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Abstract

The concept of distance rationalizability allows one to define new voting rules or
“rationalize” existing ones via a consensus class of elections and a distance. A
consensus class consists of elections in which there is a consensus in the society who
should win. A distance measures the deviation of the actual election from consensus
elections. Together, a consensus class and a distance define a voting rule: a candidate
is declared an election winner if she is the consensus candidate in one of the nearest
consensus elections. It is known that many classic voting rules are defined in this way
or can be represented via a consensus class and a distance, i.e., distance-rationalized.
In this paper, we focus on the power and the limits of the distance rationalizability
approach. We first show that if we do not place any restrictions on the class of
possible distances then essentially all voting rules are distance-rationalizable. Thus,
to make the concept of distance ratioanalizability meaningful, we have to restrict
the class of distances involved. To this end, we present a very natural class of
distances, which we call votewise distances. We investigate which voting rules can
be rationalized via votewise distances and study the properties of such rules.

1 Introduction

Preference aggregation is an important task both for human societies and for multi-agent
systems. Indeed, it is often the case that a group of agents has to make a joint decision,
e.g., to select a unique alternative from a space of options available to them, even though
the agents may have different opinions about the relative merits of these alternatives. A
standard method of preference aggregation is voting. The agents submit ballots, which are
usually rankings (total orders) of the alternatives (candidates), and a voting rule is used
to select the “best” alternative. While in such settings the goal is usually to select the
alternative that reflects the individual preferences of voters as well as possible, there is no
universal agreement on how to reach this goal. As a consequence, there is a multitude of
voting rules, and these rules are remarkably diverse (see, e.g., [4]).

Why cannot we settle on a single voting rule, which will aggregate the preferences opti-
mally? One answer to this question is provided by the long list of impossibility theorems—
starting with the famous Arrow’s impossibility theorem [1]—which state that there is no
voting rule (or a social welfare function) that simultaneously satisfies several natural desider-
ata. Thus in each real-life scenario we have to decide which of desired conditions we are
willing to sacrifice.

An earlier view, initiated by Marquis de Condorcet, is that a voting rule must be a
method for aggregating information. Voters have different opinions because they make errors
of judgment; absent these errors, they would all agree on the best choice. The goal is to
design a voting rule that identifies the best choice with highest probability. This approach
is called maximum likelihood estimation and it has been actively pursued by Young who
showed [22] that consistent application of Condorcet’s ideas leads to the Kemeny rule [14].
It has been shown since then that several other voting rules can be obtained as maximum
likelihood estimators for different models of errors (see Conitzer, Rognlie, and Xia [6] and

1This paper combines three earlier papers by the same authors: “On Distance Rationalizability of Some
Voting Rules” (presented at TARK-2009), “On the Role of Distances in Defining Voting Rules” (presented
at AAMAS-2010), and “Good Rationalizations of Voting Rules” (presented at AAAI-2010).



Conitzer and Sandholm [7]).
The third approach that has emerged recently in a number of papers (see, e.g., Baigent [2]

and Meskanen and Nurmi [19]) can be called consensus-based. The result of each election
is viewed as an imperfect approximation to some kind of electoral consensus. Under this
view, the winner of a given election, or a preference profile, is the most preferred candidate
in the “closest” consensus preference profile. The differences among voting rules can then
be explained by the fact that there are several ways of defining consensus, as well as several
ways of defining closeness. The heart of this approach is the decision which situations should
be viewed as “electoral consensuses”, be it the existence of Condorcet winner, universal
agreement on which candidate is best, or something else. The concept of closeness should
also be agreed upon. This approach is ideologically close to bargaining.

In this paper we concentrate on the third approach. To date, the most complete
list of distance-rationalizable rules is provided by Meskanen and Nurmi [19] (but see
also [2, 16, 15]). There, the authors show how to distance-rationalize many voting rules,
including, among others, Plurality, Borda, Veto, Copeland, Dodgson, Kemeny, Slater, and
STV. However, in Section 3 we show that the usefulness of these results is limited, as essen-
tially every reasonable voting rule can be distance rationalized with respect to some distance
and some notion of consensus. This indicates that the notion of distance rationalizability
used in the early work is too broad to be meaningful. Hence, we have to determine what
are the “reasonable” consensus classes and the “reasonable” distances and to reexamine all
existing results.

In Section 4 we suggest a family of “good” distances (which we call votewise distances)
and study voting rules that are distance rationalizable with respect to such distances. In
particular, in Section 4.2 we show that many of the rules considered in [19], as well as all
scoring rules and a variant of the Bucklin rule, can be rationalized via distances from this
family. In contrast, we demonstrate that STV, which was shown to be distance-rationalizable
in [19], is not distance-rationalizable via votewise distances, i.e., the restricted notion of
distance rationalizability is indeed meaningful.

Now, the distance rationalizability framework can be viewed as a general method for
specifying and analyzing voting rules. As such, it may be useful for proving results for entire
families of voting rules, rather than isolated rules. For instance, a lot of recent research in
computational social choice has focused on the complexity of determining (possible) election
winners (see, e.g., [11, 17]), and the complexity of various types of attacks on elections (e.g.,
manipulation [8], bribery [9], and control [18, 10]).2 However, most of the results in this
line of work are specific to particular voting rules. We believe that the ability to describe
multiple voting rules in a unified way (e.g., via the distance rationalizability framework) will
lead to more general results. To provide an argument in favor of this belief, in Sections 4.1
and Section 4.3 we present initial results of this type, relating the type of distance and
consensus used to rationalize a voting rule with the complexity of winner determination
under this rule as well as the rule’s axiomatic properties (such as anonymity, neutrality and
consistency).

Due to space restrictions, all proofs are omitted. However, the reader may find many of
them in the conference papers on which this paper is based (see the title footnote).

2 Preliminaries

2.1 Elections. An election is a pair E = (C, V ) where C = {c1, . . . , cm} is the set of
candidates and V = (v1, . . . , vn) is an ordered list of voters. Each voter is represented by
her vote, i.e., a strict, linear order over the set of candidates (also called a preference order).

2These references are only examples; an overview of literature is far beyond the scope of this paper.



We will refer to the list V as a preference profile, and we denote the number of voters in V
by |V |. The number of alternatives will be denoted by |C|.

A voting rule R is a function that given an election E = (C, V ) returns a set of election
winners R(E) ⊆ C. Note that it is legal for the set of winners to contain more that
one candidate. To simplify notation, we will sometimes write R(V ) instead of R(E). We
sometimes consider voting rules defined for a particular number of candidates (or even a
particular set of candidates) only.

Below we define several prominent voting rules.

Scoring rules. For any sequence of non-negative real numbers (α1, . . . , αm), we can define
a scoring rule R(α1,...,αm) for elections with m candidates as follows: each candidate
receives αj points for each vote that ranks her in the jth position. The winner(s)
are the candidate(s) with the highest score. Note that a scoring rule is defined for a
fixed number of candidates. However, many standard voting rules can be defined via
families of scoring rules. For example, Plurality is defined via the family of vectors
(1, 0, . . . , 0), veto is defined via the family of vectors (1, . . . , 1, 0), and Borda is defined
via the family of vectors (m − 1, m − 2, . . . , 0); k-approval is the scoring rule with
αi = 1 for i ≤ k, αi = 0 for i > k.

Bucklin and Simplified Bucklin. Given a positive integer k, 1 ≤ k ≤ |C|, we say that

a candidate c is a k-majority winner if more than |V |
2 voters rank c among the top

k candidates. Let k′ be the smallest positive integer such that there is at least one
k′-majority winner for E. The Bucklin score of a candidate c is the number of voters
that rank her in top k′ positions. The Bucklin winners are the candidates with the
highest Bucklin score; clearly, all of them are k′-majority winners. The simplified
Bucklin winners are all k′-majority winners.

Single Transferable Vote (STV). In STV the winner is chosen as follows. We find a
candidate with the lowest Plurality score (i.e., one that is ranked first the least number
of times) and remove him from the votes. We repeat the process until a single candidate
remains; this candidate is declared to be the winner. For STV the issue of handling
ties—that is, the issue of the order in which candidates with lowest Plurality scores
are deleted—is quite important, and is discussed in detail by Conitzer, Rognlie and
Xia [6]. However, the results in our paper are independent of the tie-breaking rule.

Dodgson. Dodgson voting is based on measuring closeness to becoming a Condorcet win-
ner. A Condorcet winner is a candidate that is preferred to any other candidate by
a majority of voters. The Dodgson score of a candidate c is the smallest number of
swaps of adjacent candidates that have to be performed on the votes to make c a
Condorcet winner. The winner(s) are the candidate(s) with the lowest score.

Kemeny. Let ≻ and ≻′ be two preference orders over C. The number of disagreements
between ≻ and ≻′, denoted t(≻,≻′), is the number of pairs of candidates ci, cj such
that either ci ≻ cj and cj ≻′ ci or cj ≻ ci and ci ≻

′ cj . A candidate ci is a Kemeny
winner if there exists a preference order ≻ such that ci is ranked first in ≻ and ≻
minimizes the sum

∑n

i=1 t(≻,≻i). We note that usually the Kemeny rule is defined to
return the ranking ≻ that minimizes

∑n

i=1 t(≻,≻i), or a set of such rankings in case
of a tie; however, here we focus on rules that return sets of winners and not rankings.

2.2 Distances. Let X be a set. A function d : X → R ∪ {∞} is a distance (or, a metric)
if for each x, y, z ∈ X it satisfies the following four conditions: (a) d(x, y) ≥ 0 (nonnega-
tivity), (b) d(x, y) = 0 if and only if x = y (identity of indiscernibles), (c) d(x, y) = d(y, x)
(symmetry), and (d) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality). If d satisfies all of
the above conditions except the second one (identity of indiscernibles) then d is called a
pseudodistance.



In the context of elections, it is useful to consider both distances over votes and over
entire elections (that is, distances where the set X is the set of all linear orders over some
given candidate set, and distances where X is the set of all possible elections); we remark
that the former can be extended to the latter in a natural way (see the paragraph below
and Section 4).

Two particularly useful distances over votes are the discrete distance and the swap dis-
tance.3 Let C be a set of candidates and let u and v be two votes over C. The discrete
distance ddiscr(u, v) is defined to be 0 if u = v and to be 1 otherwise. The swap distance
dswap(u, v) is the least number of swaps of adjacent candidates that transform vote u into
vote v. Any distance d over votes can be extended in several ways to the distance over
the profiles. For example, for any two elections, E′ = (C′, V ′) and E′′ = (C′′, V ′′), where

C′ = C′′ and V ′ = (v′1, . . . , v
′
n), V ′′ = (v′′1 , . . . , v′′n), we may define d̂(E′, E′′) =

∑n

i=1 d(v′i, v
′′
i )

(and we set d̂(E′, E′′) = ∞ if the candidate sets are different or the profiles have different
number of voters).

2.3 Consensus classes. Intuitively, we say that an election E = (C, V ) is a consensus if
it has an undisputed winner. Formally, a consensus class is a pair (E ,W) where E is a set
of elections and W : E → C is a mapping which for each election E ∈ E assigns a unique
alternative, which is called the consensus alternative (winner). We consider the following
four natural classes that can be accepted by societies as consensus:

Strong unanimity. Denoted S, this class contains elections E = (C, V ) where all voters
report the same preference order. The consensus alternative is the candidate ranked
first by all the voters.

Unanimity. Denoted U , this class contains all elections E = (C, V ) where all voters rank
some candidate c first. The consensus alternative is c.

Majority. Denoted M, this class contains all elections E = (C, V ) where more than half
of the voters rank some candidate c first. The consensus alternative is c.

Condorcet. Denoted C, this class contains all elections E = (C, V ) with a Condorcet
winner (defined above). The Condorcet winner is the consensus alternative.

2.4 Distance rationalizability. We now define the concept of distance rationalizability
of a voting rule which has been used in the previous work.

Definition 2.1. Let d be a distance over elections and let K = (E ,W) be a consensus class.
We define the (K, d)-score of a candidate ci in an election E to be the distance (according
to d) between E and a closest election E′ ∈ E such that ci = W(E′). The set of (K, d)-
winners of an election E = (C, V ) consists of those candidates in C whose (K, d)-score is
the smallest.

Definition 2.2. A voting rule R is distance-rationalizable via a consensus class K = (E ,W)
and a distance d over elections ((K, d)-rationalizable), if for each election E, a candidate c
is an R-winner of E if and only if she is a (K, d)-winner of E.

Meskanen and Nurmi [19] show that many of the common voting rules are distance-

rationalizable in a very natural way. For example, Kemeny is (S, d̂swap)-rationalizable,

Borda is (U , d̂swap)-rationalizable, and Dodgson is (C, d̂swap)-rationalizable. It is quite re-
markable that these three major voting rules are rationalized by the same distance. It is
also easy to see that Plurality is (U , d̂discr)-rationalizable.

We remark that the notion of distance rationalizability introduced in Definition 2.2 allows
for arbitrary consensus classes and distances; as we will see in the next section, this lack of
constraints results in a definition that is too broad to be practically applicable.

3Swap distance is also called Kendall tau distance, Dodgson distance and bubble-sort distance.



3 Unrestricted Distance-Rationalizability: an Impasse

We say that a voting rule R over a set of candidates C satisfies nonimposition if for
every c ∈ C there exists an election with the set of candidates C in which c is the unique
winner under R. Clearly, nonimposition is a very weak condition that is satisfied by all
common voting rules. Nevertheless, it turns out to be sufficient for unrestricted distance-
rationalizability.

Theorem 3.1. For any voting rule R over a set of candidates C that satisfies nonimposition,
there is a consensus class (K,W) and a distance d such that R is (K, d)-rationalizable.

The consensus class used in the proof of Theorem 3.1 is somewhat artificial. However, the
following theorem shows that a similar result holds for our natural consensus notions, too.

Definition 3.2. Let R be a voting rule and let (E ,W) be a consensus class. We say that
R is compatible with (E ,W), or (E ,W)-compatible if for each election E = (C, V ) in E it
holds that R(E) = {W(E)}.

Theorem 3.3. For any consensus class K ∈ {S,U ,M, C}, a voting rule R is (K, dK)-
rationalizable for some distance dK if and only if R is K-compatible.

The proof of Theorem 3.3 is fairly simple: we construct the distance so that any given
election is at distance 1 from all consensus elections with appropriate winners and at distance
2 from any other election.

Effectively, Theorem 3.3 shows that any interesting voting rule is distance-rationalizable
with respect to the strong unanimity consensus. Thus, knowing that a rule is distance
rationalizable—even with respect to a standard notion of consensus—provides no fur-
ther insight into the properties of the rule. Moreover, the dichotomy between distance-
rationalizable and non-distance-rationalizable rules becomes essentially meaningless.

However, the distances employed in the proof of Theorem 3.3 are very unnatural. In
particular, the following proposition holds.

Proposition 3.4. Let R be a voting rule that is (K, dK)-rationalizable via a consensus class
K ∈ {S,U ,M, C} and the distance dK constructed in the proof of Theorem 3.3. If dK is
polynomial-time computable then the winner determination problem for R is in P.

For example, this implies that, if P 6= NP, the distance produced in the proof of Theorem 3.3
for the rationalization of Kemeny rule with respect to S is not polynomial-time computable.
On the other hand, we know that Kemeny does have a very natural rationalization with
respect to S via distance d̂swap. The requirement that the distance should be polynomial-
time computable is essential for the distance rationalizability framework to be interesting,
in addition to further, structural, restrictions on the distances that we will introduce in the
next section.

4 Rationalizability via Votewise Distances

The results of the previous section make it clear that we need to restrict the set of distances
that we consider. To identify an appropriate restriction, consider rationalizations of Borda
and Plurality via distances d̂swap and d̂discr, respectively (see the end of Section 2). To
build either of these distances, we first defined a distance over votes and then extended it
to a distance over elections (with the same candidate sets and equal-cardinality voter lists)
via summing the distances between respective votes. This technique can be interpreted
as taking the direct product of the metric spaces that correspond to individual votes, and



defining the distance on the resulting space via the ℓ1-norm. It turns out that distances
obtained in this manner (possibly using norms other than ℓ1), which we will call votewise
distances, are very versatile and expressive. They are also attractive from the social choice
point of view, as they exhibit continuous and monotone dependence on the voters’ opinions.

In this section we will define votewise distances and attempt to answer the following
three questions regarding voting rules that can be rationalized via them:

(a) What properties do such rules have?

(b) Which rules can be rationalized with respect to votewise distances?

(c) What is the complexity of winner determination for such rules?

Definition 4.1. Given a vector space S over R, a norm on S is a mapping N from S to R

that satisfies the following properties:

(i) positive scalability: N(αu) = |α|N(u) for all u ∈ S and all α ∈ R;

(ii) positive semidefiniteness: N(u) ≥ 0 for all u ∈ S, and N(u) = 0 if and only if u = 0;

(iii) triangle inequality: N(u + v) ≤ N(u) + N(v) for all u, v ∈ S.

A well-known class of norms on R
n are the p-norms ℓp given by ℓp(x1, . . . , xn) =

(
∑n

i=1(|xi|p))
1

p , with the convention that ℓ∞(x1, . . . , xn) = max{x1, . . . , xn}. A norm N
on R

n is said to be symmetric if it satisfies N(x1, . . . , xn) = N(xσ(1), . . . , xσ(n)) for any
permutation σ : [1, n] → [1, n]; clearly, all p-norms are symmetric. We can now define our
family of votewise distances.

Definition 4.2. We say that a function d on pairs of preference profiles is votewise if the
following conditions hold:

1. d(E, E′) = +∞ if E and E′ have a different set of candidates or a different number
of voters.

2. For any set of candidates C, there exists a distance dC(·, ·) defined on votes over C;

3. For any n ∈ N, there exists a norm Nn on R
n such that for any two preference

profiles E = (C, U), E′ = (C, V ) with U = (u1, . . . , un) and V = (v1, . . . , vn) we have
d(E, E′) = Nn(dC(u1, v1), . . . , dC(un, vn)).

It is well known that any function defined in this manner is a metric. Thus, in what
follows, we refer to votewise functions as votewise distances; we will also use the term “N -
votewise distance” to refer to a votewise distance defined via a norm N , and denote a
votewise distance that is based on a distance d over votes by d̂. Similarly, we will use the
term N -votewise rules to refer to voting rules that can be distance-rationalized via one of
our four consensus classes and an N -votewise distance.

An important special case of our framework is when Nn is the ℓ1-norm, i.e.,
Nn(x1, . . . , xn) = x1+· · ·+xn; we will call any such distance an additively votewise distance,
or, in line with the notation introduced above, an ℓ1-votewise distance. So far, ℓ1-votewise
distances were the only votewise distances used in distance rationalizability constructions:4

Meskanen and Nurmi [19] use them to distance-rationalize the Kemeny rule, Dodgson, Plu-
rality and Borda, and we will show that the construction for Borda can be generalized to
all scoring rules (also using an ℓ1-votewise distance). However, N -votewise distances with
N 6= ℓ1 are almost as easy to work with as ℓ1-votewise distances and may be useful for
rationalizing natural voting rules. In fact, later on we will see that simplified Bucklin is an
ℓ∞-votewise rule.

4However, see [23, Footnote 7].



4.1 Properties of Votewise Rules

In this section we consider three basic properties of voting rules. Specifically, given a con-
sensus class K and a votewise distance d̂, we ask under which circumstances the voting rule
that is distance-rationalizable via (K, d̂) is anonymous, neutral, or consistent. To start, we
recall the formal definitions of these properties.

Let E = (C, V ) be an election with V = (v1, . . . , vn), and let σ and π be permutations of
V and C, respectively. For any C′ ⊆ C, set π(C′) = {π(c) | c ∈ C′}. Let π̃(v) be the vote ob-
tained from v by replacing each occurrence of a candidate c ∈ C by an occurrence of π(c); we
can extend this definition to preference profiles by setting π̃(v1, . . . , vn) = (π̃(v1), . . . , π̃(vn)).

Anonymity. A voting rule is anonymous if its result depends only on the number of voters
reporting each preference order. Formally, a voting rule R is anonymous if for each
election E = (C, V ) with V = (v1, . . . , vn) and each permutation σ of V , the election
E′ = (C, σ(V )) satisfies R(E) = R(E′).

Neutrality. A voting rule is neutral if its result does not depend on the candidates’
names. Formally, a voting rule R is neutral if for each election E = (C, V ), where
C = {c1, . . . , cm} and each permutation π of C, the election E′ = (C, π̃(V )) satisfies
R(E) = π−1(R(E′)).

Consistency. A voting rule R is consistent if for any two elections E1 = (C, V1) and
E2 = (C, V2) such that R(E1) ∩ R(E2) 6= ∅, the election E = (C, V1 + V2) (i.e., the
election where the collections of voters from E1 and E2 are concatenated) satisfies
R(E) = R(E1) ∩ R(E2). This property was introduced by Young [21] and is also
known as reinforcement [5].

For votewise distance-rationalizable rules, a symmetric norm produces an anonymous rule.

Proposition 4.3. Suppose that a voting rule R is (K, d̂)-rationalizable, where K ∈

{S,U ,M, C} and d̂ is an N -votewise distance, where N is a symmetric norm. Then R
is anonymous.

In contrast, neutrality is inherited from the underlying distance over votes.

Definition 4.4. Let C be a set of candidates and let d be a distance on votes over C. We
say that d is neutral if for each permutations π over C and any two votes u and v over
C it holds that d(u, v) = d(π̃(u), π̃(v)). Further, we say that a votewise distance d̂ that
corresponds to a distance d on votes is neutral if d is.

Proposition 4.5. Suppose that a voting rule R is (K, d̂)-rationalizable, where K ∈

{S,U ,M, C} and d̂ is a neutral votewise distance. Then R is neutral.

It is natural to ask if the converse of Proposition 4.5 is also true, i.e., if every neutral votewise
rule can be rationalized via a neutral distance. Indeed, paper [6] provides a positive answer
to a similar question in the context of representing voting rules as maximum likelihood
estimators. However, the natural extension of the approach of [6] is not necessarily applicable
in our setting. Nevertheless, all votewise distances that have so far arisen in the study of
distance rationalizability of natural voting rules are neutral.

Our results for anonymity and neutrality are applicable to all consensus classes consid-
ered in this paper. In contrast, when discussing consistency, we need to limit ourselves to
the unanimity consensus, and to ℓp-votewise rules.

Theorem 4.6. Suppose that a voting rule R is (U , d̂)-rationalizable, where d̂ is an ℓp-
votewise distance. Then R is consistent.



While Theorem 4.6 may hold for some norms other than ℓp, we cannot hope to prove
it for all votewise distances: fundamentally, consistency is a constraint on the relationship
among Ns, Nt and Ns+t (i.e., the norms used for s voters, t voters, and s + t voters), and
our definition of votewise distances allows us to select norms Nn for different values of n
independently of each other. Further, for our proof to work, the consensus class should be
closed with respect to “splitting” and “merging” of the consensus profiles, and neither of the
classes S, C, and M satisfies both of these conditions. Indeed, for S and C the conclusion
of the theorem itself is not true: the counterexamples are provided by the Kemeny rule and
the Dodgson rule, respectively (both are not consistent, yet rationalizable via d̂swap).

4.2 ℓp-Votewise Rules

Now that we know that ℓp-votewise rules have some desirable properties, let us see which
voting rules are in fact ℓp-votewise distance rationalizable. We will generally focus on
additively votewise rules, but we will look at ℓ∞ as well. Naturally, we expect the answer
to this question to strongly depend on the consensus notion used. Thus, let us consider
unanimity, strong unanimity, majority, and Condorcet consensuses one by one.

We start with the unanimity consensus. By combining Propositions 4.3, 4.5 and The-
orem 4.6, we conclude that any rule that is (U , d̂)-rationalizable, where d̂ is a neutral ℓ1-
votewise distance, is neutral, anonymous and consistent; it is not hard to check that the
conclusion still holds if d̂ is a pseudodistance rather than a distance. In contrast, Young’s
famous characterization result [21] says that every voting rule that has all three of these
properties is either a scoring rule or a composition of scoring rules (see [21] for an exact
definition of composition of voting rules). It turns out that our framework allows us to re-
fine Young’s result by characterizing exactly the scoring rules themselves rather than their
compositions. Moreover, we can actually “extract” the scoring rule from the corresponding
distance, albeit not efficiently (see Section 4.3 for a discussion of the related complexity
issues).

Theorem 4.7. Let R be a voting rule. There exists a neutral ℓ1-votewise pseudodistance d̂
such that R is (U , d̂)-rationalizable if and only if R can be defined via a family of scoring
rules.5

That is, the above theorem gives a complete characterization of voting rules rationalizable
via neutral ℓ1-votewise distances with respect to the unanimity consensus. However, the
situation with respect to other consensus notions is more difficult.

Let us consider strong unanimity next. Intuitively, strong unanimity is quite challenging
to work with as it provides very little flexibility. Meskanen and Nurmi [19] have shown that
Kemeny is ℓ1-votewise with respect to S, but, at least at first, it seems that no other natural
rule is. Interestingly, and very counterintuitively, Plurality is also ℓ1-votewise with respect
to strong unanimity.

Theorem 4.8. There exists an ℓ1-votewise distance d̂ such that Plurality rule is (S, d̂)-
rationalizable.

Naturally, this result suggests that, perhaps, all scoring rules are votewise distance-
rationalizable with respect to S. However, this turns out to be false.

Theorem 4.9. There is no ℓ1-votewise distance d̂ such that Borda rule is (S, d̂)-
rationalizable.

5Note that in this paper, following Young [21], we do not require (α1, . . . , αm) to be nondecreasing
or integer. Indeed, the distance rationalizability framework does not impose any ordering over different
positions in a vote, so it works equally well for a scoring rule with, e.g., α1 < α2.



Thus, the class of rules ℓ1-votewise rationalizable with respect to S is rather enigmatic. On
the one hand, it does contain Kemeny, a very complex rule, and Plurality, a very simple
rule, yet it does not contain other natural scoring rules such as Borda. We believe that
characterizing this class exactly is a very interesting research problem, particularly so since
the rules in this class can be shown to be related to MLERIV rules of [7] and and [6] (we
omit a description of this connection here due to space constraints).

Our understanding of rules that are votewise rationalizable with respect to C and M is
even more limited. For example, Meskanen and Nurmi [19] have shown that Dodgson is ℓ1-
votewise rationalizable with respect to C, and it is easy to see that no scoring rule is distance-
rationalizable with respect to C because scoring rules are not Condorcet-consistent [20]. It
is very interesting if, e.g., Young’s rule is votewise with respect to C (however, see Section 5
for some comments). For the case of M, we can show that simplified Bucklin is ℓ∞-votewise
with respect to M; note that this result provides an argument for considering votewise
distances that use a norm other that ℓ1.

Theorem 4.10. Simplified Bucklin is ℓ∞-votewise with respect to consensus M.

The regular Bucklin rule is also rationalizable via a distance very similar to the one for
simplified Bucklin but, nonetheless, not votewise. Finding further natural voting rules that
are votewise rationalizable with respect to either C or M is an open question.

We conclude this section with a quick look at the STV rule. Conitzer, Rognlie, and
Xia [6] have shown that STV is not MLERIV. It can be shown that this implies that STV is
not distance-rationalizable via an ℓ1-votewise distance with respect to S. It turns out that
this result can be extended to (almost) any votewise distance as well as two other consensus
classes, namely, U and C.

Definition 4.11 ([3]). A norm N in R
n is monotonic in the positive orthant, or R

n
+-

monotonic, if for any two vectors (x1, . . . , xn), (y1, . . . , yn) ∈ R
n
+ such that xi ≤ yi for all

i = 1, . . . , n we have N(x1, . . . , xn) ≤ N(y1, . . . , yn).

We say that a votewise distance is monotonic if the respective norm is monotonic in the
positive orthant. We remark that monotonicity is a very weak constraint that is satisfied
by any reasonable norm.

Theorem 4.12. STV (together with any intermediate tie-breaking rule) is not distance-
rationalizable with respect to either of S, U , or C and any neutral anonymous monotonic
votewise distance.

Note that Meskanen and Nurmi [19] show that STV can be distance-rationalized with respect
to U , but their distance is not votewise, and it is not immediately clear whether it is
polynomial-time computable.

4.3 Winner Determination for Votewise Rules

Now that we have some understanding of the nature of votewise rules, we are ready to
study the complexity of determining winners under them.6 Clearly, to prove upper bounds
on the complexity of this problem, we need to impose restrictions on the complexity of the
distance itself. Thus, in what follows, we focus on distances that take values in Z ∪ {∞}
and are polynomial-time computable; we will call a distance normal if it has both of these
properties. We remark that restricting ourselves to distances with values in Z ∪ {∞} may
prevent us from using ℓp-distances for values of p other than 1 and ∞. For example, taking

6We assume the reader is familiar with standard notions of complexity theory and fixed-parameter com-
plexity. Due to space limits we cannot provide appropriate background in the paper.



the p-th root of an integer may yield a non-integer value. However, it is easy to see that for
winner-determination, instead of using an ℓp-distance d, we can use function dp, despite the
fact that it is not a distance. This is so, because for winner-determination we only need to
compare distances between elections.

The winner determination problem can be formally stated as follows.

Definition 4.13. Let R be a voting rule. In the R-winner problem we are given an election
E = (C, V ) and a candidate c ∈ C and we ask whether c ∈ R(E).

This problem can be hard even for ℓ1-votewise rules: for Dodgson and Kemeny it is
known to be Θp

2-complete [11, 12]. On the positive side, for both of these rules the winner
determination problem can be solved in polynomial time if the number of candidates is fixed.
In fact, a stronger statement is true: the winner determination problem for both Dodgson
and Kemeny is fixed parameter tractable with respect to the number of candidates.

We will now show that from the complexity perspective, Dodgson and Kemeny exhibit
some of the worst possible behavior.

Theorem 4.14. Suppose that a voting rule R is (K, d)-rationalizable, where K ∈
{S,U ,M, C}, and d is a normal distance that satisfies d((C1, V1), (C2, V2)) = +∞ when-
ever C1 6= C2 or |V1| 6= |V2|. Then the R-winner problem is in PNP. Moreover, if, in
addition, for any two elections E1 = (C, V1) , E2 = (C, V2), the distance d(E1, E2) is either
+∞ or at most polynomial in |C| + |V1| + |V2|, then the R-winner problem is in Θp

2.

Note that the distance used to rationalize Dodgson and Kemeny is polynomially bounded.
On the other hand, there are natural distances that are not polynomially bounded; this
includes distances that appear in our distance rationalizabiliy constructions for scoring rules
with “large” coefficients.

If, in addition to being normal, the distance in question is an ℓ1-votewise distance, the
winner determination problem is fixed-parameter tractable with respect to the number of
candidates.

Theorem 4.15. Suppose that a voting rule R is (K, d)-rationalizable, where K ∈
{S,U ,M, C}. and d is a normal ℓ1-votewise distance. Then the R-winner problem is FPT
with respect to the number of candidates.

In the previous section we have seen that neutral ℓ1-votewise rules that use unanimity
consensus correspond to families of scoring rules. Thus, one would expect their winner
problems to be in P. Note, however, that in our setting we are given the distance, but not
the scoring vector and computing the latter from the former might be hard. Nevertheless,
it turns out that in this setting we can easily determine the winner if we are allowed to use
polynomial-size advice.

Theorem 4.16. Suppose that a voting rule R is distance-rationalizable via a normal neutral
ℓ1-votewise distance and unanimity consensus. Then R-winner is in P/poly.

P/poly is a complexity class that captures the power of polynomial computation “with
advice.” Karp–Lipton theorem [13] says that if there is an NP-hard problem in P/poly then
the Polynomial Hierarchy collapses. Thus, for voting rules that are distance-rationalizable
via a normal neutral ℓ1-votewise distance and the consensus class U the winner determination
problem is unlikely to be NP-hard. In contrast, this problem is hard for both Dodgson and
Kemeny, even though they are both rationalizable via a normal neutral ℓ1-votewise distance
(and consensus classes C and S, respectively). Thus, from computational perspective, the
unanimity consensus appears to be easier to work with than the strong consensus and the
Condorcet consensus. Indeed, both S and C impose “global” constraints on the closest
consensus and U only imposes “local” ones.



5 Conclusions and Open Problems

In this paper we have presented general results regarding the recently introduced distance ra-
tionalizability framework. Our paper has two main contributions. First, we have shown that
without any restrictions, essentially every reasonable voting rule is distance-rationalizable
and further refinement of this framework is needed. Second, we have put forward a natu-
ral class of distances to consider—votewise distances—and proved that the rules which can
be distance-rationalized using such distances have several desirable properties. We have
identified a number of votewise rules, as well as showed that some rules are not votewise
rationalizable with respect to standard consensus classes, and established complexity results
for winner determination under votewise rules.

Are votewise distances the only natural distances that one should consider? Such dis-
tances are based on the assumption that, given an election E = (C, V ), if a voter changes
her opinion in a minor way, then the resulting election E′ = (C, V ′) must not deviate from
E too far. However some rules have discontinuous nature by definition, especially Young’s
rule which picks the winner of a largest Condorcet-consistent subelection. It is unlikely that
such rules can be distance-rationalized via a votewise distance. Indeed, it can be shown that
Young’s rule and Maximin can be rationalized with respect to C via fairly intuitive distances
that operate on profiles with different numbers of voters: in the case of Maximin we are,
essentially, adding voters, and in the case of Young, we are deleting voters. (We omit the
definitions of these rules and the construction due to space constraints). However, neither
of these rules is known to be votewise rationalizable. Thus, it would be desirable to extend
the class of “acceptable” distances to include some non-votewise distances; how to do this
is an interesting research direction.

We mention that our work is closely related to a sequence of papers of Conitzer, Rognlie,
Sandholm, and Xia [7, 6] on interpreting voting rules as maximum likelihood estimators.
There are some very interesting connections (and differences) between the two approaches,
but, unfortunately, due to space constraints, we cannot elaborate on them here.
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