Algorithmic Game Theory

Algorithmische Spieltheorie

Complexity of Problems for Weighted Voting Games Wintersemester 2022/2023

Dozent: Prof. Dr. J. Rothe

hhu,

Complexity of Problems for Weighted Voting Games

- Weighted voting games can be represented compactly, since only the weights of the *n* players and a quota need to be given.
- This implicitly tells us which of the altogether 2ⁿ possible coalitions of players are winning and which are losing, and we don't have to explicitly list this information, which would require exponential space.
- Note that the weights and the quota of a weighted voting game (and also, e.g., the ε in ε-Core(G)) must be restricted to be rational numbers, for otherwise problem instances containing weighted voting games (or an ε) could not always be handled algorithmically.

Reminder: Many-One Reducibility and Completeness

Definition

- Let $\Sigma = \{0,1\}$ be a fixed alphabet, and let $A, B \subseteq \Sigma^*$.
- Let FP denote the set of polynomial-time computable total functions mapping from Σ* to Σ*.
- Let $\mathscr C$ be any complexity class.
- Define the *polynomial-time many-one reducibility*, denoted by ≤^p_m, as follows: A ≤^p_m B if there is a function f ∈ FP such that for each

$$(\forall x \in \Sigma^*)[x \in A \iff f(x) \in B].$$

Reminder: Many-One Reducibility and Completeness

Definition (continued)

- **2** A set *B* is \leq_{m}^{p} -hard for \mathscr{C} if $A \leq_{m}^{p} B$ for each $A \in \mathscr{C}$.
- A set B is ≤^p_m-complete for C if
 B is ≤^p_m-hard for C (lower bound) and
 B ∈ C (upper bound).

if
$$A \leq_{\mathrm{m}}^{\mathrm{p}} B$$
 and $B \in \mathscr{C}$, then $A \in \mathscr{C}$.

Reminder: Properties of \leq_m^p

Lemma

- $A \leq_m^p B$ implies $\overline{A} \leq_m^p \overline{B}$, yet in general it is not true that $A \leq_m^p \overline{A}$.
- The relation ≤^p_m is both reflexive and transitive, yet not antisymmetric.
- P ("deterministic polynomial time") and
 NP ("nondeterministic polynomial time") are ≤^p_m-closed.
 That is, upper bounds are inherited downward with respect to ≤^p_m.
- If $A \leq_m^p B$ and A is \leq_m^p -hard for some complexity class \mathscr{C} , then B is \leq_m^p -hard for \mathscr{C} .

That is, lower bounds are inherited upward with respect to \leq_m^p .

Preliminary Remarks

Reminder: Properties of \leq_m^p

Lemma (continued)

● Let \mathscr{C} and \mathscr{D} be any complexity classes. If \mathscr{C} is \leq_m^p -closed and B is \leq_m^p -complete for \mathscr{D} , then

$$\mathscr{D}\subseteq \mathscr{C}\iff B\in \mathscr{C}.$$

In particular, if B is NP-complete, then

$$\mathbf{P}=\mathbf{NP}\iff B\in\mathbf{P}.$$

• For each nontrivial set $B \in P$ (i.e., $\emptyset \neq B \neq \Sigma^*$) and for each set $A \in P$, $A \leq_m^p B$. Thus, every nontrivial set in P is \leq_m^p -complete for P.

Veto Player and Dummy Player

• Recall that it is common to assume that the grand coalition forms in simple games, just as in superadditive games.

	Veto
Given:	A weighted voting game $G = (w_1, w_2, \dots, w_n; q)$ and a player <i>i</i> .
Question:	Is <i>i</i> a veto player in <i>G</i> ?

Theorem

VETO is in P.

Proof: Under the above assumption, it is enough to check whether the coalition $P \setminus \{i\}$ is winning, i.e., whether $w(P \setminus \{i\}) \ge q$. \Box

Veto Player and Dummy Player

Dummy

Given:	A weighted voting game $G = (w_1, w_2, \dots, w_n; q)$ and a player <i>i</i> .
Question:	ls <i>i</i> a dummy player in <i>G</i> ?

Theorem

DUMMY is coNP-complete, where $coNP = \{\overline{L} \mid L \in NP\}$.

Remark

- Our reduction will not give "strong coNP-completeness," i.e., coNP-hardness is relevant only if the weights are fairly large.
- While weights are rather small in parliamentary voting, they can be huge in other applications of weighted voting games, such as shareholder voting.

J. Rothe (HHU Düsseldorf)

Veto Player and Dummy Player

Proof:

- For proving that DUMMY is in coNP, it is enough to check that i is useless for all coalitions C ⊆ P: v(C ∪ {i}) = v(C).
- For the hardness proof, we reduce from the NP-complete problem

Partition

Given:	A nonempty sequence $(k_1, k_2,, k_n)$ of positive integers satisfying that $\sum_{i=1}^{n} k_i$ is even
Question:	Does there exist a subset $A \subseteq \{1, 2,, n\}$ such that
	$\sum_{i\in\mathcal{A}}k_i=\sum_{i\in\{1,2,\ldots,n\}\smallsetminus\mathcal{A}}k_i?$

to the complement of $\operatorname{DuMMY}.$ And now, see blackboard.

J. Rothe (HHU Düsseldorf)

Algorithmic Game Theory

WVG-Empty-Core

Recall that the core of a game G = (P, v) is the set of imputations \vec{a} such that $a(C) \ge v(C)$ for each $C \subseteq P$ (assuming the grand coalition forms).

WVG-Empty-Core

Given:	A weighted vo	ting game $G =$	$(w_1, w_2, \ldots, w_n; q).$
--------	---------------	-----------------	-------------------------------

Question: Does it hold that $Core(G) = \emptyset$?

Theorem

WVG-EMPTY-CORE is in P.

Proof: Under our assumption that the grand coalition forms, we know that G has a nonempty core if and only if it has a veto player. So it is enough to check for each player if she is a veto player.

J. Rothe (HHU Düsseldorf)

Algorithmic Game Theory

WVG-In-Core and WVG-Construct-Core

Remark

- Similarly, to check whether a given outcome \$\vec{a} = (a_1, a_2, ..., a_n)\$ (i.e., a payoff vector for the grand coalition) is in the core, it is enough to check that \$a_i = 0\$ for each player i that is not a veto player.
- Also, a payoff vector \$\vec{a} = (a_1, a_2, \ldots, a_n)\$ in the core can be constructed if there exists one:
 - If there is no veto player, the core of G is empty, so we have a yes-instance of WVG-EMPTY-CORE.
 - On the other hand, if there is some veto player i, construct an imputation a with a_i = 1, a_j = 0 for j ∈ P \ {i}.

WVG-In-Core and WVG-Construct-Core

WVG-IN-CORE

Given: A weighted voting game $G = (w_1, ..., w_n; q)$ and an imputation \vec{a} . **Question:** Is \vec{a} in the core of G?

WVG-CONSTRUCT-CORE

Given: A weighted voting game $G = (w_1, \ldots, w_n; q)$.

Task: Construct an imputation \vec{a} in the core of G.

Theorem

WVG-IN-CORE and WVG-CONSTRUCT-CORE can be solved in polynomial time.

Remark

What if the grand coalition does not form?

If q < w(P)/2, there may be two or more disjoint winning coalitions.

- Such a quota doesn't make sense in a voting context.
- However, it does make sense for multiagent task allocation, where disjoint teams of players tackle different tasks.
- ② For a weighted voting game G, let CS-Core(G) denote the set of outcomes (C, a) with C ∈ CSP that are stable against deviation.

WVG-CS-CORE

Given:	A weighted voting game $G = (w_1, w_2, \dots, w_n; q)$, where the play-
	ers may form nontrivial coalition structures.
Question:	Does it hold that CS -Core $(G) \neq \emptyset$?

Theorem (Elkind, Chalkiadakis, and Jennings (2008)) Let $G = (w_1, ..., w_n; q)$ be a weighted voting game over $P = \{1, ..., n\}$. If there exists a coalition structure $\mathfrak{C} = \{C_1, ..., C_k\}$ in \mathscr{CP}_P such that $w(C_j) = q$ for all $j, 1 \le j \le k$, then CS- $Core(G) \ne \emptyset$.

Proof: See blackboard.

J. Rothe (HHU Düsseldorf)

Algorithmic Game Theory

Theorem (Elkind, Chalkiadakis, and Jennings (2008)) WVG-CS-CORE *is* NP-*hard*.

Proof: See blackboard.

Remark

1 It is not clear if WVG-CS-CORE is NP-complete (i.e., in NP):

• After guessing an outcome, exponentially many checks are needed to verify stability.

 When guessing an outcome a = (a₁, a₂,..., a_n), can the a_i be written using p(n, log w_{max}) bits, where w_{max} is the largest weight? Elkind et al. (2008): Yes! If CS-Core(G) ≠ Ø then it contains such an outcome. So, we know that WVG-CS-CORE is in Σ₂^p = NP^{NP}.

• Greco et al. (2011) improve this to: WVG-CS-CORE is in $\Delta_2^p = P^{NP}$.

Remark

- ② Checking whether a given outcome (𝔅, \vec{a}) with 𝔅 ∈ 𝔅𝒮_P and $\vec{a} = (a_1, a_2, ..., a_n)$ is in CS-Core(G) is:
 - coNP-complete in general (reduction from PARTITION), but
 - in P if the weights are given in unary (reduction to KNAPSACK).

- **Given:** A list of k items with utilities $u_1, \ldots, u_k \in \mathbb{N}$ and sizes $s_1, \ldots, s_k \in \mathbb{N}$, the knapsack size S, and the target utility U.
- **Question:** Is there a subset of indices $I \subseteq \{1, ..., k\}$ such that

$$\sum_{i \in I} s_i \leq S$$
 and $\sum_{i \in I} u_i \geq U$?

Does it hold that ε -Core(G) $\neq \emptyset$?

ϵ -Core and Least Core for Weighted Voting Games

WVG-Epsilon-Core

Given: A weighted voting game $G = (w_1, w_2, ..., w_n; q)$ and a rational value $\varepsilon \ge 0$.

WVG-IN-Epsilon-Core

Given:	A weighted voting game $G = (w_1, w_2, \dots, w_n; q)$, a rational value			
	$arepsilon\geq 0$, and an efficient payoff vector $ec{a}$.			

Question: Is \vec{a} in ε -Core(G)?

Question:

Theorem (Elkind, Goldberg, Goldberg, and Wooldridge (2009)) WVG-EPSILON-CORE *is* coNP-*hard*.

2 WVG-IN-EPSILON-CORE *is* coNP-complete.

Remark

- It is not clear if WVG-EPSILON-CORE is coNP-complete (i.e., in coNP).
- **2** The best known upper bound for WVG-EPSILON-CORE is $\Sigma_2^p = NP^{NP}$:
 - Guess a solution and
 - verify that no coalition can gain more than $\boldsymbol{\epsilon}$ by deviating.

Proof: We show

$\overline{\mathrm{PARTITION}} \leq^p_m \mathrm{WVG}\text{-}\mathrm{Epsilon}\text{-}\mathrm{Core}.$

Given an instance $(k_1, k_2, ..., k_n)$ with $\sum_{i=1}^n k_i = 2K$ for some positive integer K, construct a WVG with n+1 players:

$$G = (w_1, \ldots, w_n, w_{n+1}; q) = (k_1, \ldots, k_n, K; K).$$

Lemma (Elkind, Goldberg, Goldberg, and Wooldridge (2009))

- If $(k_1, k_2, \ldots, k_n) \in \text{PARTITION}$ then
 - (a) the value of the least core of G is $\frac{2}{3}$, and
 - (b) for each efficient payoff vector \$\vec{a} = (a_1, a_2, \ldots, a_{n+1})\$ in the least core of \$G\$, it holds that \$a_{n+1} = \frac{1}{3}\$.

Proof: of the lemma.

1 Define the payoff vector $\vec{a} = (a_1, a_2, \dots, a_{n+1})$ by

$$a_i = \frac{w_i}{3K}$$
 for $1 \le i \le n+1$.

Note that \vec{a} is efficient and $a_i > 0$ for each i.

Define the excess of a coalition C w.r.t. a by

$$e(\vec{a},C)=a(C)-v(c).$$

Note that
$$e(\vec{a}, C) \ge -\frac{2}{3}$$
 for all $C \subseteq P = \{1, \dots, n+1\}$.
Hence, $\vec{a} \in \frac{2}{3}$ -Core(G), so $\tilde{\varepsilon}(G) \le \frac{2}{3}$.

Since $(k_1, k_2, ..., k_n) \in \text{PARTITION}$, there are three disjoint winning coalitions:

$$C_{1} = J \subseteq \{1, ..., n\} \text{ with } \sum_{j \in J} k_{j} = K,$$

$$C_{2} = \{1, ..., n\} \setminus J,$$

$$C_{3} = \{n+1\}.$$

Every efficient payoff vector $\vec{b} = (b_1, b_2, \dots, b_{n+1})$ with $b_{n+1} \neq \frac{1}{3}$ satisfies $b(C_i) < \frac{1}{3}$ for some $i \in \{1, 2, 3\}$, and thus $e(\vec{b}, C_i) < -\frac{2}{3}$.

Hence, if some $\vec{a} = (a_1, a_2, ..., a_{n+1})$ maximizes its least excess, it must satisfy $a_{n+1} = \frac{1}{3}$.

Therefore, $\tilde{\varepsilon}(G) = \frac{2}{3}$ and every $\vec{a} = (a_1, a_2, ..., a_{n+1})$ in the least core of G satisfies $a_{n+1} = \frac{1}{3}$.

2 Now suppose $(k_1, k_2, \ldots, k_n) \notin \text{PARTITION}$.

Modify the payoff vector $\vec{a} = (a_1, \dots, a_{n+1}) = (\frac{k_1}{3K}, \dots, \frac{k_n}{3K}, \frac{1}{3})$ by setting

$$\vec{a}' = (a'_1, \dots, a'_{n+1}) = \left(a_1 - \frac{1}{6nK}, \dots, a_n - \frac{1}{6nK}, a_{n+1} + \frac{1}{6K}\right).$$

Note that \vec{a}' is efficient and $a'_i > 0$ for each *i*.

One can show that

$$e(\vec{a}',C) \geq -rac{2}{3} + rac{1}{6K}$$
 for each $C \subseteq P = \{1,\ldots,n+1\}$

See blackboard.

Since $e(\vec{a}', C) \ge -\frac{2}{3} + \frac{1}{6K}$ for each $C \subseteq P = \{1, \dots, n+1\}$, \vec{a}' witnesses that $\tilde{\epsilon}(G) \le \frac{2}{3} - \frac{1}{6K}$.

Hence, for each payoff vector \vec{b} in the least core of G, we have

$$e(\vec{b},C) \geq -\frac{2}{3} + \frac{1}{6K}$$
 for each $C \subseteq P = \{1,\ldots,n+1\}.$

In particular, for $C_3 = \{n+1\}$:

$$b_{n+1} \geq rac{1}{3} + rac{1}{6K}$$
. \Box Lemma

And now see blackboard again for completing the proof of the theorem:

 $\overline{\text{PARTITION}} \leq_{\text{m}}^{\text{p}} \text{WVG-Epsilon-Core.} \square$

J. Rothe (HHU Düsseldorf)

Algorithmic Game Theory

WVG-IN-LEAST-CORE

Given: A weighted voting game $G = (w_1, w_2, ..., w_n; q)$ and an efficient payoff vector \vec{a} .

Question: Is \vec{a} in the least core of *G*?

WVG-Construct-Least-Core

Given: A weighted voting game $G = (w_1, w_2, \dots, w_n; q)$.

Task: Construct an efficient payoff vector \vec{a} in the least core of G.

Theorem (Elkind, Goldberg, Goldberg, and Wooldridge (2009)) WVG-IN-LEAST-CORE *is* NP-*hard*.

WVG-CONSTRUCT-LEAST-CORE cannot be solved in deterministic polynomial time, unless P = NP.

Proof: See blackboard.

Remark

- It is not clear if WVG-IN-LEAST-CORE is NP-complete (i.e., in NP).
- **2** The best known upper bound for WVG-IN-LEAST-CORE is $\Pi_2^p = \text{coNP}^{NP}$.

Remark

- On the other hand, despite their NP- or coNP-hardness, each of the problems
 - WVG-Epsilon-Core,
 - WVG-IN-Epsilon-Core,
 - WVG-IN-LEAST-CORE, and
 - WVG-Construct-Least-Core

admits a pseudo-polynomial-time algorithm, which can then be converted to a fully polynomial-time approximation scheme (FPTAS).

- Similarly, the value of the least core of a given weighted voting game with n players can be computed in time polynomial in n and w_{max}.
- The proof makes use of the linear program for the least core.

Let G = (P, v) be a superadditive weighted voting game. Recall the notion of the *(additive) cost of stability for G*, defined by

$$CoS(G) = \inf \{ \Delta \mid \Delta \ge 0 \text{ and } Core(G_{\Delta}) \neq \emptyset \},\$$

where the *adjusted game* $G_{\Delta} = (P, v_{\Delta})$ is given by

•
$$v_{\Delta}(C) = v(C)$$
 for $C \neq P$ and

•
$$v_{\Delta}(P) = v(P) + \Delta$$
.

Similarly, we can define the *multiplicative cost of stability* by

$$CoS^{\times}(G) = \frac{CoS(G) + v(P)}{v(P)}.$$
(1)

Remark

- Results for the additive cost of stability can be restated for its multiplicative sibling, and vice versa.
 For example, if CoS(G) = v(P), we have CoS[×](G) = 2.
- Note that $CoS^{\times}(G) \ge 1$ for profit-sharing games.
- For cost-sharing games, the multiplicative cost of stability is also known as the cost recovery ratio, and we have 0 ≤ CoS[×](G) ≤ 1.

Theorem (Bachrach et al. (2018))

For each superadditive weighted voting game $G = (P, v) = (w_1, \dots, w_n; q)$,

$$CoS^{\times}(G) < 2.$$

J. Rothe (HHU Düsseldorf)

Proof:

- Since G is a simple game, it is superadditive if and only if every pair of winning coalitions has a nonempty intersection.
- Recall that we assume that w(P) ≥ q.
 Suppose that there is an agent i* with weight w_{i*} ≥ q.
 Then, by superadditivity, i* must be a veto player, so the core of G is nonempty and hence CoS[×](G) = 1.
- Otherwise, let S be a minimum-weight winning coalition in G. Pick a player $j \in S$ such that $w_j \leq w_i$ for all $i \in S$, and set

$$s=1-\frac{w(S\setminus\{j\})}{q}$$

Note that s > 0 by our choice of S.

- Define a payoff vector \vec{a} by setting $a_j = s$, $a_i = \frac{w_i}{a}$ for $i \in P \setminus \{j\}$.
- We claim that *ā* is stable.
 Indeed, consider a winning coalition *R*.
 If *j* ∉ *R*, then *a*(*R*) = ^{w(R)}/_q ≥ 1, so *R* does not block *ā*.
 If *j* ∈ *R*, then (since w(*R*) ≥ w(*S*) by our choice of *S*) we have *a*(*R*) = *a*(*R* \ {*j*}) + *a*_{*j*} = ^{w(R \ {*j*})}/_q + *a*_{*j*} ≥ ^{w(S \ {*j*})}/_q + *s* = 1.

• It remains to bound the total payment:

$$\begin{aligned} \mathsf{a}(P) &= \mathsf{a}(S \setminus \{j\}) + \mathsf{a}_j + \mathsf{a}(P \setminus S) = \frac{\mathsf{w}(S \setminus \{j\})}{q} + \mathsf{s} + \frac{\mathsf{w}(P \setminus S)}{q} \\ &= 1 + \frac{\mathsf{w}(P \setminus S)}{q} < 1 + 1 = 2, \end{aligned}$$

where the inequality holds because $P \setminus S$ is a losing coalition.

WVG-Super-Imputation-Stability

Given: A weighted voting game G, a parameter $\Delta \ge 0$, and an imputation $\vec{a} = (a_1, a_2, \dots, a_n)$ in the adjusted game G_{Δ} .

Question: Is it true that $\vec{a} \in Core(G_{\Delta})$?

WVG-Cost-of-Stability

Given:	A weighted	voting game	Ga	and a	parameter	$\Delta \ge 0.$
--------	------------	-------------	----	-------	-----------	-----------------

Question: Is it true that $CoS(G) \leq \Delta$ (i.e., is it true that $Core(G_{\Delta}) \neq \emptyset$)?

Theorem (Bachrach et al. (2009))

- **1** WVG-SUPER-IMPUTATION-STABILITY *is* coNP-complete.
- **2** WVG-COST-OF-STABILITY *is* coNP-*hard*.

Proof: See blackboard.

Remark

- Again, if the weights and the quota of the given weighted voting game in these problems are represented in unary, then both problems can be solved in polynomial time.
- Bachrach et al. (2009) also showed that there is an FPTAS for computing CoS(G).

Complexity of Computing Power Indices

How hard is it to compute the Shapley–Shubik or Banzhaf index?

Definition

Define #P as the class of functions that give the number of solutions of NP problems. #P is also known as the *"counting version of* NP."

Example (of functions in #P)

- #SAT maps each boolean formula to the number of its satisfying assignments.
- #PARTITION maps each instance $(k_1, k_2, ..., k_n)$ of PARTITION to the number of subsets $A \subseteq \{1, 2, ..., n\}$ such that

$$\sum_{i\in A} k_i = \sum_{i\in\{1,2,\dots,n\}\smallsetminus A} k_i$$

Complexity of Computing Power Indices

Definition

Let f and g be two functions mapping from Σ^* to \mathbb{N} .

• We say *f* (many-one) reduces to *g* if there exist two polynomial-time computable functions, $\psi : \mathbb{N} \to \mathbb{N}$ and $\rho : \Sigma^* \to \Sigma^*$, such that for each $x \in \Sigma^*$,

$$f(x) = \psi(g(\rho(x))).$$

- We say f parsimoniously reduces to g if there exists a polynomial-time computable function ρ such that for each x ∈ Σ*, f(x) = g(ρ(x)).
- g is (parsimoniously) hard for #P if every f ∈ #P (parsimoniously) reduces to g, and g is (parsimoniously) complete for #P if g ∈ #P and g is (parsimoniously) hard for #P.

Complexity of Computing Power Indices

Theorem

- Computing the (raw) Shapley–Shubik index of a player in a given weighted voting game is complete for #P. (Deng and Papadimitriou (1994))
- Ormputing the (raw) Banzhaf index is parsimoniously complete for #P. (Prasad and Kelly (1990))
- For both problems, there exist pseudo-polynomial-time algorithms. (Matsui and Matsui (2000))
Proof: We show only the first statement: Computing the (raw) Shapley–Shubik index of a player in a given weighted voting game is #P-complete.

- 1. Membership in **#P**. Given a WVG G and a player i:
 - Nondeterministically guess all permutations π of the players in G.
 - For each permutation π guessed, accept if and only if $\Delta_{\pi}^{G}(i) = 1$.

Clearly, the number of accepting computation paths is

$$\sum_{\pi\in\Pi_P}\Delta_{\pi}^{G}(i)=\mathsf{SSI}^*(G,i).$$

2. #P-hardness. We reduce from the **#P-complete** problem **#**SUBSETSUM, the counting version of the NP-complete problem

	SubsetSum
Given:	A sequence (a_1, \ldots, a_m) of positive integers and a positive integer K .
Question:	Does there exist a subset $A \subseteq \{1, \dots, m\}$ such that $\sum_{i \in A} a_i = K$?

We work with a simplified but still #P-complete variant of this problem by assuming that:

- $K = \frac{M}{2}$, where $M = \sum_{i=1}^{m} a_i$ and
- all solutions A have the same size.

Given such an instance of #SUBSETSUM, with (a_1, \ldots, a_m) and $K = \frac{M}{2}$, construct a weighted voting game G = (P, v) with n = m + 1 players:

$$G = (w_1,\ldots,w_m,w_n;q) = (a_1,\ldots,a_m,1;\frac{\sum_{i\in P}w_i}{2}).$$

Note that the quota is $\frac{M+1}{2}$ for an even number M.

For all $A \subseteq P$, we have $v(A) - v(A \setminus \{n\}) = 1$ if and only if the following conditions hold:

$$\begin{array}{ll} \bullet & n \in A,\\ \bullet & \sum_{j \in A} w_j > \frac{M+1}{2}, \text{ and}\\ \bullet & \sum_{j \in A \setminus \{n\}} w_j < \frac{M+1}{2}. \end{array}$$

J. Rothe (HHU Düsseldorf)

Since $w_n = 1$, this is equivalent to

$$\sum_{i\in A\setminus\{n\}}w_j=\frac{M}{2}=K.$$

In other words, $A \setminus \{n\}$ is a solution to the original SUBSETSUM instance.

Recall our assumption that all solutions have the same size: Letting ||A|| = k, we have $||A \setminus \{n\}|| = k - 1$. Hence,

 $SSI^{*}(G,n) = \sum_{C \subseteq P \setminus \{n\}} \|C\|! \cdot (n - \|C\| - 1)! \cdot (v(C) - v(C \setminus \{n\}))$ $= (k-1)!(n-k)! \cdot \begin{pmatrix} \text{"number of solutions to the} \\ \text{SUBSETSUM instance"} \end{pmatrix}. \Box$

Complexity of Power Comparison

For a power index \mathbb{PI} (such as Shapley-Shubik or Banzhaf), define:

 $\mathbb{P}I$ -Power-Compare

Given: Two weighted voting games, *G* and *G'*, and a player *i* occurring in both games.

Question: Is it true that $\mathbb{PI}(G, i) > \mathbb{PI}(G', i)$?

Theorem (Faliszewski & Hemaspaandra (2009)) SHAPLEY-SHUBIK-POWER-COMPARE *and* BANZHAF-POWER-COMPARE *are* PP-*complete*, *where*

$$\mathrm{PP} = \left\{ A \ \left| \ (\exists f \in \#\mathrm{P})(\forall x) \left[x \in A \Longleftrightarrow f(x) \ge 2^{p(|x|)-1} \right] \right\} \right.$$

is "probabilistic polynomial time." J. Rothe (HHU Düsseldorf) Algorithmic

Algorithmic Game Theory

without proof

^{41 / 100}

For a power index \mathbb{PI} (such as Shapley-Shubik or Banzhaf), define:

	₽ I -Beneficial-Merge
Given:	A weighted voting game $G = (w_1,, w_n; q)$ and a nonempty coalition $S \subseteq \{1,, n\}$.
Question:	Is it true that $\mathbb{PI}(G_{\&S},1) > \sum_{i \in S} \mathbb{PI}(G,i),$
	where $G_{\&S} = (\sum_{i \in S} w_i, w_{j_1}, \dots, w_{j_{n- S }}; q)$ with $\{j_1, \dots, j_{n- S }\} = \{1, \dots, n\} \smallsetminus S$?

Example

J. Rothe (HHU Düsseldorf)

Algorithmic Game Theory

Example $BI(G_{+2}, \square) + BI(G_{+2}, \square) = BI(G, \square)$ $=\frac{12}{64}$ $=\frac{12}{64}$ $=\frac{12}{32}$ $BI(G_{+2}, \square) + BI(G_{+2}, \square) = BI(G, \square)$ $=\frac{19}{64}$ $=\frac{12}{32}$ $=\frac{5}{64}$

$$SSI(G_{2} \div 2, \bigcirc) + SSI(G_{2} \div 2, \bigcirc) < SSI(G, \bigcirc)$$
$$= \frac{41}{420} = \frac{41}{420} = \frac{91}{420}$$

$$SSI(G_{2} \div 2, \bigcirc) + SSI(G_{2} \div 2, \frown) < SSI(G, \bigcirc)$$
$$= \frac{73}{420} = \frac{17}{420} = \frac{91}{420}$$

For a power index \mathbb{PI} (such as Shapley-Shubik or Banzhaf), define:

J

PI-BENEFICIAL-SPLIT

Given: A weighted voting game $G = (w_1, \ldots, w_n; q)$, a player $i \in \{1, \ldots, n\}$, and an integer $k \ge 2$.

Question: Is it possible to split *i* into *k* new players with positive integer weights u_1, \ldots, u_k satisfying $\sum_{j=1}^k u_j = w_i$ so that

$$\sum_{i=0}^{k-1} \mathbb{PI}(G_{i \div k}, i+j) > \mathbb{PI}(G, i),$$

where $G_{i \div k} = (w_1, \dots, w_{i-1}, u_1, \dots, u_k, w_{i+1}, \dots, w_n; q)$?

Complexity Classes

PSPACE

$$| NP^{PP} = \{A \mid (\exists NPOTM \ M)(\exists B \in PP) [A = L(M^B)]\}$$

$$| PP = \{A \mid (\exists f \in \#P)(\forall x) [x \in A \iff f(x) \ge 2^{p(|x|)-1}]\}$$

$$| NP$$

$$| P$$

$\mathbb{PI}\text{-}\mathsf{Beneficial}\text{-}\mathsf{Merge}$

$\mathbb{PI}\text{-}\mathsf{Beneficial-Split}$

$\mathbb{PI}\text{-}\mathbf{Beneficial}\text{-}\mathbf{Merge}$

• open question ^[1]

 \mathbb{PI} -Beneficial-Split

• SSI: NP-hard ^[1]
$$(k = 2)$$

^[1] Bachrach & Elkind, AAMAS 2008

$\mathbb{PI}\text{-}\mathsf{Beneficial}\text{-}\mathsf{Merge}$

- open question ^[1]
- BI, SSI: NP-hard ^{[2] [3]}

$\mathbb{PI}\text{-}\mathsf{Beneficial-Split}$

- SSI: NP-hard ^{[1] [3]} (k = 2)
- BI: NP-hard ^{[2] [3]}

^[1] Bachrach & Elkind, AAMAS 2008

- ^[2] Aziz & Paterson, AAMAS 2009
- $^{[1]} + ^{[2]} = ^{[3]}$ Aziz et al., JAIR 2011

$\mathbb{PI}\text{-}\mathsf{Beneficial}\text{-}\mathsf{Merge}$

- open question ^[1]
- BI, SSI: NP-hard ^{[2] [3]}
- SSI: ||S|| = 2: in PP^[4]

$\mathbb{PI}\text{-}\mathsf{Beneficial-Split}$

- SSI: NP-hard ^{[1] [3]} (k = 2)
- BI: NP-hard ^{[2] [3]}

Bachrach & Elkind, AAMAS 2008
 Aziz & Paterson, AAMAS 2009

- $^{[1]} + ^{[2]} = ^{[3]}$ Aziz et al., JAIR 2011
- ^[4] Faliszewski & Hemaspaandra, TCS 2009

$\mathbb{PI}\text{-}\mathsf{Beneficial}\text{-}\mathsf{Merge}$

- open question ^[1]
- BI, SSI: NP-hard ^{[2] [3]}
- SSI: ||S|| = 2: in PP^[4]
- BI: ||S|| = 2: in P; ||S|| ≥ 3: in PP, NP-hard ^[5]

\mathbb{PI} -Beneficial-Split

- SSI: NP-hard ^{[1] [3]} (k = 2)
- BI: NP-hard ^{[2] [3]}
- BI: k = 2: in P;
 k ≥ 3: in PP, NP-hard ^[5]

Bachrach & Elkind, AAMAS 2008
 Aziz & Paterson, AAMAS 2009
 + [2] = [3] Aziz et al., JAIR 2011

[4] Faliszewski & Hemaspaandra, TCS 2009
 [5] Rev & Rothe, ECAI 2010

$\mathbb{PI}\text{-}\mathsf{Beneficial}\text{-}\mathsf{Merge}$

- open question ^[1]
- BI, SSI: NP-hard ^{[2] [3]}
- SSI: ||S|| = 2: in PP^[4]
- BI: ||S|| = 2: in P; ||S|| ≥ 3: in PP, NP-hard ^[5]
- BI, SSI: PP-complete ^[6]

$\mathbb{PI}\text{-}\mathsf{Beneficial-Split}$

- SSI: NP-hard ^{[1] [3]} (k = 2)
- BI: NP-hard ^{[2] [3]}
- BI: k = 2: in P; k ≥ 3: in PP, NP-hard ^[5]
- BI, SSI: PP-hard, in NP^{PP [6]}

Bachrach & Elkind, AAMAS 2008
 Aziz & Paterson, AAMAS 2009
 + [2] = [3] Aziz et al., JAIR 2011

- ^[4] Faliszewski & Hemaspaandra, TCS 2009
 ^[5] Rey & Rothe, ECAI 2010
- ^[6] Rey & Rothe, LATIN 2014 + JAIR 2014

J. Rothe (HHU Düsseldorf)

Fact

Let G be a weighted voting game and $S \subseteq \{1, ..., n\}$ be a coalition of its players.

- **9** BI-BENEFICIAL-MERGE is in P for instances (G, S) with ||S|| = 2.
 - **2** BI-BENEFICIAL-SPLIT *is in* P *for instances* (G, i, 2).

Proof:

• Let $G = (w_1, \ldots, w_n; q)$ be a weighted voting game.

Without loss of generality, let $S = \{1, n\}$.

We obtain a new game $G_{\&S} = (w_1 + w_n, w_2, \dots, w_{n-1}; q)$, where the first player is the new player merging S.

Letting v_G and $v_{G_{\&S}}$ denote the corresponding coalitional functions, it holds that

$$BI(G_{\&S},1) - (BI(G,1) + BI(G,n))$$

$$= \frac{1}{2^{n-2}} \left(\sum_{C \subseteq \{2,...,n-1\}} (v_{G_{\&S}}(C \cup \{1\}) - v_{G_{\&S}}(C)) \right)$$

$$- \frac{1}{2^{n-1}} \left(\sum_{C \subseteq \{2,...,n\}} (v_G(C \cup \{1\}) - v_G(C)) + \sum_{C \subseteq \{1,...,n-1\}} (v_G(C \cup \{n\}) - v_G(C)) \right)$$

$$= \frac{1}{2^{n-1}} \left(\sum_{C \subseteq \{2,...,n-1\}} (2(v_{G_{\&S}}(C \cup \{1\}) - v_{G_{\&S}}(C)) - (v_{G}(C \cup \{1\}) - v_{G}(C)) - (v_{G}(C \cup \{1,n\}) - v_{G}(C \cup \{n\})) - (v_{G}(C \cup \{1,n\}) - v_{G}(C \cup \{n\})) - (v_{G}(C \cup \{n,1\}) - v_{G}(C \cup \{1\}))) \right)$$

$$= \frac{1}{2^{n-1}} \left(\sum_{C \subseteq \{2,...,n-1\}} (2v_{G_{\&S}}(C \cup \{1\}) - 2v_{G}(C \cup \{1,n\}) + 2v_{G}(C) - 2v_{G_{\&S}}(C)) \right)$$

$$= 0.$$

In the case of splitting, it similarly holds that

$$BI(G_{n+2}, n+1) + BI(G_{n+2}, n+2) - BI(G, n) = 0$$

for a weighted voting game G, k = 2, and, without loss of generality, player n in G splitting into players n+1 and n+2 in a new game G_{n+2} .

Theorem (Rey & Rothe)

Banzhaf-BENEFICIAL-MERGE *is* PP-hard.

Proof Sketch.

 $\operatorname{COMPARE-\#SUBSETSUM}$

 $\operatorname{COMPARE-\#SUBSETSUM-R}$

 $\operatorname{COMPARE-\#SUBSETSUM-RR}$

Theorem (Rey & Rothe)

Banzhaf-BENEFICIAL-MERGE *is* PP-hard.

Proof Sketch.

 $\operatorname{Compare-\#SubsetSum}$

 $\operatorname{COMPARE-\#SUBSETSUM-R}$

For F #P-parsimonious-complete, COMPARE- $F = \{(x, y) | F(x) > F(y)\}$ is PP-complete.^[4]

COMPARE-#SUBSETSUM-RR

```
\begin{aligned} &\# \text{SUBSETSUM}((a_1, \dots, a_n), q) \\ &= \|\{I \subseteq N \mid \sum_{i \in I} a_i = q\}\|. \end{aligned}
```

Theorem (Rey & Rothe) Banzhaf-BENEFICIAL-MERGE *is* PP-*hard*.

Proof Sketch.

COMPARE-#SUBSETSUM PP-complete \checkmark

 $\operatorname{COMPARE-\#SUBSETSUM-R}$

 $\operatorname{COMPARE-\#SUBSETSUM-RR}$

Theorem (Rey & Rothe)

Banzhaf-BENEFICIAL-MERGE *is* PP-hard.

Proof Sketch.

 $\begin{array}{c} {\rm Compare-\#SubsetSum} \\ \downarrow \\ {\rm Compare-\#SubsetSum-R} \end{array}$

 $\operatorname{COMPARE-\#SUBSETSUM-RR}$

Given
$$A = (a_1, \dots, a_n)$$
, q_1 , and q_2 ,
is $\#S(A, q_1) > \#S(A, q_2)$?
 \leq_m^p -reduction via:
 $((x_1, \dots, x_m), q_x)$, $((y_1, \dots, y_n), q_y)$
 $\mapsto A = (x_1, \dots, x_m, 2\alpha y_1, \dots, 2\alpha y_n)$,
 $\alpha = \sum_{i=1}^m x_i$, $q_1 = q_x$, and $q_2 = 2\alpha q_y$.

Theorem (Rey & Rothe) Banzhaf-BENEFICIAL-MERGE *is* PP-*hard*.

Proof Sketch.

```
Compare-#SubsetSum PP-complete \checkmark

Compare-#SubsetSum-R PP-hard \checkmark
```

 $\operatorname{COMPARE-\#SUBSETSUM-RR}$

```
Theorem (Rey & Rothe)
```

Banzhaf-BENEFICIAL-MERGE is PP-hard.

Proof Sketch.
```
Theorem (Rey & Rothe)
Banzhaf-BENEFICIAL-MERGE is PP-hard.
```

Proof Sketch.

```
COMPARE-#SUBSETSUM PP-complete \checkmark

COMPARE-#SUBSETSUM-R PP-hard \checkmark

COMPARE-#SUBSETSUM-RR PP-hard \checkmark
```

Banzhaf-BENEFICIAL-MERGE

```
Theorem (Rey & Rothe)
Banzhaf-BENEFICIAL-MERGE is PP-hard.
```

Proof Sketch.

```
COMPARE-#SUBSETSUM

COMPARE-#SUBSETSUM-R

\downarrow

COMPARE-#SUBSETSUM-R

\downarrow

COMPARE-#SUBSETSUM-RR

\downarrow

Banzhaf-BENEFICIAL-MERGE

Compare-#SubsetSum-RR

\downarrow

G = (2a_1, \dots, 2a_n, 1, 1, 1; \alpha),

C = \{n+2, n+3, n+4\}.
```

```
Theorem (Rey & Rothe)
Banzhaf-BENEFICIAL-MERGE is PP-hard.
```

Proof Sketch.

```
COMPARE-#SUBSETSUM PP-complete \checkmark

COMPARE-#SUBSETSUM-R PP-hard \checkmark

COMPARE-#SUBSETSUM-RR PP-hard \checkmark

Banzhaf-BENEFICIAL-MERGE PP-hard \checkmark
```

Lemma (Faliszewski & Hemaspaandra, 2009)

Let F be a #P-parsimonious-complete function. The problem

COMPARE-
$$F = \{(x, y) \mid F(x) > F(y)\}$$

is PP-complete.

#SUBSETSUM is known to be #P-parsimonious-complete.

Corollary

COMPARE-#SUBSETSUM is PP-complete.

COMPARE-#SUBSETSUM-R

- **Given:** A sequence $A = (a_1, ..., a_n)$ of positive integers and two positive integers q_1 and q_2 with $1 \le q_1, q_2 \le \alpha 1$, where $\alpha = \sum_{i=1}^n a_i$.
- **Question:** Is the number of subsequences of A summing up to q_1 greater than the number of subsequences of A summing up to q_2 , that is, does it hold that

 $#SUBSETSUM((a_1,...,a_n),q_1) > #SUBSETSUM((a_1,...,a_n),q_2) ?$

Lemma (Rey & Rothe)

 $\label{eq:compare-generation} \operatorname{Compare-\#SubsetSum}_m \leq_m^p \quad \operatorname{Compare-\#SubsetSum-R}.$

Proof: Given an instance (X, Y) of COMPARE-#SUBSETSUM, $X = ((x_1, ..., x_m), q_x)$ and $Y = ((y_1, ..., y_n), q_y)$, construct a COMPARE-#SUBSETSUM-R instance (A, q_1, q_2) as follows.

Let $\alpha = \sum_{i=1}^{m} x_i$ and define

 $A = (x_1, \ldots, x_m, 2\alpha y_1, \ldots, 2\alpha y_n), \quad q_1 = q_x, \quad \text{and} \quad q_2 = 2\alpha q_y.$

This construction can obviously be achieved in polynomial time.

J. Rothe (HHU Düsseldorf)

Algorithmic Game Theory

It holds that integers from A can only sum up to $q_1 = q_x \le \alpha - 1$ if they do not contain multiples of 2α , thus

$$\# SUBSETSUM(A, q_1) = \# SUBSETSUM((x_1, \dots, x_m), q_x).$$

On the other hand, q_2 cannot be obtained by adding any of the x_i 's, since this would yield a non-zero remainder modulo 2α , because $\sum_{i=1}^{m} x_i = \alpha$ is too small.

Thus, it holds that

 $\#\text{SUBSETSUM}(A, q_2) = \#\text{SUBSETSUM}((v_1, \dots, v_n), q_v).$

It follows that (X, Y) is in COMPARE-#SUBSETSUM if and only if (A, q_1, q_2) is in COMPARE-#SUBSETSUM-R.

J. Rothe (HHU Düsseldorf)

Algorithmic Game Theory

58 / 100

To perform the next step, we need to ensure that all integers in a COMPARE-#SUBSETSUM-R instance are divisible by 8.

This can easily be achieved, by multiplying each integer in an instance $((a_1, \ldots, a_n), q_1, q_2)$ by 8, obtaining

 $((8a_1,\ldots,8a_n),8q_1,8q_2)$

without changing the number of solutions for both related ${\rm SUBSETSUM}$ instances.

Thus, from now on, without loss of generality, we assume that for a given COMPARE-#SUBSETSUM-R instance $((a_1, \ldots, a_n), q_1, q_2)$, it holds that

```
a_i, q_j \equiv 0 \mod 8 for 1 \le i \le n and j \in \{1, 2\}.
```

${\rm Compare}\text{-}\#{\rm SubsetSum}\text{-}{\rm RR}$

- **Given:** A sequence $A = (a_1, \ldots, a_n)$ of positive integers.
- **Question:** Is the number of subsequences of A summing up to $\frac{\alpha}{2} 2$, where $\alpha = \sum_{i=1}^{n} a_i$, greater than the number of subsequences of A summing up to $\frac{\alpha}{2} 1$, i.e., is it true that

$$#SUBSETSUM((a_1,...,a_n),\frac{\alpha}{2}-2)$$

>
$$#SUBSETSUM((a_1,...,a_n),\frac{\alpha}{2}-1)?$$

Lemma (Rey & Rothe)

 $\label{eq:compare-generative} Compare-\#SubsetSum-R \ \leq^p_m \ Compare-\#SubsetSum-RR.$

Proof: Given an instance (A, q_1, q_2) of COMPARE-#SUBSETSUM-R, where we assume that $A = (a_1, \ldots, a_n)$, q_1 , and q_2 satisfy

$$a_i, q_j \equiv 0 \mod 8$$
 for $1 \le i \le n$ and $j \in \{1, 2\}$,

we construct an instance B of COMPARE-#SUBSETSUM-RR as follows.

(This reduction is inspired by the standard reduction from SUBSETSUM to PARTITION due to Karp (1972).)

Letting $\alpha = \sum_{i=1}^{n} a_i$, define

$$B = (a_1, \ldots, a_n, 2\alpha - q_1, 2\alpha + 1 - q_2, 2\alpha + 3 + q_1 + q_2, 3\alpha).$$

This instance can obviously be constructed in polynomial time.

Observe that

$$T = \left(\sum_{i=1}^{n} a_i\right) + (2\alpha - q_1) + (2\alpha + 1 - q_2) + (2\alpha + 3 + q_1 + q_2) + 3\alpha = 10\alpha + 4,$$

and therefore, $\frac{T}{2} - 2 = 5\alpha$ and $\frac{T}{2} - 1 = 5\alpha + 1$.

We show that (A, q_1, q_2) is in COMPARE-#SUBSETSUM-R if and only if *B* is in COMPARE-#SUBSETSUM-RR.

First, we examine which subsequences of B sum up to 5α .

Case 1: If 3α is added, $2\alpha + 3 + q_1 + q_2$ cannot be added, as it would be too large.

Also, $2\alpha + 1 - q_2$ cannot be added, leading to an odd sum.

So, $2\alpha - q_1$ has to be added, as the remaining α are too small.

Since $3\alpha + 2\alpha - q_1 = 5\alpha - q_1$, 5α can be achieved by adding some a_i 's if and only if there exists a subset $A' \subseteq \{1, ..., n\}$ such that $\sum_{i \in A'} a_i = q_1$ (i.e., A' is a solution of the SUBSETSUM instance (A, q_1)).

Case 2: If 3α is not added, but $2\alpha + 3 + q_1 + q_2$, an even number can only be achieved by adding $2\alpha + 1 - q_2$.

Thus, $\alpha - 4 - q_1$ remain.

 $2\alpha - q_1$ is too large, while no subsequence of A sums up to $\alpha - 4 - q_1$, because of the assumption of divisibility by 8. If neither 3α nor $2\alpha + 3 + q_1 + q_2$ are added, the remaining

 $5\alpha + 1 - q_1 - q_2$ are too small.

Thus, the only possibility to obtain 5α is to find a subsequence of A adding up to q_1 . Thus,

#SUBSETSUM $(A, q_1) = \#$ SUBSETSUM $(B, 5\alpha)$.

Second, for similar reasons, a sum of $5\alpha + 1$ can only be achieved by adding $3\alpha + (2\alpha + 1 - q_2)$ and a term $\sum_{i \in A'} a_i$, where A' is a subset of $\{1, \ldots, n\}$ such that $\sum_{i \in A'} a_i = q_2$.

Hence,

#SUBSETSUM $(A, q_2) = #$ SUBSETSUM $(B, 5\alpha + 1)$.

Thus,

 $#SUBSETSUM(A, q_1) > #SUBSETSUM(A, q_2) \\ \iff \\ #SUBSETSUM(B, 5\alpha) > #SUBSETSUM(B, 5\alpha + 1),$

which completes the proof.

J. Rothe (HHU Düsseldorf)

Algorithmic Game Theory

Theorem (Rey & Rothe)

BI-BENEFICIALMERGE *is* PP-complete, even if only three players of equal weight merge.

 ${\sf Proof:} \quad {\sf Membership \ of \ Bl-BENEFICIALMERGE \ in \ PP \ follows \ from}$

- $\bullet\,$ the fact that the raw Banzhaf index is in #P and
- that #P is closed under addition and
- since comparing the values of two #P functions on two (possibly different) inputs reduces to a PP-complete problem and
- PP is closed under \leq_m^p -reducibility.

We show PP-hardness of BI-BENEFICIALMERGE by means of a \leq_m^p -reduction from COMPARE-#SUBSETSUM-RR, which is PP-hard by the previous lemmas.

Given an instance $A = (a_1, ..., a_n)$ of COMPARE-#SUBSETSUM-RR, construct the following instance for BI-BENEFICIALMERGE.

Let $\alpha = \sum_{i=1}^n a_i$. Define the WVG

$$G = (2a_1, \ldots, 2a_n, 1, 1, 1, 1; \alpha)$$

with n+4 players, and let the merging coalition be

$$S = \{n+2, n+3, n+4\}.$$

Letting
$$N = \{1, ..., n\}$$
, it holds that
 $BI(G, n+2)$
 $= \frac{1}{2^{n+3}} \left\| \left\{ C \subseteq \{1, ..., n+1, n+3, n+4\} \mid \sum_{i \in C} w_i = \alpha - 1 \right\} \right\|$
 $= \frac{1}{2^{n+3}} \left(\left\| \left\{ A' \subseteq N \mid \sum_{i \in A'} 2a_i = \alpha - 1 \right\} \right\| + 3 \cdot \left\| \left\{ A' \subseteq N \mid 1 + \sum_{i \in A'} 2a_i = \alpha - 1 \right\} \right\|$
(2)
 $+ 3 \cdot \left\| \left\{ A' \subseteq N \mid 2 + \sum_{i \in A'} 2a_i = \alpha - 1 \right\} \right\| + \left\| \left\{ A' \subseteq N \mid 3 + \sum_{i \in A'} 2a_i = \alpha - 1 \right\} \right\|$)
(3)
 $= \frac{1}{2^{n+3}} \left(3 \cdot \left\| \left\{ A' \subseteq N \mid \sum_{i \in A'} 2a_i = \alpha - 2 \right\} \right\| + \left\| \left\{ A' \subseteq N \mid \sum_{i \in A'} 2a_i = \alpha - 4 \right\} \right\| \right).$

Algorithmic Game Theory

Explanation:

- The last equality holds since the 2*a_i*'s can only add up to an even number.
- The first of the four sets in (2) and (3) refers to those coalitions that do not contain any of the players n+1, n+3, and n+4;
- the second, third, and fourth set in (2) and (3) refers to those coalitions containing either one, two, or three of them, respectively.

Since the players in S have the same weight, players n+3 and n+4 have the same probabilistic Banzhaf index as player n+2.

The new game after merging is $G_{\&\{n+2,n+3,n+4\}} = (3,2a_1,\ldots,2a_n,1;\alpha)$ with n+2 players. Similarly as above, we calculate:

$$\begin{aligned} \mathsf{BI}\left(G_{\&\{n+2,n+3,n+4\}},1\right) \\ &= \frac{1}{2^{n+1}} \left\| \left\{ C \subseteq \{2,\dots,n+2\} \middle| \sum_{i \in C} w_i \in \{\alpha-3,\alpha-2,\alpha-1\} \right\} \right\| \\ &= \frac{1}{2^{n+1}} \left(\left\| \left\{ A' \subseteq N \middle| \sum_{i \in A'} 2a_i \in \{\alpha-3,\alpha-2,\alpha-1\} \right\} \right\| \\ &+ \left\| \left\{ A' \subseteq N \middle| 1 + \sum_{i \in A'} 2a_i \in \{\alpha-3,\alpha-2,\alpha-1\} \right\} \right\| \right) \\ &= \frac{1}{2^{n+1}} \left(2 \cdot \left\| \left\{ A' \subseteq N \middle| \sum_{i \in A'} 2a_i = \alpha - 2 \right\} \right\| + \left\| \left\{ A' \subseteq N \middle| \sum_{i \in A'} 2a_i = \alpha - 4 \right\} \right\| \right) \end{aligned}$$

Altogether, it holds that

$$\begin{aligned} \mathsf{BI}\left(G_{\&\{n+2,n+3,n+4\}},1\right) &- \sum_{i\in\{n+2,n+3,n+4\}}\mathsf{BI}(G,i) \\ &= \left.\frac{1}{2^{n+1}}\left(2\cdot \left\|\left\{A'\subseteq N \mid \sum_{i\in\mathcal{A}'} 2a_i = \alpha - 2\right\}\right\| + \left\|\left\{A'\subseteq N \mid \sum_{i\in\mathcal{A}'} 2a_i = \alpha - 4\right\}\right\|\right) \\ &- \frac{3}{2^{n+3}}\left(3\cdot \left\|\left\{A'\subseteq N \mid \sum_{i\in\mathcal{A}'} 2a_i = \alpha - 2\right\}\right\| + \left\|\left\{A'\subseteq N \mid \sum_{i\in\mathcal{A}'} 2a_i = \alpha - 4\right\}\right\|\right) \\ &= \left.\left(\frac{1}{2^{n+1}}\cdot 2 - \frac{3}{2^{n+3}}\cdot 3\right)\left\|\left\{A'\subseteq N \mid \sum_{i\in\mathcal{A}'} 2a_i = \alpha - 2\right\}\right\| \\ &+ \left(\frac{1}{2^{n+1}} - \frac{3}{2^{n+3}}\right)\left\|\left\{A'\subseteq N \mid \sum_{i\in\mathcal{A}'} 2a_i = \alpha - 4\right\}\right\| \end{aligned}$$

$$= -\frac{1}{2^{n+3}} \cdot \left\| \left\{ A' \subseteq N \ \middle| \ \sum_{i \in A'} a_i = \frac{\alpha}{2} - 1 \right\} \right\| + \frac{1}{2^{n+3}} \cdot \left\| \left\{ A' \subseteq N \ \middle| \ \sum_{i \in A'} a_i = \frac{\alpha}{2} - 2 \right\} \right\|$$

which is greater than zero if and only if

$$\left\|\left\{A'\subseteq N \mid \sum_{i\in A'}a_i=\frac{\alpha}{2}-2\right\}\right\| > \left\|\left\{A'\subseteq N \mid \sum_{i\in A'}a_i=\frac{\alpha}{2}-1\right\}\right\|,$$

which in turn is the case if and only if the original instance A is in COMPARE-#SUBSETSUM-RR.

Theorem (Rey & Rothe)

Banzhaf-BENEFICIAL-SPLIT *is* PP-*hard*, even if the given player can only split into three players of equal weight.

Proof: We use the same techniques as in the previous proof, appropriately modified.

We show PP-hardness for m = 3 false identities.

(If m > 3, we split into m - 3 additional players of weight 0 each. Then the sum of all m new players' Banzhaf power is equal to the combined Banzhaf power of the three players.)

First, we slightly change the definition of COMPARE-#SUBSETSUM-RR by switching $\frac{\alpha}{2} - 2$ and $\frac{\alpha}{2} - 1$, yielding COMPARE-#SUBSETSUM-**H**.

${\rm Compare}\text{-}\#{\rm SubsetSum}\text{-}{\rm RR}$

- **Given:** A sequence $A = (a_1, \ldots, a_n)$ of positive integers.
- **Question:** Is the number of subsequences of A summing up to $\frac{\alpha}{2} 2$, where $\alpha = \sum_{i=1}^{n} a_i$, greater than the number of subsequences of A summing up to $\frac{\alpha}{2} 1$, i.e., is it true that

$$#SUBSETSUM((a_1,...,a_n),\frac{\alpha}{2}-2)$$

$$> #SUBSETSUM((a_1,...,a_n),\frac{\alpha}{2}-1)?$$

$\operatorname{COMPARE-\#SUBSETSUM-}{}{\operatorname{S$

- **Given:** A sequence $A = (a_1, \ldots, a_n)$ of positive integers.
- **Question:** Is the number of subsequences of A summing up to $\frac{\alpha}{2} 1$, where $\alpha = \sum_{i=1}^{n} a_i$, greater than the number of subsequences of A summing up to $\frac{\alpha}{2} 2$, i.e., is it true that

$$#SUBSETSUM((a_1,...,a_n),\frac{\alpha}{2}-1)$$

$$> #SUBSETSUM((a_1,...,a_n),\frac{\alpha}{2}-2)?$$

We show

 $\mathrm{COMPARE}\text{-}\#\mathrm{SUBSETSUM}\text{-}\frac{\mathrm{SUBSETSUM}}{\mathrm{SUBSETSUM}}\text{-}$

Given an instance $A = (a_1, ..., a_n)$ of COMPARE-#SUBSETSUM-**AA**, construct the game $G = (2a_1, ..., 2a_n, 1, 3; \alpha)$, where $\alpha = \sum_{j=1}^n a_j$, and let i = n+2 be the player to be split.

G is (apart from the order of players) equivalent to the game obtained by merging in the previous proof.

Thus, letting $N = \{1, \ldots, n\}$, BI(G, n+2) equals

$$\frac{1}{2^{n+1}}\left(2\cdot \left\|\left\{A'\subseteq N\ \middle|\ \sum_{j\in A'}2a_j=\alpha-2\right\}\right\|+\left\|\left\{A'\subseteq N\ \middle|\ \sum_{j\in A'}2a_j=\alpha-4\right\}\right\|\right)$$

Allowing players with weight zero, there are different possibilities to split player n+2 into three players:

- Splitting n+2 into one player with weight 3 and two others with weight 0 is not beneficial, since adding a player with weight zero does not change the original players' power indices, and the new player's power index is zero.
- Likewise, splitting *n*+2 into two players with weights 1 and 2 and one player with weight 0 is not beneficial, since splitting into two players is not beneficial.
- Thus, the only possibility left is splitting *n*+2 into three players of weight 1 each.

This corresponds to the original game in the previous proof:

$$G_{i+3} = (2a_1, \ldots, 2a_n, 1, 1, 1, 1; \alpha).$$

Therefore,

$$\mathsf{BI}(G_{i\div3}, n+2) = \mathsf{BI}(G_{i\div3}, n+3) = \mathsf{BI}(G_{i\div3}, n+4) = \frac{1}{2^{n+3}} \left(3 \cdot \left\| \left\{ A' \subseteq N \ \middle| \ \sum_{j \in A'} 2a_j = \alpha - 2 \right\} \right\| + \left\| \left\{ A' \subseteq N \ \middle| \ \sum_{j \in A'} 2a_j = \alpha - 4 \right\} \right\| \right)$$

Altogether, as in the previous proof,

$$(\mathsf{BI}(G_{i+3}, n+2) + \mathsf{BI}(G_{i+3}, n+3) + \mathsf{BI}(G_{i+3}, n+4)) - \mathsf{BI}(G, n+2) > 0$$

if and only if

$$\left\|\left\{A'\subseteq \mathsf{N}\; \middle|\; \sum_{j\in A'}\mathsf{a}_j=\frac{\alpha}{2}-1\right\}\right\|>\left\|\left\{A'\subseteq \mathsf{N}\; \middle|\; \sum_{j\in A'}\mathsf{a}_j=\frac{\alpha}{2}-2\right\}\right\|,$$

which is true if and only if A is in COMPARE-#SUBSETSUM- $\frac{}{}$.

 \square

Structural Control by Adding or Deleting Players

Given a WVG G and a player i in G, can we

- increase,
- decrease, or
- maintain
- i's power by adding players to G or deleting players from G?

Example

- Collective decision making: An organizer might invite further participants or might choose a certain meeting schedule to make sure that members originally expected to participate are now excluded.
- Machines may be needed to fulfill a certain task, independent of the number of currently available machines; some machines can be removed, new ones can be bought.

J. Rothe (HHU Düsseldorf)

Algorithmic Game Theory

Deleting Players: Example

Example

Consider the WVG G = (3,3,2,1;6). We have:

$$BI(G,1) = BI(G,2) = \frac{1}{2}$$
 and $BI(G,3) = BI(G,4) = \frac{1}{4}$,
 $SSI(G,1) = SSI(G,2) = \frac{1}{3}$ and $SSI(G,3) = SSI(G,4) = \frac{1}{6}$.

If we remove player 4, we obtain the new game $G_{\setminus \{4\}} = (3,3,2;6)$ with

$$BI(G,1) = BI(G,2) = \frac{1}{2}$$
 and $BI(G,3) = 0$,
 $SSI(G,1) = SSI(G,2) = \frac{1}{2}$ and $SSI(G,3) = 0$.

Players 1 and 2 have increased their SSI while maintaining their BI.

At the same time, both power indices of player 3 have decreased to 0.

Theorem (Rey & Rothe, 2018; Kaczmarek & Rothe, 2022)

After deleting the players of a subset $M \subseteq N \setminus \{i\}$ of size $m \ge 1$ from a WVG G with n = |N| players, the difference between player i's old and new

() Penrose-Banzhaf index is at most $1 - 2^{-m}$ and is at least $-1 + 2^{-m}$;

Shapley-Shubik index is at most $1 - \frac{(n-m+1)!}{2n!}$ and is at least $-1 + \frac{(n-m+1)!}{2n!}$.

Theorem (Kaczmarek & Rothe, 2022)

Let $G = (w_1, ..., w_n; q)$ be a WVG with players N. Let $M \subseteq N \setminus \{i\}$ be a set of players which are going to be deleted and m = |M|.

$$\mathsf{BI}(G,i) - \mathsf{BI}(G_{\backslash M},i) \geq \max((1-2^m)\mathsf{BI}(G,i),\mathsf{BI}(G,i)-1),$$

$$SSI(G,i) - SSI(G_{\backslash M},i) \geq \max((1 - \binom{n}{m}))SSI(G,i), SSI(G,i) - 1)$$

and

3
$$\operatorname{Bl}(G,i) - \operatorname{Bl}(G_{\setminus M},i) \leq \min\left(\operatorname{Bl}(G,i), \sum_{j \in M} \operatorname{Bl}(G,j) + \frac{(2^m-1)^2}{2^{n-1}}\right),$$

•
$$\mathsf{SSI}(G,i) - \mathsf{SSI}(G_{\setminus M},i) \le \min\left(\mathsf{SSI}(G,i), \sum_{j \in M} \mathsf{SSI}(G,j) + \frac{1}{(n-m)!}\right).$$

Example

$$G = (4, 2, 1, 1, 1; 4)$$
: Let $M = \{5\}$. Then

$$\mathsf{BI}(G,2)=rac{1}{4}$$
 and $\mathsf{BI}(G_{\setminus M},2)=rac{1}{8}.$

The upper bound from the first theorem is

$$BI(G,2) - BI(G_{\setminus M},2) \le 1 - \frac{1}{2} = \frac{1}{2}$$

and that from the second theorem is

$$BI(G,2) - BI(G_{\setminus M},2) \le \min(\frac{1}{4},\frac{1}{8} + \frac{1}{16}) = \frac{3}{16}.$$

Example

$$G = (4, 2, 1, 1, 1; 4)$$
: Let $M = \{5\}$. Then

$$SSI(G,2) = \frac{11}{60}$$
 and $SSI(G_{\setminus M},2) = \frac{5}{60}$.

The upper bound from the first theorem is

$$SSI(G,2) - SSI(G_{M},2) \le 1 - \frac{(5-1+1)!}{2 \cdot 5!} = \frac{1}{2}$$

and that from the second theorem is

$$SSI(G,2) - SSI(G_{M},2) \le min(\frac{11}{60}, \frac{1}{10} + \frac{1}{4!}) = \frac{17}{120}$$

Deleting Players: Control Problem

Control by Deleting Players to Increase \mathbb{PI}

- **Given:** \blacktriangleright A WVG *G* with players $N = \{1, \dots, n\}$,
 - ▶ a distinguished player $p \in N$, and
 - \blacktriangleright a positive integer k.

Question: Can at most k players $M \subseteq N \setminus \{p\}$ be deleted from G such that for the new game $G_{\setminus M}$, it holds that

$$\mathbb{PI}(G_{\backslash M},p) > \mathbb{PI}(G,p)?$$

Deleting Players: Overview of Complexity Results

Goal		Control by deleting players
Decrease	BI	P ^{NP[log]} -hard (Kaczmarek and Rothe, 2022)
	SSI	NP-hard (Kaczmarek and Rothe, 2022)
Increase	BI	DP-hard (Kaczmarek and Rothe, 2022)
	SSI	NP-hard (Rey and Rothe, 2018)
Maintain	BI	coNP-hard (Rey and Rothe, 2018)
	SSI	coNP-hard (Rey and Rothe, 2018)
Weighted Voting Games with Changing Quota

Definition (weighted voting game with quota change)

A weighted voting game with changing quota $G = (w_1, ..., w_n; r)$ is a simple coalitional game that consists of

- the players $N = \{1, \ldots, n\}$,
- weights $w_i \in \mathbb{R}_{\geq 0}$, $i \in N$, where w_i is the *i*-th player's weight, and
- a quota $q = r \sum_{i=1}^{n} w_i$ (i.e., a given threshold) for $r \in (0, 1]$.

Weighted Voting Games with Changing Quota

Definition (weighted voting game with quota change)

A weighted voting game with changing quota $G = (w_1, ..., w_n; r)$ is a simple coalitional game that consists of

• the players
$$N=\{1,\ldots,n\}$$
,

- weights $w_i \in \mathbb{R}_{\geq 0}$, $i \in N$, where w_i is the *i*-th player's weight, and
- a quota $q = r \sum_{i=1}^{n} w_i$ (i.e., a given threshold) for $r \in (0, 1]$.

Again, for each coalition $S \subseteq N$, S wins if $w_S \ge q$, and loses otherwise:

$$\nu(S) = \begin{cases} 1 & \text{if } w_S \ge q, \\ 0 & \text{otherwise.} \end{cases}$$

Weighted Voting Games with Changing Quota

Example

Let G = (10, 3, 10; 12) be a WVG without changing quota. Let us consider the following weighted voting games with changing quota:

► $H_1 = (10, 3, 10; \frac{12}{23})$:

$$q(H_1) = \frac{12}{23} \sum_{i=1}^{3} w_i = \frac{12}{23} \cdot 23 = 12,$$

► $H_2 = (10, 3, 10; \frac{1}{2})$:

$$q(H_2) = \frac{1}{2} \cdot 23 = 11.5.$$

Without any manipulation, G, H_1 , and H_2 define the same game.

Example

$$G = (\mathbf{1}, 2, 1, 1; \frac{1}{2}):$$

$$q(G) = r \sum_{i=1}^{4} w_i = \frac{1}{2} \cdot 5 = 2.5,$$

$$BI(G, 1) = \frac{1}{4}, \quad SSI(G, 1) = \frac{1}{6}.$$

Then

$$q(G_{\cup\{5\}}) = r \sum_{i=1}^{5} w_i = \frac{1}{2} \cdot 8 = 4,$$

BI $(G_{\cup\{5\}}, 1) = \frac{3}{16}, \quad SSI(G_{\cup\{5\}}, 1) = \frac{7}{60}.$

Theorem (Kaczmarek & Rothe, 2022)

Let $G = (w_1, ..., w_n; r)$ be a WVG with changing quota with $q_1 = r \sum_{i=1}^n w_i$. Let N be a set of the players and M be a set of players which are added to the game G. Next, let $G_{\cup M}$ be a new game with a set of players $N \cup M$, $q_2 = r \sum_{j \in N \cup M} w_j$ and m = |M|. Then

■
$$-1+2^{-m} \leq \mathsf{BI}(G,i)-\mathsf{BI}(G_{\cup M},i) \leq 1$$
,

②
$$-1 + \frac{(n+1)!}{2(n+m)!} \le SSI(G,i) - SSI(G_{\cup M},i) \le 1.$$

Example

 $G = (2, 1; \frac{2}{3}):$

$$\mathsf{BI}(G,1) = \mathsf{SSI}(G,1) = 1.$$

Let us add two players with weights $w_3 = w_4 = 4$. Then

$$q(G_{\cup\{3,4\}})=\frac{22}{3}$$

and in $G_{\cup\{3,4\}} = (2, 1, 4, 4; \frac{2}{3}),$

$$\mathsf{BI}(\mathit{G}_{\cup\{3,4\}},1)=\mathsf{SSI}(\mathit{G}_{\cup\{3,4\}},1)=0.$$

Control by Adding Players with Changing Quota to Increase $\mathbb{P}\mathbb{I}$

- **Given:** \blacktriangleright A WVG *G* with players $N = \{1, ..., n\}$, a quota $r \sum_{i=1}^{n} w_i$ ($r \in (0,1]$),
 - ▶ a set *M* of unregistered players with weights w_{n+1}, \ldots, w_{n+m} ,
 - ▶ a distinguished player $p \in N$, and
 - \blacktriangleright a positive integer k.
- **Question:** Can at most k players $M' \subseteq M$ be added to G such that for the new game $G_{\cup M'}$ with the new quota $r \sum_{i \in N \cup M'} w_i$, it holds that

$$\mathbb{PI}(G_{\cup M'}, p) > \mathbb{PI}(G, p)?$$

Adding Players in WVGs with Changing Quota: Complexity

Goal		Control by adding players
Decrease	BI	PP-hard
	SSI	PP-hard
Increase	BI	PP-hard
	SSI	PP-hard
Maintain	BI	coNP-hard
	SSI	coNP-hard

All results are due to Kaczmarek and Rothe (2022).

J. Rothe (HHU Düsseldorf)

Example

$$G = (\mathbf{1}, 2, 1, 1; \frac{1}{2}):$$

$$q(G) = r \sum_{i=1}^{4} w_i = \frac{1}{2} \cdot 5 = 2.5,$$

$$BI(G, 1) = \frac{1}{4}, \quad SSI(G, 1) = \frac{1}{6}.$$
Let $M = \{2\}.$ Then
$$q(G_{\backslash M}) = \frac{1}{2} \cdot 3 = 1.5,$$

$$BI(G_{\backslash M}, 1) = \frac{1}{2}, \quad SSI(G_{\backslash M}, 1) = \frac{1}{3}.$$

Theorem (Kaczmarek & Rothe, 2022)

Let $G = (w_1, ..., w_n; r)$ be a WVG with changing quota with $q_1 = r \sum_{i=1}^{n} w_i$. Let N be a set of the players and $M \subseteq N \setminus \{i\}$ a set of players which are going to be deleted. Next, let $G_{\setminus M}$ be a new game with a set of players $N \setminus M$, $q_2 = r \sum_{j \in N \setminus M} w_j$ and m = |M|. Then

$$2 -1 \leq \mathsf{SSI}(G,i) - \mathsf{SSI}(G_{\backslash M},i) \leq 1 - \frac{(n-m+1)!}{2n!}.$$

Example

$$G = (\mathbf{3}, 5, 5, 3, 1, 1; \frac{5}{9})$$
: Let $M = \{3, 4\}$. Then

$$q(G) = 10, \quad q(G_{\setminus M}) = \frac{5}{9} \cdot 10 = \frac{50}{9},$$

$$BI(G,1) = \frac{1}{4}$$
 and $BI(G_{\setminus M},1) = \frac{1}{8}$.

The upper bound from the theorem is

$$BI(G,1) - BI(G_{\setminus M},1) \le 1 - 2^{-2} = \frac{3}{4}.$$

Example

$$G = (\mathbf{3}, 5, 5, 3, 1, 1; \frac{5}{9})$$
: Let $M = \{3, 4\}$. Then
 $q(G) = 10, \quad q(G_{\setminus M}) = \frac{5}{9} \cdot 10 = \frac{50}{9},$
 $SSI(G, 1) = \frac{2}{15} \quad and \quad SSI(G_{\setminus M}, 1) = \frac{1}{12}.$

The upper bound from the theorem is

$$SSI(G,1) - SSI(G_{M},1) \le 1 - \frac{5!}{2 \cdot 6!} = \frac{11}{12}.$$

Control by Deleting Players with Changing Quota to Increase $\mathbb P$

Given: A WVG G with players $N = \{1, ..., n\}$, a quota $r \sum_{i=1}^{n} w_i$ ($r \in (0, 1]$),

- ▶ a distinguished player $p \in N$, and
- ▶ a positive integer k < |N|.
- **Question:** Can at most k players $M \subseteq N \setminus \{p\}$ be deleted from G such that for the new game $G_{\setminus M}$ with the new quota $r \sum_{i \in N \setminus M'} w_i$, it holds that

$$\mathbb{PI}(G_{\backslash M},p) > \mathbb{PI}(G,p)?$$

Deleting Players in WVGs with Changing Quota: Complexity

Goal		Control by deleting players
Decrease	BI	DP-hard
	SSI	NP-hard
Increase	BI	DP-hard
	SSI	NP-hard
Maintain	BI	coNP-hard
	SSI	coNP-hard

All results are due to Kaczmarek and Rothe (2022).

J. Rothe (HHU Düsseldorf)

Algorithmic Game Theory