in approval voting is W[2]-hard. In all four voter control results they parameterizedby the
natural parameterization, i.e., the number of added/deleted voters.

We study Bucklin voting and fallback voting, a voting systemthat combines Bucklin voting with ap-
proval voting. Fallback voting is the natural voting systemwith an easy winner-determination procedure, that
currently has the most resistances for control attacks (19 out of 22) [EPR10].

2.1 Elections and Electoral Control

An election(C,V) consists of a finite set of candidatesC and a finite collection of votersV who express their
preferences over the candidates inC. A voting system is a set of rules determining the winners of an election.
Votes can be represented in different ways, depending on thevoting system used. We say that a voterv∈V
has a preferenceweak order< onC, if < is transitive(i.e., for any three distinct candidatesx,y,z∈C, x < y
andy< z imply x< z) andcomplete(i.e., for any two distinct candidatesx,y∈C, eitherx< y or y< x). x< y
means that voterv likes x at least as much asy. If ties are excluded in the voters’ preference rankings, this
leads to alinear orderor strict ranking, denoted by≻. A strict ranking is always antisymmetric (i.e., for any
two distinct candidatesx,y∈C eitherx≻ y or y≻ x holds, but not both at the same time) and irreflexive (i.e.,
for eachx∈C the following does not hold:x≻ x). In this paper we will write x y, instead ofx≻ y.

Definition 2.1. Let (C,V) be an election with‖C‖ = m and‖V‖ = n. Define thestrict majority threshold
(SMT, for short) as the value Mt = ⌊n/2⌋+ 1. In Bucklin voting every voter v∈ V has to provide a strict
ranking.

The votes of a voter v are represented as a list of all candidates, where the leftmost candidate is v’s most
preferred candidate, the second candidate from left is v’s second most preferred candidate and so on. In our
constructions, we sometimes also insert a subset B⊆ C into such votes, where we assume some arbitrary,
fixed order of the candidates in B (e.g., “c1 B c5 ” means that c1 is the voter’s favourite candidate, c5 is
the voter’s most despised candidate and all b∈ B are in between these two candidates). Let scorei

(C,V)(c)

denote the number of voters who rank candidate c on level i or higher in election(C,V). Define theBucklin
scoreof candidate c as scoreB(c) = min{i |scorei(C,V)(c)≥Mt}, i.e., the smallest level i where the level i score
of c is at least as high as the SMT. The candidate with the lowest Bucklin score is the unique Bucklin winner
of the election. If there are more than one candidates with a lowest Bucklin score, say i, then each candidate
with the highest level i score is the Bucklin winner of the election.

Note that there always exists a Bucklin winner.
Approval voting, introduced by Brams and Fishburn [BF78, BF83] is not a preference based voting sys-

tem. In approval votingeach voter has to vote “yes” or “no” for each candidate and thecandidates with



the most “yes” votes are the winners of the election. Clearly, approval voting completely ignores preference
rankings.

Brams and Sanver [BS09] introduced two voting systems that combine preference-based with approval
voting in a sense that each voter has to specify his or her approval vector and in addition has to give a strict
ranking for the candidates he or she approved of. One of thesesystems is fallback voting.

Definition 2.2 ([BS09]). Let (C,V) be an election with‖C‖ = m and‖V‖ = n. Define the strict majority
threshold Mt analogously as for BV. Every voter v∈V has to divide the set of candidates C into two subsets
Sv ⊆ C indicating that v approves of all candidates in Sv and disapproves of all candidates in C−Sv. Sv is
called v’s approval strategy. In addition, each voter v∈V provides also a strict ranking of all candidates in
Sv.

Representation of votes: Let Sv = {c1,c2, . . . ,ck} for a voter v who ranks the candidates in Sv as follows.
c1 ≻ c2 ≻ ·· · ≻ ck, where c1 is v’s most preferred candidate and ck is v’s least preferred candidate. We denote
the vote v by

c1 c2 · · · ck | C−Sv,

where the approved candidates to the left of the approval line are ranked from left to the right and the
disapproved candidates to the right of the approval line arenot ranked and written as a set C−Sv.

Let score(C,V)(c) = ‖{v∈ V | c ∈ Sv}‖ denote the number of voters who approve of candidate c, and let
scorei(C,V)(c) be thelevel i score ofc in (C,V), which is the number of c’s approvals when ranked on position
i or higher.

Winner determination:

1. On the first level, only the highest ranked approved candidates (if they exist) are considered in each
voters’ approval strategy. If there is a candidate c∈C with score1(C,V)(c) ≥ Mt (i.e., c∈C has a strict
majority of approvals on this level), then c is the(unique) level 1 FV winner of the election, and the
procedure stops.

2. If there is no level1 winner, we ”fall back“ to the second level, where the two highest ranked approved
candidates (if they exist) are considered in each voters’ approval strategy. If there is exactly one
candidate c∈C with score2(C,V)(c) ≥ Mt , then c is the(unique) level 2 FV winner of the election, and
the procedure stops. If there are at least two such candidates, then every candidate with the highest
level2 score is alevel 2 FV winner of the election, and the procedure stops.

3. If we haven’t found a level1 or level2 FV winner, we in this way continue level by level until there is
at least one candidate c∈ C on a level i with scorei(C,V)(c) ≥ Mt , If there is only one such candidate,
he or she is the(unique) leveli FV winner of the election, and the procedure stops. If there are at least
two such candidates, then every candidate with the highest level i score is alevel i FV winner of the
election, and the procedure stops.

4. If for no i≤ ‖C‖ there is a level i FV winner, every candidate with the highestscore(C,V)(c) is a FV
winner of(C,V) by score.

Note that BV is a special case of FV, where each voter approvesof each candidate. Although BV and
FV seem to be alike, there are significant differences between them. A voting system is said to bemajority-
consistentif the winner of the election is always the majority winner, whenever one exists. (A majority winner
is the candidate who gets ranked first by a strict majority of voters.) Clearly, BV is majority-consistent, if a
majority winner exists he or she is also the unique level 1 Bucklin winner of the election. In contrast, FV is
not majority-consistent. Consider the following electionwith three voters and two candidates:v1 = a | b ,
v2 = | b a , andv3 = | b a . The FV winner of this election is candidatea by score but the majority
winner would be candidateb.



We now formally define the computational problems that we study in our paper. In our paper we only
consider the unique-winner model, where we want to have exactly one winner. We consider two different
control types. Inconstructivecontrol scenarios, introduced by Bartholdi, Tovey, and Trick [BTT92], the chair
seeks to make his or her favourite candidate win the election. In adestructivecontrol scenario, introduced by
Hemaspaandra, Hemaspaandra, and Rothe [HHR07], the chair’s goal is to prevent a despised candidate from
winning the election. We will only state the constructive cases. The questions in the destructive cases can be
asked similarly with the difference that we want the distinguished candidatenot to bea unique winner.

We first define control via adding a limited number of candidates.

Name Control by Adding a Limited Number of Candidates.
Instance An election(C∪D,V), whereC is the set of qualified candidates andD is the set of spoiler candi-

dates, a designated candidatec∈C, and a positive integerk.
Parameter k.
Question Is it possible to choose a subsetD′ ⊆ D with ||D′|| ≤ k such thatc is the unique winner of election

(C∪D′,V)?

In the following control scenario, the chair seeks to reach his or her goal by deleting (up to a given number
of) candidates.

Name Control by Deleting Candidates.
Instance An election(C,V), a designated candidatec∈C, and a positive integerk.
Parameter k.
Question Is it possible to delete up tok candidates (other thanc) from C such thatc is the unique winner of

the resulting election?

Turning to voter control, we first specify the problem control by adding voters.

Name Control by Adding Voters.
Instance An election(C,V ∪W), whereV is the set of registered voters andW is the set of unregistered

voters, a designated candidatec∈C, and a positive integerk.
Parameter k.
Question Is it possible to choose a subsetW′ ⊆W with ||W′|| ≤ k such thatc is the unique winner of election

(C,V ∪W′)?

Finally, the last problem we consider, control by deleting voters.

Name Control by Deleting Voters.
Instance An election(C,V), a designated candidatec∈C, and a positive integerk.
Parameter k.
Question Is it possible to delete up tok voters fromV such thatc is the unique winner of the resulting

election?

The above defined problems are all natural problems, see the discussions in [BEH+09, BTT92, HHR07,
FHHR09a, HHR09].

2.2 Parameterized Complexity

The theory of parameterized complexity offers toolkits fortwo tasks: (1) the fine-grained analysis of the
sources of the computational complexity of NP-hard problems, according to secondary measurements (the



parameter) of problem inputs (apart from the overall input sizen), and (2) algorithmic methods for exploiting
parameters that contribute favorably to problem complexity. Formally, a parameterized decision problem is
a languageL ⊆ Σ∗×N. L is fixed-parameter tractable(FPT) if and only if it can be determined, for input
(x,k) of sizen = |(x,k)|, whether(x,k) ∈ L in timeO( f (k)nc), for some computable functionf .

A parameterized problemL reducesto a parameterized problemL ′ if there(x,k) can be transformed to
(x′,k′) in FPT time so that(x,k) ∈ L if and only if (x′,k′) ∈ L ′, wherek′ = g(k) (that is,k′ depends only on
k).

The main hierarchy of parameterized complexity classes is

FPT ⊆W[1] ⊆W[2] ⊆ ·· · ⊆W[P] ⊆ XP.

W[1] is a strong analog of NP, as thek-Step Halting Problem for Nondeterministic Turing Machines is com-
plete forW[1] under the above notion of parameterized problem reducibility. Thek-Clique problem is com-
plete forW[1], and the parameterized Dominating Set problem is complete forW[2]. These two parameterized
problems are frequent sources of reductions that show likely parameterized intractability. See the Downey-
Fellows [DF99] monograph for further background.

2.3 Graphs

Many problems proven to be W[2]-hard are derived from problems concerning graphs. We will prove W[2]-
hardness via parameterized reduction from the problem Dominating Set, which was proved to be W[2]-
complete by Downey and Fellows [DF99]. Before the formal definition of the Dominating Set problem, we
first have to present some basic notions from graph theory.

An undirected graph Gis a pairG = (V,E), whereV = {v1, . . . ,vn} is a finite (nonempty) set of vertices
andE = {{vi,v j}| 1 ≤ i < j ≤ n} is a set of edges.2 Any two vertices connected by an edge are called
adjacent. The vertices adjacent to a vertexv are called theneighboursof v, and the set of all neighbours
of v is denoted byN[v] (i.e., N[v] = {u ∈ V | {u,v} ∈ E}). The closed neighbourhoodof v is defined as
Nc[v] = N[v]∪{v}. The parameterized version of Dominating Set is defined as follows.

Name Dominating Set.
Instance A graphG = (V,E), whereV is the set of vertices andE is the set of edges.
Parameter A positive integerk.
Question DoesG have a dominating set of sizek (i.e., a subsetV ′ ⊆ V with ||V ′|| ≤ k such that for all

u∈V −V′ there is av∈V ′ such that{u,v} ∈ E)?

3 Results

Table 1 shows our results on the parameterized control complexity of FV and BV. The FPT results in Table 1
are in parenthesis because the two results for FV are trivially inherited from the classical P results given by
Erdélyi and Rothe [ER10], and since BV is a special case of FV, BV inherits the FPT upper bound from FV
in both destructive voter cases. We won’t prove the W[2]-hardness results for FV, since BV is a special case
of FV, FV inherits the W[2]-hardness lower bound from BV in all six cases.

In all of our results we will prove W[2]-hardness by parameterized reduction from the W[2]-complete
problem Dominating Set defined in Section 2.3. In these six proofs we will always start from a given Domi-
nating Set instance(G = (B,E),k), whereB = {b1,b2, . . . ,bn} is the set of vertices withn > 2,3 E the set of

2In this paper we will use the symbolV strictly for voters. From the next section on, we will use thesymbolB instead ofV for the
set of vertices in a graphG.

3Note that the assumptionn > 2 can be made without loss of generality, since the problem Dominating Set remains W[2]-complete.



Fallback Voting Bucklin
Control by Constructive Destructive Constructive Destructive
Adding a Limited Number of Candidates W[2]-hard W[2]-hard W[2]-hard W[2]-hard
Deleting Candidates W[2]-hard W[2]-hard W[2]-hard W[2]-hard
Adding Voters W[2]-hard (FPT) W[2]-hard (FPT)
Deleting Voters W[2]-hard (FPT) W[2]-hard (FPT)

Table 1: Overview of results.

edges in graphG, andk ≤ n is a positive integer. In the following constructions, the set of candidates will
always contain the setB which means that for each vertexbi ∈ B we will have a candidatebi in our election.
We will also refer to candidate setNc[bi ], which is the set of candidates corresponding to the vertices in G
that are inNc[bi ].

3.1 Candidate Control

Theorem 3.1. Both constructive and destructive control by adding candidates in BV areW[2]-hard.

Proof. We first prove W[2]-hardness of constructive control by adding candidates. Let (G = (B,E),k) be a
given instance of Dominating Set as described above. Define the election(C,V), whereC = {c,w}∪B∪X∪
Y∪Z with X = {x1,x2, . . . ,xn−1}, Y = {y1,y2, . . . ,yn−2}, Z = {z1,z2, . . . ,zn−1} is the set of candidates,w is
the distinguished candidate, andV is the following collection of 2n+1 voters:

1. For eachi, 1≤ i ≤ n, there is one voter of the form:

Nc[bi ] X c ((B−Nc[bi ])∪Y∪Z∪{w}).

2. There aren voters of the form:
Y c w (B∪X∪Z).

3. There is one voter of the form:
Z w (B∪X∪Y∪{c}).

Note that candidatew is not a unique Bucklin winner of the election(C−B,V), since only candidates
c and w reach the SMT until leveln (namely, exactly on leveln) with scoren(C−B,V)(w) = n+ 1 < 2n =

scoren(C−B,V)(c) thus,c is the unique leveln Bucklin winner of the election(C−B,V). Now, letC−B be the
set of qualified candidates and letB be the set of spoiler candidates.

We claim thatG has a dominating set of sizek if and only if w can be made the unique Bucklin winner
by adding at mostk candidates.

From left to right: SupposeG has a dominating set of sizek. Add the corresponding candidates to the
election. Now candidatec gets pushed at least one position to the right in each of then votes in the first voter
group. Thus, candidatew is the unique Bucklin winner of the election, sincew is the only candidate on level
n who passes the SMT.

From right to left: Supposew can be made the unique Bucklin winner by adding at mostk candidates
denoted byB′. By adding candidates from candidate setB, only votes in voter group 1 are changed. Note that
candidatec has already a score ofn on leveln−1 in voter group 2 thus,c cannot have any more approvals
until level n (else,scoren((C−B)∪B′,V)(c) ≥ n+1 so,c would tie or beatw on leveln). This is possible only if
candidatec is pushed in all votes in voter group 1 at least one position tothe right. This, however, is possible
only if G has a dominating set of sizek.



For the W[2]-hardness proof in the destructive case, we have to do minor changes to the above con-
struction, and we will change the roles of candidatesc and w4. Let (G = (B,E),k) be a given instance
of Dominating Set as described above. Define the election(C,V), whereC = {c,w}∪B∪X ∪Y∪Z with
X = {x1,x2, . . . ,xn−1}, Y = {y1,y2, . . . ,yn−2}, Z = {z1,z2, . . . ,zn−2} is the set of candidates,c is the distin-
guished candidate, andV is the following collection of 2n+1 voters:

1. For eachi, 1≤ i ≤ n, there is one voter of the form:

Nc[bi ] X c ((B−Nc[bi ])∪Y∪Z∪{w}).

2. There aren voters of the form:
Y c w (B∪X∪Z).

3. There is one voter of the form:
Z w c (B∪X∪Y).

Note that again only candidatesc andw pass the SMT until leveln in election(C−B,V), both passing
it on leveln with scoren(C−B,V)(w) = n+ 1 < 2n+ 1 = scoren(C−B,V)(c) thus,c is the unique Bucklin winner

of the election(C−B,V). Again, letC−B be the set of qualified candidates and letB be the set of spoiler
candidates.

We claim thatG has a dominating set of sizek if and only if c can be prevented from being a unique
Bucklin winner by adding at mostk candidates.

From left to right: SupposeG has a dominating setB′ of sizek. Add the corresponding candidates to
the election. Now candidatec gets pushed at least one position to the right in each of then votes in the first
voter group. Thus, on leveln−1 none of the candidates pass the SMT, andscoren((C−B)∪B′,V)(c) = n+ 1 =

scoren((C−B)∪B′,V)(w), i.e., both candidatesc andw reach the SMT exactly on leveln, and since their leveln
score is equal,c is not a unique Bucklin winner of the election anymore.

From right to left: Supposec can be prevented from being a unique Bucklin winner by addingat mostk
candidates denoted byB′. By a similar argument as in the constructive case, this is possible only ifG has a
dominating set of sizek. ❑

Theorem 3.2. Both constructive and destructive control by deleting candidates in BV areW[2]-hard.

Proof. We will start with the W[2]-hardness proof in the constructive case. Let(G = (B,E),k) be a
given instance of Dominating Set. Define the election(C,V), whereC = {c,w} ∪ B∪ X ∪Y ∪ Z with
X = {x1,x2, . . . ,xn2−∑n

i=1 ||Nc[bi ]||
}, Y = {y1,y2, . . . ,yn−1}, Z = {z1,z2, . . . ,zn−2} is the set of candidates,w

is the distinguished candidate, andV is the following collection of 2n+1 voters:

1. For eachi, 1≤ i ≤ n, there is one voter of the form:

Nc[bi ] Xi w ((B−Nc[bi ])∪ (X−Xi)∪Y∪Z∪{c}),

whereXi = {x1+(i−1)n−∑i−1
j=1 ||Nc[b j ]||

, . . . ,xin−∑i
j=1 ||Nc[b j ]||

}.

2. There aren−1 voters of the form:

Y c (B∪X∪Z∪{w}).

4Here, changing the roles ofc andw means simply that now not candidatew butc is the distinguished candidate.



3. There is one voter of the form:

(Y−{y1}) c w (B∪X∪Z∪{y1}).

4. There is one voter of the form:
Z w c (B∪X∪Y).

Note that candidatec is the unique leveln Bucklin winner of the election(C,V), since onlyc passes the
SMT on leveln among all candidates.

We claim thatG has a dominating set of sizek if and only if w can be made the unique Bucklin winner
by deleting at mostk candidates.

From left to right: SupposeG has a dominating setB′ ⊆ B of sizek. Delete the corresponding candidates.
Now candidatew gets pushed at least one position to the left in each of then votes in the first voter group.
Since candidatec reaches the SMT on leveln andscoren(C−B′,V)(w) = n+2 > n+1 = scoren(C−B′,V)(c), and
no other candidate passes the SMT until leveln, candidatew is the unique Bucklin winner of the resulting
election.

From right to left: Supposew can be made the unique Bucklin winner of the election by deleting at most
k candidates. Since candidatec already passes the SMT on leveln, w has to beatc no later than on leveln.
This is possible only if candidatew is pushed in all votes in voter group 1 at least one position tothe left.
This, however, is possible only ifG has a dominating set of sizek.

For the W[2]-hardness proof in the destructive case in Bucklin, let(G = (B,E),k) be a given instance
of Dominating Set. Define the election(C,V), whereC = {c,w}∪B∪M ∪X ∪Y1∪Y2∪Z1∪Z2 with M =
{m1,m2 . . . ,mk}, X = {x1,x2, . . . ,xn2−∑n

i=1 ||Nc[bi ]||
}, Y1 = {y1,1,y1,2, . . . ,y1,n−1},Y2 = {y2,1,y2,2, . . . ,y2,k}, Z1 =

{z1,1,z1,2, . . . ,z1,n−2}, Z2 = {z2,1,z2,2, . . . ,z2,n−2} is the set of candidates,c is the distinguished candidate, and
V is the following collection of 2n+1 voters:

1. For eachi, 1≤ i ≤ n, there is one voter of the form:

Nc[bi ] Xi w M ((B−Nc[bi ])∪ (X−Xi)∪Y1∪Y2∪Z1∪Z2∪{c}),

whereXi = {x1+(i−1)n−∑i−1
j=1 ||Nc[b j ]||

, . . . ,xin−∑i
j=1 ||Nc[b j ]||

}.

2. There aren voters of the form:

Y1 c Y2 (B∪M∪X∪Z1∪Z2∪{w}).

3. There is one voter of the form:

Z1 w c Z2 (B∪M∪X1∪X2∪Y1∪Y2).

Note that candidatec is the unique leveln Bucklin winner of the election(C,V), since onlyc passes the
SMT on leveln among all candidates.

We claim thatG has a dominating set of sizek if and only if c can be prevented from being a unique
Bucklin winner by deleting at mostk candidates.

From left to right: SupposeG has a dominating setB′ ⊆ B of sizek. Delete the corresponding candidates.
Now candidatew gets pushed at least one position to the left in each of then votes in the first voter group.
Since candidatec passes the SMT no earlier than on leveln andscoren(C−B′,V)(w) = n+1= scoren(C−B′,V)(c),
candidatec is not a unique Bucklin winner of the resulting election anymore.



From right to left: Supposec can be prevented from being a unique Bucklin winner of the election by
deleting at mostk candidates. Note that deleting one candidate from an election can move the strict majority
level of another candidate at most one level to the left. Observe that only candidatew can preventc from
winning the election, sincew is the only candidate other thanc who passes the SMT until leveln+ k. In
election(C,V), candidatew passes the SMT no earlier than on leveln+ 1, candidatec not before leveln.
Candidatew could only preventc from winning by reaching the SMT no later than on leveln. This is possible
only if candidatew is pushed in all votes in voter group 1 at least one position tothe left. This, however, is
possible only ifG has a dominating set of sizek. ❑

Theorem 3.3. Both constructive and destructive control by adding and deleting candidates in FV areW[2]-
hard.

3.2 Voter Control

Theorem 3.4. Constructive control by adding voters in BV isW[2]-hard.

Proof. Let (G = (B,E),k) be a given instance of Dominating Set. Define the election(C,V ∪W), where
C = B∪{w,x}∪Y∪Z, with Y = {y1,y2, . . . ,y∑n

i=1‖Nc[bi ]‖}, Z = {z1,z2, . . . ,zn−1} is the set of candidates,w is
the distinguished candidate, andV ∪W is the following collection ofn+k−1 voters:

1. V is the collection ofk−1 registered voters of the form:

x Z B w Y.

2. W is the collection of unregistered voters, where for eachi, 1≤ i ≤ n, there is one voterwi of the form:

(B−Nc[bi ]) Yi w x (Nc[bi ]∪ (Y−Yi)∪Z),

whereYi = {y(∑i−1
j=1‖Nc[b j ]‖)+1, . . . ,y∑i

j=1‖Nc[b j ]‖
}.

Clearly,x is the level 1 Bucklin winner of the election(C,V).
We claim thatG has a dominating set of sizek if and only if w can be made the unique Bucklin winner

by adding at mostk voters fromW.
From left to right: SupposeG has a dominating setB′ of sizek. Add the corresponding voters from setW

to the election (i.e., each voterwi if bi ∈ B′). Now there are 2k−1 registered voters, thus the SMT isMt = k.
Since until leveln only candidatew passes the SMT, namely on leveln, w is the unique Bucklin winner of
the resulting election.

From right to left: Supposew can be made the unique Bucklin winner by adding at mostk voters (denote
these voters byW′). Note thatscore1(C,V∪W′)(x) = k−1. Since if a candidate passes the SMT on level 1, he or

she is the unique winner of the election,k−1 cannot be the SMT. This is only possible, if||W′|| ≥ k−1. If
||W′|| = k−1 thenscoren+1

(C,V∪W′)
(w) = k−1 < Mt = k < scoren+1

(C,V∪W′)
(x) = 2k−1. In this case candidatew

couldn’t be made the unique Bucklin winner of the election. Thus,||W′|| = k. Note thatscoren(C,V∪W′)(w) =

k > k− 1 = scoren(C,V∪W′)(x) andk is also a strict majority. Since we could makew the unique Bucklin

winner of the election, none of the candidates inB can be ranked on the firstn positions by each voter inW′,
otherwise there would exist a candidateb ∈ B with scoren(C,V∪W′)(b) = k andb would reach the SMT on a
higher level thanw. This is only possible ifG has a dominating set of sizek. ❑



Theorem 3.5. Constructive control by deleting voters in BV isW[2]-hard.

Proof. To prove W[2]-hardness, we provide again a reduction from Dominating Set. Let (G = (B,E),k)
be a given instance of Dominating Set. Define the election(C,V), whereC = {c,w}∪B∪X∪Y∪Z with
X = {x1, . . . ,x∑n

i=1‖(B−Nc[bi ])‖}, Y = {y1, . . . ,y∑n
i=1‖Nc[bi ]‖}, Z = {z1, . . . ,z(k−1)(n+1)} is the set of candidates,w

is the distinguished candidate, andV is the following collection of 2n+k−1 voters:

1. For eachi, 1≤ i ≤ n, there is one votervi of the form:

Nc[bi ] c Xi ((B−Nc[bi ])∪ (X−Xi)∪Y∪Z) w,

whereXi = {x1+∑i−1
j=1‖(B−Nc[b j ])‖

, . . . ,x∑i
j=1‖(B−Nc[b j ])‖

}.

2. For eachi, 1≤ i ≤ n, there is one voter of the form:

(B−Nc[bi ]) Yi w (Nc[bi ]∪X∪ (Y−Yi)∪Z∪{c},

whereYi = {y1+∑i−1
j=1‖Nc[b j ]‖

, . . . ,y∑i
j=1‖Nc[b j ]‖

}.

3. There arek−1 voters of the form:

c Zi (B∪X∪Y∪ (Z−Zi)) w,

whereZi = {z(i−1)(n+1)+1, . . . ,zi(n+1)}.

Note that since candidatew reaches the SMT only on the last level, he or she is not the unique Bucklin
winner of the election.

We claim thatG has a dominating set of sizek if and only if w can be made the unique Bucklin winner
by deleting at mostk voters.

From left to right: SupposeG has a dominating setB′ of sizek. Delete the corresponding voters from the
first voter group (i.e., each votervi if bi ∈ B′). LetV ′ denote the new set of voters. Now on leveln+1 only
candidatew passes the SMT, namely withscoren+1

(C,V ′)(w) = n = Mt . Thus,w is the unique Bucklin winner of
the resulting election.

From right to left: Supposew can be made the unique Bucklin winner by deleting at mostk voters.
Observe that deleting less thank voters would make it impossible for candidatew to be the unique winner of
the election. In that case the SMTMt > n and sincew is ranked last place in all votes except ofn votes, he
would reach the SMT on the last level thus, would not be the unique Bucklin winner of the election. Clearly,
w has to win the election on leveln+1. Now, since for alli with 1≤ i ≤ n scoren+1

(C,V)
(bi) = n= scoren+1

(C,V)
(w),

eachbi had to loose at least one point on the firstn+ 1 levels. Obviously, we cannot delete voters from the
second voter group, else candidatew wouldn’t reach the SMT on leveln+ 1. So thek voters were deleted
from the first voter group. Since each candidatebi has lost at least one point, this is only possible ifG has a
dominating set of sizek. ❑

Theorem 3.6. Both constructive control by adding and deleting voters in FV areW[2]-hard.

4 Conclusions and Open Questions

In this paper we have studied the parameterized complexity of the control problems for the recently proposed
system offallback votingand ofBucklin voting, parameterized by the amount of action taken by the chair.



In the case of constructive control, all of the problems are W[2]-hard. A natural question to investigate is
whether these problems remain intractable when parameterized by both the amount of action and some other
measure. We have shown that all four problems of constructive and destructive control by adding or deleting
candidates are hard for W[2]. What is the complexity when the parameter is both the amountof action and the
number of voters? We have also shown that both constructive control by adding and deleting voters are hard
for W[2] in both fallback voting and Bucklin voting, and that both destructive control by adding and deleting
voters are in FPT in both fallback voting and Bucklin voting.What is the complexity of constructive control
parameterized by both the amount of action and the number of candidates?

Acknowledgments: We thank the anonymous COMSOC-2010 referees for their helpful comments on the
preliminary version of this paper.
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