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Abstract

The PossiBLE WINNER problem asks whether some distinguished candidate mayrseco
the winner of an election when the given incomplete votestigdaorders) are extended into
complete ones (linear orders) in a favorable way. Underkta@proval protocol, for every
voter, the besk candidates of his or her preference order get one point. Alidare with
maximum total number of points wins. TheoBsiBLE WINNER problem fork-approval is
NP-complete even if there are only two votes (&nid part of the input). In addition, it is NP-
complete for every fixed € {2, ..., m — 2} with m denoting the number of candidates if the
number of votes is unbounded. We investigate the pararmetecomplexity with respect to the
combined parametdr and “number of incomplete voteg;’ and with respect to the combined
parametek’ := m — k andt. For both cases, we use kernelization to show fixed-paramete
tractability. However, we show that whereas there is a pmtyial-size problem kernel with
respect tdt, k'), it is very unlikely that there is a polynomial-size kernet (¢, k). We provide
additional fixed-parameter algorithms for some speciasas

1 Introduction

\oting situations arise in political elections, multi-ageystems, human resource departments, etc.
This includes scenarios in which one is interested in findirgmall group of winners (or losers),
such as awarding a small number of grants, picking out adinitumber of students for a graduate
school, or voting for a committee with few members. Suchagitins are naturally reflected by a
variant of approval voting, the-approvalvoting system, where every voter gives one point to each
of the k alternatives/candidates which he or she likes best andchtididates having the most points
in total win. On the one sides-approval extendplurality where a voter gives one point to one
candidate, that i = 1, and, on the other side, it extendstowhere a voter gives one point to all
but one candidate, that i8, = 1 for &’ := m — k andm candidates.

At a certain point in the decision making process one migbe filne situation that the voters
have made up their minds “partially”. For example, for theidi®n about the Nobel prize for peace
in 2009, a committee member might have already known thabhsghg) prefers Obama and Bono
to Berlusconi, but might have not decided on the order of Gband Bono yet. This immediately
leads to the question whether, given a set of “partial pegfees”, a certain candidate may still win.
The formalization of this question leads to the$s1BLE WINNER problem.

The PossIBLEWINNER problem has been introduced by Konczak and Lang [16] an@ $iven
its computational complexity has been studied for severtihyg systems [2, 3, 5, 18, 19]. Even for
the comparatively simplg-approval voting, it turned out thatd3siBLE WINNER is NP-complete
except for the special cases of plurality and veto [3], thafdr anyk greater than one and smaller
than the number of candidates minus one. A multivariate dexity study showed that it is NP-
complete if there are only two voters whéns part of the input but fixed-parameter tractable with
respect to the “number of candidates” [5]. In contrast, far &pproval voting variant where each
voter can assign a point tg tok candidates, it can easily be seen thasBIBLE WINNER can be
solved in polynomial-time. A prominent special case old3IBLEWINNER is the MANIPULATION
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problem, where the input consists of a set of linear ordedssaset of completely unspecified votes.
For k-approval, it is easy to see thatAMIPULATION is solvable in polynomial time for unweighted
votes but for weighted votes it is NP-complete for all fideer 1 [15].

The above described hardness results motivate a multigarelysis with respect to the com-
bined parameter “number of voterahd “number of candidates to which a voter gives one/zero
points” for k-approval. Can we efficiently solved®siBLE WINNER in the case that these parame-
ters are both small? Directly related questions are whetbaran ignore or delete candidates which
are not relevant for the decision process and how to idestity candidates. In this context, param-
eterized algorithmics [11, 17] provides the concept of kémation by means of polynomial-time
data reduction rules that “preprocess” an instance suchhbaize of the “reduced” instance only
depends on the parameters [6, 14].

In this work, we use kernelization to show the fixed-paramteaetability of ROSSIBLEWINNER
for k-approval in two “symmetric” scenarios. First, we consitfercombined parameter “number of
incomplete votest and“number of candidates to which every voter gives zero pbikts= m — k
for m candidates (directly extending the veto voting system Wwitk= 1). Making use of a simple
observation we show thatdi3sIBLEWINNER admits a polynomial-size problem kernel with respect
to (¢, k') and provide two algorithms: one with exponential runnimgetifactor2©*) in case of
constant: and one with exponential running time fact(*) in case of constarit’. Second, we
consider the combined parameteand k, wherek denotes the “number of candidates to which
a voter gives a point”. We observe that here one cannot arguestrically to the first scenario.
Using other arguments, we give a superexponential-siz#gmokernel showing the fixed-parameter
tractability of FossIBLEWINNER with respect tq¢, k). For the special case of 2-approval, we give
an improved polynomial-size kernel with(t?) candidates. Using a methodology due to Bodlaender
et al. [7], our main technical result shows thad$3IBLE WINNER is very unlikely to admit a
polynomial-size problem kernel with respect(tok).

2 Preliminaries

A linear voteis a transitive, antisymmetric, and total relation on a(seif candidates angartial
vote a transitive and antisymmetric relation on a éebf candidates. We use to denote the
relation between candidates in a linear vote andb denote the relation between candidates in
a partial vote. We often specify a subdet C C of candidates instead of single candidates in
a partial vote; for a candidate € C' \ D andD = {di,...,ds}, the meaning of ¢ >~ D" is

“fe = dy,e = do,...,e = ds}". Alinear votev! extendsa partial votev? if vP C o', that is, for
everyi,j < m, frome; > ¢; in o it follows thatc; > --- > ¢; in vt. An extensionZ of a set of
partial votes/’? = {v}, ..., vP} is a mapping fron¥’? to a set of linear vote®" := {v},... v}}
such that! extendsu? for everyi. Given a set of partial voteB? on C, a candidate € C is a
possible winneif there exists avinning extensiott, that is,c wins in £ with respect to a considered
voting system. For any voting systeR) the underlying decision problem is defined as follows.

PossIBLEWINNER
Given: A set of candidate€’, a set of partial vote§” on C, and a distinguished candidate C'.
Question: Is there an extensiof of V' such that: wins with respect ta? in £?

We focus on the voting systekrapprovalwhere, given a sét’ of linear votes on a se&t' of candi-
dates, the first candidates within a vote get one point and the remainingidates get zero points.
For every candidaté’ € C, one sums up the points over all votes fréfrto obtain itsscores(c’)
and the candidates with maximum score win. We call the firgbsitions of a votene-positions
and the remaining positiorero-positions All results are given for theinique winnercase, that
is, looking for a single candidate with maximum score, but ba adapted easily to hold for the
“co-winner” case where several candidates may get the maristore and all of them win.



A parameterized problern is a subset oE* x ¥* for some finite alphabet [11, 17]. An in-
stance of a parameterized problem consist&op) wherep is called the parameter. We mainly
consider “combined” parameters which are tuples of pasitiiegers. A parameterized prob-
lem is fixed-parameter tractabld it can be solved in timef(|p|) - poly(]«|) for a computable
function f. A kernelization algorithm consists of a set (@fata) reduction rulesvorking as fol-
lows [6, 14, 17]. Given an instande, p) € ¥* x ¥*, they output in time polynomial ifw| + |p|
an instancéz’,p’) € X* x ¥* such that the following two conditions hold. Fir$t;, p) is a yes-
instance if and only ifz/, p) is a yes-instance (termembundnegs Second/z’| + |p’| < g(|p|)
whereg is a computable function. | is a polynomial function, then we say that the parameterized
problem admits @olynomial kernel

Some of the reduction rules given in this work will not dilgalecrease the instance size by
removing candidates or votes but instead only decreasaithber of possible extensions of a vote,
for example, by “fixing” candidates. Tiix a candidate at a certain position means to specify its
relation to all other candidates. Clearly, a candidate n@ybe fixed at every position in a specific
partial vote. To take this into account, an important conéethe notation othiftinga candidate.
More precisely, we say a candidatecan shift a candidate’ to the left (right) in a partial vote if
"= (¢ = ")inwv, thatis, setting’ to a one-position (zero-position) implies settirigto a one-
position (zero-position) as well. For every candiddte C and a partial vote € V, let L(v, ') :=
{"eC | invlandR(v,c') :={c" € C| ¢ > ¢"inv}. Then, fixing a candidat¢ € C
as good as possibimeans to add.(v,¢’) = ¢ > C'\ (L(v, ) U {c'}) to v. Analogously, fixing a
candidateas bad as possiblis realized by adding’ \ (R(v,c) U{c'}) = ¢ = R(v,c) tow. Ifa
candidate”’ € C'is fixed in all partial votes, this implies that also its scef€) is fixed.

The votes of an input instance 0bBsIBLEWINNER can be partitioned into a (possibly empty)
set of linear votes, callet’’, and a set of proper (non-linear) partial votes, calléd We state all
our results for the parameter= |V?|. All positive results also hold for the parameter number of
total votesn := |V!| + |V?|. Due to the space restrictions, several (parts of) pro&slaferred to
a full version of this work.

3 Fixed number of zero-positions

For (m — k’)-approval witht’ < m, k' denotes the number of zero-positions. We give a polynomial
kernel with respect tdt, k') for PossiBLE WINNER wheret is the number of partial votes. In
addition, we provide two parameterized algorithms for sexases.

3.1 Problem kernel

Consider a PssIBLE WINNER instance with candidate sét, vote setV’ = V! U V?, and distin-
guished candidate € C for (m — k’)-approval. We start with a simple reduction rule that is a
crucial first step for all kernelization results in this work

Rule 1. For every votey; € VP, if |L(v;, ¢)| < m — K/, fixc as good as possible i.

The soundness and polynomial-time running time of Rule laisyeo verify. The condi-
tion |L(v;,¢)| < m — k' is crucial since otherwise might shift a candidate’ to a one-position
whereas: is assigned to a zero position and this could catige beatc. After applying Rule 1,
the score ot is fixed at the maximum possible value since it makes one joeit votes in which
this is possible. Now, for every candidatec C'\ {c}, by counting the points that makes within
the linear votes/!, compute the number of zero positions thamust assume within the partial
votesV? such that it is beaten by Let this numberbe(¢’) andZ := {¢' € C\ {c} | 2(¢') > 0}.
Since there are onlgk’ zero positions if/?, one can observe the following.

Observation 1. In a yes-instance} ... o (.} 2(¢’) < tk" and|Z;| < tk'.



Initialization:

ForeveryD’ € D\ {(ds,...,dp)}, setT’'(0,D") = 0.

SetT (0, (d1,...,dp)) = 1.

Update:

For0<i<t-—1,

foreveryD' = (dy,...,d;,) € D,

T(i+1,D’) = 1if there are two candidates, z;, that can take the zero-positionsuif

and7'(i, D") = 1 with D" := {d{, ..., d;} and
dj =djforje{l,...,q} \{g,h}, dy <dj, +1,andd; <dj +1.

Output:

“yes”if T'(t, (0,...,0)) = 1, “no” otherwise

Figure 1: Dynamic programming algorithm for. — 2)-approval.

Observation 1 provides a simple upper bound for the numbeawndidates inZ,. By formu-
lating a data reduction rule bounding the number of remgigendidates and replacing the linear
votesV! by a bounded number of “equivalent votes” we can show thewiéitig theorem. The basic
idea is that since a remaining candidate from (Z, U {c}) can be set arbitrarily in every vote
without beating, it is possible to replace the set of all remaining candislbtgk’? “representative
candidates”.

Theorem 1. For (m — k')-approval,POssIBLE WINNER with ¢ partial votes admits a polynomial
kernel with at mostk’? + tk’ + 1 candidates.

3.2 Parameterized algorithms

We give algorithms running in®®) . poly(n, m) time with p denoting eithek’ or t where the other
parameter is of constant value. Note that the kernelizdtimm the previous subsection does not
imply such running times.

Constant number of partial votes:or two partial votes, there can be at mdst candidates that
must take a zero-position in a yes-instance (see ObsemvAtiBranching into the two possibilities
of taking the zero-position in the first or in the second vatedvery such candidate, results in a
search tree of size?*" = 4. For every “leaf” of the search tree it is easy to check if éhisra
corresponding extension. Using similar arguments, oneearat the following.

Proposition 1. For a constant numberof partial votesPossIBLEWINNER for (m — k’)-approval
can be solved ia"’* - poly(n, m) time.

Constant number of zero-positiorfSor constant’ the existence of an algorithm with running time
20 . poly(n, m) seems to be less obvious than for the case of constae start by giving a
dynamic programming algorithm fdqrn — 2)-approval. Employing an idea used in [4, Lemma 2],
we show that it runs id! - poly(n, m) time and space.

As in the previous subsection, fixaccording to Rule 1 such that it makes the maximum possible
score and leZ := {z1, ..., z,} denote the set of candidates that take at least one zertiopaai
a winning extension. Led, ..., d, denote the corresponding number of zero-positions that mus
be assumed and 1€? := {(d},...,d},) | 0 < d; < d;for0 < j < p}. Then, the dynamic
programming tablg" is defined byr'(i, D’) for 1 < < tandD’ = (dj,...,d;,) € D. Herein,
T(i,D') = 1if the partial votes from{v1, ..., v;} can be extended such that candidatéakes at
leastd; — d’; zero-positions foil < j < p; otherwisel'(i, D") = 0. Intuitively, d’; stands for the
number of zero-positions whichy must still take in the remaining votés; 1, ..., v:}. Clearly, if
T(t,(0,...,0)) =1 foraninstance, then it is a yes-instance. The dynamic pgrogring algorithm
is given in Figure 1. By further extending it to work for anynsantt’ we can show the following.



Theorem 2. For (m — 2)-approval witht partial votes,PossIBLE WINNER can be solved i -
poly(n, m) time andO(t-4') space. Fo(m — k’)-approval witht partial votes,POSSIBLEWINNER
can be solved ir°® . poly(n, m) time for constant’.

4 Fixed number of one-positions

We study ®ssIBLEWINNER for k-approval with respect to the combined paramktand numbet

of partial votes. The problem can be considered as “fillitigbne-positions such that no candidate
beatsc. In the previous section, we exploited that the number oflctates that must take a zero-
position is already bounded by the combined parameded “number of zero-positions” in a yes-
instance (Observation 1). Here, we cannot argue analogoDsk combined parametét, k) only
bounds the number of one-positions but there can be an udledurumber of candidates that may
take a one-position in different winning extensions of thetial votes. Hence, we argue that if there
are too many candidates that can take a one-position, tleee thust be several choices that lead
to a valid extension. We show that it is sufficient to keep ao$étepresentative candidates” that
can take the required one-positions if and only if this isgilale for the whole set of candidates.
This results in a problem kernel of super-exponential siwenéng fixed-parameter tractability with
respect tdt, k). We complement this result by showing that it is very unlkiblat there is a kernel
of polynomial size. In addition, we give a polynomial kerméth O(¢?) candidates foz-approval.

4.1 Problem kernels

We first describe a kernelization approach fayg318LE WINNER for k-approval in general and
then show how to obtain a better bound on the kernel size &ptoval.

Problem kernel for k-approval. In order to describe more complicated reduction rules, sarag
that a considered instance is exhaustively reduced wifert$o some simple rules. To this end, we
fix the distinguished candidateas good as possible by Rule 1 (using that k' = k). Afterwards,

we apply a simple reduction rule to get rid of “irrelevanthclidates and check whether an instance
is a trivial no-instance:

Rule 2. First, for every candidate’ € C'\ {c}, if making one point in the partial votes causés
not to be beaten by, then fixc’ as bad as possible in every vote. Second, compute the sét
candidates that can be deleted: For every candidate C \ {c¢} with |L(v,¢")| > kforall v € VP,
if the scores(c’) is at leasts(c), then output “no solution”, otherwise add to D. Delete D and
replaceV! by an equivalent set.

The soundness of Rule 2 is easy to see: Every candidate fix¢liebyrst part cannot be as-
signed to a one-position in any winning extension. For tle®sd part, every winning extension of
an unreduced instance can easily be transformed into a ngjrextension for the reduced one by
deleting the candidates specified by Rule 2 give versa A set of equivalent linear votes can be
found according to [3, Lemmai]

In the following, we assume that Rule 2 has been applied,shatl remaining candidates can
make at least one point in an extension without beatinfp state further reduction rules, a partial
vote v is represented as a digraph with vertex &€t | ¢ € C \ {c¢} and|L(v,d)| < k}. All
other candidates are considered as “irrelevant” for thie gince they cannot take a one-position.
The vertices are organized infolevels. For0 < j < k—1,letL;(v) = {c | ¢ € C\
{c} and|L(v, )| = j} containing all candidates that shift exacflgandidates to a one-position if
they are assigned to the best possible position. There isatéd arc from’ to ¢’ if and only if
" € L(v,c). Figure 2 displays an example for the representation of ggpsote for 3-approval.

SHerein, it might be necessary to add one new candidate. Howiis will not affect the following analysis and will be
discussed in more detail in the full version of this work.
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Figure 2: Example for 3-approval: Partial vat€left-hand side) and corresponding digraph with
levels0, 1, and2. Arcs following by transitivity are omitted. Note that y, andc do not appear in
the digraph since they are irrelevant tor

In general, the number of candidates per level is unbourtdedever, for some cases it is easy
to see that one can “delete” all but some representativeidates. The following reduction rule
provides such an example using the fact that in any vote aidatedrom the first level can be set to
an arbitrary one-position without shifting any other catade.

Rule 3. For v € VP with |Lo(v)| > tk, consider any subsdl’ C Lo(v) with |L'| = tk. Add
L'~ C\Ltov.

To see the soundness of Rule 3 consider a winning exterisifon a non-reduced instance and
avotev € VP with | Ly (v)| > tk. Since there aré: one-positions in the partial votes, there must be
at leastk candidates froni’ not having assumed a one-position within the othei votes. Setting
thesek candidates to the one-positionsudrieads to a winning extension of the reduced instance.
The other direction is obvious.

If Rule 3 applies to all partial votes, then in a reduced instaat most?% candidates are not
fixed at zero-positions i¥? and the remaining candidates can be deleted by Rule 2. Hemce,
consider the situation that there is a partial votwith |Ly(v)| < tk. Then, we cannot ignore the
candidates from the other levels but replace them by a balndeber of representatives. We first
discuss how to find a set of representatives for 2-approvéitiaen extend the underlying idea to
work for generak.

For 2-approval, for a vote with |Lo(v)| < 2t, it remains to bound the size @f;(v). This is
achieved by the following reduction rule: Fix all l#tin-neighbors of every candidate frofg(v)
at zero-positions. To see the soundness, we show, givenrangiextensior¥ for the non-reduced
instance, how to obtain a winning extensiéh for v after the reduction (the other direction is
obvious). Clearly, inE(v) the first position must be assigned to a candidateom Ly(v) and¢’
can also be assigned to the first positionFif{v). If there is another candidate frofy (v) that
takes the second position ifi(v), one can do the same ¥ (v). Otherwise, distinguish two cases.
First,¢’ has less tha®t in-neighbors, then the reduction rule has not fixed any ciatdithat shifts’
to the first position and thuscan be extended in the same way a&irSecond¢’ has at leas?t in-
neighbors. Since there are orflyone-positions andt non-fixed in-neighbors, the second position
of v can be assigned to a candidate that does not take a onespasitiny other vote of..

Altogether, for2-approval, one ends up with up 4> non-fixed candidates per vote and hence
with O(#?) non-reduced candidates in total. For gengraixtend this approach iteratively by bound-
ing the number of candidates for every level:

Rule 4. Consider a partial vote € V? with | Ly (v)| < tk. Start withi = 1 and repeat untif = k.

- For every candidate’ € L;(v), if there are more thatk candidates inL;(v) which have the same
neighborhood ag’ in Lo(v) U Ly (v) U --- U L;_1(v), fix all buttk of them as bad as possible.
-Seti ;=i + 1.

Using Rule 4 one can show the following.

Theorem 3. For k-approval,PossiBLE WINNER admits a problem kernel with size bounded by a
computable function ik and the number of partial votes



Improved problem kernel for 2-approval. As discussed above, the kernelization as state@-<for
approval in general leads to a polynomial kernel witt¥®) candidates foR-approval. To give a
kernel withO(#?) candidates, we use some properties of bipartite graphs Bipartite graplG U
H, E) with vertex setG U H and edge seb C {{g,h} | g € G andh € H}, amatchingdenotes
a subsetf\/ C E such that foralk,e’ € M,ene’ = (. A vertex contained ir for ane € M is
calledmatching vertexand, for{g, h} € M, g andh arematching neighborsA maximum matching
is a matching with maximum cardinality. Thepen neighborhoodf a vertexg € G is denoted
by N(g) :=={h | {g,h} € E} and, forG' C G, N(G') := U eq N(9)-

Lemma 1. For a bipartite graph(G U H, E') with maximum matchind/, there is a partition of7
into G; W G2, such that the following holds. First, all neighbors@f are part of A/. Second, every
vertex fromGs has a matching neighbor outsidé(G ).

Now, we employ Lemma 1 to design a reduction rule. Note thmatlar arguments are used in
several works, see [9, 17]. In the following, we assume thdeR and Rule 2 have been applied.
We define a bipartite graptG U H, F) as follows. For a partial profile with partial votés”
and candidate set, let V' := {v' € VP | |Ly(v')| < 2t}. Foreveryv, € V', for1 < j <
|Lo(v})|, add a vertexy? to G. Intuitively, for every candidate that can take a first piositin v/
there is a corresponding vertexdh If a candidate can take the first position in several votes t
there are several vertices corresponding to this candidEte vertex sefd contains one vertex
for every candidate fronlJ,, .\ L1(v)) \ (U, ey Lo(v')). There is an edge betwegh € G
andh € H if setting the candidate corresponding:tto the second position it} shifts the candidate
corresponding t(g{ to the first position. Now, we can state the following.

Rule 5. Compute a maximum matchidd in (G U H, E). Fix every candidate corresponding to a
non-matched vertex iff as bad as possible in every vote frérh

Lemma 2. Rule 5 is sound and can be carried outif|E| - |GU H| + |V - |C]) time.

Proof. A winning extension for an instance reduced with respectute R is also a winning exten-
sion for an unreduced instance. Now, we show the other diredBiven a winning extensioh for

an unreduced instance, we construct a winning extensjofor a reduced instance. Since Rule 5
does not fix any candidate which can take the first positiort ieast one vote, the first positions
in E,. can be assumed by the same candidates As ihremains to fix the second positions without
beatingc. For every vote;, let g¢ denote the candidate that takes the first position iim £. For
the corresponding verte¥ one can distinguish two cases: Firgt,c G;. In this case, none of the
neighbors ofy¢ have been fixed and, thus, the candidate which takes thedgeosition inv; in £
can also take the second positibp. Secondyg; € G». In this case, set the candidate corresponding
to the matching neighbor fromgf to the second position. Now, it is not to hard to see thains

in E,.: The only candidates that possibly make more poinis,ithan in ' are the candidates corre-
sponding to the matching neighbors of vertices fr@m Due to the matching property, every such
candidate makes at most one poinfiih By definition, G only contains vertices that can make at
least one point and for all votes frob’ \ V' one can easily find a winning extension which does
not assign the “matching-candidates” to one-positions Rge 2). It follows that also wins in the
extensiont,.. The claimed running time follows since a maximum bipartitgtching can be found
inO(|E| - |G U H|) time. O

Bounding the size of candidates in level 0 by Rule 3 and th@diring) candidates in level 1
by Rule 5 one arrives at the following.

Theorem 4. For 2-approval witht partial votes,PossIBLE WINNER admits a polynomial kernel
with less thanit? candidates.



4.2 Kernel lower bound

In the previous subsection, we provided a kernel of supppeential size with respect 1@, k)

for PossIBLE WINNER underk-approval. Here, we complement this result by showing that f
k-approval, ®ssiBLE WINNER cannot have a polynomial kernel with respecttd:) under some
reasonable assumptions from classical complexity thdarthis end, we apply a method introduced
by Bodlaender et al. [7] and Fortnow and Santhanam [13] wikibhiefly described in the following.

Definition 1. [7] A composition algorithnfior a parameterized proble C ¥* xIN is an algorithm
that receives as input a sequer(¢e., p), . . ., (z4,p)) with (x;,p) € £* x N for eachl < i < g,
uses time polynomial i_7_, |z;| + p, and outputgy, p’) € £* x N with

e (y,p') € L & (x;,p) € Lforsomel <i < qand

e p’ is polynomial inp.

A parameterized problem ompositionaif there is a composition algorithm for it. Note that
this definition directly extends to parameters that are tzonssize tuples of integers. For a parame-
terized problent., theunparameterized versioh* is the languagéx#1* | (z,k) € L} wherel
is an arbitrary fixed letter i and# ¢ 3.

Theorem 5. [7, 13] Let L. be a compositional parameterized problem whose unparairnetever-
sion is NP-complete. Then, unles&NP C NP / poly, there is no polynomial kernel fat.

For PossiBLE WINNER parameterized with respect ta k), it is easy to see that the unparam-
eterized version is NP-complete as well. Hence, the maikwoapply Theorem 5 is to achieve a
composition algorithm. Composition algorithms have bemviged for several fundamental com-
binatorial problems, see for example [8, 10]. In particulom et al. [10] introduced a general
framework to build composition algorithms employing sdied “identifiers”. One of the necessary
conditions to apply this framework, is the existence of ajoethm running in2?” - poly time for
the considered parameteand a fixed constant Considering the combined parameter “number of
ones”k and “number of partial voteg’for POssIBLEWINNER underk-approval, there is no known
algorithm running ir2(**)” . poly time. Hence, we apply the following overall strategy (whicight
be also useful for other problems).

Overall strategy. We employ a proof by contradiction. Assume that there is grpwhial kernel
with respect tdt, k). Then, since for BSSIBLEWINNER there is an obvious brute-force algorithm
running inm** - poly(n, m) time form candidates and votes, there must be aigorithm S with
running timepoly (¢, k)t - poly(n,m) < 2(%)" . poly(n, m) for an appropriate constant In the
next paragraph, we use the existence of Algorithto design a composition algorithm for the com-
bined parametdl, k). Since it is easy to verify that the unparameterized versfGt0SSIBLEWIN-
NER is NP-complete, it follows from Theorem 5 that unles\P C NP / poly there is no poly-
nomial kernel with respect t@, k), a contradiction under the assumption tha@¥P ¢ NP / poly.
Altogether, it remains to give a composition algorithm.

Composition algorithm. Consider a sequengér., (¢, k)), ..., (zq, (t,k))) of ¢ POSSIBLEWIN-
NER instances fokk-approval. To simplify the construction, we make two asstioms. First, we
assume that there is no “obvious no-instance”, that is, afairte in which a candidaté is not
beaten byc even if ¢ makes zero points in all of the partial votes. This does nostitute any
restriction since such instances can be found and removedérpolynomial iny_?_, |z;|. Second,
we assume that for;, 1 < j < ¢, within the partial votes the distinguished candidate rsatezo
points in every extension. Since it follows from known caeustions [3, 5] that the unparameterized
version of the problem remains NP-complete for this case assumption leads to a non-existence

result for this special case and thus also for the general cas



The overall structure of the composition algorithm is désat as follows. Ifg > 2(4%) for ~
as specified for Algorithn®, the composition algorithm appli€sto every instance. This can be
done within the running time bound required by Definition lende, in the following, we assume
that the number of instances is at mast)". As suggested by Dom et al. [10], this can be used
to assign an “identifier” of sufficiently small size to evengiance. Basically, the identifiers, which
will be realized by specific sets of candidates, rely on thealy representation of the numbers
from {1,...,¢}. The size of an identifier will be linear in := [log ¢] which is polynomial in the
combined parametét, k) sinceq < 2(t¥)",

Now, we provide a composition algorithm for the case that 2(**)”. Compose the sequence
of instances to one big instance

(X, (35 +4,2t)) with X = (C, V' U VP, ¢)
as follows. Forl <i < ¢, letx; be(C;, V! UVF, ¢;). Then,
C:=H (Ci\{c})¥w{c}wDwZWAwUB
1<i<q
with
o D:={df,...,d°yu{d},...,dL},
o Z:=Uicje  Ziwith Z; :={2) ; [0 < h <s}U{z} ;|0 <h < s},
o A:={ai,...,qaq},and
e asetB with |B| :=2s+ 3 — k.

The candidates froy andZ will be used as identifiers for the differentinstances. Mspecifically,
every instance; is uniquely identified by the binary code of the integer bo-20+b, -2 +- - - 4-b,-2°
with by, € {0, 1} leading to the following definition.

Definition 2. A subsetD; C D identifiesz; whend;} € D; if and only ifb;, = 1 andd) € D; if
and only ifby, = 0.

LetD; := D \ D;. Similarly, for everyl < j < t, the setZ; ; denotes the candidates frafj
that identifyi, that is,

Zij:={z ;| he{0,...,s}andb, =0} U{z, ; | h € {0,...,s} andb, = 1}.
LetZ;,; := Z; \ Z;; denote the remaining candidates frém

The set of partial vote®? consists of two subselg” and V., both containing partial votes.
The basic idea is that a winning extensionigf “selects” an instance; and there is a winning
extension for; if and only if V' can be extended such thawins. The seV contains the vote

{Z;1UD;UZ;y=a; |1<i<q}, DUZUA=C\(DUZUA),

meaning that the vote contains the constraifits U D; U Z >~ a; for everyi. Furthermore, for
everyj € {2,...,t}, the set/ contains the vote

{Z;;UD;UZ; ;1 =a;|1<i<q}, DUZUA = C\(DUZU A).
The setV)’ consists of the partial votes;, ..., v;. Every votev; € VJ “composes” the votes
vl fori € {1,...,q} wherev] denotes theth vote from instance; after deletingc;. Then, for
jeA{1,....t}, the votey; is
B> (C\B), {v/ |1<i<q}, {D;>Ci\{e:} |1<i<q}, C\(AUZU{c}) = AUZU{c}.

One can construct a s&f of linear votes polynomial ifC| and|V?| such that the following
hold [3, Lemma 1].



VI Zuwy >Dw >Zui  >aw >C\(Zy1UDyUZuy)
Zw,j >D, > Zu,7j_1 > Ay > C\ (Zw,j U D, U Zw,j—l) for 2 <j<t
VY: B > Dy > wj >C\(BUD,U(Cy\{cw})) fori<j<t

Figure 3: Extension foX in which ¢ wins. For a winning extensioB (z,,) = wj, ..., w; of z,,
letw; denotes the linear order given by restricted to the candidates fraff, \ {c}. The remaining
subsets of candidates are fixed in any transitivity presgrarder.

e Fori € {1,...,q}, the maximum partial score of every candiddtec C; \ {¢;} equals the
maximum partial score af in x;.

e For every candidate from U D U B, the maximum partial score ts

e For every candidate frorif, the maximum partial score is one.

Lemma 3. The constructed instanck is a yes-instance fo{3s + 4)-approval if and only if there
isani € {1,..., ¢} suchthat, is a yes-instance fdt-approval.

Proof. “«<": Assume there is an instancg, for which ¢ is a possible winner. LeE(x,,) =
wi, ..., w; denote a winning extension far,, and recall thatC,, denotes the set of candidates
from z,,. Then, extend the partial votes from as indicated in Figure 3. Since there 8re+ 4
one-positions per voté)D;| = s + 1, and|B| = 2s + 3 — k, in every extended vote fromi,
there arek one-positions that are assumed by candidates &gm {c,, }. Because of this and due
to the equivalence of the partial orders in the correspandates, the candidates frof, \ {c.}
make exactly the same number of points in the extensioXfas in E(x,,) and are beaten by
The remaining “instance candidates”, namQDy%ﬁUJ C; \ {¢} do not make any points in the given
extension and thus are beatendyThe candidates fronv can be partitioned into the two disjoint
subsetsD,, and D,,. The candidates fronv,, maket points inV} and zero points i}’ whereas
the candidates fromv,, make zero points iy’ andt points inV?. Thus, all candidates from are
beaten by. Regarding the candidates fraff), every candidate appears eitherdp ; orin Z,, ;
and thus makes exactly one point and is beaten. b@learly, all candidates from U B are also
beaten by:.. Henceg is a possible winner foX.

Finally, we briefly discuss that fixing the order within theem subsets of candidates in Figure 3
can be done without violating the restriction provided bg grartial orders. Fov; in V' such an
extension is

B> Dy >w; > Dy > | JCi\{ci} > A>Z>{c}
i#]
where, the candidates from, D.,, D,,, A, andZ can be fixed in an arbitrary order since there are
not any internal constraints iry. The remaining candidates fropy, ., C; \ {c;} can be ordered
such thatC; \ {c;} > C, \ {cs} fori > s,i # w, ands # w and withinC; \ {c¢;}, for every
i # w, the candidates can be ordered according to any extensign 8f“complete” extension for
the votes froni/}’ can be obtained similarly.

“=": Consider an extension of in which ¢ wins. First, by proving the following claim, we show
that withinV? one instance:,, must be “selected”.

Claim: There must be a € {1,...,q} such that every candidate from,, is assigned to a one-
position in every extended vote froWf’ whereas every candidate frabh, makes zero points ifr}".

Proof of Claim: Since there args -4 one-positions per vote, i’ there are altogeth8st -+ 4t one-
positions that must be filled. The candidates fréman take at mostst + 2t of them sincdZ| =
2t(s + 1) and each candidate froti can make at most one point without beating By using
some argumentation including the votes frédfi, we can show that the candidates frdincan



take at mostt + ¢ of the one-positions i} in a winning extension: In every vote froiy’, by
construction, the firsks + 3 — k positions are assumed by candidates frBrand the remaining
s+ k+ 1 one-positions can only be assigned to candidates frlom ., C; \ {c;} U D. Since every
candidate fromJ, ., C; \ {c:} shiftss + 1 candidates fronD to the left by assuming a one-
position, it directly follows that the total number of onesgitions assumed by candidates fr@m
within V7 is at least (s + 1). Since|D| = 2s + 2 and every candidate frof? can make at most
points, the candidates frofi can take at most(2s + 2) — t(s + 1) = st + t of the one-positions
in V” in a winning extension.

Summarizing, in a winning extension, ¥y’ at most3st + 3t one-positions can be assigned to
candidates fronD U Z. Hence, at least one-positions must be assigned to candidates ffom
Furthermore, a candidatg from A shifts3s + 3 candidates fronD U Z to one-positions ifi; takes
a one-position. Thus, at most one candidate fedrwan take a one-position in an extended vote. It
follows that in every vote; € V) exactly one candidate from A must take a one position thereby
shifting the candidates fro; ; U D; U Z; ;_; (or Z; 1 U D; U Z; , for j = 1) to one-positions.

Now, we show forl < j < t—1 thatif the candidate,, € A takes a one-position in;, thena,,
also takes a one-positionin..; . Assume thatin;, a,, and thus also the candidates frafy ; take
a one-position. As discussed aboveyjn; a candidate fromd must shifts + 1 further candidates
from Z;. Since every candidate frof can make at most one point, the set of these candidates must
be disjoint fromZ,, ;. The only set of candidates fulfilling this i8,, ; and is shifted only bya,,.
Analogously, ifa,, takes a one-position iy, then it also must take a one-positiorvinbecause of
the candidates fror;. This finishes the proof of the Claim.

Now, as direct consequence of the Claim, withifi each candidate from,, can still maket
points whereas the candidates frddy), cannot make any points without beatingHence, in every
vote from VY, we can only set candidates frof, to the one-positions since setting any other
candidates would shift a candidate frdpy,. This means that one can extelid such that, in every
vote, k one-positions are assigned to candidates f€om, {c,, } without beating:. Since the partial
relations between the candidate<lp \ {c,, } are the same in thh vote ofz,, and X andc makes
zero points in both cases, a winning extensionXodirectly gives a winning extension fa,,. O

By using Lemma 3 it is easy to verify that the given compositidgorithm fulfills all require-
ments of Definition 1. Hence, Theorem 6 follows from our ollestategy.

Theorem 6. For k-approval,PossIBLE WINNER parameterized by the combined paramétand
“number of partial votes” does not admit a polynomial probiid&kernel unles®'P C coNP / poly.

5 Outlook

We provided fixed-parameter tractability results basedesnddization. It seems interesting whether
similar results can be obtained for “more general” problemsh as AP BRIBERY [12] or the
counting version of BssIBLEWINNER[1]. Another interesting scenario might be as follows. Give
a numbers of winners in the input, for example, the size of a committee is interested in the
candidates such that each of them has more points than tlaniegcandidates. For this scenario,
the negative results fordssIBLEWINNER for k-approval as given in this work and related work [3,
5] can be adapted by addirg- 1 fixed candidates that always win, but as to the algorithnsalis,

it is open whether they extend to this scenario.

References

[1] Y. Bachrach, N. Betzler, and P. Faliszewski. Probatidipossible winner determination. In
Proc. of 24th AAAI2010. To appear.



[2] D. Baumeister and J. Rothe. Taking the final step to a fishdtomy of the Possible Winner
problem in pure scoring rules. Proc. of 19th ECAI2010. Short paper.

[3] N. Betzler and B. Dorn. Towards a complexity dichotomyfimiding possible winners in
elections based on scoring rules. Rroc. of 34th MFCSvolume 5734 oLNCS pages 124—
136. Springer, 2009. Longversion to appead.i€omput. Syst. Sci.

[4] N. Betzler, J. Guo, and R. Niedermeier. Parameterizexpgdational complexity of Dodgson
and Young electiondnform. Comput.208(2):165-177, 2010.

[5] N. Betzler, S. Hemmann, and R. Niedermeier. A multiverieomplexity analysis of determin-
ing possible winners given incomplete votes Pioc. of 21st IJCAlpages 53-58, 2009.

[6] H. L. Bodlaender. Kernelization: New upper and lower hdudechniques. IiProc. of 4th
IWPEC volume 5917 o£ NCS pages 17-37. Springer, 2009.

[7] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Helime On problems without
polynomial kernelsJ. Comput. Syst. S¢ir5(8):423-434, 2009.

[8] H. L. Bodlaender, S. Thomasseg, and A. Yeo. Kernel boundslisjoint cycles and disjoint
paths. InProc. of 17th ESAvolume 5757 oL NCS pages 635-646. Springer, 2009.

[9] B. Chor, M. Fellows, and D. W. Juedes. Linear kernelsmed#r time, or how to savie colors
in o(n?) steps. IrProc. of 30th WGvolume 3353 of NCS pages 257-269. Springer, 2004.

[10] M. Dom, D. Lokshtanov, and S. Saurabh. Incompressyhilirough colors and IDs. IRroc.
of 36th ICALR volume 5555 oL NCS pages 378-389. Springer, 2009.

[11] R. G. Downey and M. R. Fellowarameterized Complexitppringer, 1999.

[12] E. Elkind, P. Faliszewski, and A. Slinko. Swap bribdryProc. of 2nd SAG;Ivolume 5814 of
LNCS pages 299-310. Springer, 2009.

[13] L. Forthow and R. Santhanam. Infeasibility of instamoenpression and succinct PCPs for
NP. InProc. of 40th STO(pages 133-142. ACM, 2008.

[14] J. Guo and R. Niedermeier. Invitation to data reductéonl problem kernelizationACM
SIGACT News38(1):31-45, 2007.

[15] E. Hemaspaandra and L. A. Hemaspaandra. Dichotomydiimgy systems.J. Comput. Syst.
Sci, 73(1):73-83, 2007.

[16] K. Konczak and J. Lang. Voting procedures with inconplereferences. IRroc. of IJCAI-
2005 Multidisciplinary Workshop on Advances in PrefereHeadling, 2005.

[17] R. Niedermeierlnvitation to Fixed-Parameter Algorithm©xford University Press, 2006.

[18] M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Incoetphess and incomparability in
preference aggregation. Rroc. of 20th IJCAl pages 1464—-1469, 2007.

[19] L. Xia and V. Conitzer. Determining possible and neeggsvinners under common voting
rules given partial orders. IRroc. of 23rd AAA|pages 196-201. AAAI Press, 2008.

Nadja Betzler

Institut fur Informatik
Friedrich-Schiller-Universitat Jena
Ernst-Abbe-Platz 2

D-07743 Jena, Germany

Email:nadj a. bet zIl er @ini - j ena. de



