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Abstract

We study the parameterized control complexity of Bucklining and of fallback voting, a voting
system that combines Bucklin voting with approval votingedforal control is one of many different
ways for an external agent to tamper with the outcome of actiele We show that even though the
representation of the votes and the winner determinatidifferent, the parameterized complexity of
some standard control attacks is the same. In particulashae that adding and deleting candidates in
both voting systems are |&-hard for both the constructive and destructive case, petenzed by the
amount of action taken by the external agent. Furthermoeesivow that adding and deleting voters in
both Bucklin voting and fallback voting are |@&]-hard for the constructive case, parameterized again
by the amount of action taken by the external agent, and &®nfor the destructive case.

1 Introduction

The study of algorithmic issues related to voting systensslerome an important topic in contemporary
computer science, due to the many applications of decidétgyéden alternatives, or ranking information, in
a wide variety of contexts.

Rich questions inevitably arise about the tractabilityta election processes, and their susceptibility to
manipulation. This paper is about this context of research.

We study the complexity of manipulation of elections basedacklin voting, and ofallback voting a
voting system that combines Bucklin voting with approvating.

2 Preliminaries

Many different ways of changing the outcome of an electiovehzeen studied with respect to the compu-
tational complexity of the strategy, suchraanipulation[BTT89, BO91, CSL07, HHO7, FHHRO9b], where
a group of voters casts their votes strategicéliihery [FHH09, FHHRO09a], where an external agent bribes
a group of voters in order to change their votes, endtrol [BTT92, HHR07, FHHR09a, HHR09, ENROQ9,
FHHRO9b, EPR10], where an external agent—which is refdoed “The Chair’—changes the structure of
the election (for example, by adding/deleting/partitianeither candidates or voters).

In this paper, we are concerned withntrol issuegor the relatively recently introduced systenfaliback
voting(FV, for short) [BS09] andBucklin voting(BV, for short). A voting system is said to il@muneagainst
a certain type of control if it is impossible to affect the cutne of the election via that type of control. If a
voting system is not immune to a type of control, then it iglgaibesusceptible When control is possible,
the task of exerting control may still be NP-hard. In thisectge voting system is said to besistantagainst
that type of control. If the chair’s task can be solved in palial-time for a type of control then the voting
system is said to beulnerableto that type of control.

1This work was supported in part by the DFG under grants RO /1292 (within the European Science Foundation’s EUROCORES
program LogICCC: “Computational Foundations of Social &9 and RO 1202/11-1. Work done in part while the first antivas
visiting the University of Newcastle.



We investigate the issues in the framework parameterizetptaxity. Many voting systems present
NP-hard algorithmic challenges. Parameterized compléxia particularly appropriate framework in many
contexts of voting systems because it is concerned withteraalts that exploit the structure of input dis-
tributions. It is not appropriate in political contextsrfexample, to algorithmically determine a winner
“approximately”. The computational complexity of contfmoblems under the parameterized complexity
framework has been studied before. Betzler and Uhlmann @pfbved that constructive control by delet-
ing candidates in plurality voting is Y®]-hard with respect to the number of deleted candidates, esiniut-
tive control by deleting candidates in plurality voting is[}¢hard with respect to the number of deleted
candidates. They also proved that constructive controldujrey/deleting candidates in Copeland voting is
W/[2]-complete with respect to the number of added/deleted datel. Recently, Liu et al. [LFZL09] proved
that both constructive and destructive control by addingdadates in plurality voting is \\2]-hard with re-
spect to the number of added candidates, constructiveatdytiadding/deleting voters in Condorcet voting
is W[1]-hard, constructive control by adding voters in approvaingis W[1]-hard, and constructive control
by deleting voters in approval voting is [@J-hard. In all four voter control results they parameteribgdhe
natural parameterization, i.e., the number of added/ele hatters.

We study Bucklin voting and fallback voting, a voting syst#mat combines Bucklin voting with ap-
proval voting. Fallback voting is the natural voting systeith an easy winner-determination procedure, that
currently has the most resistances for control attacks (18i22) [EPR10].

2.1 Elections and Electoral Control

An election(C,V) consists of a finite set of candidateésnd a finite collection of voteM who express their
preferences over the candidate€inA voting system is a set of rules determining the winnersaélaction.
\otes can be represented in different ways, depending ownatireg system used. We say that a voter V

has a preferenoseak order:= onC, if 3= is transitive(i.e., for any three distinct candidatey,z€ C, X =y
andy 3= zimply x = 2) andcompletdi.e., for any two distinct candidatesy € C, eitherx = yory =Xx). X =y
means that voter likes x at least as much as If ties are excluded in the voters’ preference rankings, th
leads to dinear orderor strict ranking denoted by-. A strict ranking is always antisymmetric (i.e., for any
two distinct candidates y € C eitherx > y ory - x holds, but not both at the same time) and irreflexive (i.e.,
for eachx € C the following does not holdx > x). In this paper we will write X y, instead of > y.

Definition 2.1. Let (C,V) be an election with|C|| = m and||V|| = n. Define thestrict majority threshold
(SMT, for short) as the value{M= |/2| + 1. In Bucklin voting every voter \e V has to provide a strict
ranking.

The votes of a voter v are represented as a list of all candi&lathere the leftmost candidate is v's most
preferred candidate, the second candidate from left iset®ad most preferred candidate and so on. In our
constructions, we sometimes also insert a subset@into such votes, where we assume some arbitrary,
fixed order of the candidates in B (e.g.,¢1 B ¢ " means that g is the voter's favourite candidateg ¢s
the voter's most despised candidate and adt B are in between these two candidates). Let é(egf)e{c)
denote the number of voters who rank candidate c on level igien in election(C,V). Define theBucklin
scoreof candidate c as scoggc) = min{i |scorr%c‘v) (c) > M}, i.e., the smallest level i where the level i score
of ¢ is at least as high as the SMT. The candidate with the loBuesklin score is the unique Bucklin winner
of the election. If there are more than one candidates withveelst Bucklin score, say i, then each candidate
with the highest level i score is the Bucklin winner of thetds.

Note that there always exists a Bucklin winner.
Approval voting, introduced by Brams and Fishburn [BF788BHs not a preference based voting sys-
tem. Inapproval votingeach voter has to vote “yes” or “no” for each candidate andctradidates with



the most “yes” votes are the winners of the election. Cleabproval voting completely ignores preference
rankings.

Brams and Sanver [BS09] introduced two voting systems thathine preference-based with approval
voting in a sense that each voter has to specify his or heogppvector and in addition has to give a strict
ranking for the candidates he or she approved of. One of gysdems is fallback voting.

Definition 2.2 ([BS09]). Let (C,V) be an election with|C|| = m and|V|| = n. Define the strict majority
threshold M analogously as for BV. Every voteraV/ has to divide the set of candidates C into two subsets
S/ C C indicating that v approves of all candidates ip &d disapproves of all candidates inCS,. S, is
called vs approval strategyln addition, each voter & V provides also a strict ranking of all candidates in
S.

Representation of votes: Lef S {ci,Cp,...,c«} for a voter v who ranks the candidates in& follows.
C1 > Cp = --- > Ck, Where g is v's most preferred candidate angdis v's least preferred candidate. We denote
the vote v by

CLC - ¢ | C=8,

where the approved candidates to the left of the approva éire ranked from left to the right and the
disapproved candidates to the right of the approval linermoéranked and written as a setCS,.

Let scorgcyy(c) = [[{ve V|c € S/}|| denote the number of voters who approve of candidate c, and le
scorq'c‘v) (c) be theleveli score ofcin (C,V), which is the number of ¢’s approvals when ranked on position
i or higher.

Winner determination:

1. On the first level, only the highest ranked approved caatdl (if they exist) are considered in each
voters’ approval strategy. If there is a candidate € with scor%c‘v) (c) > M; (i.e., ce C has a strict
majority of approvals on this level), then c is thenique) level 1 FV winner of the electipand the
procedure stops.

2. Ifthere is no level winner, we "fall back” to the second level, where the two héghranked approved
candidates (if they exist) are considered in each votergrayal strategy. If there is exactly one
candidate c= C with scon%cyv) (c) > M, then c is thqunique) level 2 FV winner of the electipand
the procedure stops. If there are at least two such candijdben every candidate with the highest
level2 score is devel 2 FV winner of the electigrand the procedure stops.

3. If we haven't found a levdl or level 2 FV winner, we in this way continue level by level until these i
at least one candidate€ C on a level i with scor"&v) (c) > M, If there is only one such candidate,
he or she is théunique) levei FV winner of the electionand the procedure stops. If there are at least
two such candidates, then every candidate with the higlest | score is develi FV winner of the
election and the procedure stops.

4. If for no i < ||C|| there is a level i FV winner, every candidate with the higreestrec ) (c) is a FV
winner of (C,V) by score

Note that BV is a special case of FV, where each voter approfveach candidate. Although BV and
FV seem to be alike, there are significant differences bettleem. A voting system is said to beajority-
consistenif the winner of the election is always the majority winnehemever one exists. (A majority winner
is the candidate who gets ranked first by a strict majorityaiéks.) Clearly, BV is majority-consistent, if a
majority winner exists he or she is also the unigue level 1kBoavinner of the election. In contrast, FV is
not majority-consistent. Consider the following electiith three voters and two candidates= a | b,
vo,= | ba,andvg= | b a. The FV winner of this election is candidadeby score but the majority
winner would be candidate



We now formally define the computational problems that westin our paper. In our paper we only
consider the unique-winner model, where we want to havetlyxane winner. We consider two different
control types. Irconstructivecontrol scenarios, introduced by Bartholdi, Tovey, andR[BTT92], the chair
seeks to make his or her favourite candidate win the eleclioadestructivecontrol scenario, introduced by
Hemaspaandra, Hemaspaandra, and Rothe [HHRO7], thesched is to prevent a despised candidate from
winning the election. We will only state the constructivees. The gquestions in the destructive cases can be
asked similarly with the difference that we want the distiistped candidateot to bea unique winner.

We first define control via adding a limited number of candidat

Name Control by Adding a Limited Number of Candidates.

Instance An election(CUD,V), whereC is the set of qualified candidates aDds the set of spoiler candi-
dates, a designated candidate C, and a positive integek.

Parameter k.

Question Is it possible to choose a sub&¥tC D with ||D’|| < k such that is the unique winner of election
(CuD’,v)?

In the following control scenario, the chair seeks to reastohher goal by deleting (up to a given number
of) candidates.

Name Control by Deleting Candidates.

Instance An election(C,V), a designated candidatec C, and a positive integex.

Parameter k.

Question Is it possible to delete up tocandidates (other thar) from C such that is the unique winner of
the resulting election?

Turning to voter control, we first specify the problem cohby adding voters.

Name Control by Adding Voters.

Instance An election(C,V UW), whereV is the set of registered voters awdis the set of unregistered
voters, a designated candidate C, and a positive integdx.

Parameter k.

Question Is it possible to choose a sub¥et C W with ||W'|| < k such that is the unique winner of election
(C,VUW')?

Finally, the last problem we consider, control by deletingevs.

Name Control by Deleting Voters.

Instance An election(C,V), a designated candidatec C, and a positive integex.

Parameter k.

Question Is it possible to delete up th voters fromV such thatc is the unique winner of the resulting
election?

The above defined problems are all natural problems, sedgbesdions in [BEFi09, BTT92, HHRO07,
FHHR09a, HHRO09].

2.2 Parameterized Complexity

The theory of parameterized complexity offers toolkits fao tasks: (1) the fine-grained analysis of the
sources of the computational complexity of NP-hard prolsieatcording to secondary measurements (the



paramete) of problem inputs (apart from the overall input sigeand (2) algorithmic methods for exploiting
parameters that contribute favorably to problem compjeXbrmally, a parameterized decision problem is
alanguage? C 2* x N. .Z is fixed-parameter tractablé=PT) if and only if it can be determined, for input
(x,k) of sizen = |(x,Kk)|, whether(x,k) € . in time O( f (k)n®), for some computable functioh

A parameterized proble’ reducego a parameterized probles” if there (x, k) can be transformed to
(X,K') in FPT time so thatx, k) € . if and only if (X, k') € ¢, wherek’ = g(k) (that is,k’ depends only on
k).

The main hierarchy of parameterized complexity classes is

FPTCW[1] CW[2]C--- CW[P]C XP

WI[1] is a strong analog of NP, as tkeStep Halting Problem for Nondeterministic Turing Mactsrig com-
plete forw[1] under the above notion of parameterized problem redutyibilihek-Clique problem is com-
plete forW[1], and the parameterized Dominating Set problem is compmeW [2|. These two parameterized
problems are frequent sources of reductions that showylix@tameterized intractability. See the Downey-
Fellows [DF99] monograph for further background.

2.3 Graphs

Many problems proven to be |&]-hard are derived from problems concerning graphs. We wal@ W2]-
hardness via parameterized reduction from the problem Batinig Set, which was proved to be[2}
complete by Downey and Fellows [DF99]. Before the formalmi&éin of the Dominating Set problem, we
first have to present some basic notions from graph theory.

An undirected graph Gs a pairG = (V,E), whereV = {vy,...,vn} is a finite (nonempty) set of vertices
andE = {{vi,vj}|1<i< j<n}is a set of edge$. Any two vertices connected by an edge are called
adjacent The vertices adjacent to a vertexare called theneighboursof v, and the set of all neighbours
of v is denoted byN[v] (i.e., N[v] = {u € V| {u,v} € E}). Theclosed neighbourhoodf v is defined as
Nc[v] = N[v]U{v}. The parameterized version of Dominating Set is defined lasfs.

Name Dominating Set.

Instance A graphG = (V,E), whereV is the set of vertices aril is the set of edges.

Parameter A positive integek.

Question DoesG have a dominating set of siZe(i.e., a subse¥’ C V with [|V’|| < k such that for all
ueV —V'thereis as e V' such thafu,v} € E)?

3 Results

Table 1 shows our results on the parameterized control exitplof FV and BV. The FPT results in Table 1
are in parenthesis because the two results for FV are tyivigherited from the classical P results given by
Erdélyi and Rothe [ER10], and since BV is a special case ¢BWinherits the FPT upper bound from FV
in both destructive voter cases. We won't prove thRMAardness results for FV, since BV is a special case
of FV, FV inherits the W2]-hardness lower bound from BV in all six cases.

In all of our results we will prove W2]-hardness by parameterized reduction from thi@]womplete
problem Dominating Set defined in Section 2.3. In these swfsrwe will always start from a given Domi-
nating Set instancgG = (B,E),k), whereB = {by, b, ..., by} is the set of vertices with > 2,3 E the set of

2In this paper we will use the symbWl strictly for voters. From the next section on, we will use symbolB instead oV for the
set of vertices in a grapB.
3Note that the assumptian> 2 can be made without loss of generality, since the problemiBating Set remains V2j-complete.



Fallback Voting Bucklin
Control by Constructive| Destructive || Constructive| Destructive
Adding a Limited Number of Candidates W [2]-hard W{2]-hard || W[2]-hard W{2]-hard
Deleting Candidates W|2]-hard W/[2]-hard || W][2]-hard W{2]-hard
Adding Voters W/2]-hard (FPT) W/2]-hard (FPT)
Deleting Voters W{2]-hard (FPT) W{2]-hard (FPT)

Table 1: Overview of results.

edges in grapl®, andk < nis a positive integer. In the following constructions, ttet sf candidates will
always contain the s& which means that for each vertbxe B we will have a candidathk, in our election.
We will also refer to candidate sik[bi], which is the set of candidates corresponding to the veriit&
that are inN[b;].

3.1 Candidate Control

Theorem 3.1. Both constructive and destructive control by adding caatid in BV ara/N[2]-hard.

Proof. We first prove W2]-hardness of constructive control by adding candidates(Ge- (B,E), k) be a
given instance of Dominating Set as described above. DédfmelectionC,V), whereC = {c,w} UBUXU
YUZwith X = {x1,%0,...,%—1}, Y = {Y1,¥2,.-.,¥n-2}, Z={21,2,...,2z,-1} is the set of candidatew is
the distinguished candidate, avids the following collection of &8+ 1 voters:

1. For each, 1<i < n, there is one voter of the form:

Ne[bi] X ¢ ((B—Ne[bi]) UY UZ U {w}).

2. There are voters of the form:
Y ¢ w(BUXUZ).

3. There is one voter of the form:
Z w (BUXUYU{c}).

Note that candidates is not a unique Bucklin winner of the electi¢@ — B,V), since only candidates
c andw reach the SMT until leveh (namely, exactly on leveh) with SCOW%C,B‘V)(W) =n+1<2n=
SCOV%‘C,B‘V)(C) thus,c is the unique leveh Bucklin winner of the electioiC — B,V). Now, letC — B be the
set of qualified candidates and Bbe the set of spoiler candidates.

We claim thatG has a dominating set of sizeif and only if w can be made the unique Bucklin winner
by adding at mosk candidates.

From left to right: Suppos& has a dominating set of size Add the corresponding candidates to the
election. Now candidategets pushed at least one position to the right in each af tleges in the first voter
group. Thus, candidate is the unique Bucklin winner of the election, sinwés the only candidate on level
nwho passes the SMT.

From right to left: Suppos& can be made the unique Bucklin winner by adding at nkasandidates
denoted byB'. By adding candidates from candidate Beonly votes in voter group 1 are changed. Note that
candidatec has already a score afon leveln — 1 in voter group 2 thus; cannot have any more approvals
until leveln (else,scorQ‘(CiB)UB,,v)(c) > n+ 1 so,c would tie or beatv on leveln). This is possible only if
candidatec is pushed in all votes in voter group 1 at least one positidheaight. This, however, is possible
only if G has a dominating set of sike



For the W2]-hardness proof in the destructive case, we have to do mimamges to the above con-
struction, and we will change the roles of candidatendw®. Let (G = (B,E),k) be a given instance
of Dominating Set as described above. Define the ele¢tiN ), whereC = {c,w} UBUX UY UZ with
X={x,%2,...., Xn-1}, Y ={y1,¥2,.. ., ¥n-2}, Z={21,2»,...,Z,_2} is the set of candidates,is the distin-
guished candidate, anlis the following collection of 2+ 1 voters:

1. For each, 1<i < n, there is one voter of the form:

Ne[bi] X ¢ ((B—Ne[bi)) UYUZU {w}).

2. There ara voters of the form:
Y ¢ w(BUXUZ).

3. There is one voter of the form:
Z w c (BUXUY).

Note that again only candidatesandw pass the SMT until levah in election(C — B,V), both passing
it on leveln with scoré(‘ch,V) W) =n+1l<2n+1= scon{chﬁv)(c) thus,c is the unique Bucklin winner
of the election(C — B,V). Again, letC — B be the set of qualified candidates andBete the set of spoiler
candidates.

We claim thatG has a dominating set of siZeif and only if c can be prevented from being a unique
Bucklin winner by adding at mo&tcandidates.

From left to right: Suppos& has a dominating s’ of sizek. Add the corresponding candidates to
the election. Now candidategets pushed at least one position to the right in each ofi trates in the first
voter group. Thus, on level— 1 none of the candidates pass the SMT, awtf(ch)uB,’v)(c) =n+1=
SCO@(ch)uBI,V)(W)’ i.e., both candidatesandw reach the SMT exactly on leval and since their levai
score is equal; is not a unique Bucklin winner of the election anymore.

From right to left: Suppose can be prevented from being a unique Bucklin winner by addingostk
candidates denoted [B/. By a similar argument as in the constructive case, this ssipée only ifG has a
dominating set of sizk. O

Theorem 3.2. Both constructive and destructive control by deleting ddates in BV ardV[2]-hard.

Proof. We will start with the W2]-hardness proof in the constructive case. [Bt= (B,E),k) be a
given instance of Dominating Set. Define the electi@V), whereC = {c,w} UBUXUY UZ with
?( = {X%’X?""_’anfz{‘leNq[biH\}' Y = {yl,yz,...,_ynfl}, Z = {z1,2,...,Z7_2} is the set of candidatesy
is the distinguished candidate, avids the following collection of &8+ 1 voters:

1. For each, 1<i < n, there is one voter of the form:
Ne[bi] Xi w (B—Nc[bi])U(X=X)uYuzZu{c}),
WhEreX: = {Xy i-1yn-si4 nelop) X5y INcloyi -
2. There aren — 1 voters of the form:

Y ¢ (BuUXuzu{wy}).

4Here, changing the roles ofandw means simply that now not candidatebut ¢ is the distinguished candidate.



3. There is one voter of the form:
(Y—={y1}) ¢ w (BUXUZU{y1}).

4. There is one voter of the form:
Z w c (BUXUY).

Note that candidateis the unique leveh Bucklin winner of the electioriC,V), since onlyc passes the
SMT on leveln among all candidates.

We claim thatG has a dominating set of sizeif and only if w can be made the unique Bucklin winner
by deleting at mosit candidates.

From left to right: Suppos€ has a dominating s& C B of sizek. Delete the corresponding candidates.
Now candidatev gets pushed at least one position to the left in each ohthetes in the first voter group.
Since candidate reaches the SMT on IevelandscorQ‘CiB,yv)(w) =n+2>n+1= SCOV%,BW)(C)’ and
no other candidate passes the SMT until layetandidatew is the unique Bucklin winner of the resulting
election.

From right to left: Suppose can be made the unique Bucklin winner of the election by dejett most
k candidates. Since candidatalready passes the SMT on levelw has to beat no later than on leveh.
This is possible only if candidat® is pushed in all votes in voter group 1 at least one positiotiéoleft.
This, however, is possible only @ has a dominating set of sike

For the W2J-hardness proof in the destructive case in Bucklin(@&t= (B,E),k) be a given instance
of Dominating Set. Define the electid@,V), whereC = {c,w} UBUM UXUY1UYo,UZ; UZ, with M =
{me, M. omid, X = {x0,%, - X osn gt Yo =YL, Y12, Yun-1h Ya = {Y2 1, Y22, Yok} Za =
{z1,212,..., 2802}, Zo={21,222,...,22n-2} iS the set of candidatesjs the distinguished candidate, and
V is the following collection of 8+ 1 voters:

1. For each, 1<i < n, there is one voter of the form:

Ne[bi] Xi w M ((B—N¢[bi))U(X=X)UY1UYUZyUZ,U{c}),

WhereXi = {X,_i_gn-31-4 oyl Xin—5)_y [INeloy 1
2. There are voters of the form:

Yic Y, (BUMUXUZJ_UZzU{W}).

3. There is one voter of the form:

Z1 wc 2 (BUMUXIUXUYLUY,).

Note that candidateis the unique leveh Bucklin winner of the electioriC,V), since onlyc passes the
SMT on leveln among all candidates.

We claim thatG has a dominating set of sizeif and only if c can be prevented from being a unique
Bucklin winner by deleting at mogtcandidates.

From left to right: Suppos€ has a dominating s& C B of sizek. Delete the corresponding candidates.
Now candidatev gets pushed at least one position to the left in each ohthetes in the first voter group.
Since candidate passes the SMT no earlier than on Ienelndscorc{ch,,V) (wW)y=n+1= scort{ch,’V)(c),
candidatet is not a unique Bucklin winner of the resulting election ammys



From right to left: Suppose can be prevented from being a unique Bucklin winner of thetila by
deleting at mosk candidates. Note that deleting one candidate from an electin move the strict majority
level of another candidate at most one level to the left. @lesthat only candidates can prevent from
winning the election, since is the only candidate other thanwho passes the SMT until leval+ k. In
election(C,V), candidatev passes the SMT no earlier than on lemet 1, candidates not before leveh.
Candidatev could only prevent from winning by reaching the SMT no later than on leneThis is possible
only if candidatew is pushed in all votes in voter group 1 at least one positichédeft. This, however, is
possible only ifG has a dominating set of sike O

Theorem 3.3. Both constructive and destructive control by adding anetied candidates in FV ar&/[2]-
hard.

3.2 Voter Control
Theorem 3.4. Constructive control by adding voters in BW§2]-hard.

Proof. Let (G = (B,E),k) be a given instance of Dominating Set. Define the eleqt@v UW), where
C=BU{wx}UYUZ, withY = {y1,ys,... Ysn INe[bi)l| }» £ = {21, 22, - .-, Za-1} IS the set of candidatewis
the distinguished candidate, avidUW is the f(iIJIowing collection oh+ k— 1 voters:

1. V is the collection ok — 1 registered voters of the form:

XZBwY

2. W is the collection of unregistered voters, where for eiadh< i < n, there is one votes; of the form:
(B—Nc[hi]) Yi w x (Ne[biJu(Y-=Y)U2Z),
WHEreY: = {¥(51-4 ngloy )+~ Yy Nl -

Clearly,x is the level 1 Bucklin winner of the electidi€,V).

We claim thatG has a dominating set of sizeif and only if w can be made the unique Bucklin winner
by adding at mosk voters fromw.

From left to right: Suppos€ has a dominating s& of sizek. Add the corresponding voters from &gt
to the election (i.e., each votex if b; € B'). Now there are R— 1 registered voters, thus the SMTNE = k.
Since until leveln only candidatav passes the SMT, namely on levelw is the unique Bucklin winner of
the resulting election.

From right to left: Suppose can be made the unique Bucklin winner by adding at rkasiters (denote
these voters bW'’). Note thalscore%cjvuw,) (x) = k—1. Since if a candidate passes the SMT on level 1, he or
she is the unique winner of the electidn; 1 cannot be the SMT. This is only possible}['|| > k— 1. If
W[ =k—1 thenscoré‘cf\lluw,)(w) =k-1<M=k< scoré‘é\l/uw,)(x) =2k — 1. In this case candidate
couldn’t be made the unique Bucklin winner of the electiohud, ||W’|| = k. Note thalscort{c‘ww,) (w) =
k>k—-1= SCO@C,VLJW/) (x) andk is also a strict majority. Since we could makethe unique Bucklin
winner of the election, none of the candidate8inan be ranked on the firstpositions by each voter W/,
otherwise there would exist a candidate B with scor({c.\,uw,)(b) = k andb would reach the SMT on a

higher level thamw. This is only possible iG has a dominating set of sike O



Theorem 3.5. Constructive control by deleting voters in BWI§2]-hard.

Proof. To prove W2]-hardness, we provide again a reduction from Dominating Bet (G = (B, E),k)
be a given instance of Dominating Set. Define the eleci@V ), whereC = {c,w} UBUXUY UZ with
X= {Xl, (| (B—Ng[o H} Y= {Y1, ’yzin:;LHNC[bi]H}’ Z= {Z]_, ... az(kfl)(nqtl)} is the set of candidatew,
is the dlstlngwshed candldate avids the following collection of 2+ k — 1 voters:

1. For each, 1<i < n, there is one votey; of the form:
Ne[bi] ¢ X ((B—N[bi))U(X=X)UYUZ) w,

WhereX = {X,, st e-Nelby) >+ %51y Il8-Neloy) | -

2. For each, 1<i < n, there is one voter of the form:
(B—Nclhi]) Yi w (Ne[bi]UXU (Y -=Y))uZu{c},
3. There ard— 1 voters of the form:
c Z (BUXUYU(Z-2)) w,

wherez; = {Z(| (n4+1)+1> - 7Zi(n+1)}-

Note that since candidate reaches the SMT only on the last level, he or she is not theueridycklin
winner of the election.

We claim thatG has a dominating set of sizeif and only if w can be made the unique Bucklin winner
by deleting at mosit voters.

From left to right: Suppos® has a dominating s& of sizek. Delete the corresponding voters from the
first voter group (i.e., each voterif by € B'). LetV’ denote the new set of voters. Now on lewe} 1 only
candidatev passes the SMT, namely Wiﬁmor(%‘cf\ll,) (W) = n= M. Thus,w is the unique Bucklin winner of
the resulting election. '

From right to left: Suppos& can be made the unique Bucklin winner by deleting at nkogbters.
Observe that deleting less thlaroters would make it impossible for candidatd¢o be the unique winner of
the election. In that case the SM; > n and sincew is ranked last place in all votes exceptrofotes, he
would reach the SMT on the last level thus, would not be thqusBucklin winner of the election Clearly,
w has to win the election on leveh-1. Now, since for all with 1 <i <n scor%*l)(b.) = Nn=scor CV) (w),
eachb; had to loose at least one point on the finst 1 levels. Obviously, we cannot delete voters from the
second voter group, else candidatevouldn’t reach the SMT on leval+ 1. So thek voters were deleted
from the first voter group. Since each candidathas lost at least one point, this is only possibl€ ifias a
dominating set of sizk. O

Theorem 3.6. Both constructive control by adding and deleting voters Yhdfe W[2]-hard.

4 Conclusions and Open Questions

In this paper we have studied the parameterized complekibeacontrol problems for the recently proposed
system offallback votingand ofBucklin voting parameterized by the amount of action taken by the chair.



In the case of constructive control, all of the problems af@]Ward. A natural question to investigate is
whether these problems remain intractable when paramettly both the amount of action and some other
measure. We have shown that all four problems of constrietid destructive control by adding or deleting
candidates are hard for }8]. What is the complexity when the parameter is both the amafiatttion and the
number of voters? We have also shown that both construainea by adding and deleting voters are hard
for W[2] in both fallback voting and Bucklin voting, and that both @lestive control by adding and deleting
voters are in FPT in both fallback voting and Bucklin votivghat is the complexity of constructive control
parameterized by both the amount of action and the numberrafidates?

Acknowledgments: We thank the anonymous COMSOC-2010 referees for their hletimments on the
preliminary version of this paper.
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