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Abstract

Motivated by online matching marketplaces, we study stability in a many-to-many
market with ties and incomplete preference lists. When preference lists contain ties,
stable matchings need not be Pareto optimal. We consider the algorithmic question
of computing outcomes that are both Pareto optimal and stable in a many-to-many
two-sided market with ties and incomplete lists, where agents on both sides can have
multi-unit capacities, as well as trade multiple units with the same neighbor.
Our main result is a fast algorithm for computing Pareto-stable assignments for this
very general multi-unit matching problem with arbitrary preference lists on both
sides, with running time that is polynomial in the number of agents in the market,
rather than the sum of capacities of all agents.

1 Introduction

A fundamental solution concept in the context of two-sided matching marketplaces is that
of stability, introduced by Gale and Shapley in their seminal work on stable marriage [10].
In the marriage model, there are n men and n women, each with a strict preference ranking
over all members of the other side: a matching between the men and women is stable if there
is no unmatched man-woman pair who both prefer each other to their current partners. The
concept of stability has had enormous influence both on the design of real world matching
markets [25] as well as its theory [27] — a number of variants of the stable matching problem
have been studied, relaxing or generalizing different assumptions in the original model.

One particularly practical generalization is to relax the requirement of strict and com-
plete preferences over all alternatives to accommodate indifferences and intolerance — a
man can have an incomplete preference list, i.e., he need not rank all women, and can have
ties, i.e., he can be indifferent between some women in his preference list (and similarly for
women). The introduction of ties and incomplete lists dramatically changes the properties
and structure of the set of stable matchings relative to the Gale-Shapley marriage model,
and often leads to interesting algorithmic and computational questions in the context of
choosing amongst the large set of stable matchings. For instance, man or woman-optimal
stable matchings1 are no longer well-defined [27]; stable matchings need not all have the
same cardinality, and the problem of finding the maximum cardinality stable matching
becomes NP-hard [16].

One of the most important differences that arises due to indifferences in preference lists,
however, is that stability no longer guarantees Pareto optimality2, an observation that has
received a great deal of attention in the economics literature (see, for example, [2, 7, 1, 29,
8, 9]). When preference lists contain ties, not all stable matchings are Pareto optimal and
in fact, as [8] demonstrates, simply using a matching returned by the Gale-Shapley deferred
acceptance algorithm can cause quite a severe loss in efficiency. A natural question, then, is
whether one can find a matching which is both stable and Pareto optimal when preferences
may contain ties. This question has recently been addressed for the many-to-one matching

1The outcome of the man-proposing deferred acceptance algorithm with strict complete preferences is a
man-optimal stable matching.

2A simple example consists of two men and two women, where i1 strictly prefers j1 to j2, but all other
nodes are indifferent amongst their possible partners. The matching (i1, j2), (i2, j1) is stable, but not Pareto
optimal since i1 can be reassigned to j1 and i2 to j2 without making anyone worse off.



model — Erdil and Ergin [8, 9] give an algorithm that finds a Pareto-stable many-to-one
matching, with runtime that is polynomial in the total capacity of all agents.

In this paper, we study the problem of efficiently computing a Pareto-stable outcome in
a very general many-to-many setting with indifferences: agents on both sides can have multi-
unit capacities, as well as trade multiple units with the same neighbor. (Observe that here,
unlike the many-to-one setting, the total capacity of nodes in the graph is not restricted to
be polynomial in the size of the graph.) The many-to-many setting has attracted growing
interest in the economics literature both because of an increasing number of applications (in-
deed, a number of online marketplaces are many-to-many since both buyers and sellers have
multi-unit demand and supply), and more importantly because of fundamental theoretical
differences from the well understood many-to-one setting. We focus here on a computational
problem that arises from allowing nodes on both sides to have multi-unit capacities— while
a naive adaptation of the many-to-one algorithm would return a Pareto-stable assignment,
it would do so in time that grows polynomially with the total capacity of all nodes in the
graph, rather than the size of the graph itself. We therefore seek a strongly polynomial time
algorithm for the problem of computing a Pareto optimal stable assignment.

The computer science literature on algorithms for stable matching in the presence of
ties and incomplete lists has largely focused on the problems of deciding the existence
of, and computing, strongly-stable and super-stable matchings [15], and computing stable
matchings with large size or weight. While the problem of finding a strongly stable matching
if it exists can be solved in polynomial time [15, 17] and the resulting outcomes are indeed
Pareto optimal, such matchings need not always exist, making them an unsuitable solution
concept practically. Also, the problem of finding the maximum cardinality stable matching
is NP-hard [16]. The solution concept of Pareto stability offers a strict refinement of the
set of stable matchings, and in addition, has the important property that it always exists,
and, as we show, can be computed efficiently. Given that choosing a globally optimal stable
matching is difficult, Pareto-stable matchings, which are locally optimal, are a natural choice
amongst stable matchings — a stable matching which is not Pareto optimal unnecessarily
compromises efficiency, since it is possible to make some agents strictly better off without
compromising the welfare of any other agents.

1.1 Our Results

Our main result is an algorithm that finds a Pareto-optimal stable assignment, with running
time that is polynomial in the number of nodes in the graph, for a many-to-many two-sided
market where: (i) all nodes can have ties and incomplete preference lists over the other
side, (ii) nodes on both sides have multi-unit capacities, (iii) there can be multiple edges
between a pair (i, j) (i.e., multiple units can be assigned between i and j). While ties and
incomplete lists motivate Pareto stability, the actual technical challenge arises due to the
multi-unit node capacities, which, unlike in the many-to-one setting of [8, 9], need not be
polynomial in the size of the graph.

With unit capacity (matching), a fairly straightforward application of standard notions
of augmenting paths and cycles from network flows [18] leads to an algorithm that finds
Pareto-optimal stable matchings [29]. A naive approach to the many-to-many matching
problem is to simply make identical copies of nodes, one for each unit of its capacity,
and compute a Pareto-stable matching for this equivalent instance, using the algorithm
for the relatively simple unit supply/demand setting. However, the size of this instance is
proportional to the total capacity of all nodes, and therefore will not give us a strongly
polynomial time algorithm. Instead, we construct a sequence of modified networks with
one copy of a node for each level in its preference list (the number of levels in a preference
list cannot exceed the number of nodes)— this allows us to correctly define the notion of



”improvement edges” (§4.1) when nodes have multiunit capacities. The second challenge is
to ensure that once all Pareto-improvements at a certain preference level for a particular
node have been found, the reassignments made by the algorithm for a different node or level
does not reintroduce Pareto-improvements for this node and preference level (Example 4.1
demonstrates that this can indeed happen for a only slightly different (and perhaps more
natural) network construction). We use maximum flow computations on a series of carefully
designed augmented networks such that increases in flow preserve stability and correspond
to Pareto improvements in the assignment, and there are no remaining Pareto improvements
after all networks have been executed once. The algorithm and its proof of correctness are
given in Section 4.

Applications. The many-to-many matching problem has recently attracted growing in-
terest because of a number of applications such as job markets where applicants seek mul-
tiple part-time positions [6], auto markets [12], as well as electronic marketplaces such as
eBay, and online advertising exchanges. A specific application in the electronic marketplace
setting is in the context of social lending [4], which is a large and rapidly expanding mar-
ketplace for matching lenders and borrowers directly without the use of traditional financial
intermediaries. In the social lending marketplace, lenders have preferences over borrowers
since they each represent investments with different risk levels— so a lender might prefer to
invest in some borrowers more than others, even amongst the set of acceptable borrowers.
While lenders have explicit preferences over borrowers, the interest rates offered by lenders
can be used to define a preference ranking over lenders for the borrower side of the graph as
well. The question of how to clear this two-sided matching market leads immediately to our
problem of efficiently computing Pareto-stable assignments, since both lenders and borrow-
ers have multiunit capacities (lending budgets and desired loan amounts respectively [4]),
with preferences that are incomplete and contain ties3. The need for computational effi-
ciency is particularly striking in this setting, since an algorithm that is polynomial in the
total capacity of the instance, i.e., the total volume of loans in the market, as opposed to
the total number of agents (lenders and borrowers) is clearly not efficient.

The social lending site Zopa, with over 400,000 members and $50 million in loans, al-
ready uses a centralized matching system where lenders can specify bids for each category
(arranged by credit-rating) of borrowers and a total budget, but not preferences across
categories4. Our algorithm would permit offering a more expressive bidding language for
lenders, which allows specifying preferences across categories in addition to the total budget
and bids, by providing a solution for the market-clearing problem.

1.2 Related Work

Two-sided matchings have been studied extensively since the seminal work of Gale and
Shapley on stable marriage [10]. There is now a vast literature studying various aspects of
the original stable marriage model as well as many of its variants, such as ties in preference
lists, incomplete preferences, and weighted edges, as well as non-bipartite versions such as
the roommate model. For a nice review of the very large economics literature on the subject,
see the book by Roth and Sotomayor [27] and the survey by Roth [25]; for an introduction
to the computer science literature addressing algorithmic and computational questions, see,
for instance, [11, 3, 14].

3Ties are ubiquitous in social lending, since lenders can often only distinguish between borrowers by
credit-rating. Preference lists can be incomplete since some borrowers, for instance those with poor credit
rating, may not be acceptable to a lender.

4A lender can specify separate budgets for each category, but clearly this is a strict subset of the expres-
siveness offered by allowing budgets along with preferences over categories



The papers most relevant to our work from the stable matching literature are the fol-
lowing. Sotomayor [29] proposes Pareto-stable matchings as a natural solution concept for
a many-to-many marketplace and studies structural aspects of Pareto-stable matchings. As
previously discussed, Erdil and Ergin [8, 9] study the algorithmic question of finding Pareto-
optimal matchings for the many-to-one setting and give an algorithm whose running time
is polynomial in the sum of capacities of all nodes in the graph.

The many-to-many stable matching problem is far less well-studied, with a small, but
growing, body of research, motivated by practical settings such as electronic marketplaces,
and job markets where some agents might seek multiple part-time positions [6]. The general-
ization to multi-unit node capacities on both sides is nontrivial: as Echenique and Oviedo [6]
show, even a small number of agents with multi-unit capacity drastically alter the properties
of matchings compared to the many-to-one setting. Much of the literature on many-to-many
stable matchings focuses on settings without indifferences: Hatfield and Kominers [12] study
stability in very general model with bilateral contracts and prove necessary conditions for
the existence of stable matchings as well as results regarding the structure of the set of
stable matchings. Echenique and Oviedo [6] show the equivalence of different solution con-
cepts under strong substitutability for many-to-many matching, also in a setting with strict
preferences. Finally, Malhotra [19] studies the algorithmic question of finding strongly stable
matchings, if they exist, in a many-to-many matching model with ties and complete lists.

2 Model

There is an underlying bipartite graph M with nodes, or agents, (A, B) and edge set E.
The existence of an edge (i, j) means agents i ∈ A and j ∈ B are mutually willing to be
matched with, or assigned to, each other.

Each node in M has a capacity constraint, which is the maximum number of units that
it can trade with its neighbors: we denote by this capacity by ci. We will assume that
the capacities ci are integers, that is, the capacities are discrete rather than continuous
(this assumption is easily justifiable for the natural applications of stable assignment). The
presence of node capacities allows us to assume, without loss of generality, that |A| = |B| =
n, since dummy nodes with ci = 0 can be added to the market to ensure that there is an
equal number of nodes on both sides.

We use the term assignment as a generalization of matching to our many-to-many setting
to mean a multi-unit pairing between the nodes in A and B. A feasible assignment X =
(xij)(i,j)∈E , where xij ≥ 0 is the number of units assigned between i ∈ A and j ∈ B, satisfies
capacity constraints on both sides, that is,

∑
j xij ≤ ci and

∑
i xij ≤ cj . Note that both

inequalities can be strict in a feasible assignment, that is, a node’s capacity need not be
exhausted completely. When all nodes have unit capacity, a feasible assignment is identical
to a bipartite matching.

Preference Model. Each node i ∈ A (respectively j ∈ B) has a preference list Pi ranking
its neighbors {j ∈ B : (i, j) ∈ E} (respectively {i ∈ A : (i, j) ∈ E}). The preference lists are
allowed to have ties, i.e., a node can be indifferent amongst any subset of its neighbors. Since
a node’s preference list is restricted to the set of its neighbors, the preference list is naturally
incomplete. For example, a possible preference list for node i is Pi = ([j1, j2], [j3, j5]): that
is, i is indifferent between j1 and j2, and prefers either of them to j3, j5, which i is indifferent
amongst, and finds all other partners unacceptable.

Definition 2.1 (Level function). We use the function Li(·) to encode the preference list
of a node i ∈ A over individual nodes in B: for each j ∈ Pi, Li(j) ∈ {1, . . . , n} gives the
ranking of j in i’s preference list. That is, for any j, j′ ∈ Pi, if Li(j) < Li(j

′), then i strictly



prefers j to j′; if Li(j) = Li(j
′), then i is indifferent between j and j′. (In the example

above, Li(j1) = Li(j2) = 1 and Li(j3) = Li(j4) = Li(j5) = 2.)
The definition of the level function Lj(·) for each j ∈ B is symmetric.

The preferences of nodes over individual neighbors define a natural ranking over sets of
neighbors, which we use to define the preference of a node over sets of neighbors: Given
sets of neighbors S and S′, arrange the nodes in S and S′ in decreasing order of rank in
i’s preference list. i prefers S to S′ if and only if jl � j′l for each l (using ∅ to make the
sets equal-sized if one set has fewer neighbors than the other). Note that this is only a
partial order, and specifically, some sets may not be comparable— for example, i cannot
compare (or equivalently, is indifferent between) the sets {j1, j4} and {j2, j3}, where jl is
at level l in i’s preference list. This model of preferences for nodes with multi-unit capacity
is both natural and has the advantage that nodes continue to only express preferences over
individuals, and is exactly that used by Erdil and Ergin [8, 9] in their work on Pareto-
stability for many-to-one matchings. We note that the choice of preference model over sets
is relevant only to the Pareto optimality component of our discussion, and does not matter
for stability, which is a pairwise solution concept and is not affected by preferences over sets.

3 Pareto-Stability

We first state the definition of stability for assignment; again, we use the term stable assign-
ment to make the distinction with the unit-capacity setting, where an assignment reduces
to a matching.

Definition 3.1 (Stable assignment). We say that an assignment X = (xij) is stable if there
is no blocking pair (i, j), i ∈ A and j ∈ B, (i, j) ∈ E, satisfying the one of the following
conditions:

• Both i and j have leftover capacity;

• i has leftover capacity and there is i′, xi′j > 0, such that j strictly prefers i to i′; or j

has capacity remaining and there is j′, xij′ > 0, such that i prefers j to j′;

• There are i′ and j′, xij′ > 0 and xi′j > 0, such that i strictly prefers j to j′ and j

strictly prefers i to i′.

Note that both members of a blocking pair must strictly prefer each other to their
current partners. A stable assignment always exists, and can be found using a variant of
Gale-Shapley algorithm [10] for computing stable matchings. We next define Pareto optimal
assignments.

Definition 3.2 (Pareto-optimal assignment). Given assignment X = (xij), let xi(α) =∑
j: Li(j)≤α xij be the total number of units of i’s capacity that is assigned at levels better

than or equal to level α, and xj(β) =
∑

i: Lj(i)≤β xij be the total number of assigned units of

j’s capacity that are better than or equal to level β. We say that X = (xij) is Pareto-optimal
if there is no other feasible assignment Y = (yij) such that yi(α) ≥ xi(α) and yj(β) ≥ xj(β),
for all α, β, and at least one of the inequalities is strict.

Recall from §1 that when preference lists contain ties, a stable matching need not be
Pareto optimal. This leads naturally to the concept of Pareto stable matchings [29], which
combines both Pareto-optimality and stability to provide a stronger solution concept to
choose from amongst the set of stable matchings. (Note that the presence of ties in preference
lists cannot be addressed by the standard trick of breaking ties using small perturbations:



if ties are broken arbitrarily, the set of stable matchings with respect to the new strict
preferences can be strictly smaller than the set of stable matchings with respect to the
original preferences with ties— that is, artificial tiebreaking does not preserve the set of
stable matchings in the original problem.)

Definition 3.3. A Pareto-stable assignment is a feasible assignment that is both stable and
Pareto optimal.

Augmenting Paths and Cycles. Given the connection between assignment and network
flow, it is not surprising that the existence of augmenting paths and cycles in an assignment is
closely related to whether it can be improved, i.e., its Pareto optimality. The main difference
in the context of stable matching is that nodes have preferences in addition to capacities:
thus, augmenting paths and cycles must improve not just the size of an assignment, but also
its quality, as determined by node preferences. We first define augmenting paths and cycles
in the context of stable assignment.

Definition 3.4 (Augmenting Path). Given an assignment X = (xij), we say that
[i0, j1, i1, . . . , jℓ, iℓ, jℓ+1] is an augmenting path if (i) xi0 < ci0 and xjℓ+1

< cjℓ+1
, (ii)

xikjk
> 0 and xik−1jk

< cik−1jk
for k = 1, . . . , ℓ, and (iii) Lik

(jk) ≥ Lik
(jk+1) and

Ljk
(ik−1) ≤ Ljk

(ik) for k = 1, . . . , ℓ.

Definition 3.5 (Augmenting Cycle). Given an assignment X = (xij), we say that
[i1, j2, i2, . . . , jℓ, iℓ, j1, i1] is an augmenting cycle if (i) xikjk

> 0 and xik−1jk
< cik−1jk

for k = 1, . . . , ℓ, (ii) Lik
(jk) ≥ Lik

(jk+1) and Ljk
(ik−1) ≤ Ljk

(ik) for k = 1, . . . , ℓ, where
i0 = iℓ and jℓ+1 = j1, and (iii) at least one of the above inequalities is strict. If ik is such
a node (resp. jk), we say it is an augmenting cycle associated with ik (resp. jk) at level
Lik

(jk) (resp. Ljk
(ik)).

The following easy lemma implies that if a stable assignment has no augmenting paths
or cycles, then it must be Pareto stable (a similar result for Pareto-stable matching was
shown in [29].)

Lemma 3.1. Any assignment X that has no augmenting path or cycle is Pareto-optimal.

4 Computing a Pareto-Stable Assignment

We now give a strongly polynomial time algorithm to compute a Pareto-stable assignment.
Note that if X is a stable assignment, reassigning according to any augmenting path or cycle
of X preserves stability, i.e., any assignment Y that Pareto dominates a stable assignment
X is stable as well [9]. This, together with Lemma 3.1, suggests that starting with a stable
assignment, and then making improvements to it using augmenting paths and cycles until
no more improvements are possible, will result in a Pareto stable assignment.

How do we find such augmenting paths and cycles? First consider the simplest case
with unit capacity, i.e., ci = cj = 1 for all i, j; here, an assignment degenerates to a
matching. Given an existing matching, define a new directed bipartite graph with the same
nodes, where all forward edges are “weak improvement” edges with respect to the existing
matching, and backward edges correspond to the pairings in current matching. Then we
are able to find augmenting paths by introducing a source and sink that link to unmatched
nodes on each side. For cycles, since we need strict improvement for at least one node, we
consider subgraphs, one for each node, which only consists of strict improvement edges for
that node; then any cycle in the subgraph containing that node gives an augmenting cycle.



For our general case where ci ≥ 1, however, note that even the concept of improvement
edges for a node is not well defined — since a node can have multiple partners in an assign-
ment, a particular edge can present an improvement for some part of that node’s capacity
and not for some others. For instance, suppose that node i (with ci = 2) is matched to
nodes j1 and j3, and suppose that i strictly prefers j1 to j2 to j3. Then, (i, j2) would only
represent an improvement relative to (i, j3), but not with respect to (i, j1), both of which
exist in the current assignment.

An obvious way to fix this problem is to make copies of each node, one for each unit of its
capacity, in which case improvement edges are well-defined– each unit of flow is associated
with a unique neighbor in any assignment. However, note that this new graph has size∑

i ci +
∑

j cj , consequently computing a Pareto-stable assignment in time polynomial in∑
i ci +

∑
j cj , which, alas, is exponential in the size of the input.

4.1 Construction of Networks

In order to define improvement edges in this setting with multiple units of supply and
demand, we will create a new augmented bipartite graph from the original bipartite graph
and preference lists of nodes. The vertex set consists of copies of each node, where each copy
represents a level on that node’s preference list. We then define forward and backward edges
between the vertices: forward edges are the (weak) improvement edges, while there is one
backward edge for every feasible pair (i, j), i ∈ A, j ∈ B, corresponding to their respective
levels in the others’ preference list. This augmented graph, which is assignment-independent
and depends only on the preference lists of the nodes, is then used to define a sequence of
networks with assignment-dependent capacities, which allow us to find augmenting paths
and cycles. The constructions are described formally below.

Definition 4.1. Given the preference lists of nodes, we construct a directed graph G as
follows.

• Vertices: For each node i ∈ M (either in A or B), we introduce n new vertices
T (i) = {i(1), . . . , i(n)}, where i(α) corresponds the α-th level of the preference list of
i. (If i has k < n levels in his preference list, it suffices to introduce only k vertices
i(1), . . . , i(k); here, we use n levels for uniformity.)

• Edges: For each pair (i, j) ∈ E(M), let α = Li(j) and β = Lj(i). We add a backward
edge between i(α) and j(β), i.e. j(β) → i(α). Further, we add a forward edge i(α′) →
j(β′) for every pair of vertices i(α′) and j(β′) satisfying α′ ≥ α and β′ ≥ β.

The following figure shows an example of the construction, where the first figure gives
the input instance (the number on each node is its supply/demand).

Definition 4.2 (Network H). Given graph G and an assignment X, we define network
H(X) as follows. We assign capacity infinity to all forward edges in G, and capacity xij

to the backward edge between T (i) and T (j). We include a source s and a sink t; further,
for each i ∈ A and j ∈ B, we add an extra vertex hi and hj, respectively. We connect
s → hi with capacity ci − xi, and hj → t with capacity cj − xj, where xi =

∑
j xij and

xj =
∑

i xij . Further, we connect hi → i(α) with capacity infinity for α = 1, . . . , n, and
connect j(β) → hj with capacity infinity for β = 1, . . . , n.

We will use the network H to find augmenting paths with respect to an existing stable
assignment X . Observe that the only edges from the source with nonzero capacity are those
that connect to a node i ∈ A with leftover capacity; similarly, the only edges to the sink with
nonzero capacity are from a node j ∈ B with leftover capacity. Sending flow from s to t in
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Figure 1: Construction of graph G.

H therefore involves increasing the total size of the assignment, exactly as in an augmenting
path for X . In fact, as we will show in Proposition 4.1, after finding the maximum flow in
H and updating the assignment accordingly, there are no remaining augmenting paths in
the new assignment.

Definition 4.3 (Networks Hi,α and Hj,β). Given the graph G and X, let G(X) be the
network where all forward edges in G are assigned capacity infinity, and all backward edges
are assigned capacity xij. We use G(X) define the networks Hi,α(X) and Hj,β(X) for each
i ∈ A and j ∈ B, and α, β = 1, . . . , n, as follows.

To get network Hi,α(X) from G(X), we add a source s and a sink t, and connect s → j(β)
with capacity infinity for each vertex j(β) satisfying α > Li(j) and β ≥ Lj(i) (an equivalent
definition is that we connect s → j(β) if there is an edge i(α) → j(β) and α > Li(j)).
Further, we connect j(β) → t with capacity xij for each j(β) satisfying α ≤ Li(j) and
β = Lj(i).

The network Hj,β(X) is defined symmetrically. That is, we include a source s and a
sink t, and connect s → i(α) with capacity xij for each vertex i(α) satisfying α = Li(j)
and β ≤ Lj(i). Further, we connect i(α) → t with capacity infinity for each i(α) satisfying
α ≥ Li(j) and β > Lj(i).

We will use the networks Hi,α and Hj,β to find augmenting cycles associated with
i and j at level α and β, respectively. Consider any flow from s to t in Hi,α, say
[s, j1(β1), i1(α1), . . . , i2(α2), j2(β2), t], we know that α > Li(j1) (i.e. i strictly prefers j1 to
all its neighbors at level α) and Lj1(i1) = β1 ≥ Lj1(i) (i.e. j1 weakly prefers i to i1). Further,
we have α ≤ Li(j2) (this implies that i strictly prefers j1 to j2) and Lj2(i2) ≤ β2 = Lj2(i)
(i.e. j2 weakly prefers i2 to i). That is, flows from s to t in Hi,α correspond to augmenting
cycles for node i at levels less than or equal to α in X (a symmetric argument holds for
graph Hj,β). We will show in Proposition 4.2 that once we compute the maximum flow in
Hi,α, there are no remaining augmenting cycles for node i at level α (note, not level α or
below).



4.2 Algorithm

Pareto Stable Assignment (Pareto-Assignment)

1. Let X be an arbitrary stable assignment

2. Construct networks H, Hi,α and Hj,β, for each i ∈ A, j ∈ B, and α, β =
1, . . . , n given X

3. For H, Hi,α and Hj,β constructed above (H to be executed first)

(a) Compute a maximum flow F = (fuv) from s to t (if there is no flow from

vertex u to v, set fuv = 0)

(b) For each forward edge i(α) → j(β), let xij = xij + fi(α)j(β)

(c) For each backward edge j(β) → i(α), let xij = xij − fj(β)i(α)

(d) If the graph is Hi,α

• Let xij = xij + fsj(β) for each edge s → j(β)

• Let xij = xij − fj(β)t for each edge j(β) → t

(e) If the graph is Hj,β

• Let xij = xij − fsj(β) for each edge s → i(α)

• Let xij = xij + fj(β)t for each edge i(α) → t

(f) Update the capacities for the next graph to be executed according to

the new assignment X

4. Output X (denoted by X∗)

To prove that Pareto-Assignment indeed computes a Pareto-stable assignment, we
need to show two main things — first, that the resulting assignment is feasible, stable, and
all nodes’ assignments are weakly enhanced through the course of the algorithm.

Second, we need to show that no further Pareto improvements are possible when the
algorithm terminates, i.e., X∗ is Pareto optimal. Note that the assignment X changes
through the course of the algorithm, and therefore we need to show that, for instance, no
other augmenting paths can be found after the network H has been executed, even though
the assignment X that was used to define the network H has been changed (and similarly
for all augmenting cycles). That is, while we compute maximum flows in H(X) to find
all augmenting paths for a given assignment X , we need to show that no new augmenting
paths have showed up in the updated assignments X ′ computed by the algorithm. Similarly,
finding (i, α) augmenting cycles via Hi,α(X) for some assignment X does not automatically
imply that no further (i, α) augmenting cycles will ever be found in any of the (different)
assignments X ′ computed through the course of the algorithm, since the assignments of all
nodes can change each time when a maximum flow is computed, leading to the possibility of
new valid s-t paths, and therefore possibly new augmenting cycles. Note that this is hardly
obvious, and in fact, as Example 4.1 demonstrates, that this does not happen is due to a
careful choice of the construction of the networks Hi,α, Hj,β .

Example 4.1. Suppose there are four nodes i1, i2, i3, k in A and five nodes j1, j2, j3, j4, j5
in B. All nodes except k have unit capacity and are indifferent between all possible partners
(i.e., have only one level in their preference list). Node k has capacity 2, and preference list
([j1, j5], [j3, j4], j2). Suppose we start with the (stable) assignment X0 where k is matched
to j2, j3, and the remaining assignments are (i1, j1), (i2, j4), (i3, j5) (note there are no aug-
menting paths in X0). Consider finding the maximum flow in network Hi,α without the link
j2 → t for α = 2. In this network, the total capacity of edges incident to the sink is 1, thus
we can send at most one unit flow, for example k → j1 → i1 → j2 → k → j4 → i2 → j3 → t



(note that the two k’s here correspond to different vertices in T (k) in the network).
After reassigning assignment according to this flow, we obtain the new assignment X ′

(i1, j2), (i2, j3), (i3, j5), (k, j1), (k, j4). But observe that X ′ still has an augmenting cycle
at level 2 for node k: k → j5 → i3 → j4 → k. However, with the original definition
of Hi,α, which links j2 → t, the maximum flow consists of pushing flow along the paths
k → j1 → i1 → j2 → t and k → j5 → i3 → j4 → i2 → j3 → t, leading to the new
assignment X ′′ = (i1, j2), (i2, j3), (i3, j4), (k, j1), (k, j5) which has no remaining augmenting
cycles for k.

The Pareto-optimality of the assignment X∗ returned by the algorithm follows from the
following two claims.

Proposition 4.1. There is no augmenting path after graph H is executed in Step 3 of
Pareto-Assignment.

Proposition 4.2. There is no augmenting cycle associated with i (resp. j) at level α (resp.
β) after graph Hi,α (resp. Hj,β) is executed in step 3 of Pareto-Assignment.

Together, these two propositions imply that the outcome returned by Pareto-

Assignment is indeed a Pareto-optimal assignment. Note that the construction of each
graph H, Hi,α and Hj,β is in polynomial time. In total there are O(n2) such graphs with
O(n2) vertices each. For each graph H, Hi,α and Hj,β , its maximum flow can be computed in
strongly polynomial time O(n6) with respect to its number of vertices O(n2) [18]. Therefore,
the running time of the algorithm is in O(n8). This gives us our main result:

Theorem 4.1. Algorithm Pareto-Assignment computes a Pareto-stable assignment in
strongly polynomial time O(n8), where n is the total number of nodes in the bipartite graph
M .

5 Remarks

In one-to-one matching, the solution concepts of pairwise stability, core, and setwise stability
all coincide, but this is not the case with many-to-many matching [27]. For our preference
model for many-to-many matching, the core is not a suitable solution concept, since match-
ings in the core need not be pairwise stable ([28], Fig.1a), and the strong core need not exist
([27], §5.7) (it is easy to adapt the examples in these references to our model of preferences
over sets). We also note that Pareto stability is incomparable with set-wise stability (both of
which are strictly stronger than pairwise stability) in the sense that neither solution concept
is stronger than the other— an easy example shows set-wise stable matchings need not be
Pareto-optimal, and vice versa. The problem of computing set-wise, rather than pairwise,
stable matchings, appears to be a challenging algorithmic question, and we leave it as an
open problem for future work.
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