
An Algorithm for the Coalitional

Manipulation Problem under Maximin

Michael Zuckerman, Omer Lev, and Jeffrey S. Rosenschein

Abstract

We introduce a new algorithm for the Unweighted Coalitional Manipulation problem

under the Maximin voting rule. We prove that the algorithm gives an approximation

ratio of 1 1

2
to the corresponding optimization problem. This is an improvement over

a previously known algorithm that gave a 2-approximation. We also prove that our

analysis is tight, i.e., there are instances on which a 1 1

2
-approximation is the best

the algorithm can achieve.

1 Introduction

Exploring the computational complexity of, and algorithms for, the manipulation problem
is one of the most important research areas in computational social choice.

In an election, voters submit linear orders (rankings, or profiles) of the candidates (al-
ternatives); a voting rule is then applied to the rankings in order to choose the winning
candidate. In the prominent impossibility result proven by Gibbard and Satterthwaite [4, 5],
it was shown that for any voting rule, a) which is not a dictatorship, b) which is onto the set
of alternatives, and c) where there are at least three alternatives, then there exist profiles
where a voter can benefit by voting insincerely. Submitting insincere rankings in an attempt
to benefit is called manipulation.

There are several ways to circumvent this result, one of which is by using computational
complexity as a barrier against manipulation. The idea behind this technique is as follows:
although there may exist a successful manipulation, the voter must discover it before it
can be used—but for certain voting rules, discovering a successful manipulation might be
computationally hard. This argument was used already in 1989 by Bartholdi et al. [2],
and in 1991 by Bartholdi and Orlin [1], where they proved, respectively, that second-order
Copeland and Single Transferable Vote are both NP-hard to manipulate.

Later, the complexity of coalitional manipulation was studied by Conitzer et al. [3].
In the coalitional manipulation problem, a coalition of potentially untruthful voters try to
coordinate their ballots so as to make some preferred candidate win the election. Conitzer et
al. studied the problem where the manipulators are weighted: a voter with weight l counts
as l voters, each of weight 1. This problem was shown to be NP-hard, for many voting
rules, even for a constant number of candidates. However, it has been argued that a more
natural setting is the unweighted coalitional manipulation (UCM) problem, where all voters
have equal power. In a recent paper [6], Xia et al. established as one of their main results
that UCM is NP-hard under the Maximin voting rule, even for 2 untruthful voters.

In 2009, Zuckerman et al. [7] defined a natural optimization problem for the unweighted
setting (i.e., Unweighted Coalitional Optimization, UCO): finding the minimal number of
manipulators that is sufficient to make some predefined candidate win. It is proven, as a
corollary of their results, that the heuristic greedy algorithm proposed in the paper gives
a 2-approximation to the UCO problem under Maximin. Here, we further study the UCO
problem under Maximin, proposing a new greedy algorithm that gives a 1 1

2 -approximation
to the problem.1 Then we provide an example showing that the approximation ratio of the

1Strictly speaking, our algorithm is for the decision problem, but since the conversion of our algorithm

to one for the optimization problem is straightforward, we consider it an approximation algorithm for the

algorithm is not better than 1 1
2 .

2 The Maximin Voting Rule, Manipulation and Con-

dorcet winner

An election consists of a set C = {c1, . . . , cm} of candidates, and a set S = {v1, . . . , v|S|} of
voters. Each voter provides a total order on the candidates (i.e., each voter submits a linear
ranking of all the candidates). The setting also includes a voting rule, which is a function
from the set of all possible combinations of votes to C.

The maximin voting rule is defined as follows. For any two distinct candidates x and
y, let N(x, y) be the number of voters who prefer x over y. The maximin score of x is
S(x) = miny 6=x N(x, y). The candidate with the highest maximin score is the winner.

Definition 2.1. In the Constructive Coalitional Unweighted Manipulation
(CCUM) problem, we are given a set C of candidates, with a distinguished candidate
p ∈ C, a set of (unweighted) voters S that have already cast their votes (these are the
non-manipulators), and a set T of (unweighted) voters that have not yet cast their votes
(these are the manipulators). We are asked whether there is a way to cast the votes in T
so that p wins the election.

Definition 2.2. In the Unweighted Coalitional Optimization (UCO) problem we
are given a set C of candidates, with a distinguished candidate p ∈ C, and a set of (un-
weighted) voters S that have already cast their votes (the non-manipulators). We are asked
for the minimal n such that a set T of size n of (unweighted) manipulators can cast their
votes in order to make p win the election.

Remark 2.3. We implicitly assume here that the manipulators have full knowledge about
the non-manipulators’ votes. Unless explicitly stated otherwise, we also assume that ties
are broken adversarially to the manipulators, so that if p ties with another candidate, p
loses. The latter assumption is equivalent to formulating the manipulation problems in
their unique winner version, when one assumes that all candidates with maximal score win,
but asks that p be the only winner.

Throughout this paper we will use the convention, unless explicitly stated otherwise, that
|C| = m, |S| = N and |T | = n. We will denote Ni(x, y) = |{j | x ≻j y,≻j∈ S ∪ {1, . . . , i}}|.
That is, Ni(x, y) will denote the number of voters from S and from the first i voters of
T that prefer x over y (assuming S is fixed, and fixing some order on the voters of T).
Furthermore, we will denote by Si(c) the accumulated score of candidate c from the voters
of S and the first i voters of T . By definition, for each c ∈ C, Si(x) = miny 6=x Ni(x, y).
Also, we denote for x ∈ C, MINi(x) = {y ∈ C \ {x} | Si(x) = Ni(x, y)}. We denote for
0 ≤ i ≤ n, ms(i) = maxc∈C\{p} Si(c). That is, ms(i) is the maximum score of the opponents
of p after i manipulators have voted.

Definition 2.4. The Condorcet winner of an election is the candidate who, when compared
with every other candidate, is preferred by more voters.

3 The Algorithm

Our algorithm for the CCUM problem under the maximin voting rule is given as Algorithm 1
(see the final page of the paper). It works as follows: fix some order on the manipulators;

optimization problem.

the current manipulator i ranks p first. He then builds a digraph Gi−1 = (V, Ei−1), where
V = C \ {p}, (x, y) ∈ Ei−1 iff (y ∈ MINi−1(x) and p /∈ MINi−1(x)). He iterates over the
candidates that have not yet been ranked in his preference list. If there are candidates
with an out-degree 0, then the manipulator adds such a candidate who has the lowest
score (among the candidates with an out-degree 0) to his preference list. Note that the
candidates with out-degree 0 are kept in stacks in order to guarantee a DFS-like order
among candidates with the same score. This is needed for Lemma 5.5 to work. Otherwise,
if there are no candidates with out-degree 0, then the algorithm tries to find a cycle with
two adjacent vertices having the lowest score. If it finds such a cycle, then it picks the
front vertex of these two. Otherwise, any candidate with the lowest score is chosen. After
a candidate b is added to the manipulator’s preference list, for each candidate y who has
an outgoing edge (y, b), the algorithm removes all the outgoing edges of y, puts it into the
appropriate stack, and assigns b to be y’s “father” (this assignment is used to analyze the
algorithm).

Note the subtle difference between calculating the scores in Algorithm 1 in this paper,
as compared to in Algorithm 1 in [7]. In the latter, the manipulator i calculates what the
score would be of the current candidate x if he put x at the current place in his preference
list; in the algorithm we are now presenting, manipulator i just calculates Si−1(x). This
difference is due to the fact that here, when we calculate the score of x, we know whether
dout(x) > 0, i.e., we know whether the score of x will grow by 1 if we put it at the current
available place. So we separately compare the scores of candidates with out-degree > 0, and
the scores of candidates with out-degree 0.

Definition 3.1. We refer to an iteration of the main for loop in lines 3–37 of Algorithm 1
as a stage of the algorithm. That is, a stage of the algorithm is a vote of any manipulator.

The intuition behind Algorithm 1 is as follows. The algorithm tries in a greedy manner
to maximize the score of p, and to minimize the scores of p’s opponents. To achieve this,
it always puts p first in the preference lists, making the score of p grow by 1 with each
manipulator. Regarding p’s opponents, it tries first to rank candidates without any outgoing
edges from them, since their score will not grow this way (because their score is achieved
vs. candidates who were already ranked before them). When there are no candidates without
outgoing edges, the algorithm finds the candidate with the minimal score, and ranks it in
the next place in the preference list. After ranking each candidate, the edges in the graph
are updated, so that all candidates whose minimal candidate has already been ranked, will
be with outgoing degree 0. For an edge (x, y), if y has already been ranked, we remove
all the edges going out from x, since if we rank x now, its score won’t go up, and so it
does not depend on other candidates in MINi−1(x). There is no need of an edge (x, y) if
p ∈ MINi−1(x), since for all x ∈ C \ {p}, p is always ranked above x, and so whether y is
ranked above x or not, the score of x will not grow.

Definition 3.2. In the digraph Gi built by the algorithm, if there exists an edge (x, y), we
refer to Ni(x, y) = Si(x) as the weight of the edge (x, y).

4 2-approximation

We first prove that Algorithm 1 has an approximation ratio of 2. We then use this result
in the proof of the 1 1

2 approximation ratio. The proof of Theorem 4.1 via Lemma 4.2 and
Lemma 4.3 is quite similar to the proof of Theorem 3.16 in [7].

Theorem 4.1. Algorithm 1 has a 2-approximation ratio for the UCO problem under the
maximin voting rule.

To prove the above theorem, we first need the following two lemmas. In the first one we
prove that a certain sub-graph of the graph built by the algorithm contains a cycle passing
through some distinguished vertex. We first introduce some more notation.

Let Gi = (V, Ei) be the directed graph built by Algorithm 1 in stage i+1. For a candidate
x ∈ C\{p}, let Gi

x = (V i
x , Ei

x) be the graph Gi reduced to the vertices that were ranked below
x in stage i + 1, including x. Let V i(x) = {y ∈ V i

x | there is a path in Gi
x from x to y}.

Also, let Gi(x) be the sub-graph of Gi
x induced by V i(x).

Lemma 4.2. Let i be an integer, 0 ≤ i ≤ n − 1. Let x ∈ C \ {p} be a candidate. Denote
t = ms(i). Suppose that Si+1(x) = t + 1. Then Gi(x) contains a cycle passing through x.

Proof. First of all note that for all c ∈ V i(x), Si(c) = t. It follows from the fact that by
definition Si(c) ≤ t. On the other hand, Si(x) = t, and all the other vertices in V i(x) were
ranked below x. Together with the fact that the out-degree of x was greater than 0 when x
was picked, it gives us that for all c ∈ V i(x), Si(c) ≥ t, and so for all c ∈ V i(x), Si(c) = t.
We claim that for all c ∈ V i(x), MINi(c) ⊆ V i(x). If, by way of contradiction, there exists
c ∈ V i(x) s.t. there is b ∈MINi(c) where b /∈ V i(x), then b /∈ V i

x , since otherwise, if b ∈ V i
x ,

then from c ∈ V i(x) and (c, b) ∈ Ei
x we get that b ∈ V i(x). So b /∈ V i

x , which means that b
was ranked by i + 1 above x. After we ranked b we removed all the outgoing edges from c,
and so we chose c before x since dout(c) = 0 and dout(x) > 0 (since the score of x went up
in stage i + 1). This contradicts the fact that c ∈ V i(x) ⊆ V i

x . Therefore, for every vertex
c ∈ V i(x) there is at least one edge in Gi(x) going out from c. Hence, there is at least one
cycle in Gi(x). Since at the time of picking x by voter i + 1, for all c ∈ V i(x), dout(c) > 0,
and by the observation that for all c ∈ V i(x), Si(c) = t, we have that the algorithm picked
the vertex x from a cycle (lines 21–22 of the pseudocode).

In the next lemma we put forward an upper bound on the growth rate of the scores of
p’s opponents.

Lemma 4.3. For all 0 ≤ i ≤ n− 2, ms(i + 2) ≤ ms(i) + 1

Proof. Let 0 ≤ i ≤ n − 2. Let x ∈ C \ {p} be a candidate. Denote t = ms(i). By
definition, Si(x) ≤ t. We would like to show that Si+2(x) ≤ t + 1. If Si+1(x) ≤ t, then
Si+2(x) ≤ Si+1(x)+ 1 ≤ t + 1, and we are done. So let us assume now that Si+1(x) = t + 1.

Let V i(x) and Gi(x) as before. By Lemma 4.2, Gi(x) contains at least one cycle. Let U
be one such cycle. Let a ∈ U be the vertex that was ranked highest among the vertices of
U in stage i + 1. Let b be the vertex before a in the cycle: (b, a) ∈ U . Since b was ranked
below a at stage i + 1, it follows that Si+1(b) = Si(b) ≤ t.

Suppose, for contradiction, that Si+2(x) > t + 1. Then the score of x went up in stage
i + 2, and so when x was picked by i + 2, its out-degree in the graph was not 0. x was
ranked by i + 2 at place s∗. Then b was ranked by i + 2 above s∗, since otherwise, when we
had reached the place s∗, we would not pick x since b would be available (with out-degree
0, or otherwise—with score Si+1(b) ≤ t < t + 1 = Si+1(x))—a contradiction.

Denote by Z1 all the vertices in V i(x) that have an outgoing edge to b in Gi(x). For all
z ∈ Z1, b ∈ MINi(z), i.e., Si(z) = Ni(z, b). We claim that all z ∈ Z1 were ranked by i + 2
above x. If, by way of contradiction, there is z ∈ Z1, s.t. until the place s∗ it still was not
added to the preference list, then two cases are possible:

1. If (z, b) ∈ Ei+1, then after b was added to i + 2’s preference list, we removed all
the outgoing edges of z, and we would put in z (with out-degree 0) instead of x, a
contradiction.

2. (z, b) /∈ Ei+1. Since (z, b) ∈ Ei, we have Si(z) = Ni(z, b). Also since z was ranked by
i+1 below x, it follows that Si(z) = t. So from (z, b) /∈ Ei+1, we have that Si+1(z) = t

and Ni+1(z, b) = t +1. Therefore, when reaching the place s∗ in the i + 2’s preference
list, whether dout(z) = 0 or not, we would not pick x (with the score Si+1(x) = t + 1)
since z (with the score Si+1(z) = t) would be available, a contradiction.

Denote by Z2 all the vertices in V i(x) that have an outgoing edge in Gi(x) to some
vertex z ∈ Z1. In the same manner we can show that all the vertices in Z2 were ranked
in stage i + 2 above x. We continue in this manner, by defining sets Z3, . . . , where the set
Zl contains all vertices in V i(x) that have an outgoing edge to some vertex in Zl−1; the
argument above shows that all elements of these sets are ranked above x in stage i + 2. As
there is a path from x to b in Gi(x), we will eventually reach x in this way, i.e., there is
some l such that Zl contains a vertex y, s.t. (x, y) ∈ Ei(x).

Now, if (x, y) ∈ Ei+1(x), then since y was ranked by i + 2 above x, we have Si+2(x) =
Si+1(x) = t + 1, a contradiction. And if (x, y) /∈ Ei+1(x), then since (x, y) ∈ Ei(x) we get
that Ni+1(x, y) = t + 1 and Si+1(x) = t, a contradiction.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let opt denote the minimum size of coalition needed to make p win.
It is easy to see that opt ≥ ms(0) − S0(p) + 1. We set n = 2ms(0) − 2S0(p) + 2 ≤ 2opt.
Then, by Lemma 4.3:

ms(n) ≤ ms(0) +
⌈n

2

⌉

= 2ms(0)− S0(p) + 1.

Whereas:
Sn(p) = S0(p) + n = 2ms(0)− S0(p) + 2 > ms(n).

So p will win when the coalition of manipulators is of size n.

5 11

2
-approximation

Our next goal is to prove that Algorithm 1 has an approximation ratio of 1 1
2 when there

are no 2-cycles in the graphs built by the algorithm.

Theorem 5.1. For instances where there are no 2-cycles in the graphs Gi built by Algo-
rithm 1, it gives a 1 1

2 -approximation to the optimum.

We first prove the following lemma regarding the length of the cycles in the digraphs
built by the algorithm.

Lemma 5.2. If for all c ∈ C \ {p} it holds that S0(c) <
⌊

N
2

⌋

, then during the run of the
entire algorithm, in the graph built by the algorithm, there will be no cycles of length 2.

Proof. Suppose that for all c ∈ C \ {p} it holds that S0(c) <
⌊

N
2

⌋

. By Lemma 4.3, it holds
for all c ∈ C \ {p} and all 0 ≤ i ≤ n− 2, that Si+2(c) ≤ ms(i) + 1. Then for all 0 ≤ i ≤ n:

Si(c) ≤ ms(0) +

⌈

i

2

⌉

<

⌊

N

2

⌋

+

⌈

i

2

⌉

≤

⌈

N + i

2

⌉

.

Now if, by way of contradiction, there is a cycle of length 2 between vertices x and y
after stage i, then Si(x) = Ni(x, y) <

⌈

N+i
2

⌉

and Si(y) = Ni(y, x) <
⌈

N+i
2

⌉

, and then

Si(y) = Ni(y, x) ≤
⌊

N+i
2

⌋

. Hence, N + i = Ni(x, y) + Ni(y, x) <
⌈

N+i
2

⌉

+
⌊

N+i
2

⌋

= N + i,
a contradiction.

Lemma 5.3. Suppose that there are no 2-cycles in the graphs built by the algorithm. Let
x ∈ C \ {p} be a candidate such that Si+1(x) = t + 1 (where t = ms(i)), and let Gi(x)
be as described before Lemma 4.2. For each cycle U in Gi(x), if U exists in Gi+1, i.e.,
after stage i + 1, then there are 3 distinct vertices a, b, c, s.t. (c, b) ∈ U , (b, a) ∈ U and
Si+1(b) = Ni+1(b, a) = Si+1(c) = Ni+1(c, b) = t.

Proof. Let U ⊆ Ei(x) be a cycle which stays also after i + 1 stages. Let a be the vertex
which in stage i + 1 was chosen first among the vertices of U . Let b be the vertex before a
in U , i.e., (b, a) ∈ U , and let c be the vertex before b in U , i.e., (c, b) ∈ U . Since there are
no 2-cycles, a, b, c are all distinct vertices. Recall that for each y ∈ V i(x), Si(y) = t. Since
b was ranked below a in stage i + 1, we have Si+1(b) = Ni+1(b, a) = Ni(b, a) = Si(b) = t.
If c was chosen after b in stage i + 1, then Si+1(c) = Ni+1(c, b) = Ni(c, b) = t and we
are done. We now show that c cannot be chosen before b in stage i + 1. If, by way of
contradiction, c were chosen before b, since after ranking a, dout(b) = 0, it follows that when
c was picked, its out-degree was also 0. Hence, there exists d ∈MINi(c) which was picked by
i+1 before c. And so, Si+1(c) = t. On the other hand, since c was picked before b, we have
Ni+1(c, b) = t + 1 > Si+1(c), and so the edge (c, b) does not exist in Gi+1, a contradiction
to the fact that the cycle U stayed after stage i + 1.

Lemma 5.4. Let x ∈ C \ {p} be a candidate such that Si+1(x) = t + 1 (where t = ms(i)).
Let Gi(x) be as before. Then at least one cycle in Gi(x) that passes through x, will stay
after the stage i + 1, i.e., in Gi+1.

Proof. In Lemma 4.2 we have proved that, in Gi(x) at least one cycle passes through x.
Since x appears in the preference list of i + 1 above all the MINi(x), it follows that each
edge going out of x in Gi(x), stays also in Gi+1. After we added x to the preference list of
i + 1, all the vertices in all the cycles passing through x were added in some order to the
preference list of i + 1, while they were with out-degree 0 at the time they were picked (it
can be proved by induction on the length of the path from the vertex to x). Therefore, their
“father” field was not null when they were picked. We have to prove that there is at least
one cycle whose vertices were added in the reverse order (and then all the edges of the cycle
stayed in Gi+1). Let z1 ∈ C \ {p, x} be some vertex such that (x, z1) ∈ Gi(x) and there is a
path in Gi(x) from z1 to x. Let z2 = z1.father. As observed earlier, z2 6= null. We first show
that when z2 was picked by i + 1, it was with out-degree 0. Indeed, if, by contradiction, we
suppose otherwise, then z2 would have been picked after z1 (the proof is by induction on
the length of the shortest path from vertex to x, that each vertex such that there is a path
from it to x was picked before z2), and this is a contradiction to the fact that z2 = z1.father.
Therefore, the “father” field of z2 after stage i + 1 is not null. Let z3 = z2.father. If z3 = x
then we are done because we have found a cycle x → z1 → z2 → z3 = x which was ranked
in stage i+1 in the reverse order. Otherwise, by the same argument as before, we can show
that when z3 was picked, its out-degree was 0. This way we can pass from a vertex to its
father until we reach p or null. We now show that we cannot reach p this way. Indeed, if, by
contradiction, we reach p, then there is a path from x to p in Gi, and so all the vertices in
this path, including x, were picked when their out-degree was 0, and this is a contradiction
to the fact that the score of x went up in stage i+1. Therefore, we cannot reach p when we
go from a vertex to its father starting with z1. Now, let zj be the last vertex before null in
this path. We would like to show that zj = x. If, by contradiction, zj was picked before x
by voter i + 1, then all the vertices zj−1, . . . , z2, z1 would have been picked before x, when
their out-degree is 0, and then x would have been picked when its out-degree is 0. This is a
contradiction to the fact that x’s score went up in stage i+1. Now suppose by contradiction
that zj was picked after x in stage i + 1. Then all the vertices that have a path from them
to x, including z1, would have been picked before zj in stage i + 1, since the out-degree of

zj was greater than 0 when it was picked. This is a contradiction to the fact that zj was
picked before z1. So, zj = x. This way we got a cycle x→ z1 → . . .→ zj−1 → x which was
ranked in the reverse order in stage i + 1.

Lemma 5.5. Suppose that there are no 2-cycles in the graphs built by the algorithm. Let
x ∈ C \ {p} be a candidate such that Si+1(x) = t + 1 (where t = ms(i)). Then after stage
i + 2 at least one of the following will hold:

1. There will be a vertex w in Gi+2 s.t. p ∈ MINi+2(w) and there will be a path from x
to w.

2. There will be a vertex w in Gi+2 with Si+2(w) ≤ t, s.t. there will be a path from x to
w.

The proof of this lemma uses the same ideas as the proof of Lemma 5.4, and is omitted
due to space limitations.

The next lemma is central in the proof of Theorem 5.1. It states that the maximum
score of p’s opponents grows rather slowly.

Lemma 5.6. If there are no 2-cycles in the graphs built by the algorithm, then for all i,
0 ≤ i ≤ n− 3 it holds that ms(i + 3) ≤ ms(i) + 1.

Proof. Let i, 0 ≤ i ≤ n − 3. Let x ∈ C \ {p} be a candidate. Denote ms(i) = t. We need
to prove that Si+3(x) ≤ t + 1. If Si+1(x) ≤ t, then similarly to Lemma 4.3 we can prove
that Si+3(x) ≤ t + 1. So now we assume that Si+1(x) = t + 1. By Lemma 4.3, we have that
Si+2(x) = t + 1. Suppose by contradiction that Si+3(x) = t + 2. x was ranked in stage i + 3
at the place s∗. By Lemma 5.5 there exists a vertex w s.t. there is a path in Gi+2 from x to
w, and p ∈ MINi+2(w) or Si+2(w) ≤ t. Then w was ranked in stage i + 3 above the place
s∗, because the score of x went up in stage i + 3, and if, by contradiction, w was not ranked
above the place s∗, then when we got to the place s∗ we would prefer w over x. It is easy to
see that all the vertices that have a path in Gi+2 from them to w, and which were ranked
below w in stage i+3, did not have their scores go up in that stage (since we took them one
after another in the reverse order on their path to w when they were with out-degree 0).
And as x was ranked below w, its score did not go up as well, and so Si+3(x) = Si+2 = t+1,
a contradiction.

We are now ready to prove the main theorem.

Proof of Theorem 5.1. Let opt denote the minimal size of the coalition of manipulators that
can make p win the election. It is easy to see that opt ≥ ms(0)− S0(p) + 1. We shall prove

that Algorithm 1 will find a manipulation for n =
⌈

3ms(0)−3S0(p)+3
2

⌉

≤
⌈

3
2opt

⌉

. And indeed,

by Lemma 5.6,

ms(n) ≤ ms(0) +

⌈

n

3

⌉

= ms(0) +

⌈

ms(0)− S0(p) + 1

2

⌉

.

Whereas,

Sn(p) = S0(p) + n

= S0(p) + (ms(0)− S0(p) + 1) +

⌈

ms(0)− S0(p) + 1

2

⌉

= ms(0) + 1 +

⌈

ms(0)− S0(p) + 1

2

⌉

> ms(0) +

⌈

ms(0)− S0(p) + 1

2

⌉

≥ ms(n).

Theorem 5.7. The 1 1
2 -approximation ratio of Algorithm 1 is valid also when there are

2-cycles in the graphs built by the algorithm.

Proof. Due to space constraints, we will only provide a sketch of the proof, and we will omit
the proofs of the lemmas (except of Lemma 5.9).

This following proof will show, in a way, that our algorithm is optimal in dismantling
2-cycles—if there are 2-cycles in Gi, then for every algorithm ms∗(i) ≥ ms(i). Once 2-cycles
have been dismantled (and they cannot return), our algorithm performs a 1 1

2 -approximation
on the number of steps left, and thus, generally a 1 1

2 -approximation on the optimal solution.

Lemma 5.8. If there are no cycles of length 2 in a certain stage of the algorithm run (Gi),
then no 2-cycles will be created in any further iteration—Gj (j > i) will have no 2-cycles.

From now on, we shall assume G0 contains at least one 2-cycle, with a Condorcet winner
a.

Lemma 5.9. If there is more than one 2-cycle at any stage i, there are no 2-cycles at stage
i + 3.

Proof. Suppose b1, b2, . . . , bt are the 2-cycle partners of a. Suppose Si(a) = Ni(a, bk) = x
and Si(bk) = Ni(bk, a) = y.

If x = y, then each Ni(bk, br) = x. In stage i + 1, one vertex (w.l.o.g., a) will have a
score of x + 1, and the rest have a score of x. This is the same situation as before (multiple
2-cycles with a), but with x + 1 6= x. Now we will show that if x 6= y we can eliminate
2-cycles in 2 stages (so if x = y, we need a total of 3 stages).

c>a>bb>c>a
y+1

Figure 1: Dismantling multiple 2-cycles

Between each br, bk there is at least one edge with value y. At stage i + 1, Si+1(a) = x
(as it is the Condorcet winner), some b’s will have a value of y + 1, while some will have a
value of y. Of those with the value y, there will be at least one, bℓ, for which Ni+1(a, bℓ) = x.
This is because some bk will be selected before a, either because dout(bk) = 0 or because it
was according to lines 21–22 of the algorithm, which ensure that at least one bk score will
not change, and it will be selected before a according to line 17. In stage i+2, Si+2(a) = x,
since either bℓ will be selected before a, or if not, this means a was selected when dout(a) = 0,
which occurs when a’s value doesn’t change. Furthermore, if Si+1(br) = y + 1, and br was
selected before bℓ, this means it happened due to dout(br) = 0, and thus Si+2(br) = y + 1,
and if it was selected after bℓ, since a’s dout after bℓ’s selection is 0, if br is selected it is
either before a, when its dout = 0, or after a, and thus Si+2(br) = y + 1. Since Si+2(a) = x,
and there is no c ∈ C such that Si+2 = y + 2, this means there are no 2-cycles in Gi+2.

Figure 2: Example

Thus, if there is more than one 2-cycle in G0, it will be eliminated in 3 steps at the
most. Now, we wish to show that the algorithm eliminates 2-cycles as fast as possible,
and then maintains its 1 1

2 -approximation. Once the 2-cycles are eliminated the ms is the
same (or less) than the optimal algorithm, and from that step onward our algorithm gives
a 1 1

2 -approximation.

Lemma 5.10. Let b be a’s partner in the 2-cycle in stage Gi. If in Gi there is c ∈ C 6= a, b
such that Ni(a, c) = Si(a), there will be no 2-cycle in Gi+3.

Lemma 5.11. If c ∈ C was not a part of a 2-cycle in Gi, and is a part of a 2-cycle in
Gi+1, there will be no 2-cycles in Gi+4.

Therefore, we can assume that a and b were part of a 2-cycle in G0, and they will be the
only participants of a 2-cycle during the algorithm’s run.

To continue, we need a few definitions. We will define c ∈ C as c ∈ {x ∈ C|x ∈
min

y∈C\a,b
N0(b, y)}. We will define d ∈ C as d ∈ {x ∈ C|x ∈ min

y∈C\a,b
N0(a, y)}.

Lemma 5.12. If N0(b, c) < S0(a), then after N0(b, c)−S0(b)+1 steps there are no 2-cycles,
and ms(N0(b, c)− S0(b) + 1) = ms(0).

Lemma 5.13. Let h = min(N0(b, c), N0(a, d)). For any algorithm, if h ≥ S0(a),
ms∗(S0(a)− S0(b) + 2(h− S0(a))) ≥ h.

Lemma 5.14. Let h = min(N0(b, c), N0(a, d)). Using Algorithm 1, if h ≥ S0(a),
ms(S0(a)− S0(b) + 2(h− S0(a))) = h, and there are no 2-cycles in GS0(a)+2(h−S0(a))+1.

We have shown that if there are multiple 2-cycles in G0, we end up with no 2-cycles
in G3. If there is one, it is abolished, and the ms at the state in which it is abolished
is the smallest possible. From that point on, our algorithm provides a 1 1

2 -approximation
(according to Theorem 5.1).

Now we show that our analysis of Algorithm 1 is accurate.

Theorem 5.15. The 1 1
2 approximation ratio of Algorithm 1 is asymptotically tight.

Proof. Consider the following example (see Figure 2). C =
{p, a1, b1, c1, a2, b2, c2, . . . , al, bl, cl}. Let k be an integer, N

3 ≤ k < N
2 . S0(p) = 0;

for all j, 1 ≤ j ≤ l: S0(aj) = N0(aj , bj) = S0(bj) = N0(bj , cj) = S0(cj) = N0(cj , aj) = k. In
addition, for each j, 1 ≤ j ≤ l − 1: N0(aj , aj+1) = k + 1, and N0(al, a1) = k + 1. When
showing the preferences of the manipulators, we denote by Aj the fragment aj ≻ cj ≻ bj

of the preference, by Bj the fragment bj ≻ aj ≻ cj , and by Cj the fragment cj ≻ bj ≻ aj .
Consider the following preference list of the manipulators:

p ≻ Al ≻ Al−1 ≻ . . . ≻ A1

p ≻ Al−1 ≻ Al−2 ≻ . . . ≻ A1 ≻ Al

p ≻ Al−2 ≻ Al−3 ≻ . . . ≻ A1 ≻ Al ≻ Al−1

. . .

It can be verified that in the above preference list, the maximum score of p’s opponents
(ms(i)) grows by 1 every m−1

3 stages (starting with k + 1). In addition, p’s score grows by
1 every stage. Therefore, when we apply the voting above, the minimum number of stages
(manipulators) n∗ needed to make p win the election should satisfy n∗ > k + 1 +

⌈

3n∗

m−1

⌉

.

Since
⌈

3n∗

m−1

⌉

< 3n∗

m−1 + 1, the sufficient condition for making p win is:

n∗ > k + 1 +
3n∗

m− 1
+ 1.

So, we have,

(m− 1)n∗ > (m− 1)(k + 2) + 3n∗

(m− 4)n∗ > (m− 1)(k + 2)

n∗ >
(m− 1)(k + 2)

m− 4
.

For large-enough m, (m−1)(k+2)
m−4 < k + 3, and so n∗ = k + 3 would be enough to make p win

the election.
Now let us examine what Algorithm 1 will do when it gets this example as input. One

of the possible outputs of the algorithm looks like this:

p ≻ C1 ≻ C2 ≻ . . . ≻ Cl

p ≻ B2 ≻ B3 ≻ . . . ≻ Bl ≻ B1

p ≻ A3 ≻ A4 ≻ . . . ≻ Al ≻ A1 ≻ A2

p ≻ C4 ≻ C5 ≻ . . . ≻ Cl ≻ C1 ≻ C2 ≻ C3

. . .

It can be verified that in the above preference list, ms(i) grows by 1 every 3 stages, and p’s
score grows by 1 every stage. Therefore, the number of stages n returned by Algorithm 1
that are needed to make p win the election satisfies n > k +

⌈

n
3

⌉

. Since
⌈

n
3

⌉

≥ n
3 , the

necessary condition for making p win the election is:

n > k +
n

3
.

We then have,

3n > 3k + n

2n > 3k

n >
3

2
k.

So we find that the ratio n
n∗

tends to 1 1
2 as m and N (and k) tend to infinity.

6 Conclusions and Future Work

We introduced a new algorithm for approximating the UCO problem under the maximin
voting rule, and investigated its approximation guarantees. In future work, it would be
interesting to prove or disprove that Algorithm 1 presented in [7] has an approximation
ratio of 1 1

2 , for those instances where there is no Condorcet winner.2 Another issue is to
implement both algorithms, to empirically measure their performance and compare them in
practice.

Acknowledgments

We would like to thank Reshef Meir, Aviv Zohar, and Jerome Lang for helpful discussions
on the topics of this work. This work was partially supported by Israel Science Foundation
grant #898/05, and Israel Ministry of Science and Technology grant #3-6797.

References

[1] J. Bartholdi and J. Orlin. Single transferable vote resists strategic voting. Social Choice
and Welfare, 8:341–354, 1991.

[2] J. Bartholdi, C. A. Tovey, and M. A. Trick. The computational difficulty of manipulating
an election. Social Choice and Welfare, 6:227–241, 1989.

[3] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard
to manipulate? Journal of the ACM, 54(3):1–33, 2007.

[4] A. Gibbard. Manipulation of voting schemes. Econometrica, 41:587–602, 1973.

[5] M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functions. Journal of Economic
Theory, 10:187–217, 1975.

[6] Lirong Xia, Michael Zuckerman, Ariel D. Procaccia, Vincent Conitzer, and Jeffrey S.
Rosenschein. Complexity of unweighted coalitional manipulation under some common
voting rules. In The Twenty-First International Joint Conference on Artificial Intelli-
gence (IJCAI 2009), pages 348–353, Pasadena, California, July 2009.

[7] Michael Zuckerman, Ariel D. Procaccia, and Jeffrey S. Rosenschein. Algorithms for
the coalitional manipulation problem. Journal of Artificial Intelligence, 173(2):392–412,
February 2009.

Michael Zuckerman, Omer Lev, Jeffrey S. Rosenschein
School of Engineering and Computer Science
The Hebrew University of Jerusalem
Jerusalem 91904, Israel
Email: michez@cs.huji.ac.il
Email: omerl@cs.huji.ac.il
Email: jeff@cs.huji.ac.il

2We have an example showing that that algorithm is no better than a 2-approximation when there is a

Condorcet winner.

Algorithm 1 Decides CCUM for maximin voting rule

1: procedure Maximin(C, p, XS , n) ⊲ XS is the set of preferences of voters in S, n is the
number of voters in T

2: X ← ∅ ⊲ Will contain the preferences of T
3: for i = 1, . . . , n do ⊲ Iterate over voters
4: Pi ← (p) ⊲ Put p at the first place of the i-th preference list
5: Build a digraph Gi−1 = (V, Ei−1) ⊲ V = C \ {p}, (x, y) ∈ Ei−1 iff

(y ∈ MINi−1(x) and p /∈MINi−1(x))
6: for c ∈ C \ {p} do ⊲ This for loop is used in the analysis
7: if dout(c) = 0 then

8: c.father← p
9: else

10: c.father← null
11: end if

12: end for

13: while C \ Pi 6= ∅ do ⊲ while there are candidates to be added to i-th preference
list

14: Evaluate the score of each candidate based on the votes of S and i − 1 first
votes of T

15: if there exists a set A ⊆ C \ Pi with dout(a) = 0 for each a ∈ A then ⊲ if
there exist vertices in the digraph Gi−1 with out-degree 0

16: Add the candidates of A to the stacks Qj , where to the same stack go
candidates with the same score

17: b← Q1.popfront() ⊲ Retrieve the top-most candidate from the first
stack—with the lowest scores so far

18: Pi ← Pi + {b} ⊲ Add b to i’s preference list
19: else

20: Let s = minc∈C\Pi
{Si−1(c)}

21: if there is a cycle U in Gi−1 s.t. there are 3 vertices a, b, c, s.t. (c, b), (b, a) ∈
U , and Si−1(c) = Si−1(b) = s then

22: Pi ← Pi + {b} ⊲ Add b to i’s preference list
23: else

24: Pick b ∈ C \ Pi s.t. Si−1(b) = s ⊲ Pick any candidate with the lowest
score so far

25: Pi ← Pi + {b} ⊲ Add b to i’s preference list
26: end if

27: end if

28: for y ∈ C \ Pi do

29: if (y, b) ∈ Ei−1 then ⊲ If there is a directed edge from y to b in the
digraph

30: Remove all the edges of Ei−1 originating in y
31: y.father← b ⊲ This statement is used in algorithm analysis
32: Add y to the front of the appropriate stack Qj—according to Si−1(y)
33: end if

34: end for

35: end while

36: X ← X ∪ {Pi}
37: end for

38: XT ← X
39: if argmaxc∈C{Score of c based on XS ∪XT } = {p} then

40: return true ⊲ p wins
41: else

42: return false

43: end if

44: end procedure

