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Complexity of Problems for Weighted Voting Games Preliminary Remarks

Complexity of Problems for Weighted Voting Games

Weighted voting games can be represented compactly, since only the

weights of the n players and a quota need to be given.

This implicitly tells us which of the altogether 2n possible coalitions of

players are winning and which are losing, and we don’t have to

explicitly list this information, which would require exponential space.

Note that the weights and the quota of a weighted voting game (and

also, e.g., the ε in ε-Core(G )) must be restricted to be rational

numbers, for otherwise problem instances containing weighted voting

games (or an ε) could not always be handled algorithmically.
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Complexity of Problems for Weighted Voting Games Preliminary Remarks

Reminder: Many-One Reducibility and Completeness

Definition

Let Σ = {0,1} be a fixed alphabet, and let A,B ⊆ Σ∗.

Let FP denote the set of polynomial-time computable total functions

mapping from Σ∗ to Σ∗.

Let C be any complexity class.

1 Define the polynomial-time many-one reducibility, denoted by ≤p
m, as

follows: A≤p
m B if there is a function f ∈ FP such that for each

(∀x ∈ Σ∗) [x ∈ A ⇐⇒ f (x) ∈ B].
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Complexity of Problems for Weighted Voting Games Preliminary Remarks

Reminder: Many-One Reducibility and Completeness

Definition (continued)

2 A set B is ≤p
m-hard for C if A≤p

m B for each A ∈ C .

3 A set B is ≤p
m-complete for C if

1 B is ≤p
m-hard for C (lower bound) and

2 B ∈ C (upper bound).

4 C is said to be closed under the ≤p
m-reducibility (≤p

m-closed, for

short) if for any two sets A and B,

if A≤p
m B and B ∈ C , then A ∈ C .
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Complexity of Problems for Weighted Voting Games Preliminary Remarks

Reminder: Properties of ≤p
m

Lemma

1 A≤p
m B implies A≤p

m B, yet in general it is not true that A≤p
m A.

2 The relation ≤p
m is both reflexive and transitive, yet not

antisymmetric.

3 P (“deterministic polynomial time”) and

NP (“nondeterministic polynomial time”) are ≤p
m-closed.

That is, upper bounds are inherited downward with respect to ≤p
m.

4 If A≤p
m B and A is ≤p

m-hard for some complexity class C , then B is

≤p
m-hard for C .

That is, lower bounds are inherited upward with respect to ≤p
m.
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Complexity of Problems for Weighted Voting Games Preliminary Remarks

Reminder: Properties of ≤p
m

Lemma (continued)

5 Let C and D be any complexity classes. If C is ≤p
m-closed and B is

≤p
m-complete for D , then

D ⊆ C ⇐⇒ B ∈ C .

In particular, if B is NP-complete, then

P = NP ⇐⇒ B ∈ P.

6 For each nontrivial set B ∈ P (i.e., /0 6= B 6= Σ∗) and for each set

A ∈ P, A≤p
m B. Thus, every nontrivial set in P is ≤p

m-complete for P.

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 6 / 100



Complexity of Problems for Weighted Voting Games Veto Player and Dummy Player

Veto Player and Dummy Player

Recall that it is common to assume that the grand coalition forms in

simple games, just as in superadditive games.

Veto

Given: A weighted voting game G = (w1,w2, . . . ,wn;q) and a player i .

Question: Is i a veto player in G?

Theorem

Veto is in P.

Proof: Under the above assumption, it is enough to check whether the

coalition Pr{i} is winning, i.e., whether w(Pr{i})≥ q. q
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Complexity of Problems for Weighted Voting Games Veto Player and Dummy Player

Veto Player and Dummy Player

Dummy

Given: A weighted voting game G = (w1,w2, . . . ,wn;q) and a player i .

Question: Is i a dummy player in G?

Theorem

Dummy is coNP-complete, where coNP = {L
∣∣L ∈ NP}.

Remark

1 Our reduction will not give “strong coNP-completeness,” i.e.,

coNP-hardness is relevant only if the weights are fairly large.

2 While weights are rather small in parliamentary voting, they can be

huge in other applications of weighted voting games, such as

shareholder voting.
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Complexity of Problems for Weighted Voting Games Veto Player and Dummy Player

Veto Player and Dummy Player

Proof:

For proving that Dummy is in coNP, it is enough to check that i is

useless for all coalitions C ⊆ P: v(C ∪{i}) = v(C ).

For the hardness proof, we reduce from the NP-complete problem

Partition

Given: A nonempty sequence (k1,k2, . . . ,kn) of positive integers

satisfying that ∑
n
i=1 ki is even.

Question: Does there exist a subset A⊆ {1,2, . . . ,n} such that

∑i∈A ki = ∑i∈{1,2,...,n}rA ki?

to the complement of Dummy. And now, see blackboard. q
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Complexity of Problems for Weighted Voting Games Complexity of Stability Concepts

WVG-Empty-Core

Recall that the core of a game G = (P,v) is the set of imputations ~a such

that a(C )≥ v(C ) for each C ⊆ P (assuming the grand coalition forms).

WVG-Empty-Core

Given: A weighted voting game G = (w1,w2, . . . ,wn;q).

Question: Does it hold that Core(G ) = /0?

Theorem

WVG-Empty-Core is in P.

Proof: Under our assumption that the grand coalition forms, we know

that G has a nonempty core if and only if it has a veto player.

So it is enough to check for each player if she is a veto player. q
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Complexity of Problems for Weighted Voting Games Complexity of Stability Concepts

WVG-In-Core and WVG-Construct-Core

Remark

1 Similarly, to check whether a given outcome ~a = (a1,a2, . . . ,an) (i.e.,

a payoff vector for the grand coalition) is in the core, it is enough to

check that ai = 0 for each player i that is not a veto player.

2 Also, a payoff vector ~a = (a1,a2, . . . ,an) in the core can be

constructed if there exists one:

If there is no veto player, the core of G is empty, so we have a

yes-instance of WVG-Empty-Core.

On the other hand, if there is some veto player i , construct an

imputation ~a with ai = 1, aj = 0 for j ∈ Pr{i}.
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Complexity of Problems for Weighted Voting Games Complexity of Stability Concepts

WVG-In-Core and WVG-Construct-Core

WVG-In-Core

Given: A weighted voting game G = (w1, . . . ,wn;q) and an imputation~a.

Question: Is ~a in the core of G?

WVG-Construct-Core

Given: A weighted voting game G = (w1, . . . ,wn;q).

Task: Construct an imputation ~a in the core of G .

Theorem

WVG-In-Core and WVG-Construct-Core can be solved in

polynomial time.
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Complexity of Problems for Weighted Voting Games Complexity of Stability Concepts

WVG-CS-Core

Remark

1 What if the grand coalition does not form?

If q < w(P)/2, there may be two or more disjoint winning coalitions.

Such a quota doesn’t make sense in a voting context.

However, it does make sense for multiagent task allocation, where

disjoint teams of players tackle different tasks.

2 For a weighted voting game G, let CS-Core(G ) denote the set of

outcomes (C,~a) with C ∈ C S P that are stable against deviation.
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Complexity of Problems for Weighted Voting Games Complexity of Stability Concepts

WVG-CS-Core

WVG-CS-Core

Given: A weighted voting game G = (w1,w2, . . . ,wn;q), where the play-

ers may form nontrivial coalition structures.

Question: Does it hold that CS-Core(G ) 6= /0?

Theorem (Elkind, Chalkiadakis, and Jennings (2008))

Let G = (w1, . . . ,wn;q) be a weighted voting game over P = {1, . . . ,n}.
If there exists a coalition structure C = {C1, . . . ,Ck} in C S P

such that w(Cj) = q for all j , 1≤ j ≤ k, then CS-Core(G ) 6= /0.

Proof: See blackboard. q
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WVG-CS-Core

Theorem (Elkind, Chalkiadakis, and Jennings (2008))

WVG-CS-Core is NP-hard.

Proof: See blackboard. q

Remark

1 It is not clear if WVG-CS-Core is NP-complete (i.e., in NP):

After guessing an outcome, exponentially many checks are needed to

verify stability.

When guessing an outcome ~a = (a1,a2, . . . ,an), can the ai be written

using p(n, logwmax) bits, where wmax is the largest weight?

Elkind et al. (2008): Yes! If CS-Core(G ) 6= /0 then it contains such an

outcome. So, we know that WVG-CS-Core is in Σp
2 = NPNP.

Greco et al. (2011) improve this to: WVG-CS-Core is in ∆p
2 = PNP.
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WVG-CS-Core

Remark

2 Checking whether a given outcome (C,~a) with C ∈ C S P and

~a = (a1,a2, . . . ,an) is in CS-Core(G ) is:

coNP-complete in general (reduction from Partition), but

in P if the weights are given in unary (reduction to Knapsack).

Knapsack

Given: A list of k items with utilities u1, . . . ,uk ∈N and sizes s1, . . . ,sk ∈
N, the knapsack size S , and the target utility U.

Question: Is there a subset of indices I ⊆ {1, . . . ,k} such that

∑
i∈I

si ≤ S and ∑
i∈I

ui ≥ U?
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ε-Core and Least Core for Weighted Voting Games

WVG-Epsilon-Core

Given: A weighted voting game G = (w1,w2, . . . ,wn;q) and a rational

value ε ≥ 0.

Question: Does it hold that ε-Core(G ) 6= /0?

WVG-In-Epsilon-Core

Given: A weighted voting game G = (w1,w2, . . . ,wn;q), a rational value

ε ≥ 0, and an efficient payoff vector ~a.

Question: Is ~a in ε-Core(G )?
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ε-Core and Least Core for Weighted Voting Games

Theorem (Elkind, Goldberg, Goldberg, and Wooldridge (2009))

1 WVG-Epsilon-Core is coNP-hard.

2 WVG-In-Epsilon-Core is coNP-complete.

Remark

1 It is not clear if WVG-Epsilon-Core is coNP-complete (i.e.,

in coNP).

2 The best known upper bound for WVG-Epsilon-Core is

Σp
2 = NPNP:

Guess a solution and

verify that no coalition can gain more than ε by deviating.
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ε-Core and Least Core for Weighted Voting Games

Proof: We show

Partition≤p
m WVG-Epsilon-Core.

Given an instance (k1,k2, . . . ,kn) with ∑
n
i=1 ki = 2K for some positive

integer K , construct a WVG with n+ 1 players:

G = (w1, . . . ,wn,wn+1;q) = (k1, . . . ,kn,K ;K ).
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ε-Core and Least Core for Weighted Voting Games

Lemma (Elkind, Goldberg, Goldberg, and Wooldridge (2009))

1 If (k1,k2, . . . ,kn) ∈Partition then

(a) the value of the least core of G is 2
3 , and

(b) for each efficient payoff vector ~a = (a1,a2, . . . ,an+1) in the least core

of G, it holds that an+1 = 1
3 .

2 If (k1,k2, . . . ,kn) 6∈Partition then

(a) the value of the least core of G is at most 2
3 −

1
6K , and

(b) for each efficient payoff vector ~a = (a1,a2, . . . ,an+1) in the least core

of G, it holds that an+1 ≥ 1
3 + 1

6K .
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ε-Core and Least Core for Weighted Voting Games

Proof: of the lemma.

1 Define the payoff vector ~a = (a1,a2, . . . ,an+1) by

ai =
wi

3K
for 1≤ i ≤ n+ 1.

Note that ~a is efficient and ai > 0 for each i .

Define the excess of a coalition C w.r.t. ~a by

e(~a,C ) = a(C )−v(c).

Note that e(~a,C )≥−2
3 for all C ⊆ P = {1, . . . ,n+ 1}.

Hence, ~a ∈ 2
3 -Core(G ), so ε̃(G )≤ 2

3 .
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ε-Core and Least Core for Weighted Voting Games

Since (k1,k2, . . . ,kn) ∈Partition, there are three disjoint winning

coalitions:

C1 = J ⊆ {1, . . . ,n} with ∑
j∈J

kj = K ,

C2 = {1, . . . ,n}\J,

C3 = {n+ 1}.

Every efficient payoff vector ~b = (b1,b2, . . . ,bn+1) with bn+1 6= 1
3 satisfies

b(Ci ) <
1
3 for some i ∈ {1,2,3}, and thus e(~b,Ci ) <−2

3 .

Hence, if some ~a = (a1,a2, . . . ,an+1) maximizes its least excess, it must

satisfy an+1 = 1
3 .

Therefore, ε̃(G ) = 2
3 and every ~a = (a1,a2, . . . ,an+1) in the least core of G

satisfies an+1 = 1
3 .
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ε-Core and Least Core for Weighted Voting Games

2 Now suppose (k1,k2, . . . ,kn) 6∈Partition.

Modify the payoff vector ~a = (a1, . . . ,an+1) =
(
k1
3K , . . . , kn

3K , 1
3

)
by

setting

~a′ = (a′1, . . . ,a
′
n+1) =

(
a1−

1

6nK
, . . . ,an−

1

6nK
,an+1 +

1

6K

)
.

Note that ~a′ is efficient and a′i > 0 for each i .

One can show that

e(~a′,C )≥−2

3
+

1

6K
for each C ⊆ P = {1, . . . ,n+ 1}.

See blackboard.
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ε-Core and Least Core for Weighted Voting Games

Since e(~a′,C )≥−2
3 + 1

6K for each C ⊆ P = {1, . . . ,n+ 1}, ~a′ witnesses that

ε̃(G )≤ 2

3
− 1

6K
.

Hence, for each payoff vector ~b in the least core of G , we have

e(~b,C )≥−2

3
+

1

6K
for each C ⊆ P = {1, . . . ,n+ 1}.

In particular, for C3 = {n+ 1}:

bn+1 ≥
1

3
+

1

6K
. q Lemma

And now see blackboard again for completing the proof of the theorem:

Partition≤p
m WVG-Epsilon-Core. q
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ε-Core and Least Core for Weighted Voting Games

WVG-In-Least-Core

Given: A weighted voting game G = (w1,w2, . . . ,wn;q) and an efficient

payoff vector ~a.

Question: Is ~a in the least core of G?

WVG-Construct-Least-Core

Given: A weighted voting game G = (w1,w2, . . . ,wn;q).

Task: Construct an efficient payoff vector ~a in the least core of G .
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ε-Core and Least Core for Weighted Voting Games

Theorem (Elkind, Goldberg, Goldberg, and Wooldridge (2009))

1 WVG-In-Least-Core is NP-hard.

2 WVG-Construct-Least-Core cannot be solved in deterministic

polynomial time, unless P = NP.

Proof: See blackboard. q

Remark

1 It is not clear if WVG-In-Least-Core is NP-complete (i.e.,

in NP).

2 The best known upper bound for WVG-In-Least-Core is

Πp
2 = coNPNP.
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ε-Core and Least Core for Weighted Voting Games

Remark

On the other hand, despite their NP- or coNP-hardness, each of the

problems

WVG-Epsilon-Core,

WVG-In-Epsilon-Core,

WVG-In-Least-Core, and

WVG-Construct-Least-Core

admits a pseudo-polynomial-time algorithm, which can then be

converted to a fully polynomial-time approximation scheme (FPTAS).

Similarly, the value of the least core of a given weighted voting game

with n players can be computed in time polynomial in n and wmax.

The proof makes use of the linear program for the least core.
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Cost of Stability for Weighted Voting Games

Let G = (P,v) be a superadditive weighted voting game.

Recall the notion of the (additive) cost of stability for G , defined by

CoS(G ) = inf{∆
∣∣∆≥ 0 and Core(G∆) 6= /0},

where the adjusted game G∆ = (P,v∆) is given by

v∆(C ) = v(C ) for C 6= P and

v∆(P) = v(P) + ∆.

Similarly, we can define the multiplicative cost of stability by

CoS×(G ) =
CoS(G ) + v(P)

v(P)
. (1)
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Cost of Stability for Weighted Voting Games

Remark

Results for the additive cost of stability can be restated for its

multiplicative sibling, and vice versa.

For example, if CoS(G ) = v(P), we have CoS×(G ) = 2.

Note that CoS×(G )≥ 1 for profit-sharing games.

For cost-sharing games, the multiplicative cost of stability is also

known as the cost recovery ratio, and we have 0≤ CoS×(G )≤ 1.

Theorem (Bachrach et al. (2018))

For each superadditive weighted voting game G = (P,v) = (w1, . . . ,wn;q),

CoS×(G ) < 2.
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Cost of Stability for Weighted Voting Games

Proof:

Since G is a simple game, it is superadditive if and only if every pair

of winning coalitions has a nonempty intersection.

Recall that we assume that w(P)≥ q.

Suppose that there is an agent i∗ with weight wi∗ ≥ q.

Then, by superadditivity, i∗ must be a veto player, so the core of G is

nonempty and hence CoS×(G ) = 1.

Otherwise, let S be a minimum-weight winning coalition in G .

Pick a player j ∈ S such that wj ≤ wi for all i ∈ S , and set

s = 1− w(S \{j})
q

.

Note that s > 0 by our choice of S .
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Cost of Stability for Weighted Voting Games

Define a payoff vector ~a by setting aj = s, ai = wi
q for i ∈ P \{j}.

We claim that ~a is stable.

Indeed, consider a winning coalition R.

If j /∈ R, then a(R) = w(R)
q ≥ 1, so R does not block ~a.

If j ∈ R, then (since w(R)≥ w(S) by our choice of S) we have

a(R) = a(R \{j}) +aj =
w(R \{j})

q
+aj ≥

w(S \{j})
q

+ s = 1.

It remains to bound the total payment:

a(P) = a(S \{j}) +aj +a(P \S) =
w(S \{j})

q
+ s +

w(P \S)

q

= 1 +
w(P \S)

q
< 1 + 1 = 2,

where the inequality holds because P \S is a losing coalition. q
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Cost of Stability for Weighted Voting Games

WVG-Super-Imputation-Stability

Given: A weighted voting game G , a parameter ∆≥ 0, and an imputa-

tion ~a = (a1,a2, . . . ,an) in the adjusted game G∆.

Question: Is it true that ~a ∈ Core(G∆)?

WVG-Cost-of-Stability

Given: A weighted voting game G and a parameter ∆≥ 0.

Question: Is it true that CoS(G )≤∆ (i.e., is it true that Core(G∆) 6= /0)?
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Cost of Stability for Weighted Voting Games

Theorem (Bachrach et al. (2009))

1 WVG-Super-Imputation-Stability is coNP-complete.

2 WVG-Cost-of-Stability is coNP-hard.

Proof: See blackboard. q

Remark

Again, if the weights and the quota of the given weighted voting

game in these problems are represented in unary, then both problems

can be solved in polynomial time.

Bachrach et al. (2009) also showed that there is an FPTAS for

computing CoS(G ).
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Complexity of Computing Power Indices

How hard is it to compute the Shapley–Shubik or Banzhaf index?

Definition

Define #P as the class of functions that give the number of solutions of

NP problems. #P is also known as the “counting version of NP.”

Example (of functions in #P)

#SAT maps each boolean formula to the number of its satisfying

assignments.

#Partition maps each instance (k1,k2, . . . ,kn) of Partition to

the number of subsets A⊆ {1,2, . . . ,n} such that

∑
i∈A

ki = ∑
i∈{1,2,...,n}rA

ki .
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Complexity of Computing Power Indices

Definition

Let f and g be two functions mapping from Σ∗ to N.

We say f (many-one) reduces to g if there exist two polynomial-time

computable functions, ψ : N→ N and ρ : Σ∗→ Σ∗, such that for each

x ∈ Σ∗,

f (x) = ψ(g(ρ(x))).

We say f parsimoniously reduces to g if there exists a polynomial-time

computable function ρ such that for each x ∈ Σ∗, f (x) = g(ρ(x)).

g is (parsimoniously) hard for #P if every f ∈#P (parsimoniously)

reduces to g , and g is (parsimoniously) complete for #P if g ∈#P
and g is (parsimoniously) hard for #P.
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Complexity of Computing Power Indices

Theorem

1 Computing the (raw) Shapley–Shubik index of a player in a given

weighted voting game is complete for #P.

(Deng and Papadimitriou (1994))

2 Computing the (raw) Banzhaf index is parsimoniously complete

for #P.

(Prasad and Kelly (1990))

3 For both problems, there exist pseudo-polynomial-time algorithms.

(Matsui and Matsui (2000))
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Complexity of Computing Power Indices

Proof: We show only the first statement: Computing the (raw)

Shapley–Shubik index of a player in a given weighted voting game is

#P-complete.

1. Membership in #P. Given a WVG G and a player i :

Nondeterministically guess all permutations π of the players in G .

For each permutation π guessed, accept if and only if ∆G
π (i) = 1.

Clearly, the number of accepting computation paths is

∑
π∈ΠP

∆G
π (i) = SSI∗(G , i).
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Complexity of Computing Power Indices

2. #P-hardness. We reduce from the #P-complete problem

#SubsetSum, the counting version of the NP-complete problem

SubsetSum

Given: A sequence (a1, . . . ,am) of positive integers and a positive inte-

ger K .

Question: Does there exist a subset A⊆ {1, . . . ,m} such that ∑
i∈A

ai = K?

We work with a simplified but still #P-complete variant of this problem by

assuming that:

K = M
2 , where M = ∑

m
i=1 ai and

all solutions A have the same size.
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Complexity of Computing Power Indices

Given such an instance of #SubsetSum, with (a1, . . . ,am) and K = M
2 ,

construct a weighted voting game G = (P,v) with n = m+ 1 players:

G = (w1, . . . ,wm,wn;q) = (a1, . . . ,am,1;
∑i∈P wi

2
).

Note that the quota is M+1
2 for an even number M.

For all A⊆ P, we have v(A)−v(A\{n}) = 1 if and only if the following

conditions hold:

1 n ∈ A,

2 ∑
j∈A

wj >
M + 1

2
, and

3 ∑
j∈A\{n}

wj <
M + 1

2
.

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 39 / 100



Complexity of Problems for Weighted Voting Games Complexity of Power Indices

Complexity of Computing Power Indices

Since wn = 1, this is equivalent to

∑
j∈A\{n}

wj =
M

2
= K .

In other words, A\{n} is a solution to the original SubsetSum instance.

Recall our assumption that all solutions have the same size: Letting

‖A‖= k , we have ‖A\{n}‖= k−1. Hence,

SSI∗(G ,n) = ∑
C⊆Pr{n}

‖C‖! · (n−‖C‖−1)! · (v(C )−v(C \{n}))

= (k−1)!(n−k)! ·

 “number of solutions to the

SubsetSum instance”

 . q
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Complexity of Power Comparison

For a power index PI (such as Shapley-Shubik or Banzhaf), define:

PI-Power-Compare

Given: Two weighted voting games, G and G ′, and a player i occurring

in both games.

Question: Is it true that PI(G , i) > PI(G ′, i)?

Theorem (Faliszewski & Hemaspaandra (2009))

Shapley-Shubik-Power-Compare and

Banzhaf-Power-Compare are PP-complete, where

PP =
{
A
∣∣ (∃f ∈#P)(∀x)

[
x ∈ A⇐⇒ f (x)≥ 2p(|x |)−1

]}
is “probabilistic polynomial time.” without proof
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Beneficial Merging

Example

q

BI(G&{ , }, ) > BI(G , ) + BI(G , )?
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Beneficial Merging

Example

BI(G&{ , }, ) = BI(G , ) + BI(G , )

= 6
16 = 6

32 = 6
32

SSI(G&{ , }, ) > SSI(G , ) + SSI(G , ) ?

= 14
60 = 6

60 = 6
60
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Beneficial Merging

For a power index PI (such as Shapley-Shubik or Banzhaf), define:

PI-Beneficial-Merge

Given: A weighted voting game G = (w1, . . . ,wn; q) and a nonempty

coalition S ⊆ {1, . . . ,n}.

Question: Is it true that

PI(G&S ,1) > ∑
i∈S

PI(G , i),

where G&S = (∑i∈S wi ,wj1 , . . . ,wjn−‖S‖ ; q) with

{j1, . . . , jn−‖S‖}= {1, . . . ,n}rS?
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Beneficial Splitting

Example

q

Does there exist a split of into two players such that

BI(G ÷2, ) + BI(G ÷2, ) > BI(G , )?
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Beneficial Splitting

Example

BI(G ÷2, ) + BI(G ÷2, ) = BI(G , )

= 12
64 = 12

64 = 12
32

BI(G ÷2, ) + BI(G ÷2, ) = BI(G , )

= 19
64 = 5

64 = 12
32

SSI(G ÷2, ) + SSI(G ÷2, ) < SSI(G , )

= 41
420 = 41

420 = 91
420

SSI(G ÷2, ) + SSI(G ÷2, ) < SSI(G , )

= 73
420 = 17

420 = 91
420
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Beneficial Splitting

For a power index PI (such as Shapley-Shubik or Banzhaf), define:

PI-Beneficial-Split

Given: A weighted voting game G = (w1, . . . ,wn; q), a player i ∈
{1, . . . ,n}, and an integer k ≥ 2.

Question: Is it possible to split i into k new players with positive integer

weights u1, . . . ,uk satisfying ∑
k
j=1 uj = wi so that

k−1

∑
j=0

PI(Gi÷k , i + j) > PI(G , i),

where Gi÷k = (w1, . . . ,wi−1,u1, . . . ,uk ,wi+1, . . . ,wn; q)?
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Complexity Classes

PSPACE

NPPP =
{
A
∣∣ (∃NPOTM M)(∃B ∈ PP)

[
A = L(MB)

]}
PP =

{
A
∣∣ (∃f ∈#P)(∀x)

[
x ∈ A⇐⇒ f (x)≥ 2p(|x |)−1

]}
NP

P
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Overview of Complexity Results

PI-Beneficial-Merge

open question [1]

BI, SSI: NP-hard [2] [3]

SSI: ‖S‖= 2: in PP [4]

BI: ‖S‖= 2: in P;

‖S‖ ≥ 3: in PP, NP-hard [5]

BI, SSI: PP-complete [6]

PI-Beneficial-Split

SSI: NP-hard [1]

[3]

(k = 2)

BI: NP-hard [2]

[3]

BI: k = 2: in P;

k ≥ 3: in PP, NP-hard [5]

BI, SSI: PP-hard, in NPPP [6]

[1] Bachrach & Elkind, AAMAS 2008 [4] Faliszewski & Hemaspaandra, TCS 2009

[2] Aziz & Paterson, AAMAS 2009 [5] Rey & Rothe, ECAI 2010

[1] + [2] = [3] Aziz et al., JAIR 2011 [6] Rey & Rothe, LATIN 2014 + JAIR 2014
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Merging and Splitting Is Easy for Two Players

Fact

Let G be a weighted voting game and S ⊆ {1, . . . ,n} be a coalition of its

players.

1 BI-Beneficial-Merge is in P for instances (G ,S) with ‖S‖= 2.

2 BI-Beneficial-Split is in P for instances (G , i ,2).

Proof:

1 Let G = (w1, . . . ,wn; q) be a weighted voting game.

Without loss of generality, let S = {1,n}.

We obtain a new game G&S = (w1 +wn,w2, . . . ,wn−1; q), where the

first player is the new player merging S .
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Merging and Splitting Is Easy for Two Players

Letting vG and vG&S
denote the corresponding coalitional functions, it

holds that

BI(G&S ,1)− (BI(G ,1) + BI(G ,n))

=
1

2n−2

(
∑

C⊆{2,...,n−1}
(vG&S

(C ∪{1})−vG&S
(C ))

)

− 1

2n−1

(
∑

C⊆{2,...,n}
(vG (C ∪{1})−vG (C )) + ∑

C⊆{1,...,n−1}
(vG (C ∪{n})−vG (C ))

)
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Merging and Splitting Is Easy for Two Players

=
1

2n−1

(
∑

C⊆{2,...,n−1}

(
2(vG&S

(C ∪{1})−vG&S
(C ))

− (vG (C ∪{1})−vG (C )) − (vG (C ∪{1,n})−vG (C ∪{n}))

− (vG (C ∪{n})−vG (C )) − (vG (C ∪{n,1})−vG (C ∪{1})))

)

=
1

2n−1

(
∑

C⊆{2,...,n−1}

(
2vG&S

(C ∪{1})−2vG (C ∪{1,n}) + 2vG (C )−2vG&S
(C )
))

= 0.
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Merging and Splitting Is Easy for Two Players

2 In the case of splitting, it similarly holds that

BI(Gn÷2,n+ 1) + BI(Gn÷2,n+ 2)−BI(G ,n) = 0

for a weighted voting game G , k = 2, and, without loss of generality,

player n in G splitting into players n+ 1 and n+ 2 in a new game

Gn÷2. q
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Merging Is Hard for More Than Two Players

Theorem (Rey & Rothe)

Banzhaf-Beneficial-Merge is PP-hard.

Proof Sketch.

Compare-#SubsetSum

Compare-#SubsetSum-R

Compare-#SubsetSum-RR

Banzhaf-Beneficial-Merge

For F #P-parsimonious-complete,

Compare-F = {(x ,y) | F (x)> F (y)}

is PP-complete.[4]

#SubsetSum((a1, . . . ,an),q)

= ‖{I ⊆ N | ∑i∈I ai = q}‖.

PP-complete XGiven A= (a1, . . . ,an), q1, and q2,

is #S(A,q1)>#S(A,q2)?

≤p
m -reduction via:

((x1, . . . ,xm),qx ), ((y1, . . . ,yn),qy )

7→ A= (x1, . . . ,xm,2αy1, . . . ,2αyn),

α = ∑
m
i=1 xi , q1 = qx , and q2 = 2αqy .

PP-hard X

Given A= (a1, . . . ,an),

is #S(A, α

2 −2)>#S(A, α

2 −1)?

≤p
m -reduction via:

((a1, . . . ,an),q1,q2)

7→ B = (a1, . . . ,an,2α−q1,2α+1−q2,

2α+3+q1+q2,3α).

PP-hard X
≤p

m -reduction via:

(a1, . . . ,an)

7→ G = (2a1, . . . ,2an,1,1,1,1; α),

C = {n+2,n+3,n+4}.PP-hard X 2
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Lemma (Faliszewski & Hemaspaandra, 2009)

Let F be a #P-parsimonious-complete function. The problem

Compare-F = {(x ,y)
∣∣F (x) > F (y)}

is PP-complete.

#SubsetSum is known to be #P-parsimonious-complete.

Corollary

Compare-#SubsetSum is PP-complete.
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Compare-#SubsetSum-R

Given: A sequence A = (a1, . . . ,an) of positive integers and two positive

integers q1 and q2 with 1≤ q1,q2 ≤ α−1, where α = ∑
n
i=1 ai .

Question: Is the number of subsequences of A summing up to q1 greater

than the number of subsequences of A summing up to q2, that

is, does it hold that

#SubsetSum((a1, . . . ,an),q1)

> #SubsetSum((a1, . . . ,an),q2) ?
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Lemma (Rey & Rothe)

Compare-#SubsetSum ≤p
m Compare-#SubsetSum-R.

Proof: Given an instance (X ,Y ) of Compare-#SubsetSum,

X = ((x1, . . . ,xm),qx) and Y = ((y1, . . . ,yn),qy ), construct a

Compare-#SubsetSum-R instance (A,q1,q2) as follows.

Let α = ∑
m
i=1 xi and define

A = (x1, . . . ,xm,2αy1, . . . ,2αyn), q1 = qx , and q2 = 2αqy .

This construction can obviously be achieved in polynomial time.
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It holds that integers from A can only sum up to q1 = qx ≤ α−1 if they

do not contain multiples of 2α, thus

#SubsetSum(A,q1) = #SubsetSum((x1, . . . ,xm),qx).

On the other hand, q2 cannot be obtained by adding any of the xi ’s, since

this would yield a non-zero remainder modulo 2α, because ∑
m
i=1 xi = α is

too small.

Thus, it holds that

#SubsetSum(A,q2) = #SubsetSum((y1, . . . ,yn),qy ).

It follows that (X ,Y ) is in Compare-#SubsetSum if and only if

(A,q1,q2) is in Compare-#SubsetSum-R. q
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To perform the next step, we need to ensure that all integers in a

Compare-#SubsetSum-R instance are divisible by 8.

This can easily be achieved, by multiplying each integer in an instance

((a1, . . . ,an),q1,q2) by 8, obtaining

((8a1, . . . ,8an),8q1,8q2)

without changing the number of solutions for both related SubsetSum

instances.

Thus, from now on, without loss of generality, we assume that for a given

Compare-#SubsetSum-R instance ((a1, . . . ,an),q1,q2), it holds that

ai ,qj ≡ 0 mod 8 for 1≤ i ≤ n and j ∈ {1,2}.
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Compare-#SubsetSum-RR

Given: A sequence A = (a1, . . . ,an) of positive integers.

Question: Is the number of subsequences of A summing up to α

2 −2, where

α = ∑
n
i=1 ai , greater than the number of subsequences of A sum-

ming up to α

2 −1, i.e., is it true that

#SubsetSum((a1, . . . ,an),
α

2
−2)

> #SubsetSum((a1, . . . ,an),
α

2
−1) ?
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Lemma (Rey & Rothe)

Compare-#SubsetSum-R ≤p
m Compare-#SubsetSum-RR.

Proof: Given an instance (A,q1,q2) of Compare-#SubsetSum-R,

where we assume that A = (a1, . . . ,an), q1, and q2 satisfy

ai ,qj ≡ 0 mod 8 for 1≤ i ≤ n and j ∈ {1,2},

we construct an instance B of Compare-#SubsetSum-RR as follows.

(This reduction is inspired by the standard reduction from SubsetSum to

Partition due to Karp (1972).)
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Letting α = ∑
n
i=1 ai , define

B = (a1, . . . ,an, 2α−q1, 2α + 1−q2, 2α + 3 +q1 +q2, 3α).

This instance can obviously be constructed in polynomial time.

Observe that

T =

(
n

∑
i=1

ai

)
+(2α−q1)+(2α +1−q2)+(2α +3+q1 +q2)+3α = 10α +4,

and therefore, T
2 −2 = 5α and T

2 −1 = 5α + 1.

We show that (A,q1,q2) is in Compare-#SubsetSum-R if and only if

B is in Compare-#SubsetSum-RR.
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First, we examine which subsequences of B sum up to 5α.

Case 1: If 3α is added, 2α + 3 +q1 +q2 cannot be added, as it would

be too large.

Also, 2α + 1−q2 cannot be added, leading to an odd sum.

So, 2α−q1 has to be added, as the remaining α are too

small.

Since 3α + 2α−q1 = 5α−q1, 5α can be achieved by adding

some ai ’s if and only if there exists a subset A′ ⊆ {1, . . . ,n}
such that ∑i∈A′ ai = q1 (i.e., A′ is a solution of the

SubsetSum instance (A,q1)).
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Case 2: If 3α is not added, but 2α + 3 +q1 +q2, an even number can

only be achieved by adding 2α + 1−q2.

Thus, α−4−q1 remain.

2α−q1 is too large, while no subsequence of A sums up to

α−4−q1, because of the assumption of divisibility by 8.

If neither 3α nor 2α + 3 +q1 +q2 are added, the remaining

5α + 1−q1−q2 are too small.

Thus, the only possibility to obtain 5α is to find a subsequence of A

adding up to q1. Thus,

#SubsetSum(A,q1) = #SubsetSum(B,5α).
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Second, for similar reasons, a sum of 5α + 1 can only be achieved by

adding 3α + (2α + 1−q2) and a term ∑i∈A′ ai , where A′ is a subset of

{1, . . . ,n} such that ∑i∈A′ ai = q2.

Hence,

#SubsetSum(A,q2) = #SubsetSum(B,5α + 1).

Thus,

#SubsetSum(A,q1) > #SubsetSum(A,q2)

⇐⇒

#SubsetSum(B,5α) > #SubsetSum(B,5α + 1),

which completes the proof. q
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Theorem (Rey & Rothe)

BI-BeneficialMerge is PP-complete, even if only three players of equal

weight merge.

Proof: Membership of BI-BeneficialMerge in PP follows from

the fact that the raw Banzhaf index is in #P and

that #P is closed under addition and

since comparing the values of two #P functions on two (possibly

different) inputs reduces to a PP-complete problem and

PP is closed under ≤p
m -reducibility.
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We show PP-hardness of BI-BeneficialMerge by means of a

≤p
m-reduction from Compare-#SubsetSum-RR, which is PP-hard by

the previous lemmas.

Given an instance A = (a1, . . . ,an) of Compare-#SubsetSum-RR,

construct the following instance for BI-BeneficialMerge.

Let α = ∑
n
i=1 ai . Define the WVG

G = (2a1, . . . ,2an,1,1,1,1; α)

with n+ 4 players, and let the merging coalition be

S = {n+ 2,n+ 3,n+ 4}.
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Letting N = {1, . . . ,n}, it holds that

BI(G ,n+ 2)

=
1

2n+3

∥∥∥∥∥
{
C ⊆ {1, . . . ,n+ 1,n+ 3,n+ 4}

∣∣∣∣∣ ∑
i∈C

wi = α−1

}∥∥∥∥∥
=

1

2n+3

(∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

2ai = α−1

}∥∥∥∥∥+ 3 ·

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ 1 + ∑
i∈A′

2ai = α−1

}∥∥∥∥∥
(2)

+3 ·

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ 2 + ∑
i∈A′

2ai = α−1

}∥∥∥∥∥+

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ 3 + ∑
i∈A′

2ai = α−1

}∥∥∥∥∥
)

(3)

=
1

2n+3

(
3 ·

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

2ai = α−2

}∥∥∥∥∥+

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

2ai = α−4

}∥∥∥∥∥
)
.
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Explanation:

The last equality holds since the 2ai ’s can only add up to an even

number.

The first of the four sets in (2) and (3) refers to those coalitions that

do not contain any of the players n+ 1, n+ 3, and n+ 4;

the second, third, and fourth set in (2) and (3) refers to those

coalitions containing either one, two, or three of them, respectively.

Since the players in S have the same weight, players n+ 3 and n+ 4 have

the same probabilistic Banzhaf index as player n+ 2.
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The new game after merging is G&{n+2,n+3,n+4} = (3,2a1, . . .2an,1; α)

with n+ 2 players. Similarly as above, we calculate:

BI
(
G&{n+2,n+3,n+4},1

)
=

1

2n+1

∥∥∥∥∥
{
C ⊆ {2, . . . ,n+ 2}

∣∣∣∣∣ ∑
i∈C

wi ∈ {α−3,α−2,α−1}

}∥∥∥∥∥
=

1

2n+1

(∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

2ai ∈ {α−3,α−2,α−1}

}∥∥∥∥∥
+

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ 1 + ∑
i∈A′

2ai ∈ {α−3,α−2,α−1}

}∥∥∥∥∥
)

=
1

2n+1

(
2 ·

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

2ai = α−2

}∥∥∥∥∥+

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

2ai = α−4

}∥∥∥∥∥
)
.
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Altogether, it holds that

BI
(
G&{n+2,n+3,n+4},1

)
− ∑

i∈{n+2,n+3,n+4}
BI(G , i)

=
1

2n+1

(
2 ·

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

2ai = α−2

}∥∥∥∥∥+

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

2ai = α−4

}∥∥∥∥∥
)

− 3

2n+3

(
3 ·

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

2ai = α−2

}∥∥∥∥∥+

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

2ai = α−4

}∥∥∥∥∥
)

=

(
1

2n+1
·2− 3

2n+3
·3
)∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

2ai = α−2

}∥∥∥∥∥
+

(
1

2n+1
− 3

2n+3

)∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

2ai = α−4

}∥∥∥∥∥
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= − 1

2n+3
·

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

ai =
α

2
−1

}∥∥∥∥∥+
1

2n+3
·

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

ai =
α

2
−2

}∥∥∥∥∥ ,
which is greater than zero if and only if∥∥∥∥∥

{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

ai =
α

2
−2

}∥∥∥∥∥>
∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
i∈A′

ai =
α

2
−1

}∥∥∥∥∥ ,
which in turn is the case if and only if the original instance A is in

Compare-#SubsetSum-RR. q
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Splitting Into More Than Two Players Is Hard

Theorem (Rey & Rothe)

Banzhaf-Beneficial-Split is PP-hard, even if the given player can only

split into three players of equal weight.

Proof: We use the same techniques as in the previous proof,

appropriately modified.

We show PP-hardness for m = 3 false identities.

(If m > 3, we split into m−3 additional players of weight 0 each. Then

the sum of all m new players’ Banzhaf power is equal to the combined

Banzhaf power of the three players.)

First, we slightly change the definition of Compare-#SubsetSum-RR

by switching α

2 −2 and α

2 −1, yielding Compare-#SubsetSum- RR.
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Splitting Into More Than Two Players Is Hard

Compare-#SubsetSum-RR

Given: A sequence A = (a1, . . . ,an) of positive integers.

Question: Is the number of subsequences of A summing up to α

2 −2, where

α = ∑
n
i=1 ai , greater than the number of subsequences of A sum-

ming up to α

2 −1, i.e., is it true that

#SubsetSum((a1, . . . ,an),
α

2
−2)

> #SubsetSum((a1, . . . ,an),
α

2
−1) ?
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Splitting Into More Than Two Players Is Hard

Compare-#SubsetSum- RR

Given: A sequence A = (a1, . . . ,an) of positive integers.

Question: Is the number of subsequences of A summing up to α

2 −1, where

α = ∑
n
i=1 ai , greater than the number of subsequences of A sum-

ming up to α

2 −2, i.e., is it true that

#SubsetSum((a1, . . . ,an),
α

2
−1)

> #SubsetSum((a1, . . . ,an),
α

2
−2) ?
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Splitting Into More Than Two Players Is Hard

We show

Compare-#SubsetSum- RR≤p
m Banzhaf-Beneficial-Split.

Given an instance A = (a1, . . . ,an) of Compare-#SubsetSum- RR,

construct the game G = (2a1, . . . ,2an,1,3; α), where α = ∑
n
j=1 aj , and let

i = n+ 2 be the player to be split.

G is (apart from the order of players) equivalent to the game obtained by

merging in the previous proof.

Thus, letting N = {1, . . . ,n}, BI(G ,n+ 2) equals

1

2n+1

(
2 ·

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
j∈A′

2aj = α−2

}∥∥∥∥∥+

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
j∈A′

2aj = α−4

}∥∥∥∥∥
)
.
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Splitting Into More Than Two Players Is Hard

Allowing players with weight zero, there are different possibilities to split

player n+ 2 into three players:

Splitting n+ 2 into one player with weight 3 and two others with

weight 0 is not beneficial, since adding a player with weight zero does

not change the original players’ power indices, and the new player’s

power index is zero.

Likewise, splitting n+ 2 into two players with weights 1 and 2 and one

player with weight 0 is not beneficial, since splitting into two players

is not beneficial.

Thus, the only possibility left is splitting n+ 2 into three players of

weight 1 each.
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Splitting Into More Than Two Players Is Hard

This corresponds to the original game in the previous proof:

Gi÷3 = (2a1, . . . ,2an,1,1,1,1; α).

Therefore,

BI(Gi÷3,n+ 2) = BI(Gi÷3,n+ 3) = BI(Gi÷3,n+ 4) =

1

2n+3

(
3 ·

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
j∈A′

2aj = α−2

}∥∥∥∥∥+

∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
j∈A′

2aj = α−4

}∥∥∥∥∥
)
.
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Splitting Into More Than Two Players Is Hard

Altogether, as in the previous proof,

(BI(Gi÷3,n+ 2) + BI(Gi÷3,n+ 3) + BI(Gi÷3,n+ 4))−BI(G ,n+ 2) > 0

if and only if∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
j∈A′

aj =
α

2
−1

}∥∥∥∥∥>
∥∥∥∥∥
{
A′ ⊆ N

∣∣∣∣∣ ∑
j∈A′

aj =
α

2
−2

}∥∥∥∥∥ ,
which is true if and only if A is in Compare-#SubsetSum- RR. q
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Structural Control by Adding or Deleting Players

Given a WVG G and a player i in G, can we

increase,

decrease, or

maintain

i ’s power by adding players to G or deleting players from G?

Example

Collective decision making: An organizer might invite further

participants or might choose a certain meeting schedule to make sure

that members originally expected to participate are now excluded.

Machines may be needed to fulfill a certain task, independent of the

number of currently available machines; some machines can be

removed, new ones can be bought.
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Deleting Players: Example

Example

Consider the WVG G = (3,3,2,1;6). We have:

BI(G ,1) = BI(G ,2) = 1/2 and BI(G ,3) = BI(G ,4) = 1/4,

SSI(G ,1) = SSI(G ,2) = 1/3 and SSI(G ,3) = SSI(G ,4) = 1/6.

If we remove player 4, we obtain the new game G\{4} = (3,3,2;6) with

BI(G ,1) = BI(G ,2) = 1/2 and BI(G ,3) = 0,

SSI(G ,1) = SSI(G ,2) = 1/2 and SSI(G ,3) = 0.

Players 1 and 2 have increased their SSI while maintaining their BI.

At the same time, both power indices of player 3 have decreased to 0.
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Deleting Players: Change of PIs

Theorem (Rey & Rothe, 2018; Kaczmarek & Rothe, 2022)

After deleting the players of a subset M ⊆ N \{i} of size m ≥ 1 from a

WVG G with n = |N| players, the difference between player i ’s old and

new

1 Penrose-Banzhaf index is at most 1−2−m and is at least −1 + 2−m;

2 Shapley-Shubik index is at most 1− (n−m+1)!
2n! and is at least

−1 + (n−m+1)!
2n! .
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Deleting Players: Change of PIs

Theorem (Kaczmarek & Rothe, 2022)

Let G = (w1, . . . ,wn;q) be a WVG with players N. Let M ⊆ N \{i} be a

set of players which are going to be deleted and m = |M|.

1 BI(G , i)−BI(G\M , i)≥max((1−2m)BI(G , i),BI(G , i)−1),

2 SSI(G , i)−SSI(G\M , i)≥max((1−
(n
m

)
)SSI(G , i),SSI(G , i)−1)

and

3 BI(G , i)−BI(G\M , i)≤min
(

BI(G , i),∑j∈M BI(G , j) + (2m−1)2

2n−1

)
,

4 SSI(G , i)−SSI(G\M , i)≤min
(

SSI(G , i),∑j∈M SSI(G , j) + 1
(n−m)!

)
.
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Deleting Players: Change of PIs

Example

G = (4,2,1,1,1;4): Let M = {5}. Then

BI(G ,2) =
1

4
and BI(G\M ,2) =

1

8
.

The upper bound from the first theorem is

BI(G ,2)−BI(G\M ,2)≤ 1− 1

2
=

1

2

and that from the second theorem is

BI(G ,2)−BI(G\M ,2)≤min(
1

4
,

1

8
+

1

16
) =

3

16
.
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Deleting Players: Change of PIs

Example

G = (4,2,1,1,1;4): Let M = {5}. Then

SSI(G ,2) =
11

60
and SSI(G\M ,2) =

5

60
.

The upper bound from the first theorem is

SSI(G ,2)−SSI(G\M ,2)≤ 1− (5−1 + 1)!

2 ·5!
=

1

2

and that from the second theorem is

SSI(G ,2)−SSI(G\M ,2)≤min(
11

60
,

1

10
+

1

4!
) =

17

120
.
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Deleting Players: Control Problem

Control by Deleting Players to Increase PI

Given: I A WVG G with players N = {1, . . . ,n},
I a distinguished player p ∈ N, and

I a positive integer k .

Question: Can at most k players M ⊆N \{p} be deleted from G such that

for the new game G\M , it holds that

PI(G\M ,p) > PI(G ,p)?
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Deleting Players: Overview of Complexity Results

Goal Control by deleting players

Decrease
BI PNP[log]-hard (Kaczmarek and Rothe, 2022)

SSI NP-hard (Kaczmarek and Rothe, 2022)

Increase
BI DP-hard (Kaczmarek and Rothe, 2022)

SSI NP-hard (Rey and Rothe, 2018)

Maintain
BI coNP-hard (Rey and Rothe, 2018)

SSI coNP-hard (Rey and Rothe, 2018)

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 87 / 100



Complexity of Problems for Weighted Voting Games Complexity of Adding and Deleting Players

Weighted Voting Games with Changing Quota

Definition (weighted voting game with quota change)

A weighted voting game with changing quota G = (w1, . . . ,wn; r) is a

simple coalitional game that consists of

the players N = {1, . . . ,n},

weights wi ∈ R≥0, i ∈ N, where wi is the i-th player’s weight, and

a quota q = r ∑
n
i=1wi (i.e., a given threshold) for r ∈ (0,1].

Again, for each coalition S ⊆ N, S wins if wS ≥ q, and loses otherwise:

v(S) =

 1 if wS ≥ q,

0 otherwise.
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Weighted Voting Games with Changing Quota

Example

Let G = (10,3,10;12) be a WVG without changing quota. Let us consider

the following weighted voting games with changing quota:

I H1 = (10,3,10; 12
23 ):

q(H1) =
12

23

3

∑
i=1

wi =
12

23
·23 = 12,

I H2 = (10,3,10; 1
2 ):

q(H2) =
1

2
·23 = 11.5.

Without any manipulation, G , H1, and H2 define the same game.

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 89 / 100



Complexity of Problems for Weighted Voting Games Complexity of Adding and Deleting Players

Adding Players in WVGs with Changing Quota

Example

G = (1,2,1,1; 1
2 ):

q(G ) = r
4

∑
i=1

wi =
1

2
·5 = 2.5,

BI(G ,1) =
1

4
, SSI(G ,1) =

1

6
.

Then

q(G∪{5}) = r
5

∑
i=1

wi =
1

2
·8 = 4,

BI(G∪{5},1) =
3

16
, SSI(G∪{5},1) =

7

60
.
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Adding Players in WVGs with Changing Quota

Theorem (Kaczmarek & Rothe, 2022)

Let G = (w1, . . . ,wn; r) be a WVG with changing quota with

q1 = r ∑
n
i=1wi . Let N be a set of the players and M be a set of players

which are added to the game G. Next, let G∪M be a new game with a set

of players N ∪M, q2 = r ∑j∈N∪M wj and m = |M|. Then

1 −1 + 2−m ≤ BI(G , i)−BI(G∪M , i)≤ 1,

2 −1 + (n+1)!
2(n+m)! ≤ SSI(G , i)−SSI(G∪M , i)≤ 1.
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Adding Players in WVGs with Changing Quota

Example

G = (2,1; 2
3 ):

BI(G ,1) = SSI(G ,1) = 1.

Let us add two players with weights w3 = w4 = 4. Then

q(G∪{3,4}) =
22

3

and in G∪{3,4} = (2,1,4,4; 2
3 ),

BI(G∪{3,4},1) = SSI(G∪{3,4},1) = 0.
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Adding Players in WVGs with Changing Quota

Control by Adding Players with Changing Quota to Increase PI

Given: I A WVG G with players N = {1, . . . ,n}, a quota r ∑
n
i=1wi (r ∈

(0,1]),

I a set M of unregistered players with weights wn+1, . . . ,wn+m,

I a distinguished player p ∈ N, and

I a positive integer k .

Question: Can at most k players M ′ ⊆M be added to G such that for the

new game G∪M ′ with the new quota r ∑i∈N∪M ′ wi , it holds that

PI(G∪M ′ ,p) > PI(G ,p)?
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Adding Players in WVGs with Changing Quota: Complexity

Goal Control by adding players

Decrease
BI PP-hard

SSI PP-hard

Increase
BI PP-hard

SSI PP-hard

Maintain
BI coNP-hard

SSI coNP-hard

All results are due to Kaczmarek and Rothe (2022).
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Deleting Players in WVGs with Changing Quota

Example

G = (1,2,1,1; 1
2 ):

q(G ) = r
4

∑
i=1

wi =
1

2
·5 = 2.5,

BI(G ,1) =
1

4
, SSI(G ,1) =

1

6
.

Let M = {2}. Then

q(G\M) =
1

2
·3 = 1.5,

BI(G\M ,1) =
1

2
, SSI(G\M ,1) =

1

3
.
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Deleting Players in WVGs with Changing Quota

Theorem (Kaczmarek & Rothe, 2022)

Let G = (w1, . . . ,wn; r) be a WVG with changing quota with

q1 = r ∑
n
i=1wi . Let N be a set of the players and M ⊆ N \{i} a set of

players which are going to be deleted. Next, let G\M be a new game with

a set of players N \M, q2 = r ∑j∈N\M wj and m = |M|. Then

1 −1≤ BI(G , i)−BI(G\M , i)≤ 1−2−m,

2 −1≤ SSI(G , i)−SSI(G\M , i)≤ 1− (n−m+1)!
2n! .
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Deleting Players in WVGs with Changing Quota

Example

G = (3,5,5,3,1,1; 5
9 ): Let M = {3,4}. Then

q(G ) = 10, q(G\M) =
5

9
·10 =

50

9
,

BI(G ,1) =
1

4
and BI(G\M ,1) =

1

8
.

The upper bound from the theorem is

BI(G ,1)−BI(G\M ,1)≤ 1−2−2 =
3

4
.
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Deleting Players in WVGs with Changing Quota

Example

G = (3,5,5,3,1,1; 5
9 ): Let M = {3,4}. Then

q(G ) = 10, q(G\M) =
5

9
·10 =

50

9
,

SSI(G ,1) =
2

15
and SSI(G\M ,1) =

1

12
.

The upper bound from the theorem is

SSI(G ,1)−SSI(G\M ,1)≤ 1− 5!

2 ·6!
=

11

12
.
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Deleting Players in WVGs with Changing Quota

Control by Deleting Players with Changing Quota to Increase PI

Given: I A WVG G with players N = {1, . . . ,n}, a quota r ∑
n
i=1wi (r ∈

(0,1]),

I a distinguished player p ∈ N, and

I a positive integer k < |N|.

Question: Can at most k players M ⊆N \{p} be deleted from G such that

for the new game G\M with the new quota r ∑i∈N\M ′ wi , it holds

that

PI(G\M ,p) > PI(G ,p)?
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Deleting Players in WVGs with Changing Quota:

Complexity

Goal Control by deleting players

Decrease
BI DP-hard

SSI NP-hard

Increase
BI DP-hard

SSI NP-hard

Maintain
BI coNP-hard

SSI coNP-hard

All results are due to Kaczmarek and Rothe (2022).
J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 100 / 100


	Complexity of Problems for Weighted Voting Games
	Preliminary Remarks
	Veto Player and Dummy Player
	Complexity of Stability Concepts
	Complexity of Power Indices
	Complexity of Beneficial Merging and Splitting
	Complexity of Adding and Deleting Players


