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Abstract

The paper studies dominant strategy mechanisms in anorsysiongle-parameter allocation
domains with monetary payments. Given a mechanism desahigm with a fixed allocation
function (e.g., efficient allocation), we seek an optimajrpant function. Restricting atten-
tion to “constant-dependent” allocation functions, weser& a general technique for finding
an optimal payment function for any mechanism design problBy construction, the opti-
mal payment function is piecewise linear, proving the exist of piecewise linear optimal
payment functions.

1 Introduction

Mechanism design, traditionally studied in economics,a® @ rapidly growing field in computer
science (e.g., see [12, 16]). Generally, it deals with protd where multiple self-interested partic-
ipants take actions to optimize individual utilities basedtheincentivesprovided to them. The
overlap of computer science and mechanism design is natt@asoning about incentives is un-
avoidable in many fundamental computer science problemg-—eeer-to-peer networks, packet
routing, and resource allocation. To this end, the tatgorithmic mechanism desigmas intro-
duced by Nisan and Ronen [11] to refer to the study of incestim computer science scenarios.
At the same time, some classic mechanism design solutitmemecomputationally efficient ap-
proximations and implementations to be of practical usg. (eomputationally efficient VCG-like
combinatorial auctions [5]).

This paper interfaces computer science and mechanismndiesiget another way: instead of
considering a particular domain and designing a mechanigmoertain properties, we are looking
for a general, unified technique that takes a mechanism m@saplem as an input, and outputs
an optimal mechanism to this problem. While this goal, inegah may sound unrealistic, this
work shows it can be effectively achieved for a wide classrobfems insingle-parameter domains
where agents have private types expressed by single numibeasnples include recently studied
problems of surplus-maximizing allocation of free res@sr¢10, 7] and fair task imposition [13]
as well as problems of surplus-maximization and fairnegaane general models where resources
are not free. Furthermore, our—at first glance, purely atlgaic—approach enables derivation of
theoretical results that provide a base for the followingtdbutions:

e Characterization. We formulate sufficient conditions for the existencgmiecewise) linear
optimal mechanisms in single-parameter domains (Theojem 2

e Existence. We identify a class of mechanism design problems charaetdiy aconstant-
dependenéllocation function (to be defined), and prove the above itimmd hold for each
problem in this class (Theorem 3).

e Construction. We develop an algorithm that finds an optimal mechanism fgigaren prob-
lem in this class (Theorem 2 and Figure 4).

IHelpful discussions with Geoffroy de Clippel, Sergey Kuatav, Lyle Ramshaw, Warren Schudy, and Meinolf Sellmann
are gratefully acknowledged.



We start with preliminaries and related work in Section 2] aresent our main theorems in Sec-
tion 3. These results provide a general and powerful toadfiadysis of mechanism design problems
in single-parameter domains: as the existence and cotistiuesults apply t@ny problem with
constant-dependent allocation, the algorithm for findimggtimal mechanism is unified within this
class of problems. In Section 4, we demonstrate the straridtiis approach on two central mech-
anism design problems of (i) surplus-maximizing resoutt®ation and (ii) fair task imposition.
First, we re-derive the mechanisms for surplus-maximizitmcation of free items by Moulin [10]
and Guo and Conitzer [7] and fair imposition of a single taglPbrteret al.[13]. We note that our
solution is not analytical but algorithmic; that is, we pide systems of linear equations whose—
unigue—solutions coincide with the mechanisms obtained in [1ar [13], for each particular
problem instance. However, in the latter case, this appra&so allowed us to easily find an ana-
lytical solution. Second, we use our method to obtain amagitmechanism for fair imposition of
multiple tasks, for which no closed form has been previotmiyd. Furthermore, in Section 5 we
apply our technique to open problems. Specifically, we ektba consideration to scenarios where
objects have costs and provide first algorithms for comgutjpstimal mechanisms for surplus max-
imizing allocation and fair imposition in these generatizgettings. Finally, our work suggests
several directions for future research outlined in Seadsion

2 Preliminaries and Related Work

Informally, amechanisnnefers to a procedure for making decisions (or, choiceg)ling multiple
agents. Suppose one item needs to be allocated among a §e@mgnts. A mechanism might collect
bids from each agent, give the item to the highest bidderchadye him his bid: this mechanism is
a first-price auction, and the choice made defines an altocati

Mechanism design is concerned with finding the best way ofinga#tecisions in a given sce-
nario (e.g., allocation). The “best” way is specified by s the decision must satisfy: e.g., the
mechanism should be fair, the agent with the highest valoaldtbe allocated, the revenue of the
seller should be maximized. Crucially, quality of a deaisttiepends on private information called
typesof the agents (e.g., their values for the item). Thereforegahanism must ensure the agents
have the incentive to reveal their types truthfully: with&oowing the true types, there is no way to
know how good a decision is. We stuslyategy-proomechanisms that make it in each agent’s best
interest to truthfully reveal his type—regardless of wieettne other agents do so or not. This—the
strongest—concept of truthfulness is caltbmminant strategy

Implementation in dominant strategies is virtually imgbks without restrictions on agents’
types. In fact, for unrestricted types (i.e., differentugafor each possible choice) only dictatorial
choice functions are implementable [6]. One way to get ouhefimpossibility is by introducing
monetary payments which are added to agent’s valuationeotliosen alternative: in this case,
agents are said to hagmasi-linear utilities A mechanism is therefore defined by a choice rtile
and a payment schemte-both are functions of the agents’ types.

However, even with money (a.k.a. transferable utilitiéisg, set of implementable mechanisms
is rather limited—the only such mechanisms are weighted JCih which motivates further re-
strictions on agents’ types. In this work, we focus on sifgdeameter domains: we restrict our
attention to allocation domains where agent’s type remtsg@e value for being allocated—in this
context, it is intuitive to refer to the choice rule as #illcation function It is known that in these
settings, any allocation function that is monotéirethe agent’s report, is implementable:

Theorem 1 (e.g., see [12] p. 229\ mechanisnif, t) is implementable if and only if for each agent
. (i) f; is monotone iny; (i) t; = h(v—;) — 7(v—;) if f; = 1 (i.e.,i is allocated) and; = h(v_;)

2|n words, monotonicity off; in v; means that if an agent is allocated when he repgrise is also allocated when he
reportsv} > ;.



otherwise (; = 0), wherer(v_;) = sup,, |1, (v,.._.)—o v: defines theritical value®*

Thus, any pair of functionéf, t) that satisfy the conditions in Theorem 1, defines a straprgpf
(i.e., truthful) mechanism. In this work, we take a monotahecation function as an input and look
for an optimal (according to provided properties) paymenction of the form above. We develop
a general algorithmic method for finding optimal paymentsdo important class of allocation
functions we term “constant-dependent”: in particutdficien® allocation functions in settings of
consideration fall in this class.

A dominant strategy mechanism does not make any assumjations the values of the agents:
desirable properties (e.qg., efficiency, individual ratiy, no subsidy) of the mechanism must hold
for all possible values the agents may have. These propartie be expressed as a system of
constraints to be met for each possible prafilef agents’ valuations and (optionally) an objective
function (e.g., revenue maximization). In this work, weddke allocation function as an input and
optimize the payment function. Using the characterizatibove, the only degree of freedom in
designing payments is the functian R*~! — R. Thus, the problem of finding optimal payments
can be stated as

optimize, z.—1_, Objective value s.t. Vv € R"
objective value is achieved
properties hold

At the first glance, this problem is hard: optimization is ofeections and there is an infinite num-
ber of constraints. However, in this paper we propose arrigthgoic approach that makes it possible
to effectively tackle such problems. Our technique explaitd makes explicit the linearity structure
present in many standard mechanism design problems. Asilg the existence of (piecewise) lin-
ear optimal payment functions follows immediately. For gomportant allocation problems, this
method offers an easy way to find the optimal payment fundaiealytically, by solving a simple
system of linear equations (see, for example, the resut2in For a general problem in this class,
it provides an algorithm for finding an optimal mechanism pomationally.

Most related to our work is the literature on optimizing reggain VCG mechanisms. In [10]
and [7], the authors independently discover the optimal f€dstribution mechanism for allocat-
ing free homogenous items. VCG redistribution schemes abesbeen designed for a public good
domain [1]. A similar result has been derived in [2] in the @t of allocating a single item. An
alternative objective of fairness was considered in [18}&sk imposition scenarios. In this paper,
we provide a general approach for addressing all of thedagms.

The model of allocating homogeneous items that have cogcamsidered in [3, 9], although
for a different purpose—to compare “random priority” anééeage cost” mechanisms. We are the
first to obtain (algorithmic) solutions for surplus-maxation and fairness in this setting.

We are aware of only one other attempt to approach mechaniesigrd problems
algorithmically—that of Automated Mechanism Design (AMDY]. However, AMD applies when
the space of agents’ types is finite and a prior over the typagdilable. In contrast, we deal with in-
finite types spaces and no priors. Our method is based otigairig the space of value profiles into
a finite number of convex regions, on each of which, as we pmlieear optimal payment function
can be defined. A similar idea was exploited in [4]; howeusgrée the partitioning is heuristic and
does not result in an optimal mechanism.

3An agenti is allocated if and only if his report is above the criticaluer (v_;).

4In stating the theorem, we restricted attentioratmnymougpayment functions: payment functions that do not depend
on agent’s identity.

5An allocation is efficient if the items are assigned to thendégi@vho value them the most.



3 Optimization, Linearity and Partition

In this section, we present our main results: Theorem 2 gesvsufficient conditions for the ex-
istence of a piecewise linear optimal mechanism, and Tihe&eonstructively proves these con-
ditions hold for the class of constant-dependent allooatigo be defined). We start by formally
stating the problem in 3.1 and explaining the idea of ourtsmiuin 3.2. The theorems appear in 3.3
and 3.4.

3.1 Setting

We consider single-parameter domains where eachaafents desires one unit of a (homogenous)
good, andv € R} represents the agents’ valuations for consuming the gaood€o). Monetary
transfers are possible, and agents’ utilities are quasali. The value profiles are such that>

ve > ... > v, (this is without loss of generality for anonymous mechamisrand since the values
are non-negative, one can scale all vectors to be in thevadt@r, 1]. We denote the space of value
profilesbyV = {v € R" | 1 > v; > vy > ... > v, > 0} and define vector_; € R"~! to indicate
values of the agents other tharnThe space of all sucfr — 1)-dimensional vectors is the same for
eachi, and is denoted bif/.

An outcomeis a pair(f,t) € {0,1}™ x R”, wheref; indicates whether agefitis allocated
(gets the item), and; represents thpaymenthe receivest( can be negative, in which case agent
pays that amount); the total utility of agenfrom the outcoméf, t) is given byu; = fv; + t;. A
mechanisnis defined by a pair of functiong: R’} — {0,1}" andt : R} — R" that determine the
allocation and payments for each possible report from tleatsgegarding their value for the item.
We take as an input an allocation functigrsatisfying the monotonicity condition in Theorem 1.
This determines the critical value(v_; ), for each agent and the only remaining degree of freedom
is the functiom(v_; ) that adjusts payments to the agents. In some applicatiaa#iuitive to view
7 as the price for being allocated ahdas the rebate distributed back to all agents; henceforth, we
refer toh as therebate function

Our goal is to findoptimal rebateghat guarantee the best possible value of a given objective
function and satisfy given constraints for each possibtgareof agents’ valuations—that is, provide
a dominant strategy implementation. The objective of oj@tion may be, for example, maximiza-
tion of social surplus (i.e., redistributing back as muclheaf budget surplus as possible when there
is no auctioneer), some measure of fairness (e.g., maxigthie lowest utility), or minimization
of budget deficit. Desirable properties of mechanisms ,(ag.subsidy, individual rationality-
fairness) are specified as constraints in the optimizatioblpm. Some combinations of properties
(e.g., no subsidy angHfairness) may be impossible to implement: this is iderdifig the lack of a
feasible solution to the optimization problem.

3.2 Linear properties

Our approach exploits the linear structure which charéseistandard mechanism design problems.
Typical constraints (e.g., individual rationality, no sidy, k-fairness) and objectives (e.g., utility
maximization, deficit minimization) are linear in valuesdgmayments of the agents. For example,
the no subsidy (or weak budget balance) constraint reqthisssimof payments to the agents to be
non-positive; utilitarian objective function maximizésetsumof agents’ values and payments. This
linearity structure lies at the heart of the idea presengsd. n

Consider the following illustrative example. Recall that are after an optimal rebate function
h : R"~! — R. In the simplest case with agents, the domain of the rebate function is the real
interval betweei® and1. The space of values istaangle given by the extreme point$, 0), (1, 0),
and(1,1) shown in Figure 1(a)—recall that the value vectors are necrehsing, and thus only the
bottom half of the unit square is relevant. Suppose thatation is fixed for all profiles of values
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(a) Allocation region. (b) Rebate function.

Figure 1:Single allocation region and optimal linear rebate funetio

(e.g., agent 1 is always allocated and agent 2 is never &ldrand that constraints are lineanin
andh. Indeed is a function ofv itself, but it is a variable in our problem. For a finite set ofits

v € V we can talk of a finite set of values of the rebate funcfi¢w), wherew corresponds to_;
foragent. Itis easy to show that a linear constraint is satisfied evkeye on a convex region if and
only if it is satisfied on its extreme points: in our exampl&gecing linear constraints on the profiles
(0,0), (1,0) and(1, 1) guarantees that they are satisfied for all profiles R? | 1 > v; > vy > 0.
Note that constraints for these profiles involve exactly telmates:(0) andh(1): thereby, restricting
the optimization problem to constraints for these extremadilps gives a linear program with two
variables, which we calk(0) andA(1). Also, since this restricted linear program includes only
a subset of constraints from the original mechanism desighlem, its optimal objective value
provides an upper (in the case of maximization) bound on lijective value of the original problem
(in problems with no objectives, if the original problem leefeasible solution, so does the restricted
problem.) Now, having solved thestricted problenby computing the rebatés(0) andi (1), the
equation of the line on which these two points lie providesvith a—linear—rebate functioh:
that is, for an arbitrary poinb € W, we can definé.(w) = a;w; + b, where the coefficients,, b

are obtained by solving the system of two linear equatiél(\@s) =a10+0b andiz(l) =a11+b. The
rebate function is the line segment connecting paidit# (0)) and(1, i(1)) (see Figure 1(b))This
function is linear inv, so all constraints remain linealhese constraints are satisfied on the extreme
points of a convex region, and therefore hold everywherdmrégion. Thus, we can “expand” an
optimal solution to the restricted problem to a feasibleisoh to the original problem, and achieve
the same objective value. Since the objective value of theiceed problem was an upper bound
on the objective of the original problem, the constructddtsmn is optimal and the upper bound it
tight. Finally, note that we were able to linearly combinbae value$.(0) andh(1) in the rebate
space because there were exactly two (eqf them.

In more general cases, allocation may not be linear on thdewaue space. For instance,
consider the allocation rule that allocates to agent 1 ifviaisie is abovek € (0,1) and never
allocates to agent 2. The value space is partitioned intt2atlon regions: agent 1 is not allocated
in the region to the left ofy = k and is allocated in the region to the right (see Figure 2(a)).
Constraints for the extreme point8, 0), (k,0), (1,0), (k, k), and(1, 1) of the allocation regions
include three rebatdg0), h(k), andh(1). Proceeding as we did in the previous example we would
have to linearly connect the values of these rebates. Haywievgeneral, three points do not lie on
the same line, as is illustrated in Figure 2(b). A naturahiteto define two linear rebate functions:
one connecting(0) to (k) and the other connectirgk) to (1) (see Figure 3(b)). We refer to
these functions as, andh;: thus,h(w) = he(w) if 0 < w; < kandh(w) = hy(w) if bk <w; < 1.
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Figure 2:Two allocation regions and rebates in corresponding exingomts.
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Figure 3:Refinement of allocation regions and optimal piecewiseslimebate function.

In order for constraints to be linear on a region, for eacmagéhe choice of the rebate function
(hq Or hy) must be constant throughout the region. The allocatioione the right ofv; = k£ does
not satisfy this condition: the rebate for agent 1 is giverhbyfor vo < k and byh,, for v, > k.
However, we canefinethe allocation regions along, = k to fix this problem. In Figure 3(a),
the regions are labeled with the rebate function used by agehnt. Partitioning along, = k
introduced a new extreme pointl, k). However,h(0), h(k), andh(1) are still the only rebates
used by constraints on the extreme points. Two line segnpasising through the poin(s, fz(o)),
(k, h(k)) and(k, h(k)), (1, h(1)), respectively, define the—piecewise linear—rebate fonctsee
Figure 3(b)). As before, this implies that the constraints lanear inv on each region of this—
refined—patrtition, and since they are satisfied on the exanqgomts of each region, they hold for all
points of each region.

Next, we generalize this idea and formalize conditions omitns into regions of the value
spaceV and the rebate spad&, which we prove to be sufficient for the existence of an optima
mechanism with piecewise linear rebates.

3.3 Linearly consistent partitions

We need the following definitions.



Definition 1 A setPx of polytopes is called gartition of the polytopeX if the polytopes do not

overlap:pnNqg =9, Vp,q € Px, and cover exactly the polytopé: UpePX p=2X.

Definition 2 The partition Px refinesthe set of polytope® if for all p € Px, ¢ € Q, their
intersection is eitherempty @t pNg=2VpnNgq=p.

We are interested in partitions that consist of convex pggs. A convexi-dimensional polytope

p can be defined as a finite intersection of halfspapes: {z € R? | Az > b}, whereA € RF*4,

b € R*, k is the number of halfspacés.In the examples we provided, the rebate space is 1-
dimensional and intersections of halfspaces specify kggrents. The partitioRy, in Figure 3(b)

is given by 2 polytopeg > w; > 0 andl > w; > k. Recall the corresponding partitiadh,

of the value spac#” in Figure 3(a). Crucially, for each agentthe choice of the rebate function
is fixed on eactvalue regiong € Py (see Figure 3(a)). Stating the property mathematically, we
obtainVg € Py, Vi € {1,...,n} there existy € Py | v_; € p, Yv € ¢q. Observation 1 below
characterizes the partitions of the value space that galisf property: it notes tha,, must refine

a set of polytopebft (Py ) which is obtained by “lifting” the partitiory, of then — 1 dimensional
spacéV to then-dimensional spac¥.

Definition 3 A set of polytopesft (Py) in the value spac®” is said to be obtained bljfting the
partition Py of the rebate spacH’ if

lift(Pw)= | (JVN(Av_i>b)
(A,b)e Py i=1
Note that each polytope4, b) € Py addsn (possibly overlapping) polytopes fift (Py). In our
example in Figures 3(a) and 3(b), lifting the polytope> w; > 0 yields overlapping polytopes
k>vi >vy>0andl > v > v >0; k> vs.

Observation 1 Let Py, and Py be partitions of the value and the rebate space, respegtividie
conditionVq € Py, Vi € [1,n], 3p € Pw | v—; € p, Yv € ¢ is satisfied whed®, refinedlift (P ).

Next we derive additional conditions that would let us defiglgate function#,, for rebate regions
p € Py so that each such function is linear affd, | p € Py } is optimal. For linearity, we need
each polytope in the rebate partition to have exactlyextreme points. For optimality, we need
to guarantee the linearity of constraints on each of theevadigions. This is formally stated in
Definition 4 and below. Finally, Theorem 2 shows the sufficieof these conditions.

We refer to the union of extreme points of the partitiBg of a polytopeX as Px. Given
the partitionPy of the value space, tharojectionof its extreme points into the rebate spageis
defined as follows:

Hw(pv): U UU—i

ve Py =1
Definition 4 Partitions P, and Py, are calledlinearly consistenif: (i) all polytopesy € Py and
p € Py are convex{ii) Iy (Py) = Py ; (iii) Py refines both the set of polytopiés( Py ) and the
allocation partition P as defined by the allocation functigii; and (iv) each polytope inPy has
n extreme points.

Consider the graph of a rebate functign, i(w)). Note that any: rebate values can be described
by a linear rebate function: indeed, there exist$:anr 1) dimensional hyperplane passing through
n points inR™. Therefore, partitioning the rebate space into polytopes daving: extreme points
lets us define a linear rebate function on each polytopellfisatting the rebates on extreme points
Py accordingly to the optimal solution to the optimization Iplem, restricted ta”,, implies the
optimality of rebates for linearly consistent partitions.

6Thus, a pail( 4, b) defines a polytope iR%.
"That is, for anyv!, v? in the same allocation regiar? € Pg, f(v!) = f(v?).



Theorem 2 Given linearly consistent partition8, and Py, let {h(w) | w € Py} denote the set of
rebates from an optimal solution to the restricted problerd &tp denote the set of extreme points
of a polytopeyr € Py. For each polytope, define a linear rebate functigyfw) = 2?2—11 al’w; +bP
with coefficients:? € R*~1, b € R given by a solution to the system of linear equati()in@u) =
Z?;ll a’w; + b? | w € p}. Then, the following rebate function éptimat for w € p, h(w) =
hp(w).

By Theorem 2, if one can partition spadésand in a linearly consistent way, an optimal, piece-
wise linear, mechanism follows immediately. Next, we pn¢ésan algorithm for finding such par-
titions for an important class of, what we catlpnstant-dependemilocation functions: these, in
particular, include commonly desirable efficient allooas.

3.4 Constant-dependent allocations

We start with a definition.

Definition 5 An allocation function is called constant-dependent ifri¢hexists a finite set of con-
stantsC' = {c1,...,¢q}, such that the allocation is constant on each of the regiosfindd by
hyperplanes of the form;, = ¢ | ¢ € C. For C = @, the allocation is constant on the whole space
of agents’ valuations.

In Figure 4, we present thgartition algorithm and show that it defines linearly-consistentipants
of the value and rebate spaces for a given constant-depeaifteration function (Theorem 3).

Algorithm partition
Input: polytopeX
1. partitionX alongz; =c¢ Vee C, i€ {1,...,dim(X)} * denote the partition byPy */
2. for each hyperrectangje € Py
for each pair(s, j) of dimensions, j € {1,...,dim(X)}, i # j,
partitionp alongz; = ax; + b wherea, b € R define the diagonal
from the lower left to the upper right corner of projectiontmthei-; plane

Figure 4:Linearly-consistent partitions.

Theorem 3 For a constant-dependent allocation, the partitioRs = partitionV') and Py =
partition(1¥) are linearly-consistent.

Constant-dependent allocation functions may not be mamot&ince a dominant-strategy imple-
mentation is possible only for monotone allocation funasi¢see Theorem 1), we only consider the
ones that are.

In the following sections, we demonstrate that the algarithtechnique described in Theo-
rems 2 and 3 can be applied to a wide class of mechanism desipfems. In particular, we
consider the surplus-maximizing allocation and fair inipjos problems and show that our method
provides an easy way of obtaining mechanisms for the (pusWostudied) case with free objects.
Moreover, uniqueness of the mechanisms follows immedidtem the uniqueness of the optimal
solution to the restricted problem. These results are pteden Section 4. Finally, in Section 5, we
extend the consideration to the open problem where items ¢tsts.



4 “Free” Homogeneous Objects

In this section, we apply our technique to two central me@rmandesign problems in single-
parameter domains. We start by re-deriving the results gplisstmaximizing allocation of free
items by Moulin [10] and Guo and Conitzer [7] and fair impasit of a single task by Portest
al. [13]. We then proceed to show that an optimal mechanism foirfgposition of multiple tasks,
for which no closed form has been previously derived, caraséyeobtained using our method.

4.1 Surplus-maximizing allocation

See online appendix at http://users.ecs.soton.ac.warsoc. pdf

4.2 Fair imposition

See online appendix at http://users.ecs.soton.ac.admrgoc. pdf

5 Allocation with Costs

In this section, we apply our technique to solve open meachadiesign problems. Specifically, we
consider more realistic scenarios where items are not Tilgis.generalization significantly compli-
cates the setting for both surplus-maximizing allocatiod &ir imposition problems, which have
not been previously tackled for items with costs. We obsémaéthe generalized model still falls
in the framework of single-parameter domains with constlgendent allocation, and Theorem 3
holds. Given this, we provide the first algorithm for compgtoptimal mechanisms for these sce-
narios.

5.1 Motivation

We consider a setting where (identical) items must be asdigmthe agents, assuming each agent
wants exactly one item, and the items have (increasing mal)giosts. The goal, as before, may be
either to maximize the social surplus or to achiéviairness.

The allocation problem with increasing marginal costs isvgte and fundamental example of
the problem of the commons [8], in which multiple particiggracting independently to optimize
their own objectives, will ultimately deplete a shared tiedi resource even when it is clear that it
is not in anyone’s long-term interest for this to happenréasing marginal costs model decreasing
returns to every agent as the number of allocated itemsasese For instance, consider mem-
bership in a free gym. As the gym becomes more crowded, thiy @taich member derives from
exercising there decreases. Membership in the gym comespo an item in our model. Cost of
item ¢ represents the marginal disutility of the members, whichéases as the gym becomes more
crowded.

Allocating items with increasing unit costs also arisestheofamiliar contexts, such as schedul-
ing and disaster management. For example, consider neulépms willing to be deployed in a dis-
aster response. Each team has information (i.e., privéte about different regions of the affected
area and can judge how much their region needs help. For teEaomserate, they need commu-
nication frequencies for intra-team communication. Thenbar of frequencies is limited and the
more frequencies are allocated, the higher is the noise.gdhkof a disaster response manager is
to solicit truthful evaluations of situations in each teamggion and to allocate frequencies to teams
in the regions that need help the most. Additional frequesishould be allocated as long as the
benefit derived from deploying an extra team outweighs tret corresponding to the increase in
noise on the communication channel. More generally, agentkl be either emergency responders



or sensor networks. The important part is that each ageetfisnderested and maximizes its own
utility, which is the case, for example, when agents are @anedifferent companies.

5.2 Setting

The setting ofllocation with costss defined by a triplén, ¢, v), wheren is the number of agents
each desiring one unit of a homogenous gaod,the vector of marginal costs for producing each
additional unit (item), an@ < R’} represents the agents’ valuations for consuming the itene. T
marginal cost is increasing in the number of items, i< ¢; < ... < ¢,, and value profiles are
such thatl > vy > v2 > ... > v, > 0. Monetary transfers are possible, and agents’ utilities ar
guasi-linear.

In contrast to the case with free items, the number of alextagents isiot fixed but depends
on ¢ andv: we do not assign the item to an agent whose value for the gdowier than its cost.
An efficient mechanism in this setting will maximize the totalue of agents minus the total cost;
the number of items allocated this wayrigv, ¢) = max; (i | v; > ¢;) and the value of the efficient
allocationisy_, ., . (Vi — ¢i).

Finally, we assume that at least one, but no more thanl items, are allocated:; < v; and
¢, = 1. Itis easy to see that the efficient allocation in this sgttinconstant-dependent and defined
by setC = {¢1,...,cn-1}. Hence, Theorem 3 implies.

5.3 Mechanisms

We now formulate the surplus-maximizing allocation and ii@iposition problems in this domain.
First, we modify the surplus ratio as follows:

m(v,e) . a n .
S(c) = min =4=1 vi :}(EJU;)C)T + 2 i h(v—4)
vev e (v — )
wherer® is the critical value of an allocated agent. Note that we fexdhst vector and consider
the worst ratio over all possible value profiles: we do noet#ke minimum over costs as that
would obviously result in zero ratio—when the first- 1 costs are the same, the ratio is zero. The
surplus-maximizing allocation problem is then defined ®y/ftiilowing optimization program:

max S st YveV Q)
SER, rRP—1 SR
m = argmax(v; > ¢;) 2
7% = max{Vm+1,Cm } 3)
Z h(v_;) —mr® < — Z ci (4)
i=1 i<m
h(v—;) >0 Vi (5)
Z(Ui) —m7® + Zh(v—i) > S Z(vz - ci) (6)
i<m i=1 i<m

Here, (2) determines the number of items in an efficient atioo for the profilev, and corre-
sponding critical values are defined by (3). The no-defi@pprty is enforced in (4): the payments
collected from the agents must cover the costs of the abbddégms. Constraint (5) guarantees that
the utility of each agent is non-negative (recall from theviwus section that enforcing the non-
negativity of rebates is equivalent). Finally, as befo6 gnsures that the ratio is satisfied under all
value profiles.



Similarly, we modify the fair imposition problem as follows v € V,

m = argmax(v; > ¢;) (1)
7% = max{Vm+1, Cm } (8)
(o) > T8 i 9)
Z h(v—;) —m7* < — Z Ci (10)
i=1 i<m

We have observed that the efficient allocation is constapeddent in this model (as defined by
the set of costs). Therefore,pecewise lineasurplus-maximizing and &-fair mechanisms are
obtained by solving (1)-(6) and (7)-(10), respectively, thoe subset of profile valuds as defined
in 3, and linearly combining the rebate values in these—eexé—points on each of the regions of
partition they define on spad¥.

6 Open Questions

Our work suggests several directions for future researait, fhe characterization result in Theo-
rem 2 can potentially be used to conclude the existence edtioptimal mechanisms in classes of
problems, other than those with constant-dependent ibosa here, combinatorial auctions with
single-minded bidders may be of particular interest; ago#xtension is to public good settings.
Second, a more general question in this context is abouteabessity of conditions in Theorem 2.
These conditions imply the existence of a partition of thecgof agents’ types, with certain proper-
ties: is it the case that if no such partition exists, an ogtilnear mechanism does not exist either?
Finally, an optimal partition may be complicated: in thetiset of allocation with costs, the space
is partitioned into(Q:_*f)n! regions, where: is the number of agents. For smallwe empirically
observed that most of the regions are required for an optimahanism, but it is likely that merging
some of the regions does not decrease the solution qualitytch. The tradeoff between efficiency
and optimality remains open for further study.
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