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Abstract

We consider the problem of manipulating elections via cloning candidates. In our
model, a manipulator can replace each candidate c by one or more clones, i.e., new
candidates that are so similar to c that each voter simply replaces c in his vote with
the block of c’s clones. The outcome of the resulting election may then depend on
how each voter orders the clones within the block. We formalize what it means for a
cloning manipulation to be successful (which turns out to be a surprisingly delicate
issue), and, for a number of prominent voting rules, characterize the preference
profiles for which a successful cloning manipulation exists. We also consider the
model where there is a cost associated with producing each clone, and study the
complexity of finding a minimum-cost cloning manipulation. Finally, we compare
cloning with the related problem of control via adding candidates.

1 Introduction

In real-life elections with more than two candidates, the winner does not always have broad
political support. This is possible, for example, when the opposing views are represented by
several relatively similar candidates, and therefore the vote in favor of the opposition gets
“split”. For example, it is widely believed that in the 2000 U.S. Presidential election spoiler
candidate Ralph Nader have split votes away from Democratic candidate Al Gore allowing
Republican candidate George W. Bush to win.

One can also imagine scenarios where having several similar candidates may bias the
outcome in their favor. For example, suppose that an electronics website runs a competition
for the best digital camera by asking consumers to vote for their two favorite models from
a given list. If the list contains one model of each brand, and half of the consumers prefer
Sony to Nikon to Kodak, while the remaining consumers prefer Kodak to Nikon to Sony,
then Nikon will win the competition. On the other hand, if each brand is represented by
several similar models, then the “Sony” customers are likely to vote for two models of Sony,
the “Kodak” customers are likely to vote for two models of Kodak, and Nikon receives no
votes.

The above-described scenarios present an opportunity for a party that is interested in
manipulating the outcome of an election. Such a party—most likely, a campaign manager
for one of the candidates—may invest in creating “clones” of one or more candidates in order
to make its most preferred candidate (or one of its “clones”) win the election. A natural
question, then, is which voting rules are resistant to such manipulation, and whether the
manipulator can compute the optimal cloning strategy for a given election.

The first study of cloning was undertaken by Tideman [18], who introduced the concept
of “independence of clones” as a criterion for voting rules. He considered a number of well-
known voting rules, and discovered that among these rules, STV was the only one that
satisfied this criterion. However, STV does not satisfy many other important criteria for
voting rules, e.g., Condorcet consistency. Thus, Tideman [18] proposed a voting rule, the
“ranked pairs rule,” that was both Condorcet-consistent and independent of clones in all but
a small fraction of settings. Subsequently, Zavist and Tideman [19] proposed a modification
of this rule that is completely independent of clones. Later it was shown that some other
voting rules, such as Schulze’s rule [17], are also resistant to cloning.

1This paper in its preliminary form will be presented at AAAI-2010.



A related concept of composition consistency as well as its weaker version, cloning con-
sistency, was considered by Laffond at al. [11] and by Laslier [12]. They proved that a
number of tournament solutions such as the Banks Set, the Uncovered Set, the Tournament
Equilibrium Set (TEQ), and the Minimal Covering Set are composition-consistent. They
also demonstrated that various tournament solution concepts and voting rules such as the
Top Cycle, the Slater rule, the Copeland rule, and all scoring rules are not composition-
consistent.

In this paper we take a rather different perspective on cloning: Instead of looking at
cloning as a manipulative action that should be prevented, we view cloning as a campaign
management tool. This point of view raises a number of questions that have not been
considered before(or, have not been considered from this perspective):

What does it mean for cloning to be successful? The campaign manager can pro-
duce clones of existing candidates, but the voters rank them in response. We assume
that clones are similar enough to be ranked as a group by each voter; however, the
order of clones in such groups is specific to a particular voter. Since the campaign
manager cannot control or predict the order of clones in each voter’s ranking, we as-
sume that this order is random (that is, each voter assigns equal probability to each
possible order of the cloned candidates). Thus, the success of a cloning manipulation
is a random event, and we can measure it probability. Let q be some real number be-
tween 0 and 1. We say that manipulation by cloning is q-successful if the probability
of electing the desired candidate is at least q. We focus on two extreme cases: one
where no matter what the voters do, the campaign manager’s preferred candidate p
wins (cloning is 1-successful), and one where there is a non-zero chance that p wins
(by a slight abuse of notation, we will call such cloning is 0-successful).

In which instances of elections can cloning be successful? While previous work
demonstrates that many well-known voting rules are susceptible to cloning, no
attempt has been made to characterize the elections in which a specific candidate can
be made a winner with respect to a given voting rule by means of cloning. However,
from the point of view of a campaign manager who considers cloning as one of the
ways to run the campaign, such characterizations are crucial. Thus, in this paper we
characterize cloning-manipulable elections for several prominent voting rules. Often,
manipulable elections can be characterized in terms of well-known notions of social
choice such as Pareto optimality, Condorcet loser, or Uncovered Set.

Which candidates can be cloned and to what extent? The existing work on cloning
does not place any restrictions on the number of clones that can be introduced, or on
which candidates can be cloned at all. On the other hand, it is clear that in practical
campaign management scenarios these issues cannot be ignored: not all candidates
can be cloned, and creating a clone of a given candidate may be costly. Thus, we
consider settings in which each clone of each candidate comes at some cost, and we
seek a least expensive successful cloning strategy. However, mostly we focus on the
standard model where clones come at zero cost, and on the unit cost model, where all
clones have the same cost.

What is the computational complexity of finding cloning strategies? Finally, we
consider the computational complexity of finding successful cloning strategies. In
practice, it is not sufficient to know that cloning might work: We need to know ex-
actly which strategy to use. We believe that our paper is the first to consider the
computational aspect of cloning. Following the line of work initiated by the semi-
nal papers of Bartholdi, Tovey, and Trick [1, 2], we seek to establish which cloning



problems are NP-hard for a given voting rule, and which are solvable in polynomial
time.

One might argue that in real-life elections cloning isn’t really a practical campaign man-
agement tool. After all, creating even a single clone may well be too difficult or too costly.
Nonetheless, below we provide two natural examples where our model of cloning is practical
and well-motivated.

First, let us consider an election in which parties nominate candidates for some position,
and each party can nominate several candidates. From the point of view of the voters,
especially those not following the political scene closely, candidates from the same party are
perceived as clones. A party’s campaign manager might attempt to strategically choose the
number of candidates her party should nominate, and, in fact, she might even be able to
affect the number of candidates nominated by other parties (e.g., by accusing them of not
giving the voters enough choice).

Second, let us consider an environment where, as suggested by Ephrati and Rosenschein
in their classic paper [6], software agents vote to choose a joint plan (that is, the candidates
are possible joint plans or steps of possible joint plans). In such a system, the agents can
easily come up with minor variations of the (steps of the) plan, effectively creating clones
of the candidates. (Laslier [12] has given a very similar example regarding a society of
agents choosing a project to implement.) In both cases, the assumption that all clones are
ranked contiguously and the requirement that finding a successful cloning strategy should
be computationally easy are particularly relevant and realistic.

2 Preliminaries

Given a set A of alternatives (also called candidates), a voter’s preference R is a linear order
over A, i.e., a total transitive antisymmetric binary relation over A. An election E with n
voters is given by its set of alternatives A and a preference profile R = (R1, . . . , Rn), where
Ri is the preference of voter i; we write E = (A,R). For readability, we sometimes write
≻i in place of Ri. Also, we denote by |R| the number of voters in the election.

A voting rule F is often defined as a mapping from elections with a fixed set of alterna-
tives A to the set 2A of all subsets of A. However, in this work, we are interested in situations
where the number of alternatives may change. Thus, we require voting rules to be defined
for arbitrary finite sets of alternatives and preference profiles over those alternatives. Most
well-known voting rules (see below) fit this more demanding definition; for ones that do not
(e.g., scoring rules), we explain how to adapt their standard definition to our setting. Thus,
we say that a voting rule F is a mapping from pairs of the form E = (A,R), where A is
some finite set and R is a preference profile over A, to subsets of A. The elements of F(E)
are called the winners of the election E. Thus, we allow an election to have more than
one winner, i.e., we work with social choice correspondences (also called non-unique winner
model.)

In this paper we consider the following voting rules (for all rules described in terms of
scores the winners are the alternatives with the maximum score):

Plurality. The Plurality score ScP (c) of a candidate c ∈ A is the number of voters that
rank c first.

Veto. The Veto score ScV (c) of a candidate c ∈ A is the number of voters that do not rank
c last.

Borda. Given an election (A,R) with |R| = n, the Borda score ScB(c) of a candidate c ∈ A
is given by ScB(c) =

∑n

i=1 |{a ∈ A | c ≻i a}|.



k-Approval. For any k ≥ 1, the k-Approval score Sck(c) of a candidate c ∈ A is the number
of voters that rank c in the top k positions. Plurality is simply 1-Approval.

Plurality with Runoff. In the first stage, all but two candidates with the top two Plural-
ity scores are eliminated. Then the winner is the one of the survivors that is preferred
to the other one by at least half of the voters. We may need to break a tie after the
first round, if more than one candidate has the best or the second best score; to this
end we use the parallel universes tie-breaking rule [4].

Maximin. Given an election (A,R) with |R| = n, for any a, c ∈ A, let W (c, a) = |{i |
c ≻i a}|. The Maximin score ScM (c) of a candidate c ∈ A is given by ScM (c) =
mina∈A W (c, a), i.e., it is the number of votes c gets in his worst pairwise contest.

Copeland. The Copeland score ScC(c) of a candidate c ∈ A is |{a | W (c, a) > W (a, c)}| −
|{a | W (a, c) > W (c, a)}|. This is equivalent to saying that for each candidate a, c
gets 1 point if she wins the pairwise contest against a, 0.5 point if there is a tie, and
0 if she loses the contest.2

Many results of this paper are computational and thus we assume the reader is some-
what familiar with standard notions of computational complexity such as classes P and
NP, many-one reductions, NP-hardness and NP-completeness. Our NP-hardness results
typically follow by reductions from Exact Cover by 3-Sets problem, defined below.

Definition 2.1 ([9]). An instance (G,S) of Exact Cover by 3-Sets (X3C) is given by a
ground set G = {g1, . . . , g3K}, and a family S = {S1, . . . , SM} of subsets of G, where |Si| = 3
for each i = 1, . . . , M . It is a “yes”-instance if there is a subfamily S′ ⊆ S, |S′| = K, such
that for each gi ∈ G there is an Sj ∈ S′ such that gi ∈ Sj, and a “no”-instance otherwise.

3 Our Framework

Cloning and independence of clones were previously defined in [14, 18, 19]. However, we
need to modify the definition given in these papers in order to model the manipulator’s
intentions and the budget constraints. We will now describe our model formally.

Definition 3.1. Let E = (A, (R1, . . . , Rn)) be an election with a set of candidates A =
{c1, . . . , cm}. We say that an election E′ = (A′, (R′

1, . . . , R
′

n)) is obtained from E by replac-

ing a candidate cj ∈ A with k clones for some k > 0 if A′ = A \ {cj} ∪ {c
(1)
j , . . . , c

(k)
j } and

for each i ∈ [n], R′

i is a total order over A′ such that:

(i) for any a ∈ A \ {cj} and any s ∈ [k] it holds that c
(s)
j ≻′

i a if and only if cj ≻i a;

(ii) for any a, b ∈ A \ {cj} it holds that a ≻′

i b if and only if a ≻i b.

We say that an election E∗ = (A∗,R∗) is cloned from an election E = (A,R) if there is
a vector of non-negative integers (k1, . . . , km) such that E∗ is derived from E by replacing
each cj, j = 1, . . . , m, with kj clones.

Thus, when we clone a candidate c, we replace her with a group of new candidates that
are ranked together in all voters’ preferences. Observe that according to the definition above,

cloning a candidate cj once means simply changing his name to c
(1)
j rather than producing

an additional copy of cj . While not completely intuitive, this choice of terminology simplifies
some of the arguments in the rest of the paper.

The definition above is essentially equivalent to the one given in [19]; the main difference
is that we explicitly model cloning of more than one candidate. However, we still need to

2The original Copeland rule [5] was applied to tournaments and the score was the number of wins.



introduce the two other components of our model: a definition of what it means for a cloning
to be successful, and the budget.

We start with the former assuming throughout this discussion that the voting rule is
fixed. We observe that the final outcome of cloning depends on the relative ranking of the
clones chosen by each voter, which is not under the manipulator’s control. Thus, a cloning
may succeed for some orderings of the clones, but not for others. The election authorities
may approach this issue from the worst-case perspective, and consider it unacceptable when
a given cloning succeeds for at least one ordering of clones by voters. Alternatively, they can
take an average-case perspective, i.e.., assume that the voters rank the clones randomly and
independently, with each ordering of the clones being equally likely (due to the similarities
among the clones), and consider it acceptable for a cloning manipulation to succeed with
probability that does not exceed a certain threshold. On the other hand, a (cautious)
manipulator would view cloning as successful only if it succeeds for all orderings.

Definition 3.2. Given a positive real 0 < q ≤ 1, we say that a manipulation by cloning (or
simply cloning) is q-successful if (a) the manipulator’s preferred candidate is not a winner
of the original election, and (b) a clone of the manipulator’s preferred candidate is a winner
of the cloned election with probability at least q.

The two approaches discussed above are special cases of this framework. Indeed, a
cloning succeeds for all orderings if and only if it is 1-successful, and it succeeds for some
ordering if and only if it is q-successful for some q > 0 no matter how small it is; we abuse
notation by referring to such cloning as 0-successful. Saying that cloning is 0-successful is
equivalent to saying that the cloning would be successful if the manipulator could dictate
each voter how to order the clones. We will use this observation very often as it simplifies
proofs.

Observe that, according to our definition, the manipulator succeeds as long as any one
of the clones of the preferred candidate wins. This assumption is natural if the clones
represent the same company (e.g., Coke Light and Coke Zero) or political party. However, if
a campaign manager has created a clone of his candidate simply by recruiting an independent
candidate to run on a similar platform, he may find the outcome in which this new candidate
wins less than optimal. We could instead define success as a victory by the original candidate
(i.e., the clone c(1)), but, at least for neutral voting rules, this is essentially equivalent to the
previous definition. Indeed, any preference profile in which the original candidate wins can
be transformed into one in which some clone wins, by switching their order in each voter’s
preferences so c(1) wins with the same probability as any other clone.

Note that our definition of q-successful cloning is similar in spirit to that of [7], where
voters are bribed to increase their probabilities of voting as the briber wants.

Another issue that we need to address is that of the costs associated with cloning.
Indeed, the costs are an important aspect of realistic campaign management, as the manager
is always restricted by the budget of the campaign. The most general way to model the
cloning costs for an election with the initial set of candidates A = {c1, . . . , cm} is via a price
function p : [m] × Z

+ → Z
+ ∪ {0} ∪ {∞}, where p(i, j) denotes the cost of producing the

j-th copy of candidate ci. Note that p(i, 1) corresponds to not producing additional copies
of i, so we require p(i, 1) = 0 for all i ∈ [m]. We remark that it is natural to assume that
all costs are non-negative (though some of them may equal zero); the assumption that all
costs are integer-valued is made for computational reasons. This is not a real restriction as
monetary values are discrete.

We assume that for some positive integer t the marginal cost of introducing an additional
cloned candidate becomes constant, that is, p(i, j) = p(i, t) for j > t. This ensures that
the price function is succinctly representable. Thus our cost function is in fact a mapping



p : [m]× [t] → Z
+ ∪ {0}∪ {∞}. The two natural special cases of our model defined below—

Zero Cost and Unit Cost models—satisfy this condition.

Definition 3.3. An instance of the q-Cloning problem for q ∈ [0, 1] is given by the initial
set of candidates A = {c1, . . . , cm}, a preference profile R over A, a manipulator’s preferred
candidate c ∈ A, a parameter t > 1, a price function p : [m] × [t] → Z

+ ∪ {0} ∪ {∞}, a
budget B, and a voting rule F . We ask if there exists a q-successful cloning with respect to
F that costs at most B.

For most voting rules that we consider, it is easy to bound the number of clones needed for
0-successful or 1-successful cloning (if one exists); moreover, this bound is usually polynomial
in n and m. We focus on two natural special cases of q-Cloning:

1. Zero Cost (ZC): p(i, j) = 0 for all i ∈ [m], j ∈ Z
+. In this case we would like to

decide whether an election is manipulable at all.

2. Unit Cost (UC): p(i, j) = 1 for all i ∈ [m], j ≥ 2. This model assumes that creating
each new clone has a fixed cost equal for all candidates.

We say that an election E is q-manipulable by cloning with respect to a voting rule F if
there is a q-successful manipulation by cloning with respect to F in the ZC model. Further,
we say that E is manipulable by cloning with respect to F if it is 0-manipulable with respect
to F , and strongly manipulable by cloning with respect to F if it is 1-manipulable with
respect to F .

In the rest of the paper, we discuss the complexity of the q-Cloning problem for a
number of well-known voting rules, focusing on the ZC and UC models. Clearly, hardness
results for these special cases also imply hardness results for the general model. Somewhat
less obviously, hardness results for the ZC q-Cloning imply hardness results for UC q-
Cloning: it suffices to set B = ∞.

Note that for polynomial-time computable voting rules 0-Cloning is clearly in NP.
After a moment’s thought, we can also see that q-Cloning for such rules is in Σp

2 , the
second level of the polynomial hierarchy, for q = 1, and is in NPPP for q ∈ (0, 1). However,
in this paper we are interested in P-membership and NP-hardness results only.

4 Plurality and Similar Rules

In this section we focus on q-Cloning for Plurality, Plurality with Runoff, Veto, and Max-
imin. Surprisingly, these four rules exhibit very similar behavior with respect to cloning.

4.1 Plurality

We start by considering Plurality, which is arguably the simplest voting rule.

Theorem 4.1. An election is manipulable with respect to Plurality if and only if the ma-
nipulator’s preferred candidate c does not win, but is ranked first by at least one voter.
Moreover, for Plurality 0-cloning can be solved in linear time.

It is not too hard to strengthen Theorem 4.1 from 0-manipulability to q-manipulability
for any q < 1.

Theorem 4.2. For any q < 1, a Plurality election is q-manipulable if and only if the
manipulator’s preferred candidate c does not win, but is ranked first by at least one voter.
However, no election is strongly manipulable.



4.2 Veto and Plurality with Runoff

The Veto rule exhibits extreme vulnerability to cloning.

Theorem 4.3. Any election is strongly manipulable with respect to Veto. Moreover, for
Veto both 0-cloning and 1-cloning can be solved in linear time.

We now consider Plurality with Runoff. Observe first that cloning any alternative cannot
change what happens in the runoff: indeed, if a beats c in their pairwise contest, a would
also beat any clone of c in the runoff, and if a loses to c in their pairwise contest, a would
also lose in the runoff to any clone of c. Thus, if an alternative c is a Condorcet loser, i.e.,
for any a ∈ A\{c} a strict majority of voters prefers a to c, then c cannot be made a winner
by cloning. If it is not a Condorcet loser, then it wins at least one pairwise contest, say
against w. Then, if c and w get to the runoff, c would win the election. Further, c and w
have a non-zero probability to reach the runoff if both are ranked first at least once. Taken
together, these two considerations lead to the following criterion.

Theorem 4.4. An election is manipulable with respect to Plurality with Runoff if and only
if

(1) the manipulator’s preferred candidate c is not a current winner, and

(2) c is not a Condorcet loser and both c and some alternative w that does not beat c in
their pairwise election are ranked first by at least one voter each.

Moreover, for Plurality with Runoff 0-cloning can be solved in polynomial time.

As for Plurality, we can characterize q-manipulability for q ∈ [0, 1]. The following theorem
can be proved similarly to Theorem 4.2.

Theorem 4.5. For any q < 1, an election is q-manipulable with respect to Plurality with
Runoff if and only if it is manipulable with respect to it. However, no election is strongly
manipulable.

4.3 Maximin

Consider the following election that will be used in this section. Let E = (A,R) with
A = {a1, . . . , ak}, R = (R1, . . . , Rk), where for i ∈ [k] the preferences of the i-th voter
are given by ai ≻i ai+1 ≻i . . . ≻i ak ≻i a1 ≻i . . . ≻i ai−1. We will refer to any election
that can be obtained from E by renaming the candidates as a k-cyclic election. In this
election, for any i = 1, . . . , k, there are k− 1 voters that prefer ai−1 to ai (where we assume
ak+1 = a1). Thus, the Maximin score of each candidate in A is 1. Further, this remains true
if we add arbitrary candidates to the election, no matter how the voters rank the additional
candidates. This means that, given a candidate a ∈ A, by cloning a and telling the voters to
order the clones as in a cyclic election, we can ensure that the Maximin score of any clone
of a is 1: in an election with n voters, we create n clones of a and consider the situation
where the voters’ preferences over those clones form an n-cyclic election. This construction
enables us to prove the following result.

Theorem 4.6. An election is manipulable by cloning with respect to Maximin if and only
if the manipulator’s preferred candidate c does not win, but is Pareto-optimal. Further, for
Maximin 0-cloning can be solved in linear time. No election is strongly manipulable

It is not clear if one can strengthen the result of Theorem 4.6 to q-manipulability for
0 < q < 1. This amounts to the following question: suppose that for a fixed n we randomly



draw n permutations of {1, . . . , k}. Let P (n, k) be the probability that for each i ∈ [k] there
is a j ∈ [k] such that j precedes i in at least n − 1 permutations. Is it the case that the
probability P (n, k) approaches 1 as k → ∞? Our computations show3 that this is unlikely
to be the case. For (n, k) = (5, 20) there was only one success out of 106 random trials
and only three for (n, k) = (5, 50). For both (n, k) = (7, 20) and (n, k) = (7, 50) not a
single random trial out of 106 trials was successful. This means that, even if Maximin is
q-manipulable for q > 0, the number of clones needed would be astronomical.

5 Borda, k-Approval, and Copeland

We now consider Borda, k-Approval, and Copeland rules, for which cloning issues get sig-
nificantly more involved.

5.1 Borda Rule

For Borda rule, just as for Maximin, Pareto-optimality of the manipulator’s favorite alter-
native is necessary and sufficient for the existence of successful manipulation by cloning.
However, Borda and Maximin exhibit different behavior with respect to strong manipula-
bility. Moreover, from the point of view of finding an optimal-cost cloning, Borda appears
to be harder to deal with than Maximin.

Theorem 5.1. An election is manipulable by cloning with respect to Borda if and only if
the manipulator’s preferred candidate c does not win, but is Pareto-optimal. Moreover, UC
0-Cloning for Borda can be solved in linear time.

Briefly, an optimal cloning manipulation for Borda in the UC model is to clone c suf-
ficiently many times and ask all voters to order the clones in the same way. However, for
q > 0, cloning c is not necessarily optimal.

Strengthening Theorem 5.1 to q-manipulability for some constant q, or to strong manip-
ulability appears to be difficult. We will first characterize the elections that can be strongly
manipulated with respect to Borda by cloning the manipulator’s favorite candidate.

Proposition 5.2. An election is strongly manipulable with respect to Borda by cloning the
manipulator’s preferred candidate c if and only if any candidate whose Borda score is higher
than that of c loses to c in a pairwise contest.

The proof of Proposition 5.2 indicates which orderings of the clones are the most prob-
lematic for the manipulator: these are the orderings that, roughly speaking, grant each clone
the same number of points. But this is exactly the expected outcome if the orderings are
generated uniformly at random! Thus, our proof shows that for Borda, Pareto optimality of
the manipulator’s most preferred candidate c is insufficient for q-manipulability with q > 0
by cloning c only. However, cloning a different candidate may be a better strategy: Suppose
that c is Pareto-optimal, and, moreover, the original preference profile contains a candidate
c′ that is ranked right under c by all voters (one can think of this candidate as an “inferior
clone” of c; however, we emphasize that it is present in the original profile). Then one can
show that by cloning c′ sufficiently many times we can make c a winner with probability
1. However, cloning c itself does not have the same effect if the voters order the clones
randomly or adversarially to the manipulator. This is illustrated by the following example.

Example 5.3. Let us consider the following Borda election: C = {a, b, c, d}, there are four
voters v1, v2, v3, v4, and the preference orders of the voters are:

3We are grateful to Danny Chang for his help with these.



v1 : a ≻ c ≻ b ≻ d
v2 : a ≻ c ≻ b ≻ d
v3 : a ≻ c ≻ b ≻ d
v4 : d ≻ c ≻ b ≻ a

ScB(a) = 9
ScB(b) = 4
ScB(c) = 8
ScB(d) = 3

The winner here is a with 9 points. However, cloning b into three clones b1, b2, b3 is a 1-
manipulation in favor of c since the new score of a is 15 while the new score of c is 16, no
matter how clones are ordered. At the same time, no amount of cloning of c can have the
same effect. Indeed, after splitting c into k + 1 clones, the expected score of each clone of c
is 4(2 + k/2) = 8 + 2k, whereas a’s score is 9 + 3k.

This shows that in general, we may need to clone several candidates that are placed
between c and its “competitors” in a large number of votes, and determining the right
candidates to clone might be difficult. Indeed, it is not clear if a 1-successful manipulation
can be found in polynomial time. We thus propose determining the complexity of identifying
strongly manipulable profiles with respect to Borda as an open problem.

A related question that is not answered by Theorem 5.1 is the complexity of 0-Cloning
in the general cost model. Note that there is a certain similarity between this problem and
that of strong manipulability: in both cases, it may be suboptimal to clone c. Indeed, for
general costs, we can prove that q-Cloning is NP-hard for any rational q.

Theorem 5.4. For Borda, q-Cloning in the general cost model is NP-hard for any q ∈
[0, 1]. Moreover, this is the case even if p(i, j) ∈ {0, 1,∞} for all i ∈ [m], j ∈ Z

+.

The cost function used in the proof of Theorem 5.4 is very similar to the UC model,
except that we are not allowed to clone some of the alternatives.

5.2 k-Approval

Plurality, k-approval and Borda are perhaps the best-known representatives of a large family
of voting rules known as scoring rules, i.e., rules in which each voter grants each candidate a
certain number of points that depends on that candidate’s position in the voter’s preference
order. (Formally, Plurality, k-Approval, and Borda are families of scoring rules.) It would be
interesting to characterize scoring rules vulnerable to manipulation by cloning. Recall that
one can define a scoring rule Fw for any vector w = (w(1), . . . , w(m)) with w(i) ∈ R

+ ∪{0}
for i ∈ [m] (usually, though not always, it is also required that w(1) ≥ · · · ≥ w(m)) as
follows: given a preference profile (R1, . . . , Rn) over a set of alternatives A of size m, the
Fw-score of each alternative c ∈ A is given by

Scw(c) =

n∑

i=1

w(pos(c, i)),

where pos(c, i) is the position of c in Ri, i.e., pos(c, i) = |{a ∈ A | a ≻i c}|+1. As usual, the
winners are the alternatives with the maximum score. Note, however, that this description
does not fit our definition of a voting rule, as it only works for a fixed number of alternatives.
To fix this, we will now define scoring rules for infinite rather than finite vectors.

Definition 5.5. Given a profile (R1, . . . , Rn) over a set of alternatives A and a monotone
sequence w = (w(1), . . . , ), i.e., one that satisfies either (i) w(1) ≤ w(2) ≤ . . . or (ii)
w(1) ≥ w(2) ≥ . . . , we define the Fw-score of c ∈ A as Scw(c) =

∑n

i=1 w(|A|−pos(c, i)+1)
if w is non-decreasing and Scw(c) =

∑n

i=1 w(pos(c, i)) if w is non-increasing. The winners
under Fw are the alternatives with the maximum Fw-score.



Observe that the Borda rule corresponds to the non-decreasing sequence (0, 1, 2, 3, . . . )
and Plurality corresponds to the non-increasing sequence (1, 0, . . . ), i.e., we need to consider
both non-increasing and non-decreasing sequences to capture well-known scoring rules.

Now, we have observed that even though both Borda and Plurality are susceptible to
manipulation by cloning, they exhibit very different behavior with respect to the cloning
procedure. Indeed, under Plurality the winner will suffer from cloning, while under Borda
her position will usually strengthen (at least as long as we are focusing on manipulability
rather than strong manipulability). Further, while no election is strongly manipulable with
respect to Plurality, there is a large category of elections that are strongly manipulable with
respect to Borda. Thus, an interesting research direction is to determine the relationship
between the properties of the sequence w and the manipulability of the corresponding
scoring rule (compare with the work of Hemaspaandra and Hemaspaandra [10] on voter
manipulation of scoring rules).

However, this problem is far from being trivial. Indeed, we will now demonstrate that
there is a family of scoring rules for which deciding whether a given election is susceptible to
cloning is computationally hard. Specifically, this is the case for k-Approval for any k ≥ 2.
We start by showing this for k = 2; subsequently, we will generalize our result to the case
k > 2. Our proof gives a reduction from the problem Dominating Set, defined below.

Definition 5.6. An instance of the Dominating Set problem is a triple (V, E, s), where
(V, E) is an undirected graph and s is an integer. We ask if there is a set W ⊆ V such that
(a) |W | ≤ s and (b) for each v ∈ V we have v ∈ W or (v, w) ∈ E for some w ∈ W .

Lemma 5.7. For 2-Approval, it is NP-hard to decide whether a given election is manipulable
by cloning.

It is not hard to modify the construction in the proof of Lemma 5.7 for the case k > 2.

Theorem 5.8. For any given k ≥ 2, it is NP-hard to decide whether a given election is
manipulable by cloning with respect to k-Approval.

One can also use ideas in the proof of Theorem 5.8 to show that it is NP-hard to decide
whether an election is strongly manipulable with respect to k-Approval.

Theorem 5.9. For any given k ≥ 2, it is NP-hard to decide whether a given election is
strongly manipulable by cloning with respect to k-Approval.

5.3 Copeland

For an election E with a set of candidates A, its pairwise majority graph is a directed graph
(A, X), where X contains an edge from a to b if more than half of the voters prefer a to b;
we say that a beats b if (a, b) ∈ X . If exactly half of the voters prefer a to b, we say that a
and b are tied (this does not mean that their Copeland scores are equal).

For an odd number of voters, the graph (A, X) is a tournament, i.e., for each pair
(a, b) ∈ A2, a 6= b, we have either (a, b) ∈ X or (b, a) ∈ X . In this case, we can make use of
a well-known tournament solution concept of Uncovered Set [16, 8, 13], defined as follows.
Given a tournament (A, X), a candidate a is said to cover another candidate b if a beats b
as well as every other candidate beaten by b. The Uncovered Set of (A, X) is the set of all
candidates not covered by other candidates.

It turns out that if the number of voters is odd, the Uncovered Set coincides with the
set of candidates that can be made Copeland winners by cloning.

Theorem 5.10. For any q ∈ [0, 1], an election E with an odd number of voters is q-
manipulable with respect to cloning if and only if the manipulator’s preferred candidate c
does not win, but is in the Uncovered Set of the pairwise majority graph of E.



For elections with an even number of voters, the situation is significantly more compli-
cated. The notion of Uncovered Set can be extended to pairwise majority graphs of arbitrary
elections in a natural way (see, e.g. [3]): we say that u covers c if u beats c and all alterna-
tives beaten by c, and, in addition, c loses to all alternatives that beat u. In particular, this
means that u does not cover c if it is beaten by some alternative that is tied with c. This
definition generalizes the one for the odd number of voters, However, for an even number
of voters, the condition that c is in the Uncovered Set turns out to be necessary, but not
sufficient for manipulability by cloning.

Example 5.11. Consider an election with A = {a, b, c, u, w}. Suppose that a beats u, u
beats b, b beats w, w beats a, u and w beat c, and any other pair of candidates is tied.
Note that by McGarvey theorem [15] there are voters’ preferences that produce this pairwise
majority graph. It is easy to see that in this election c cannot be made a winner by cloning
even though it is not covered.

Instead, we can characterize cloning-manipulable profiles in terms of the properties of the
induced (bipartite) subgraph of (A, X) whose vertices are, on the one hand, the candidates
that are tied with c, and, on the other hand, the candidates that beat c as well as all
candidates beaten by c. However, it is not clear if this characterization leads to a polynomial-
time algorithm. We omit the details due to space constraints.

On the other hand, finding an optimal-cost cloning manipulation is hard even in the UC
model.

Theorem 5.12. For Copeland, UC q-Cloning is NP-hard for each q ∈ [0, 1].

6 Conclusions

We have provided a formal model of manipulating elections by cloning, characterized manip-
ulable and strongly manipulable profiles for many well-known voting rules, and explored the
complexity of finding a minimum-cost cloning manipulation. The grouping of voting rules
according to their susceptibility to manipulation differs from most standard classifications
of voting rules: e.g., scoring rules behave very differently from each other, and Maximin is
more similar to Plurality than to Copeland. Future research directions include designing
approximation algorithms for the minimum-cost cloning under voting rules for which this
problem is known to be NP-hard, and extending our results to other voting rules.
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