
Multivariate Complexity Analysis of

Swap Bribery

Britta Dorn and Ildikó Schlotter1

Abstract

We consider the computational complexity of a problem modeling bribery in the
context of voting systems. In the scenario of Swap Bribery, each voter assigns a
certain price for swapping the positions of two consecutive candidates in his pref-
erence ranking. The question is whether it is possible, without exceeding a given
budget, to bribe the voters in a way that the preferred candidate wins in the election.
We initiate a parameterized and multivariate complexity analysis of Swap Bribery,
focusing on the case of k-approval. We investigate how different cost functions
affect the computational complexity of the problem. We identify a special case of
k-approval for which the problem can be solved in polynomial time, whereas we
prove NP-hardness for a slightly more general scenario. We obtain fixed-parameter
tractability as well as W[1]-hardness results for certain natural parameters.

1 Introduction

In the context of voting systems, the question of how to manipulate the votes in some way
in order to make a preferred candidate win the election is a very interesting question. One
possibility is bribery, which can be described as spending money on changing the voters’
preferences over the candidates in such a way that a preferred candidate wins, while re-
specting a given budget. There are various situations that fit into this scenario: The act of
remunerating the voters in order to make them change their preferences, or paying money
in order to get into the position of being able to change the submitted votes, but also the
setting of systematically spending money in an election campaign in order to convince the
voters to change their opinion on the ranking of candidates.

The study of bribery in the context of voting systems was initiated by Faliszewski,
Hemaspaandra, and Hemaspaandra in 2006 [12]. Since then, various models have been an-
alyzed. In the original version, each voter may have a different but fixed price which is
independent of the changes made to the bribed vote. The scenario of nonuniform bribery
introduced by Faliszewski [11] and the case of microbribery studied by Faliszewski, Hemas-
paandra, Hemaspaandra, and Rothe in [13] allow for prices that depend on the amount of
change the voter is asked for by the briber.

In addition, the Swap Bribery problem as introduced by Elkind, Faliszewski, and
Slinko [10] takes into consideration the ranking aspect of the votes: In this model, each
voter may assign different prices for swapping two consecutive candidates in his preference
ordering. This approach is natural, since it captures the notion of small changes and com-
prises the preferences of the voters. Elkind et al. [10] prove complexity results for this
problem for several election systems such as Borda, Copeland, Maximin, and approval vot-
ing. In particular, they provide a detailed case study for k-approval. In this voting system,
every voter can specify a group of k preferred candidates which are assigned one point
each, whereas the remaining candidates obtain no points. The candidates which obtain the
highest sum of points over all votes are the winners of the election. Two prominent special
cases of k-approval are plurality, (where k = 1, i.e., every voter can vote for exactly one
candidate) and veto (where k = m − 1 for m candidates, i.e., every voter assigns one point

1Supported by the Hungarian National Research Fund (OTKA 67651).

Result Reference

k = 1 (plurality) P [10]
k = m − 1 (veto) P [10]
1 ≤ k ≤ m, m or n constant P [10]
1 ≤ k ≤ m, all costs = 1 P Thm. 1
k = 2 NP-complete [2]
3 ≤ k ≤ m − 2, NP-complete [10]

costs in {0, 1, 2}
2 ≤ k ≤ m − 2, NP-complete [2], Prop. 2

costs in {0, 1} and β = 0
2 ≤ k ≤ m − 2 is part of the input, NP-complete [3], Prop. 2

costs in {0, 1} and β = 0, n constant
2 ≤ k ≤ m − 2, NP-complete, W[1]-hard (β) Thm. 3

costs in {δ1, δ2}, δ2 ≥ 2δ1 > 0
1 ≤ k ≤ m FPT (m) Thm. 4
1 ≤ k ≤ m is part of the input FPT (β, n) by kernelization Thm. 5
1 ≤ k ≤ m FPT (β, n, k) by kernelization Thm. 5

Table 1: Overview of known and new results for Swap Bribery for k-approval. The results
obtained in this paper are printed in bold. Here, m and n denote the number of candidates
and votes, respectively, and β is the budget. For the parameterized complexity results, the
parameters are indicated in brackets. If not stated otherwise, the value of k is fixed.

to all but one disliked candidate). Table 1 shows a summary of research considering Swap

Bribery for k-approval, including both previously known and newly achieved results.
This paper contributes to the further investigation of the case study of k-approval that

was initiated in [10], this time from a parameterized point of view. The main goal of
this approach is to find fixed-parameter algorithms confining the combinatorial explosion
which is inherent in NP-hard problems to certain problem-specific parameters, or to prove
that their existence is implausible. This line of research has been pioneered by Downey and
Fellows [9], see also [15, 21] for two more recent monographs, and naturally expands into the
field of multivariate algorithmics, where the influence of “combined” parameters is studied,
see the recent survey by Niedermeier [22]. These approaches seem to be appealing in the
context of voting systems, where NP-hardness is a desired property for various problems,
like Manipulation, Lobbying, Control, or, as in our case, Swap Bribery. However,
NP-hardness does not necessarily constitute a guarantee against such dishonest behavior.
As Conitzer et al. [8] pointed out for the Manipulation problem, an NP-hardness result in
these settings would lose relevance if an efficient fixed-parameter algorithm with respect to
an appropriate parameter was found. Parameterized complexity can hence provide a more
robust notion of hardness. The investigation of problems from voting theory under this
aspect has started, see for example [1, 3, 4, 7, 20].

We show NP-hardness as well as fixed-parameter intractability of Swap Bribery for
certain very restricted cases of k-approval if the parameter is the budget, whereas we identify
a natural special case of the problem which can be solved in polynomial time. By contrast, we
obtain fixed-parameter tractability with respect to the parameter ‘number of candidates’ for
k-approval and a large class of other voting systems, and a polynomial kernel for k-approval
if we consider certain combined parameters.

The paper is organized as follows. After introducing notation in Section 2, we investigate
the complexity of Swap Bribery depending on the cost function in Section 3, where we

show the connection to the Possible Winner problem, identify a polynomial-time solvable
case of k-approval and a hardness result. In Section 4, we consider the parameter ‘number
of candidates’ and obtain an FPT result for Swap Bribery for a large class of voting
systems. We also consider the combination of parameters ‘number of votes’ and ‘size of the
budget’. We conclude with a discussion of open problems and further directions that might
be interesting for future investigations.

2 Preliminaries

Elections. An election is a triple E = (V, C, E), where V = {v1, . . . , vn} denotes the set of
votes or voters, C = {c1, . . . , cm} is a set of candidates, and E is the election system which
is a function mapping (V, C) to a set W ⊆ C called the winners of the election. We will
express our results for the winner case where several winners are possible, but our results
can be adapted to the unique winner case where W consists of a single candidate only.

In our context, each vote is a strict linear order over the set C, and we denote by
rank(c, v) the position of candidate c ∈ C in a vote v ∈ V .

For an overview of different election systems, we refer to [6]. We will mainly focus
on election systems that are characterized by a given scoring rule, expressed as a vec-
tor (s1, s2, . . . , sm) where m = |C|. Given such a scoring rule, the score of a candidate c in
a vote v, denoted by score(c, v), is srank(c,v). The score of a candidate c in a set of votes V
is score(c, V) =

∑
v∈V score(c, v), and the winners of the election are the candidates that

receive the highest score in the given votes.
The election system we are particularly interested in is k-approval, which is defined by

the scoring vector (1, . . . , 1, 0, . . . , 0), starting with k ones. In the case of k = 1, this is the
plurality rule, whereas (m − 1)-approval is also known as veto. Given a vote v, we will say
that a candidate c with 1 ≤ rank(c, v) ≤ k takes a one-position in v, whereas a candidate c′

with k + 1 ≤ rank(c′, v) ≤ m takes a zero-position in v.

Swap Bribery, Possible Winner, Manipulation. Given V and C, a swap in some
vote v ∈ V is a triple (v, c1, c2) where {c1, c2} ⊆ C, c1 6= c2. Given a vote v, we say that a
swap γ = (v, c1, c2) is admissible in v, if rank(c1, v) = rank(c2, v) − 1. Applying this swap
means exchanging the positions of c1 and c2 in the vote v, we denote by vγ the vote obtained
this way. Given a vote v, a set Γ of swaps is admissible in v, if the swaps in Γ can be applied
in v in a sequential manner, one after the other, in some order. Note that the obtained vote,
denoted by vΓ, is independent from the order in which the swaps of Γ are applied. We also
extend this notation for applying swaps in several votes, in the straightforward way.

In a Swap Bribery instance, we are given V , C, and E forming an election, a preferred
candidate p ∈ C, a cost function c mapping each possible swap to a non-negative integer,
and a budget β ∈ N. The task is to determine a set of admissible swaps Γ whose total cost is
at most β, such that p is a winner in the election (V Γ, C, E). Such a set of swaps is called a
solution of the Swap Bribery instance. The underlying decision problem is the following.

Swap Bribery

Given: An election E = (V, C, E), a preferred candidate p ∈ C, a cost function c
mapping each possible swap to a non-negative integer, and a budget β ∈ N.
Question: Is there a set of swaps Γ whose total cost is at most β such that p is
a winner in the election (V Γ, C, E)?

We will also show the connection between Swap Bribery and the Possible Winner

problem. In this setting, we have an election where some of the votes may be partial orders
over C instead of complete linear ones. The question is whether it is possible to extend the
partial votes to complete linear orders in such a way that a preferred candidate wins the

election. For a more formal definition, we refer to the article by Konczak and Lang [18] who
introduced this problem. The corresponding decision problem is defined as follows.

Possible Winner

Given: A set of candidates C, a set of partial votes V ′ = (v′1, . . . , v
′
n) over C,

an election system E , and a preferred candidate p ∈ C.
Question: Is there an extension V = (v1, . . . , vn) of V ′ such that each vi ex-
tends v′i, and p is a winner in the election (V, C, E)?

A special case of Possible Winner is Manipulation (see e.g. [8, 17]). Here, the given
set of partial orders consists of two subsets; one subset contains linearly ordered votes and
the other one completely unordered votes.

Parameterized complexity, Multivariate complexity. Parameterized complexity is a
two-dimensional framework for studying the computational complexity of problems [9, 15,
21]. One dimension is the size of the input I (as in classical complexity theory) and the
other dimension is the parameter k (usually a positive integer). A problem is called fixed-
parameter tractable (FPT) with respect to a parameter k if it can be solved in f(k) · |I|O(1)

time, where f is an arbitrary computable function [9, 15, 21]. Multivariate complexity
is the natural sequel of the parameterized approach when expanding to multidimensional
parameter spaces, see [22]. For example, if we regard two parameters, say k1 and k2, then
the desired FPT algorithm should run in time f(k1, k2) · |I|

O(1) for some f .
The first level of (presumable) parameterized intractability is captured by the complexity

class W[1]. A parameterized reduction reduces a problem instance (I, k) in f(k) · |I|O(1) time
to an instance (I ′, k′) such that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,
and k′ only depends on k but not on |I|.

We will use the following W[1]-hard problem [14] for the hardness reduction in this work:

Multicolored Clique

Given: An undirected graph G = (V1 ∪ V2 ∪ · · · ∪ Vk, E) with Vi ∩ Vj = ∅ for
1 ≤ i < j ≤ k where the vertices of Vi induce an independent set for 1 ≤ i ≤ k.
Question: Is there a complete subgraph (clique) of G of size k?

We will also make use of a kernelization algorithm in this work, which is a standard
technique for obtaining fixed-parameter results, see [5, 16, 21]. The idea is to transform the
input instance (I, k) in a polynomial time preprocessing step via data reduction rules into
a “reduced” instance (I ′, k′) such that two conditions hold: First, (I, k) is a yes-instance if
and only if (I ′, k′) is a yes-instance, and second, the size of the reduced instance depends
on the parameter only, i.e., |I ′| + |k′| ≤ g(p) for some arbitrary computable function g.
The reduced instance (I ′, k′) is then referred to as the problem kernel. If in addition g is a
polynomial function, we say that the problem admits a polynomial kernel. The existence of
a problem kernel is equivalent to fixed-parameter tractability of the corresponding problem
with respect to the particular parameter [21].

3 Complexity depending on the cost function

In this section, we focus our attention on Swap Bribery for k-approval. We start with the
case where all costs are equal to 1, for which we obtain polynomial-time solvability.

Theorem 1. Swap Bribery for k-approval is polynomial-time solvable, if all costs are 1.

Proof. Let V be the set of votes and C be the set of candidates. The score of any candidate is
an integer between 0 and |V |. Our algorithm finds out for each possible s∗ with 1 ≤ s∗ ≤ |V |
whether there is a solution in which the preferred candidate p wins with score s∗.

Given a value s∗, we answer the above question by solving a corresponding minimum
cost maximum flow problem. We will define a network N = (G, s, t, g, w) on a directed
graph G = (D, E) with a source vertex s and a target vertex t, where g denotes the
capacity function and w the cost function defined on E. First, we introduce the vertex sets
A = {av,c | v ∈ V, c ∈ C, rank(c, v) ≤ k}, A′ = {a′

v,c | v ∈ V, c ∈ C} and B = {bc | c ∈ C},
and we set D = {s, t, x} ∪ A ∪ A′ ∪ B. We define the arcs E as the union of the sets
ES = {sa | a ∈ A}, EA = {av,ca

′
v,c | rank(c, v) ≤ k}, EA′ = {av,ca

′
v,c′ | rank(c, v) ≤

k, rank(c′, v) > k}, EB = {a′
v,cbc | v ∈ V, c ∈ C}, EX = {bcx | c ∈ C, c 6= p}, plus the

arcs bpt and xt. We set the cost function w to be 0 on each arc except for the arcs of EA′ ,
and we set w(av,ca

′
v,c′) = rank(c′, v) − rank(c, v). We let the capacity g be 1 on the arcs of

ES∪EA∪EA′ ∪EB , we set it to be s∗ on the arcs of EX ∪{bpt}, and we set g(xt) = |V |k−s∗.
The soundness of the algorithm and hence the theorem itself follows from the following

observation (for a detailed proof, see the full version): there is a flow of value |V |k on N
having total cost at most β if and only if there exists a set Γ of swaps with total cost at
most β such that score(p, V Γ) = s∗ and score(c, V Γ) ≤ s∗ for any c ∈ C, c 6= p.

Theorem 1 also implies a polynomial-time approximation algorithm for Swap Bribery

for k-approval with approximation ratio δ, if all costs are in {1, δ} for some δ ≥ 1.
Proposition 2 shows the connection between Swap Bribery and Possible Winner.

This result is an easy consequence of a reduction given by Elkind et al. [10]. For the proof
of the other direction, see again the full version.

Proposition 2. The special case of Swap Bribery where the costs are in {0, δ} for
some δ > 0 and the budget is zero is equivalent to the Possible Winner problem.

As a corollary, Swap Bribery with costs in {0, δ}, δ > 0 and budget zero is NP-complete
for almost all election systems based on scoring rules [2]. For many voting systems such as
k-approval, Borda, and Bucklin, it is NP-complete even for a fixed number of votes [3].

We now turn to the case with two different positive costs, addressing 2-approval.

Theorem 3. (1) Swap Bribery for 2-approval, with costs in {1, 2}, is NP-complete.
(2) Swap Bribery for 2-approval, with costs in {1, 2}, is W[1]-hard, if the parameter is
the budget β, or equivalently, the maximum number of swaps allowed.

Proof. We present a reduction from the Multicolored Clique problem. Let F = (V, E)
with the k-partition V = V1 ∪ V2 ∪ · · · ∪ Vk be the given instance of Multicolored

Clique. For each 1 ≤ i < j ≤ k we let Ei,j = {xy | x ∈ Vi, y ∈ Vj , xy ∈ E}. We construct
an instance IF of Swap Bribery as follows.

The set C of candidates will be C =
⋃

i∈[k](Ai ∪ Bi ∪ Ci) ∪ D ∪ G ∪ {p} where Ai =

{aj
v | j ∈ [k], v ∈ Vi}, Bi = {bj

v | j ∈ [k], v ∈ Vi}, and Ci = {ci,j | j ∈ [k]}. (Here and
later, we write [k] for {1, 2, . . . , k}.) Our preferred candidate is p. The sets D = {d1, d2, . . . }
and G = {g1, g2, . . . } will contain dummies and guards, respectively. Our budget will be
β = 6k2−k. Regarding the indices i and j, we will suppose i, j ∈ [k] if not stated otherwise.

The set of votes will be W = WG ∪ WI ∪ WS ∪ WC . Votes in WG will define guards
(explained later), votes in WI will set the initial scores, votes in WS will represent the
selection of

(
k
2

)
edges and k vertices, and finally, votes in WC will be responsible for checking

that the selected edges connect selected vertices. We construct W such that the following
will hold for some fixed even integer K (determined later):

score(p, W) = K.
score(ci,j , W) = K + 1 for each i and j,
score(q, W) = K for each q ∈

⋃
i∈[k](Ai ∪ Bi) ∪ G, and

score(d, W) ≤ 1 for each d ∈ D.

We define the cost function c such that each swap has cost 1 or 2. We will define each
cost to be 1 if not explicitly stated otherwise. Using that each cost is at least 1, we get
that none of the candidates ranked after the position β + 2 in a vote v can receive non-zero
score in v without violating the budget. Thus, we can represent votes by listing only their
first β + 2 positions. We say that a candidate does not appear in some vote, if he is not
contained in these positions.

Dummies, guards, and truncation. First, let us clarify the concept of dummy
candidates: we will ensure that no dummy can receive more than one score in total, by
letting each d ∈ D appear in exactly one vote. This can be ensured easily by using at most
|W |(β + 2) dummies in total. We will use the sign ∗ to denote dummies in votes.

Now, we define β + 2 guards using the votes WG. We let WG contain votes of the
form wG(h) for each h ∈ [β + 2], each such vote having multiplicity K/2 in WG. We let
wG(h) = (gh, gh+1, gh+2, . . . , gβ+2, g1, g2, . . . gh−1). Clearly, score(g, WG) = K for each g ∈
G, and the total score obtained by the guards in WG cannot decrease. As we will make
sure that our preferred candidate cannot receive more than K scores without exceeding the
budget, this yields that in any possible solution, each guard must have score exactly K.

Using guards, we can truncate votes at any position h > 2 by putting arbitrarily chosen
guards at the positions h, h + 1, . . . , β + 2. This way we ensure that only candidates on the
first h− 1 positions can receive a score in this vote. We will denote truncation at position h
by using a sign † at that position.

Setting initial scores. Using dummies and guards, we define WI to adjust the initial
scores of the relevant candidates as follows. We put the following votes into WI :

(p, ∗, †) with multiplicity K,
(ci,j , ∗, †) with multiplicity K + 1 − |Ei,j | for each i 6= j,

(ci,i, ∗, †) with multiplicity K + 1 − |Vi| for each i ∈ [k], and
(q, ∗, †) with multiplicity K − 1 for each q ∈

⋃
i∈[k](Ai ∪ Bi).

The preferred candidate p will not appear in any other vote, implying score(p, W) = K.
Selecting edges and vertices. The set WS consists of the following votes:

wS(i, x) = (∗, ci,i, ai
x, †) for each i ∈ [k] and x ∈ Vi, and

wS(i, j, x, y) = (ci,j , cj,i, aj
x, ai

y, †) for each i < j, x ∈ Vi, y ∈ Vj , xy ∈ E.

The cost of swapping ci,j with cj,i and the cost of swapping ai
x with aj

y in wS(i, j, x, y) is 2.
Checking incidency. The set WC will contain the votes

wC(i, x) = (ai
x, bi−1

x , bi
x, ∗, †) for each i ∈ [k] and x ∈ Vi.

Here i− 1 is taken modulo k. In wC(i, x) we let the cost of swapping ai
x with bi−1

x and also
the cost of swapping bi

x with the neighboring dummy be 2.
It remains to define K properly. To this end, we let K be the minimum even integer not

smaller than the integers |Ei,j | for every 1 ≤ i < j ≤ k and |Vi| for each i ∈ [k]. This finishes
the construction. Note that the initial scores of the candidates are as claimed above.

Construction time. Observe |WG| = (β + 2)K/2, |WI | = O(Kk|V |), |WS | = |E| +
|V |, and |WC | = |V |. Hence, the number of votes is polynomial in the size of the input
graph F . This also implies that the number of candidates is polynomial as well, and the
whole construction takes polynomial time. Note also that β is only a function of k, hence
this yields an FPT reduction as well.

Our aim is to show the following: F has a k-clique if and only if the constructed instance
is a yes-instance of Swap Bribery. This will prove both (1) and (2).

Direction ⇐=. Suppose that IF is solvable, and there is a set Γ of swaps transforming W
into W ′ with total cost at most β such that p wins in W ′ according to 2-approval. We also
assume w.l.o.g. that Γ is a solution having minimum cost.

As argued above, score(p, W ′) ≤ K and score(g, W ′) ≥ K for each g ∈ G follow directly
from the construction. Thus, only score(p, W ′) = score(g, W ′) = K for each g ∈ G is
possible. Thus, for any i, j ∈ [k], by score(ci,j , W) = K + 1 we get that ci,j must lose at
least one score during the swaps. Considering ci,i (and the optimality of Γ), this means
that each ci,i is swapped with ai

x by Γ in wS(i, x) for some unique x ∈ Vi. We use the
notation σ(i) to denote this vertex x, i.e. we let σ(i) = x. We will show that the vertices
σ(1), σ(2), . . . , σ(k) form a k-clique in F .

Let us denote by Γvs the set of those swaps in Γ that swap ci,i with ai
σ(i) for some i ∈ [k].

Clearly, Γvs has total cost k.
Let us fix i and j now, assuming i < j. Since both ci,j and cj,i have the same score

in WI as in WΓ
I , ci,j must lose a score due to swaps in wS(i, j, x1, y1) for some x1 and y1,

and similarly, cj,i must lose a score due to swaps in wS(i, j, x2, y2) for some x2 and y2. Let
Γes(i, j) be the swaps applied in these two votes. There are three possibilities for Γes(i, j):

(a) wS(i, j, x1, y1) = wS(i, j, x2, y2), and the swaps in Γes(i, j) transform the vote
(ci,j , cj,i, aj

x1
, ai

y1
, †) into (aj

x1
, ai

y1
, ci,j , cj,i, †) through 4 swaps having total cost 4.

(b) wS(i, j, x1, y1) 6= wS(i, j, x2, y2) and as a result of the swaps in Γes(i, j), ci,j gets to the
third position of wS(i, j, x1, y1), and cj,i gets to the third position of wS(i, j, x2, y2).
In this case, |Γes(i, j)| ≥ 3 and c(Γes(i, j)) ≥ 4.

(c) wS(i, j, x1, y1) 6= wS(i, j, x2, y2) and after the swaps in Γes(i, j), at least one of ci,j and
cj,i is placed on the fourth position in one of the votes wS(i, j, x1, y1) or wS(i, j, x2, y2).
This means |Γes(i, j)| ≥ 4 and c(Γes(i, j)) ≥ 5.

From the above discussion, the cost of the swaps in Γes(i, j) is at least 4. Moreover,
as a result of the swaps in Γes(i, j), the candidates in aj

x1
, ai

y1
, aj

x2
, ai

y2
receive a total of 2

additional scores with respect to their initial score in W .
Let A∗ denote those candidates in

⋃
i∈[k] Ai which receive an additional score as a result

of the swaps in Γvs or in Γes(i, j) for some i < j. The total score gained by the candidates
in A∗ during these swaps is exactly k2. Since the initial score of each candidate in A∗ is K,
we know that the remaining swaps of Γ must force these candidates to lose a total of k2

scores. Observe that this can only happen through swaps applied in WC , and moreover,
each candidate can lose at most one score with such swaps. This implies |A∗| = k2.

Let Γc be the set of swaps in Γ applied in WC , transforming WC into a set of votes W ′
C .

The above discussion yields that score(a, WC) > score(a, W ′
C) holds for each a ∈ A∗. Since Γ

is a solution, we also obtain that score(q, WC) ≤ score(q, W ′
C) must hold for each q ∈⋃

i∈[k] Bi ∪ G. We will prove the following claim below.

Claim. c(Γc) ≥ 4k2, and equality can only be reached if

{aj
x | j ∈ [k]} ∩ A∗ = ∅ or {aj

x | j ∈ [k]} ⊆ A∗ holds for each x ∈ V . (1)

Using this claim, c(Γ) = c(Γvs) +
∑

i<j c(Γvs(i, j)) + c(Γc) ≥ k + 4
(
k
2

)
+ 4k2 = 6k2 − k = β

follows. Thus, equalities must hold everywhere, resulting in the following consequences.
First, (1) implies that A∗ is the union of sets of the form {a1

x, a2
x, . . . ak

x} for exactly k
vertices x. By ai

σ(i) ∈ A∗, this yields A∗ =
⋃

i,j∈[k]{a
j

σ(i)}. Recall that by our construction

of the votes wS(i, x), we know σ(i) ∈ Vi for each i.
Second, note that c(Γes(i, j)) = 4 shows that case (c) cannot happen for the

swaps Γes(i, j). Moreover, from (1) we have |A∗ ∩ Ai| = k for each i ∈ [k], which im-
plies that case (b) can neither happen. Thus, the only possibility is case (a), meaning

that the swaps of Γes(i, j) transform the vote (ci,j , cj,i, aj
x, ai

y, †) for some x and y into a

vote (aj
x, ai

y, ci,j , cj,i, †). However, by the definition of wS(i, j, x, y) we know x ∈ Vi, y ∈ Vj ,

and xy ∈ E. But from A∗ =
⋃

i,j∈[k]{a
j

σ(i)}, we get that only x = σ(i) and y = σ(j) is

possible. Hence, σ(i) and σ(j) are neighboring for each i < j, proving the first direction.
Before proving the other direction, it remains to show our claim. Let us fix some x ∈ V ,

and let us suppose {aj
x | j ∈ [k]}∩A∗ 6= ∅. Let |A∗ ∩{aj

x | j ∈ [k]}| = a∗
x, and let c(i) be the

total cost of the swaps in Γc applied to wC(i, x). We are trying to show that
∑

i∈[k] c(i) ≥ 4a∗
x

and equality implies a∗
x = k.

Recall that ai
x appears only in the vote wC(i, x) = (ai

x, bi−1
x , bi

x, ∗, †) in WC . We will use
0-1 variables αi and βi to denote whether the score of ai

x and bi
x, respectively, are changed in

wC(i, x) as a result of the swaps in Γc. The following are elementary observations (sometimes
we also use that Γc is of minimum cost, and we take i − 1 modulo k):

1. If αi = 1 and βi = 0 then c(i) = 5. (In this case, βi−1 = 0 must hold.)
2. If αi = 0 and βi = 1 then c(i) = 1. (In this case, βi−1 = 1 must hold.)
3. If αi = 0, βi = 0, and βi−1 = 0 then c(i) = 0.
4. If αi = 0, βi = 0, and βi−1 = 1 then c(i) = 3.
5. If αi = 1, βi = 1, and βi−1 = 0 then c(i) = 3.
6. If αi = 1, βi = 1, and βi−1 = 1 then c(i) = 4.
7. If βi = 0 and βi−1 = 1, then αi = 1 is not possible.

First, note that if βi = 1 for every i ∈ [k], then
∑

i∈[k] c(i) = 4a∗
x + (k − a∗

x) follows

directly by 2 and 6 above. Thus,
∑

i∈[k] c(i) ≥ 4a∗
x holds, and equality indeed implies a∗

x = k.

Otherwise, let us call a maximal series of indices i, i + 1, . . . , j in [k] a segment, if βi =
βi+1 = · · · = βj−1 = 1 but βj = 0. We think of such series in a cyclic manner, so i > j is
possible. First, observe that the cycle 1, 2, . . . , k can be decomposed into a certain number
of segments and a remaining set H of indices h for which βh = βh−1 = 0. Let us write
I∗ = {i | ai

x ∈ A∗} for the set of indices associated with A∗. From claims 1 and 3, we know∑
h∈H c(h) = 5|I∗ ∩ H |.
Now, consider a segment i, i + 1, . . . , j, and let S denote the set of its elements. By

claims 7 and 4 we get αj = 0 and c(j) = 3. Since case 5 above can only apply for i, by
an easy calculation we obtain

∑
h∈S c(h) ≥ c(j) +

∑
h∈S∩I∗ c(h) > 4|S ∩ I∗|. Taking into

account all segments together with the set H , we get
∑

i∈[k] c(i) > 4a∗
x. From this, the claim

follows.
Direction =⇒. Let σ(1), σ(2), . . . , σ(k) form a k-clique in F where σ(i) ∈ Vi for each i.

It is straightforward to check that the following swaps of total cost β yield a solution for IF :
1. For each i ∈ [k], swap ci,i with ai

σ(i) in wS(i, σ(i)).

2. For each i < j, swap both ci,j and cj,i with both aj

σ(i) and ai
σ(j) in wS(i, j, σ(i), σ(j)).

3. For each i, j ∈ [k], swap both aj

σ(i) and bj−1
σ(i) with bj

σ(i) and the dummy in wC(i, σ(i)).

Looking into the proof of Theorem 3, we can see that the results hold even if the costs
are uniform in the sense that swapping two given candidates has the same price in any vote,
and the maximum number of swaps allowed in a vote is at most 4. By applying minor
modifications to the given reduction, Theorem 3 can be generalized to hold for the following
modified versions as well.

• If all costs are in {δ1, δ2} such that δ2 ≥ 2δ1 > 0: we only have to replace costs 1 and
2 with new costs δ1 and δ2, respectively.

• If we want p to be the unique winner: we only have to set score(p, W) = K + 1.

• If we use k-approval for some 3 ≤ k ≤ |C| − 2 instead of 2-approval: it suffices to
insert k − 2 dummies into the first k − 2 positions of each vote.

Hence, Theorem 3 shows that Swap Bribery remains hard even if we consider such natural
parameters as the maximum number of swaps allowed in a vote, the maximum number of
different possible costs, or the maximum ratio of two different costs to have a fixed value.

4 Other parameterizations

In this section, we will consider different kinds of parameterizations. First, we will look at
the parameter ‘number of candidates’. For this case, the following observation is helpful.

Let Sm = {π1, π2, . . . , πm!} be the set of permutations of size m. We say that an election
system is described by linear inequalities, if for a given set C = {c1, c2, . . . , cm} of candidates
it can be characterized by f(m) sets A1, A2, . . . Af(m) (for some computable function f) of
linear inequalities over m! variables x1, x2, . . . , xm! in the following sense: if ni denotes
the number of those votes in a given election E that order C according to πi, then the
first candidate c1 is a winner of the election if and only if for at least one index i, the
setting xj = nj for each j satisfies all inequalities in Ai.

It is easy to see that many election systems can be described by linear inequalities: any
system based on scoring rules, Copelandα (0 ≤ α ≤ 1), Maximin, Bucklin, Ranked pairs.

Theorem 4. Swap Bribery is FPT if the parameter is the number of candidates, for any
election system described by linear inequalities.

Proof. Let C = {c1, c2, . . . , cm} be the set of candidates given, and let A1, A2, . . . Af(m)

be the sets of linear inequalities over variables x1, . . . , xm! that describe the given election
system E . For some πi ∈ Sm, let vi denote the vote that ranks C according to πi. We
describe the given set V of votes by writing ni for the multiplicity of the vote vi in V .

Our algorithm solves f(m) integer linear programs with variables T = {ti,j | i 6= j,
1 ≤ i, j ≤ m!}. We will use ti,j to denote the number of votes vi that we transform into
votes vj ; we will require ti,j ≥ 0 for each i 6= j. Let V T denote the set of votes obtained
by transforming the votes in V according to the variables ti,j for each i 6= j. Such a
transformation from V is feasible if

∑
j 6=i ti,j ≤ ni holds for each i ∈ [m!] (inequality A).

By an observation in [10], we can compute the price ci,j of transforming the vote vi

into vj in O(m3) time. Transforming V into V T can be done with total cost at most β, if∑
i,j∈[m!] ti,jci,j ≤ β (inequality B).

We can express the multiplicity x′
i of the vote vi in V T as x′

i = ni +
∑

j 6=i tj,i−
∑

i6=j ti,j .
For some i ∈ [f(m)], let A′

i denote the set of linear inequalities over the variables in T
that are obtained from the linear inequalities in Ai by substituting xi with the above given
expression for x′

i. Using the description of E with the given linear inequalities, we know
that the preferred candidate c1 wins in (V T , C, E) for some values of the variables ti,j if
and only if these values satisfy the inequalities of A′

i for at least one i ∈ [f(m)]. Thus, our
algorithm solves Swap Bribery by finding a non-negative assignment for the variables in T
that satisfies both the inequalities A, B, and all inequalities in A′

i for some i.
Solving such a system of linear inequalities can be done in linear FPT time, if the

parameter is the number of variables [19]. By |T | = (m! − 1)m! the theorem follows.

Similarly, we can also show fixed-parameter tractability for other problems if the pa-
rameter is the number of candidates, for example for Possible Winner (this result was
already obtained for several election systems by Betzler et al., [3]), Manipulation (both
for weighted and unweighted voters), several variations of Control (this result was already
obtained for Llull and Copeland voting by Faliszewski et al., [13]), or Lobbying [7] (here,
the parameter would be the number of issues in the election). Since our topic is Swap

Bribery, we will not go into detail here.
Finally, we consider a combined parameter and obtain fixed-parameter tractability.

Theorem 5. If the minimum cost is 1, then Swap Bribery for k-approval (where k is
part of the input) with combined parameter (|V |, β) admits a kernel with O(|V |2β) votes and
O(|V |2β2) candidates. Here, V is the set of votes and β is the budget.

Proof. Let V , C, p ∈ C, and β denote the set of votes, the set of candidates, the preferred
candidate, and the budget given, respectively. The idea of the kernelization algorithm is
that not all candidates are interesting for the problem: only candidates that can be moved
within the budget β from a zero-position to a one-position or vice versa are relevant.

Let Γ be a set of swaps with total cost at most β. Clearly, as the minimum possible
cost of a swap is 1, we know that there are only 2β candidates c in a vote v ∈ V for which
score(c, v) 6= score(c, vΓ) is possible, namely, such a c has to fulfill k − β + 1 ≤ rank(c, v) ≤
k + β. Thus, there are at most 2β|V | candidates for which score(c, V) 6= score(c, V Γ) is

possible; let us denote the set of these candidates by C̃. Let c∗ be a candidate in C \ C̃

whose score is the maximum among the candidates in C \ C̃.

Note that a candidate c ∈ C \ (C̃ ∪ {c∗, p}) has no effect on the answer to the problem
instance. Indeed, if score(p, V Γ) ≥ score(c∗, V Γ), then the score of c is not relevant, and
conversely, if score(p, V Γ) < score(c∗, V Γ) then p loses anyway. Therefore, we can disregard

each candidate in C \ C̃ except for c∗ and p.
The kernelization algorithm constructs an equivalent instance K as follows. In K, nor

the budget, nor the preferred candidate will be changed. However, we will change the value
of k to be β + 1, so the kernel instance K will contain a (β + 1)-approval election2. We
define the set VK of votes and the set CK of candidates in K as follows.

First, the algorithm “truncates” each vote v, by deleting all its positions (together with
the candidates in these positions) except for the 2β positions between k − β + 1 and k + β.
Then again, we shall make use of dummy candidates (see the proof of Theorem 3); we
will ensure score(d, V Γ) ≤ 1 for each such dummy d. Swapping a dummy with any other
candidate will have cost 1 in K. Now, for each obtained truncated vote, the algorithm inserts
a dummy candidate in the first position, so that the obtained votes have length 2β + 1. In
this step, the algorithm also determines the set C̃ and the candidate c∗. This can be done
in linear time. We denote the votes3 obtained in this step by Vr. We do not change the
costs of swapping candidates of C̃ ∪ {c∗, p} in some vote v ∈ Vr.

Next, to ensure that K is equivalent to the original instance, the algorithm constructs
a set Vd of votes such that score(c, Vr ∪ Vd) = score(c, V) holds for each candidate c in

C̃ ∪ {p, c∗}. This can be done by constructing score(c, V) − score(c, Vr) newly added votes
where c is on the first position, and all the next 2β positions are taken by dummies. This
way we ensure score(c, Vd) = score(c, V Γ

d) for any set Γ of swaps with total cost at most β.

If D is the set of dummy candidates created so far, then let CK = C̃ ∪ {p, c∗} ∪ D. To
finish the construction of the votes, it suffices to add for each vote v ∈ Vr∪Vd the candidates
not yet contained in v, by appending them at the end (starting from the (2β+1)-th position)
in an arbitrary order. The obtained votes will be the votes VK of the kernel.

The presented construction needs polynomial time. Using the above mentioned argu-
ments, it is straightforward to verify that the constructed kernel instance is indeed equivalent
to the original one. Thus, it remains to bound the size of K.

Clearly, |C̃ ∪ {p, c∗}| ≤ 2|V |β + 2. The number of dummies introduced in the first phase
is exactly |Vr| = |V |. As the score of any candidate in V is at most |V |, the number of votes
created in the second phase is at most (2|V |β + 2)|V |, which implies that the number of
dummies created in this phase is at most (2|V |β + 2)|V | · 2β. Therefore, we obtain |CK | ≤
|V | + (2|V |β + 2)(2|V |β + 1) = O(|V |2β2), and also |VK | ≤ (2|V |β + 3)|V | = O(|V |2β).

2We use β + 1 instead of β to avoid complications with the case β = 0.
3Actually, these vectors are not real votes in the sense that they do not contain each candidate, but at

the moment we do not care about this.

Applying similar ideas, a kernel with (|V |+k)β candidates is easy to obtain, which might
be favorable to the above result in cases where k is small.

5 Conclusion

We have taken the first step towards parameterized and multivariate investigations of Swap

Bribery under certain voting systems. We obtained W[1]-hardness for k-approval if the
parameter is the budget β, while Swap Bribery could be shown to be in FPT for a very
large class of voting systems if the parameter is the number of candidates. This revaluates
previous NP-hardness results: Swap Bribery could be computed efficiently if the number
of candidates is small, which is a common setting, e.g. in presidential elections.

However, we have shown this via an integer linear program formulation, using a result by
Lenstra, which does not provide running times that are suitable in practice. Here, it would
be interesting to give combinatorial algorithms that compute an optimal swap bribery. This
might be particularly relevant for a scenario described by Elkind et al. [10], where bribery
is not necessarily considered as an undesirable thing, like in the case of campaigning.

As Elkind et al. [10] pointed out, it would be nice to characterize further natural
polynomial-time solvable cases of Swap Bribery. We provided one such example with
Theorem 1 for k-approval in the case where costs are equal to 1. By contrast, already the
case of two different costs δ1, δ2 with δ2 ≥ 2δ1 > 0 becomes NP-complete for k-approval
(2 ≤ k ≤ m − 2) and W[1]-hard if the parameter is the budget β. We believe that this can
be generalized to the case of two different (arbitrary) positive costs.

There are plenty of possibilities to carry on our initiations. First, there are more pa-
rameterizations to be looked at, and in particular the study of combined parameters in the
spirit of Niedermeier [22], see e.g. [1], is an interesting approach.

Also, we have focused our attention to k-approval, but the same questions could be
studied for other voting systems, or for the special case of Shift Bribery which was shown
to be NP-complete for several voting systems [10], or other variants of the bribery problem
as mentioned in the introduction. For instance, we have only looked at constructive swap
bribery, but the case of destructive swap bribery (when our aim is to achieve that a disliked
candidate does not win) is worth further investigation as well.

Acknowledgments. We thank Rolf Niedermeier for an inspiring initial discussion on this
topic.

References

[1] N. Betzler. On problem kernels for possible winner determination under the k-approval
protocol. In Proc. of 35th MFCS, 2010.

[2] N. Betzler and B. Dorn. Towards a dichotomy for the possible winner problem in
elections based on scoring rules. J. Comput. Syst. Sci., In Press, 2010.

[3] N. Betzler, S. Hemmann, and R. Niedermeier. A multivariate complexity analysis of
determining possible winners given incomplete votes. In Proc. of 21st IJCAI, pages
53–58, 2009.

[4] N. Betzler and J. Uhlmann. Parameterized complexity of candidate control in elections
and related digraph problems. Theor. Comput. Sci., 410(52):5425–5442, 2009.

[5] H. L. Bodlaender. Kernelization: New upper and lower bound techniques. In IWPEC,
pages 17–37, 2009.

[6] S. J. Brams and P. C. Fishburn. Voting procedures. In Handbook of Social Choice and
Welfare, volume 1, pages 173–236. Elsevier, 2002.

[7] R. Christian, M. Fellows, F. Rosamond, and A. Slinko. On complexity of lobbying in
multiple referenda. Review of Economic Design, 11(3):217–224, November 2007.

[8] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard
to manipulate? J. ACM, 54(3):1–33, 2007.

[9] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[10] E. Elkind, P. Faliszewski, and A. Slinko. Swap bribery. In Proc. of 2nd SAGT, volume
5814 of LNCS, pages 299–310. Springer, 2009.

[11] P. Faliszewski. Nonuniform bribery. In Proc. 7th AAMAS, pages 1569–1572, 2008.

[12] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. The complexity of bribery
in elections. In Proc. of 21st AAAI, pages 641–646, 2006.

[13] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Llull and
copeland voting computationally resist bribery and constructive control. J. Artif. Intell.
Res. (JAIR), 35:275–341, 2009.

[14] M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette. On the parameterized
complexity of multiple-interval graph problems. Theor. Comput. Sci., 410(1):53–61,
2009.

[15] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[16] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization.
SIGACT News, 38(1):31–45, 2007.

[17] E. Hemaspaandra and L. A. Hemaspaandra. Dichotomy for voting systems. J. Comput.
Syst. Sci., 73(1):73–83, 2007.

[18] K. Konczak and J. Lang. Voting procedures with incomplete preferences. In Proc. of
IJCAI-2005 Multidisciplinary Workshop on Advances in Preference Handling, 2005.

[19] H. Lenstra. Integer programming with a fixed number of variables. Math. of OR,
8:538–548, 1983.

[20] H. Liu, H. Feng, D. Zhu, and J. Luan. Parameterized computational complexity of
control problems in voting systems. Theor. Comput. Sci., 410(27-29):2746–2753, 2009.

[21] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,
2006.

[22] R. Niedermeier. Reflections on multivariate algorithmics and problem parameterization.
In Proc. of 27th STACS, pages 17–32, 2010.

Britta Dorn
Wilhelm-Schickard-Institut für Informatik, Universität Tübingen
Sand 13, 72076 Tübingen, Germany
Email: bdorn@informatik.uni-tuebingen.de

Ildikó Schlotter
Budapest University of Technology and Economics
H-1521 Budapest, Hungary
Email: ildi@cs.bme.hu

