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Abstract

The paper studies dominant strategy mechanisms in anonymous single-parameter allocation
domains with monetary payments. Given a mechanism design problem with a fixed allocation
function (e.g., efficient allocation), we seek an optimal payment function. Restricting atten-
tion to “constant-dependent” allocation functions, we present a general technique for finding
an optimal payment function for any mechanism design problem. By construction, the opti-
mal payment function is piecewise linear, proving the existence of piecewise linear optimal
payment functions.

1 Introduction

Mechanism design, traditionally studied in economics, is now a rapidly growing field in computer
science (e.g., see [12, 16]). Generally, it deals with problems where multiple self-interested partic-
ipants take actions to optimize individual utilities basedon theincentivesprovided to them. The
overlap of computer science and mechanism design is natural: reasoning about incentives is un-
avoidable in many fundamental computer science problems—e.g., peer-to-peer networks, packet
routing, and resource allocation. To this end, the termalgorithmic mechanism designwas intro-
duced by Nisan and Ronen [11] to refer to the study of incentives in computer science scenarios.
At the same time, some classic mechanism design solutions rely on computationally efficient ap-
proximations and implementations to be of practical use (e.g., computationally efficient VCG-like
combinatorial auctions [5]).

This paper interfaces computer science and mechanism design in yet another way: instead of
considering a particular domain and designing a mechanism with certain properties, we are looking
for a general, unified technique that takes a mechanism design problem as an input, and outputs
an optimal mechanism to this problem. While this goal, in general, may sound unrealistic, this
work shows it can be effectively achieved for a wide class of problems insingle-parameter domains
where agents have private types expressed by single numbers. Examples include recently studied
problems of surplus-maximizing allocation of free resources [10, 7] and fair task imposition [13]
as well as problems of surplus-maximization and fairness inmore general models where resources
are not free. Furthermore, our—at first glance, purely algorithmic—approach enables derivation of
theoretical results that provide a base for the following contributions:

• Characterization. We formulate sufficient conditions for the existence of(piecewise) linear
optimal mechanisms in single-parameter domains (Theorem 2).

• Existence. We identify a class of mechanism design problems characterized by aconstant-
dependentallocation function (to be defined), and prove the above conditions hold for each
problem in this class (Theorem 3).

• Construction. We develop an algorithm that finds an optimal mechanism for any given prob-
lem in this class (Theorem 2 and Figure 4).

1Helpful discussions with Geoffroy de Clippel, Sergey Kushnarev, Lyle Ramshaw, Warren Schudy, and Meinolf Sellmann
are gratefully acknowledged.



We start with preliminaries and related work in Section 2, and present our main theorems in Sec-
tion 3. These results provide a general and powerful tool foranalysis of mechanism design problems
in single-parameter domains: as the existence and construction results apply toanyproblem with
constant-dependent allocation, the algorithm for finding an optimal mechanism is unified within this
class of problems. In Section 4, we demonstrate the strengthof this approach on two central mech-
anism design problems of (i) surplus-maximizing resource allocation and (ii) fair task imposition.
First, we re-derive the mechanisms for surplus-maximizingallocation of free items by Moulin [10]
and Guo and Conitzer [7] and fair imposition of a single task by Porteret al. [13]. We note that our
solution is not analytical but algorithmic; that is, we provide systems of linear equations whose—
unique—solutions coincide with the mechanisms obtained in [10, 7]and [13], for each particular
problem instance. However, in the latter case, this approach also allowed us to easily find an ana-
lytical solution. Second, we use our method to obtain an optimal mechanism for fair imposition of
multiple tasks, for which no closed form has been previouslyfound. Furthermore, in Section 5 we
apply our technique to open problems. Specifically, we extend the consideration to scenarios where
objects have costs and provide first algorithms for computing optimal mechanisms for surplus max-
imizing allocation and fair imposition in these generalized settings. Finally, our work suggests
several directions for future research outlined in Section6.

2 Preliminaries and Related Work

Informally, amechanismrefers to a procedure for making decisions (or, choices) involving multiple
agents. Suppose one item needs to be allocated among a group of agents. A mechanism might collect
bids from each agent, give the item to the highest bidder, andcharge him his bid: this mechanism is
a first-price auction, and the choice made defines an allocation.

Mechanism design is concerned with finding the best way of making decisions in a given sce-
nario (e.g., allocation). The “best” way is specified by properties the decision must satisfy: e.g., the
mechanism should be fair, the agent with the highest value should be allocated, the revenue of the
seller should be maximized. Crucially, quality of a decision depends on private information called
typesof the agents (e.g., their values for the item). Therefore, amechanism must ensure the agents
have the incentive to reveal their types truthfully: without knowing the true types, there is no way to
know how good a decision is. We studystrategy-proofmechanisms that make it in each agent’s best
interest to truthfully reveal his type—regardless of whether the other agents do so or not. This—the
strongest—concept of truthfulness is calleddominant strategy.

Implementation in dominant strategies is virtually impossible without restrictions on agents’
types. In fact, for unrestricted types (i.e., different value for each possible choice) only dictatorial
choice functions are implementable [6]. One way to get out ofthe impossibility is by introducing
monetary payments which are added to agent’s valuation of the chosen alternative: in this case,
agents are said to havequasi-linear utilities. A mechanism is therefore defined by a choice rulef

and a payment schemet—both are functions of the agents’ types.
However, even with money (a.k.a. transferable utilities),the set of implementable mechanisms

is rather limited—the only such mechanisms are weighted VCG[14], which motivates further re-
strictions on agents’ types. In this work, we focus on single-parameter domains: we restrict our
attention to allocation domains where agent’s type represents the value for being allocated—in this
context, it is intuitive to refer to the choice rule as theallocation function. It is known that in these
settings, any allocation function that is monotone2 in the agent’s report, is implementable:

Theorem 1 (e.g., see [12] p. 229)A mechanism(f, t) is implementable if and only if for each agent
i: (i) fi is monotone invi; (ii) ti = h(v−i) − τ(v−i) if fi = 1 (i.e., i is allocated) andti = h(v−i)

2In words, monotonicity offi in vi means that if an agent is allocated when he reportsvi he is also allocated when he
reportsv′i ≥ vi.



otherwise (fi = 0), whereτ(v−i) = supvi|fi(vi,v−i)=0 vi defines thecritical value.3,4

Thus, any pair of functions(f, t) that satisfy the conditions in Theorem 1, defines a strategy-proof
(i.e., truthful) mechanism. In this work, we take a monotoneallocation function as an input and look
for an optimal (according to provided properties) payment function of the form above. We develop
a general algorithmic method for finding optimal payments for an important class of allocation
functions we term “constant-dependent”: in particular,efficient5 allocation functions in settings of
consideration fall in this class.

A dominant strategy mechanism does not make any assumptionsabout the values of the agents:
desirable properties (e.g., efficiency, individual rationality, no subsidy) of the mechanism must hold
for all possible values the agents may have. These properties can be expressed as a system of
constraints to be met for each possible profilev of agents’ valuations and (optionally) an objective
function (e.g., revenue maximization). In this work, we take the allocation function as an input and
optimize the payment function. Using the characterizationabove, the only degree of freedom in
designing payments is the functionh : R

n−1 → R. Thus, the problem of finding optimal payments
can be stated as

optimizeh:Rn−1→R
objective value s.t. ∀ v ∈ R

n

objective value is achieved

properties hold

At the first glance, this problem is hard: optimization is over functions and there is an infinite num-
ber of constraints. However, in this paper we propose an algorithmic approach that makes it possible
to effectively tackle such problems. Our technique exploits and makes explicit the linearity structure
present in many standard mechanism design problems. As a result, the existence of (piecewise) lin-
ear optimal payment functions follows immediately. For some important allocation problems, this
method offers an easy way to find the optimal payment functionanalytically, by solving a simple
system of linear equations (see, for example, the results in4.2). For a general problem in this class,
it provides an algorithm for finding an optimal mechanism computationally.

Most related to our work is the literature on optimizing rebates in VCG mechanisms. In [10]
and [7], the authors independently discover the optimal VCGredistribution mechanism for allocat-
ing free homogenous items. VCG redistribution schemes havealso been designed for a public good
domain [1]. A similar result has been derived in [2] in the context of allocating a single item. An
alternative objective of fairness was considered in [13] for task imposition scenarios. In this paper,
we provide a general approach for addressing all of these problems.

The model of allocating homogeneous items that have costs was considered in [3, 9], although
for a different purpose—to compare “random priority” and “average cost” mechanisms. We are the
first to obtain (algorithmic) solutions for surplus-maximization and fairness in this setting.

We are aware of only one other attempt to approach mechanism design problems
algorithmically—that of Automated Mechanism Design (AMD)[15]. However, AMD applies when
the space of agents’ types is finite and a prior over the types is available. In contrast, we deal with in-
finite types spaces and no priors. Our method is based on partitioning the space of value profiles into
a finite number of convex regions, on each of which, as we prove, a linear optimal payment function
can be defined. A similar idea was exploited in [4]; however, there the partitioning is heuristic and
does not result in an optimal mechanism.

3An agenti is allocated if and only if his report is above the critical value τ(v−i).
4In stating the theorem, we restricted attention toanonymouspayment functions: payment functions that do not depend

on agent’s identity.
5An allocation is efficient if the items are assigned to the agents who value them the most.



3 Optimization, Linearity and Partition

In this section, we present our main results: Theorem 2 provides sufficient conditions for the ex-
istence of a piecewise linear optimal mechanism, and Theorem 3 constructively proves these con-
ditions hold for the class of constant-dependent allocations (to be defined). We start by formally
stating the problem in 3.1 and explaining the idea of our solution in 3.2. The theorems appear in 3.3
and 3.4.

3.1 Setting

We consider single-parameter domains where each ofn agents desires one unit of a (homogenous)
good, andv ∈ R

n
+ represents the agents’ valuations for consuming the good (or, item). Monetary

transfers are possible, and agents’ utilities are quasi-linear. The value profiles are such thatv1 ≥
v2 ≥ . . . ≥ vn (this is without loss of generality for anonymous mechanisms), and since the values
are non-negative, one can scale all vectors to be in the interval [0, 1]. We denote the space of value
profiles byV = {v ∈ R

n | 1 ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ 0} and define vectorv−i ∈ R
n−1 to indicate

values of the agents other thani. The space of all such(n − 1)-dimensional vectors is the same for
eachi, and is denoted byW .

An outcomeis a pair(f, t) ∈ {0, 1}n × R
n, wherefi indicates whether agenti is allocated

(gets the item), andti represents thepaymenthe receives (ti can be negative, in which case agenti

pays that amount); the total utility of agenti from the outcome(f, t) is given byui = fivi + ti. A
mechanismis defined by a pair of functionsf : R

n
+ → {0, 1}n andt : R

n
+ → R

n that determine the
allocation and payments for each possible report from the agents regarding their value for the item.
We take as an input an allocation functionf satisfying the monotonicity condition in Theorem 1.
This determines the critical value,τ(v−i), for each agenti, and the only remaining degree of freedom
is the functionh(v−i) that adjusts payments to the agents. In some applications, it is intuitive to view
τ as the price for being allocated andh as the rebate distributed back to all agents; henceforth, we
refer toh as therebate function.

Our goal is to findoptimal rebatesthat guarantee the best possible value of a given objective
function and satisfy given constraints for each possible vector of agents’ valuations—that is, provide
a dominant strategy implementation. The objective of optimization may be, for example, maximiza-
tion of social surplus (i.e., redistributing back as much ofthe budget surplus as possible when there
is no auctioneer), some measure of fairness (e.g., maximizing the lowest utility), or minimization
of budget deficit. Desirable properties of mechanisms (e.g., no subsidy, individual rationality,k-
fairness) are specified as constraints in the optimization problem. Some combinations of properties
(e.g., no subsidy and2-fairness) may be impossible to implement: this is identified by the lack of a
feasible solution to the optimization problem.

3.2 Linear properties

Our approach exploits the linear structure which characterizes standard mechanism design problems.
Typical constraints (e.g., individual rationality, no subsidy, k-fairness) and objectives (e.g., utility
maximization, deficit minimization) are linear in values and payments of the agents. For example,
the no subsidy (or weak budget balance) constraint requiresthesumof payments to the agents to be
non-positive; utilitarian objective function maximizes thesumof agents’ values and payments. This
linearity structure lies at the heart of the idea presented next.

Consider the following illustrative example. Recall that we are after an optimal rebate function
h : R

n−1 → R. In the simplest case with2 agents, the domain of the rebate function is the real
interval between0 and1. The space of values is atrianglegiven by the extreme points(0, 0), (1, 0),
and(1, 1) shown in Figure 1(a)—recall that the value vectors are non-decreasing, and thus only the
bottom half of the unit square is relevant. Suppose that allocation is fixed for all profiles of values
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Figure 1:Single allocation region and optimal linear rebate function.

(e.g., agent 1 is always allocated and agent 2 is never allocated) and that constraints are linear inv

andh. Indeed,h is a function ofv itself, but it is a variable in our problem. For a finite set of points
v ∈ V we can talk of a finite set of values of the rebate functionh(w), wherew corresponds tov−i

for agenti. It is easy to show that a linear constraint is satisfied everywhere on a convex region if and
only if it is satisfied on its extreme points: in our example, enforcing linear constraints on the profiles
(0, 0), (1, 0) and(1, 1) guarantees that they are satisfied for all profilesv ∈ R

2 | 1 ≥ v1 ≥ v2 ≥ 0.
Note that constraints for these profiles involve exactly tworebatesh(0) andh(1): thereby, restricting
the optimization problem to constraints for these extreme profiles gives a linear program with two
variables, which we call̂h(0) and ĥ(1). Also, since this restricted linear program includes only
a subset of constraints from the original mechanism design problem, its optimal objective value
provides an upper (in the case of maximization) bound on the objective value of the original problem
(in problems with no objectives, if the original problem hasa feasible solution, so does the restricted
problem.) Now, having solved therestricted problemby computing the rebateŝh(0) andĥ(1), the
equation of the line on which these two points lie provides uswith a—linear—rebate functionh:
that is, for an arbitrary pointw ∈ W , we can defineh(w) = a1w1 + b, where the coefficientsa1, b

are obtained by solving the system of two linear equations:ĥ(0) = a10+b andĥ(1) = a11+b. The
rebate function is the line segment connecting points(0, ĥ(0)) and(1, ĥ(1)) (see Figure 1(b)).This
function is linear inv, so all constraints remain linear.These constraints are satisfied on the extreme
points of a convex region, and therefore hold everywhere on this region. Thus, we can “expand” an
optimal solution to the restricted problem to a feasible solution to the original problem, and achieve
the same objective value. Since the objective value of the restricted problem was an upper bound
on the objective of the original problem, the constructed solution is optimal and the upper bound it
tight. Finally, note that we were able to linearly combine rebate valuesh(0) andh(1) in the rebate
space because there were exactly two (i.e.,n) of them.

In more general cases, allocation may not be linear on the whole value space. For instance,
consider the allocation rule that allocates to agent 1 if hisvalue is abovek ∈ (0, 1) and never
allocates to agent 2. The value space is partitioned into 2 allocation regions: agent 1 is not allocated
in the region to the left ofv1 = k and is allocated in the region to the right (see Figure 2(a)).
Constraints for the extreme points(0, 0), (k, 0), (1, 0), (k, k), and(1, 1) of the allocation regions
include three rebateŝh(0), ĥ(k), andĥ(1). Proceeding as we did in the previous example we would
have to linearly connect the values of these rebates. However, in general, three points do not lie on
the same line, as is illustrated in Figure 2(b). A natural idea is to define two linear rebate functions:
one connectinĝh(0) to ĥ(k) and the other connectinĝh(k) to ĥ(1) (see Figure 3(b)). We refer to
these functions asha andhb: thus,h(w) = ha(w) if 0 ≤ w1 ≤ k andh(w) = hb(w) if k ≤ w1 ≤ 1.
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Figure 2:Two allocation regions and rebates in corresponding extreme points.
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Figure 3:Refinement of allocation regions and optimal piecewise linear rebate function.

In order for constraints to be linear on a region, for each agent i the choice of the rebate function
(ha or hb) must be constant throughout the region. The allocation region to the right ofv1 = k does
not satisfy this condition: the rebate for agent 1 is given byha for v2 ≤ k and byhb for v2 ≥ k.
However, we canrefine the allocation regions alongv2 = k to fix this problem. In Figure 3(a),
the regions are labeled with the rebate function used by eachagent. Partitioning alongv2 = k

introduced a new extreme point:(1, k). However,ĥ(0), ĥ(k), andĥ(1) are still the only rebates
used by constraints on the extreme points. Two line segmentspassing through the points(0, ĥ(0)),
(k, ĥ(k)) and(k, ĥ(k)), (1, ĥ(1)), respectively, define the—piecewise linear—rebate function (see
Figure 3(b)). As before, this implies that the constraints are linear inv on each region of this—
refined—partition, and since they are satisfied on the extreme points of each region, they hold for all
points of each region.

Next, we generalize this idea and formalize conditions on partitions into regions of the value
spaceV and the rebate spaceW , which we prove to be sufficient for the existence of an optimal
mechanism with piecewise linear rebates.

3.3 Linearly consistent partitions

We need the following definitions.



Definition 1 A setPX of polytopes is called apartitionof the polytopeX if the polytopes do not
overlap:p ∩ q = ∅, ∀ p, q ∈ PX , and cover exactly the polytopeX :

⋃

p∈PX
p = X .

Definition 2 The partitionPX refinesthe set of polytopesQ if for all p ∈ PX , q ∈ Q, their
intersection is either empty orp: p ∩ q = ∅ ∨ p ∩ q = p.

We are interested in partitions that consist of convex polytopes. A convexd-dimensional polytope
p can be defined as a finite intersection of halfspaces:p = {x ∈ R

d | Ax ≥ b}, whereA ∈ R
k×d,

b ∈ R
k, k is the number of halfspaces.6 In the examples we provided, the rebate space is 1-

dimensional and intersections of halfspaces specify line segments. The partitionPW in Figure 3(b)
is given by 2 polytopesk ≥ w1 ≥ 0 and1 ≥ w1 ≥ k. Recall the corresponding partitionPV

of the value spaceV in Figure 3(a). Crucially, for each agenti, the choice of the rebate function
is fixed on eachvalue regionq ∈ PV (see Figure 3(a)). Stating the property mathematically, we
obtain∀q ∈ PV , ∀i ∈ {1, . . . , n} there existsp ∈ PW | v−i ∈ p, ∀v ∈ q. Observation 1 below
characterizes the partitions of the value space that satisfy this property: it notes thatPV must refine
a set of polytopeslift (PW ) which is obtained by “lifting” the partitionPW of then− 1 dimensional
spaceW to then-dimensional spaceV .

Definition 3 A set of polytopeslift (PW ) in the value spaceV is said to be obtained bylifting the
partition PW of the rebate spaceW if

lift (PW ) =
[

(A,b)∈PW

n
[

i=1

V ∩ (Av−i ≥ b)

Note that each polytope(A, b) ∈ PW addsn (possibly overlapping) polytopes tolift (PW ). In our
example in Figures 3(a) and 3(b), lifting the polytopek ≥ w1 ≥ 0 yields overlapping polytopes
k ≥ v1 ≥ v2 ≥ 0 and1 ≥ v1 ≥ v2 ≥ 0; k ≥ v2.

Observation 1 Let PV andPW be partitions of the value and the rebate space, respectively. The
condition∀q ∈ PV , ∀i ∈ [1, n], ∃p ∈ PW | v−i ∈ p, ∀v ∈ q is satisfied whenPV refineslift (PW ).

Next we derive additional conditions that would let us definerebate functionshp for rebate regions
p ∈ PW so that each such function is linear and{hp | p ∈ PW } is optimal. For linearity, we need
each polytopep in the rebate partition to have exactlyn extreme points. For optimality, we need
to guarantee the linearity of constraints on each of the value regions. This is formally stated in
Definition 4 and below. Finally, Theorem 2 shows the sufficiency of these conditions.

We refer to the union of extreme points of the partitionPX of a polytopeX as P̂X . Given
the partitionPV of the value space, theprojectionof its extreme points into the rebate spaceW is
defined as follows:

ΠW (P̂V ) =
[

v∈P̂V

n
[

i=1

v−i

Definition 4 PartitionsPV andPW are calledlinearly consistentif: (i) all polytopesq ∈ PV and
p ∈ PW are convex;(ii) ΠW (P̂V ) = P̂W ; (iii) PV refines both the set of polytopeslift (PW ) and the
allocation partitionP a

V as defined by the allocation functionf7; and (iv) each polytope inPW has
n extreme points.

Consider the graph of a rebate function(w, h(w)). Note that anyn rebate values can be described
by a linear rebate function: indeed, there exists an(n − 1) dimensional hyperplane passing through
n points inR

n. Therefore, partitioning the rebate space into polytopes each havingn extreme points
lets us define a linear rebate function on each polytope. Finally, setting the rebates on extreme points
P̂W accordingly to the optimal solution to the optimization problem, restricted tôPV , implies the
optimality of rebates for linearly consistent partitions.

6Thus, a pair(A, b) defines a polytope inRd.
7That is, for anyv1, v2 in the same allocation regionqa ∈ P a

V
, f(v1) = f(v2).



Theorem 2 Given linearly consistent partitionsPV andPW , let{ĥ(w) | w ∈ P̂W } denote the set of
rebates from an optimal solution to the restricted problem and letp̂ denote the set ofn extreme points
of a polytopep ∈ PW . For each polytope, define a linear rebate functionhp(w) =

∑n−1
i=1 a

p
i wi + bp

with coefficientsap ∈ R
n−1, bp ∈ R given by a solution to the system of linear equations{ĥ(w) =

∑n−1
i=1 a

p
i wi + bp | w ∈ p̂}. Then, the following rebate function isoptimal: for w ∈ p, h(w) =

hp(w).

By Theorem 2, if one can partition spacesV andW in a linearly consistent way, an optimal, piece-
wise linear, mechanism follows immediately. Next, we present an algorithm for finding such par-
titions for an important class of, what we call,constant-dependentallocation functions: these, in
particular, include commonly desirable efficient allocations.

3.4 Constant-dependent allocations

We start with a definition.

Definition 5 An allocation function is called constant-dependent if there exists a finite set of con-
stantsC = {c1, . . . , cq}, such that the allocation is constant on each of the regions defined by
hyperplanes of the formvi = c | c ∈ C. For C = ∅, the allocation is constant on the whole space
of agents’ valuations.

In Figure 4, we present thepartition algorithm and show that it defines linearly-consistent partitions
of the value and rebate spaces for a given constant-dependent allocation function (Theorem 3).

Algorithm partition
Input: polytopeX

1. partitionX alongxi = c ∀c ∈ C, i ∈ {1, . . . , dim(X)} /* denote the partition byP g
X */

2. for each hyperrectanglep ∈ P
g
X

for each pair(i, j) of dimensionsi, j ∈ {1, . . . , dim(X)}, i 6= j,
partitionp alongxi = axj + b wherea, b ∈ R define the diagonal
from the lower left to the upper right corner of projection onto thei-j plane

Figure 4:Linearly-consistent partitions.

Theorem 3 For a constant-dependent allocation, the partitionsPV = partition(V ) and PW =
partition(W ) are linearly-consistent.

Constant-dependent allocation functions may not be monotone. Since a dominant-strategy imple-
mentation is possible only for monotone allocation functions (see Theorem 1), we only consider the
ones that are.

In the following sections, we demonstrate that the algorithmic technique described in Theo-
rems 2 and 3 can be applied to a wide class of mechanism design problems. In particular, we
consider the surplus-maximizing allocation and fair imposition problems and show that our method
provides an easy way of obtaining mechanisms for the (previously studied) case with free objects.
Moreover, uniqueness of the mechanisms follows immediately from the uniqueness of the optimal
solution to the restricted problem. These results are presented in Section 4. Finally, in Section 5, we
extend the consideration to the open problem where items have costs.



4 “Free” Homogeneous Objects

In this section, we apply our technique to two central mechanism design problems in single-
parameter domains. We start by re-deriving the results on surplus-maximizing allocation of free
items by Moulin [10] and Guo and Conitzer [7] and fair imposition of a single task by Porteret
al. [13]. We then proceed to show that an optimal mechanism for fair imposition of multiple tasks,
for which no closed form has been previously derived, can be easily obtained using our method.

4.1 Surplus-maximizing allocation

See online appendix at http://users.ecs.soton.ac.uk/vn/comsoc.pdf

4.2 Fair imposition

See online appendix at http://users.ecs.soton.ac.uk/vn/comsoc.pdf

5 Allocation with Costs

In this section, we apply our technique to solve open mechanism design problems. Specifically, we
consider more realistic scenarios where items are not free.This generalization significantly compli-
cates the setting for both surplus-maximizing allocation and fair imposition problems, which have
not been previously tackled for items with costs. We observethat the generalized model still falls
in the framework of single-parameter domains with constant-dependent allocation, and Theorem 3
holds. Given this, we provide the first algorithm for computing optimal mechanisms for these sce-
narios.

5.1 Motivation

We consider a setting where (identical) items must be assigned to the agents, assuming each agent
wants exactly one item, and the items have (increasing marginal) costs. The goal, as before, may be
either to maximize the social surplus or to achievek-fairness.

The allocation problem with increasing marginal costs is a simple and fundamental example of
the problem of the commons [8], in which multiple participants, acting independently to optimize
their own objectives, will ultimately deplete a shared limited resource even when it is clear that it
is not in anyone’s long-term interest for this to happen. Increasing marginal costs model decreasing
returns to every agent as the number of allocated items increases. For instance, consider mem-
bership in a free gym. As the gym becomes more crowded, the utility each member derives from
exercising there decreases. Membership in the gym corresponds to an item in our model. Cost of
item i represents the marginal disutility of the members, which increases as the gym becomes more
crowded.

Allocating items with increasing unit costs also arises in other familiar contexts, such as schedul-
ing and disaster management. For example, consider multiple teams willing to be deployed in a dis-
aster response. Each team has information (i.e., private value) about different regions of the affected
area and can judge how much their region needs help. For teamsto operate, they need commu-
nication frequencies for intra-team communication. The number of frequencies is limited and the
more frequencies are allocated, the higher is the noise. Thegoal of a disaster response manager is
to solicit truthful evaluations of situations in each team’s region and to allocate frequencies to teams
in the regions that need help the most. Additional frequencies should be allocated as long as the
benefit derived from deploying an extra team outweighs the cost corresponding to the increase in
noise on the communication channel. More generally, agentscould be either emergency responders



or sensor networks. The important part is that each agent is self-interested and maximizes its own
utility, which is the case, for example, when agents are owned by different companies.

5.2 Setting

The setting ofallocation with costsis defined by a triple〈n, c, v〉, wheren is the number of agents
each desiring one unit of a homogenous good,c is the vector of marginal costs for producing each
additional unit (item), andv ∈ R

n
+ represents the agents’ valuations for consuming the item. The

marginal cost is increasing in the number of items, i.e.c1 ≤ c2 ≤ . . . ≤ cn, and value profiles are
such that1 ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ 0. Monetary transfers are possible, and agents’ utilities are
quasi-linear.

In contrast to the case with free items, the number of allocated agents isnot fixed but depends
on c andv: we do not assign the item to an agent whose value for the item is lower than its cost.
An efficient mechanism in this setting will maximize the total value of agents minus the total cost;
the number of items allocated this way ism(v, c) = maxi(i | vi ≥ ci) and the value of the efficient
allocation is

∑

i≤m(v,c)(vi − ci).
Finally, we assume that at least one, but no more thann − 1 items, are allocated:c1 < v1 and

cn = 1. It is easy to see that the efficient allocation in this setting is constant-dependent and defined
by setC = {c1, . . . , cn−1}. Hence, Theorem 3 implies.

5.3 Mechanisms

We now formulate the surplus-maximizing allocation and fair imposition problems in this domain.
First, we modify the surplus ratio as follows:

S(c) = min
v∈V

Pm(v,c)
i=1 vi − m(v, c)τa +

Pn

i=1 h(v−i)
Pm(v,c)

i=1 (vi − ci)

whereτa is the critical value of an allocated agent. Note that we fix the cost vectorc and consider
the worst ratio over all possible value profiles: we do not take the minimum over costs as that
would obviously result in zero ratio—when the firstn − 1 costs are the same, the ratio is zero. The
surplus-maximizing allocation problem is then defined by the following optimization program:

max
S∈R, r:Rn−1→R

S s.t. ∀ v ∈ V (1)

m = argmaxi(vi ≥ ci) (2)

τ
a = max{vm+1, cm} (3)
n

X

i=1

h(v−i) − mτ
a ≤ −

X

i≤m

ci (4)

h(v−i) ≥ 0 ∀i (5)

X

i≤m

(vi) − mτ
a +

n
X

i=1

h(v−i) ≥ S
X

i≤m

(vi − ci) (6)

Here, (2) determines the number of items in an efficient allocation for the profilev, and corre-
sponding critical values are defined by (3). The no-deficit property is enforced in (4): the payments
collected from the agents must cover the costs of the allocated items. Constraint (5) guarantees that
the utility of each agent is non-negative (recall from the previous section that enforcing the non-
negativity of rebates is equivalent). Finally, as before, (6) ensures that the ratio is satisfied under all
value profiles.



Similarly, we modify the fair imposition problem as follows: ∀ v ∈ V ,

m = argmaxi(vi ≥ ci) (7)

τ
a = max{vm+1, cm} (8)

h(v−i) ≥
mvk

n
∀i (9)

n
X

i=1

h(v−i) − mτ
a ≤ −

X

i≤m

ci (10)

We have observed that the efficient allocation is constant-dependent in this model (as defined by
the set of costs). Therefore, apiecewise linearsurplus-maximizing and ak-fair mechanisms are
obtained by solving (1)-(6) and (7)-(10), respectively, for the subset of profile valueŝV as defined
in 3, and linearly combining the rebate values in these—extreme—points on each of the regions of
partition they define on spaceW .

6 Open Questions

Our work suggests several directions for future research. First, the characterization result in Theo-
rem 2 can potentially be used to conclude the existence of linear optimal mechanisms in classes of
problems, other than those with constant-dependent allocations: here, combinatorial auctions with
single-minded bidders may be of particular interest; another extension is to public good settings.
Second, a more general question in this context is about the necessity of conditions in Theorem 2.
These conditions imply the existence of a partition of the space of agents’ types, with certain proper-
ties: is it the case that if no such partition exists, an optimal linear mechanism does not exist either?
Finally, an optimal partition may be complicated: in the setting of allocation with costs, the space
is partitioned into

(

2n−2
n−1

)

n! regions, wheren is the number of agents. For smalln, we empirically
observed that most of the regions are required for an optimalmechanism, but it is likely that merging
some of the regions does not decrease the solution quality too much. The tradeoff between efficiency
and optimality remains open for further study.
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