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Foundations of Cooperative Game Theory Cooperative Games with Transferable Utility

Cooperative versus Noncooperative Game Theory

Noncooperative Games Cooperative Games

Players compete against each

other, selfishly seeking to

realize their own goals and to

maximize their own profit,

everybody fights for herself,

and

nobody coalesces.

However, players may also

“cooperate” (e.g., preferring

the dove over the hawk

strategy in the chicken game).

Players work together by joining

up in groups, so-called

coalitions,

they take joint actions so as to

realize their goals, and

they benefit from cooperating

in coalitions if this helps them

to raise their individual profit.

However, players may join or

leave a coalition to maximize

their own, individual profit.
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Foundations of Cooperative Game Theory Cooperative Games with Transferable Utility

Cooperative versus Noncooperative Game Theory

Both theories are concerned with certain aspects of cooperation as

well as competition amongst players.

Cooperative games may be viewed as the more general concept, since

a noncooperative game may be seen as a cooperative game whose

coalitions are singletons.

Note, however, that there are various ways to generalize

noncooperative games to cooperative games.

The following example shows how coalitions of players can raise the

profit of each member of a coalition by working together.
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Story: Coalition Structure 1
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Story: Coalition Structure 2
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Story: Coalition Structure 3
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Foundations of Cooperative Game Theory Cooperative Games with Transferable Utility

Story: Coalition Structure 4
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Foundations of Cooperative Game Theory Cooperative Games with Transferable Utility

Games with Transferable Utility

Definition (TU game)

A cooperative game with transferable utility (TU game) is given by a pair

G = (P,v),

with the set P = {1,2, . . . ,n} of players and

the characteristic function

v : 2P → R+

(sometimes also referred to as the coalitional function), which for

each subset (or coalition) C ⊆ P of players indicates the utility (or

gain) v(C ) that they attain by working together. Here, 2P is the

power set of P and R+ the set of nonnegative real numbers.
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Foundations of Cooperative Game Theory Cooperative Games with Transferable Utility

Games with Transferable Utility: Coalition Structure

It is common to assume that the characteristic function v of a TU game

G = (P,v) satisfies the following properties:

1 Normalization: v( /0) = 0.

2 Monotonicity: v(C )≤ v(D) for all coalitions C and D with C ⊆ D.

Definition (coalition structure)

A coalition structure of a cooperative game G = (P,v) with

transferable utility is a partition C = {C1,C2, . . . ,Ck} of P into

pairwise disjoint coalitions, i.e.,
⋃k

i=1Ci = P and Ci ∩Cj = /0 for i 6= j .

The simplest coalition structure consists of only one coalition, the

so-called grand coalition, embracing all players.

For C ⊆ P, let C S C be the set of coalition structures over C .
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Foundations of Cooperative Game Theory Cooperative Games with Transferable Utility

Games with Transferable Utility: Coalition Structure

Example

The four coalition structures from our example are represented as follows:
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Foundations of Cooperative Game Theory Cooperative Games with Transferable Utility

Games with Transferable Utility: Coalition Structure

For n players, there are

2n possible coalitions and

Bn = ∑
n−1
k=0

(n−1
k

)
Bk possible coalition structures, where B0 = B1 = 1

and Bn is referred to as the n-th Bell number.

n 0 1 2 3 4 5 6 7 8 9 10

2n 1 2 4 8 16 32 64 128 256 512 1024

Bn 1 1 2 5 15 52 203 877 4140 21147 115975
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Foundations of Cooperative Game Theory Cooperative Games with Transferable Utility

Games with Transferable Utility: Outcome

For each coalition C , the value v(C ) merely indicates the joint gains

of the players in C . However, it is also necessary to determine how

these gains are then to be divided amongst them.

Definition (outcome of a TU game)

An outcome of a cooperative game G = (P,v) with transferable utility is

given by a pair (C,~a), where C is a coalition structure and

~a = (a1,a2, . . . ,an) ∈ Rn is a payoff vector such that

ai ≥ 0 for each i ∈ P and ∑
i∈C

ai ≤ v(C ) for each coalition C ∈ C.

An outcome is said to be efficient if ∑i∈C ai = v(C ) for each C ∈ C.

Abusing notation, we write v(C) = ∑C∈C v(C ) to denote the social welfare

of coalition structure C ∈ C S P .
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Foundations of Cooperative Game Theory Cooperative Games with Transferable Utility

Games with Transferable Utility: Outcome

Example

In our example, the four coalition structures have the following outcomes:
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Foundations of Cooperative Game Theory Cooperative Games with Transferable Utility

Games with Nontransferable Utility: Story

There are also cooperative games with nontransferable utility.

Example:

Think of n huskies that are supposed to drag several sledges from a

research ship to a research station in Antarctica.

Every husky has a different owner, and every sledge is dragged by a

pack of huskies that tackle their task jointly.

Depending on how such a pack (or “coalition”) of huskies is

assembled, they can solve their task more or less successfully.

However, every husky will be rewarded only by its own owner, for

example by getting more or less food, depending on how fast this

husky’s sledge has reached its destination.

That means that gains are not transferable within a coalition.
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Foundations of Cooperative Game Theory Superadditive Games

Superadditive Games

Definition (superadditive game)

A cooperative game G = (P,v) is said to be superadditive if for any two

disjoint coalitions C and D, we have

v(C ∪D)≥ v(C ) + v(D). (1)

Example

If the characteristic function of G is defined by, say, v(C ) = ‖C‖2, then G

is superadditive because for any two disjoint coalitions C and D, we have:

v(C ∪D) = ‖C ∪D‖2 = (‖C‖+‖D‖)2 ≥ ‖C‖2 +‖D‖2 = v(C ) + v(D).
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Foundations of Cooperative Game Theory Superadditive Games

Superadditive Games: Properties

Fact

1 Every superadditive game is monotonic.

2 There are monotonic games that are not superadditive.

Proof:

1 Let G = (P,v) be superadditive.

Then, for all coalitions C ,D with C ⊆ D:

v(C )≤ v(D)−v(D \C )≤ v(D),

so G = (P,v) is monotonic.

First inequality: D = C ∪ (D \C ) and C and (D \C ) are disjoint.

Second inequality: v(D \C )≥ 0.
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Foundations of Cooperative Game Theory Superadditive Games

Superadditive Games: Properties

2 Consider G = (P,v) with v(C ) = log‖C‖.

Then for C ⊆ D:

v(C ) = log‖C‖ ≤ log‖D‖= v(D),

so G = (P,v) is monotonic.

However, if C ′ and D ′ are disjoint with, say, ‖C ′‖= 4 = ‖D ′‖, we

have:

v(C ′∪D ′) = log‖C ′∪D ′‖= log 8 = 3 < 4 = 2 + 2

= log 4 + log 4 = log‖C ′‖+ log‖D ′‖= v(C ′)∪v(D ′),

so G = (P,v) is not superadditive. q
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Foundations of Cooperative Game Theory Superadditive Games

Superadditive Games: Properties

In superadditive games one may predict that the grand coalition will

be formed, since any two coalitions can merge without loss.

That is why one may identify the outcomes in superadditive

cooperative games with the payoff vectors of the grand coalition and

does not need to consider more complicated coalition structures.

In practice, non-superadditive games may result from anti-trust or

anti-monopolity laws.

Every non-superadditive game G = (P,v) can be transformed into a

related superadditive game, its superadditive cover G ∗ = (P,v∗) with

v∗(C ) = max
C∈C S C

v(C)

for each C ⊆ P.
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

Stability Concepts for Cooperative Games

In a cooperative game, payoff vectors specify how to distribute the

jointly made profits within the coalitions, influencing their stability.

In noncooperative game theory, we have already seen that stability

concepts, such as the Nash equilibrium, play an important role.

Players in a cooperative game are primarily interested in maximizing

their own profit as well, and join a suitable coalition to this end.

Suppose the grand coalition has formed. However, if some player can

benefit from leaving the grand coalition, thus increasing her own

profit, then she will do so, irrespective of the other players.

If that happens, the game is instable and the grand coalition breaks

up into several smaller coalitions.
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

Payoff Vectors and Imputations

Players have an incentive to join the grand coalition in a cooperative

game G = (P,v) if the profit v(P) of the grand coalition can be

distributed among the single players by a payoff vector

~a = (a1,a2, . . . ,an) ∈ Rn such that the following properties hold:

1 efficiency:
n

∑
i=1

ai = v(P) and

2 individual rationality: ai ≥ v({i}) for all i ∈ P.

No player can then make more profit alone than as a member of the

grand coalition. This can be achieved exactly if v(P)≥ ∑
i∈P

v({i}).

We collect all such payoff vectors, which are called the imputations

for G , in the following set:

I (G ) =

{
(a1,a2, . . . ,an) ∈ Rn

n

∑
i=1

ai = v(P) and ai ≥ v({i}), i ∈ P

}
.
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of a Cooperative Game

Which imputations in I (G ) make G stable?

There are various stability concepts for cooperative games, and a

quite central one is the core of G .

Definition (core of a game)

Let G = (P,v) be a cooperative game. For a coalition C ⊆ P and a payoff

vector ~a = (a1,a2, . . . ,an), let a(C ) = ∑
i∈C

ai denote the total payoff of C .

The core of G is defined as:

Core(G ) =
{
~a ∈I (G ) a(C )≥ v(C ) for all coalitions C ⊆ P

}
.

Remark: We focus here on stabilizing the grand coalition.

More generally, stabilizing coalition structures, one can define the core as

the set of outcomes (C,~a) with a(C )≥ v(C ) for each C ⊆ P.
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of a Cooperative Game

Example (Osborne and Rubinstein (1994))

Consider a game with n ≥ 3 players who want to play chess.

Every pair of players appointed to play against each other receives

one dollar.

That is, the characteristic function of this game G = (P,v) is given by

v(C ) =

 ‖C‖/2 if ‖C‖ is even

(‖C‖−1)/2 if ‖C‖ is odd

for each coalition C ⊆ P.
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of a Cooperative Game

Example (Osborne and Rubinstein (1994), continued)

If n ≥ 4 is even, we have (1/2, . . . ,1/2) ∈ Core(G ):

It suffices to consider deviations by pairs of players (do you see why?),

and any two players (whether or not they are currently matched to

play with each other) jointly receive one dollar under this imputation,

so they cannot do better by deviating.

In fact, it can be shown that (1/2, . . . ,1/2) is the only imputation in

the core of G , i.e., Core(G ) = {(1/2, . . . ,1/2)} (exercise!).
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of a Cooperative Game

Example (Osborne and Rubinstein (1994), continued)

However, if n ≥ 3 is odd, one player remains without a partner.

This implies that the core of G is empty in this case.

Indeed, if the core of G were not empty for, say, n = 3 players, but

would contain a vector ~a = (a1,a2,a3), then since

a1 +a2 +a3 = v({1,2,3}) = 1,

at least one of the values ai would be positive, say a1 > 0.

Thus a2 +a3 < 1.

However, since v({2,3}) = 1, we have a contradiction to the

assumption that ~a is in Core(G ). Hence, Core(G ) is empty for n = 3

(and, by a similar argument, for any odd n).
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of a Cooperative Game

Theorem

Every outcome in the core of a cooperative game maximizes social welfare.

More precisely, if (C,~a) ∈ Core(G ) for a cooperative game G = (P,v), then

v(C)≥ v(C′)

for each coalition structure C′ ∈ C S P .

Proof: For a contradiction, suppose v(C) < v(C′) for some coalition

structure C′ ∈ C S P . Then we have

∑
C ′∈C′

a(C ′) = ∑
i∈P

ai = ∑
C∈C

v(C ) = v(C) < v(C′) = ∑
C ′∈C′

v(C ′). (2)
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of a Cooperative Game

But since (C,~a) ∈ Core(G ), we have a(C ′)≥ v(C ′) for all C ′ ∈ C′.

Hence,

∑
C ′∈C′

a(C ′)≥ ∑
C ′∈C′

v(C ′),

contradicting (2). q

Theorem

There are cooperative games whose core is empty.

Proof: Consider the 3-player majority game G = (P,v) with P = {1,2,3}
and v defined for each coalition C ⊆ P by

v(C ) =

 1 if ‖C‖ ≥ 2

0 otherwise.
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of a Cooperative Game

We show that Core(G ) = /0.

For a contradiction, suppose that Core(G ) 6= /0.

Since v(P) = 1, every (C,(a1,a2,a3)) ∈ Core(G ) must satisfy:

a1 ≥ 0, a2 ≥ 0, a3 ≥ 0, and a1 +a2 +a3 ≥ 1.

Hence, ai ≥ 1/3 for some i ∈ {1,2,3}.

But since v(C)≤ 1 for each coalition structure C ∈ C S P (because at

most one coalition C can satisfy ‖C‖ ≥ 2), we also have

a1 +a2 +a3 ≤ 1.

For C = P \{i}, we have v(C ) = 1 and a(C )≤ 2/3.

Hence, a(C ) < v(C ), so (C,(a1,a2,a3)) 6∈ Core(G ), a contradiction. q
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of Superadditive Games

Recall that we identify the outcomes in superadditive games with the

payoff vectors of the grand coalition and do not need to consider

more complicated coalition structures.

Does this restriction eliminate some of the core outcomes?

That is, can the core of a superadditive game contain an

outcome where the grand coalition does not form?

No: For any such outcome, there is an essentially equivalent

outcome (with the same payoff vector) where the grand

coalition forms.

However, if a game is not superadditive, its core can be nonempty,

even though no outcome in which the grand coalition forms is stable.
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of Superadditive Games

Theorem

A cooperative game G = (P,v) has a nonempty core if and only if its

superadditive cover G ∗ = (P,v∗) has a nonempty core.

Proof: (⇒) Suppose Core(G ) 6= /0 and let (C,~a) ∈ Core(G ). We know:

Every outcome in the core of a cooperative game maximizes social welfare.

Hence, v∗(P) = v(C). Thus ~a is a payoff vector for P in G ∗.

We show that ~a satisfies the core constraints in (G ∗,v∗).

For a contradiction, suppose a(C ) < v∗(C ) for some coalition C ⊆ P.
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of Superadditive Games

It holds that

v∗(C ) = v(C′) for some coalition structure C′ ∈ C S P

⇒ a(C ) < v(C′) for some coalition structure C′ ∈ C S P

⇒ a(C ′) < v(C ′) for some coalition C ′ ∈ C′,

which contradicts (C,~a) ∈ Core(G ).

Hence, ~a ∈ Core(G ∗).
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of Superadditive Games

(⇒) Conversely, suppose Core(G ∗) 6= /0 and let ~a ∈ Core(G ∗).

Let C be any coalition structure with v(C) = v∗(P).

Then v(C)≥ a(P).

But since ~a ∈ Core(G ∗), we have a(C )≥ v∗(C )≥ v(C ) for each C ∈ C.

If we add these ‖C‖ inequalities, we get a(P)≥ v(C), so they are

equations: a(C ) = v(C ) for each C ∈ C.

Hence, ~a is a payoff vector for C.

Again, since ~a ∈ Core(G ∗), we have a(C )≥ v∗(C )≥ v(C ) for all C ⊆ P.

Thus (C,~a) ∈ Core(G ). q
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of Superadditive Games

Remark

Superadditivity is often assumed and justified by the above result.

However, this approach can be problematic

for other solution concepts (such as the Shapley value) if

cross-coalitional transfers are not allowed;

because the characteristic function v∗ of G ∗ may be hard to compute.
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Core of Superadditive Games

Cooperative games whose core is empty are unstable.

When does a game have a nonempty core?

For superadditive games G = (P,v), this question boils down to

checking whether the following linear program with variables

a1,a2, . . . ,an ∈ R and 2n +n+ 1 constraints has a feasible solution:

ai ≥ 0 for all i ∈ P

∑i∈P ai = v(P)

∑i∈C ai ≥ v(C ) for all C ⊆ P.

For some classes of cooperative games, it is possible to solve this linear

program efficiently (i.e., in time polynomial in the number n of players),

even though the number of constraints in it is exponential in n.
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The ε-Core of a Superadditive Game

Shapley and Shubik (1966) introduced the following relaxation of the core:

Definition (ε-core of a superadditive game)

The (strong) ε-core of a superadditive game G = (P,v) is defined as:

ε-Core(G ) =
{
~a ∈PV (G ) a(P) = v(P), a(C )≥ v(C )− ε for all C ⊂ P

}
,

where PV (G ) denotes the set of all payoff vectors for P.

If ε > 0, ε-Core(G ) contains those payoff vectors for which a coalition

C ⊂ P willing to leave the grand coalition has to pay a penalty of ε.

For ε = 0, we have 0-Core(G ) = Core(G ).

General case not considered here: If ε < 0, then deviating from the

grand coalition is made easier for C by paying a bonus of ε.
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Least Core of a Superadditive Game

Certainly, even if the core of a game is empty, one can ensure this

game to have a nonempty ε-core by choosing ε large enough.

On the other hand, choosing ε small enough (indeed, negative), one

can ensure this game to have an empty ε-core, even though its core

may be nonempty.

Maschler, Peleg, and Shapley (1979) generalized this idea by

introducing the least core of a game.

Definition (least core of a superadditive game)

The least core of a superadditive game G is defined to be the intersection

of all nonempty ε-cores of G .
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Foundations of Cooperative Game Theory Stability Concepts for Cooperative Games

The Least Core of a Superadditive Game

Alternatively, the least core of G can be defined as its ε̃-core, where ε̃

is chosen so that

the ε̃-core of G is nonempty, but

the ε-core of G is empty for all values ε < ε̃.

By definition, the least core of a game is never empty. Intuitively, the

least core consists of the most stable outcomes of the game.

It can be shown that the value ε̃ of the least core is well-defined. It

can be computed by a linear program similar to the one for the core:

min ε

ai ≥ 0 for all i ∈ P

∑i∈P ai = v(P)

∑i∈C ai ≥ v(C )− ε for all C ⊂ P.
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Cost of Stability for Superadditive Games: Ice Story

Two types of ice cream tubs:

Belle

10 oz

David

10 oz

Chris

10 oz

Belle

12 oz

David

12 oz

Chris

Belle

Belle

12 oz

DavidChris

12 oz

Belle

14 oz

David

14 oz

Chris

14 oz
+ 12 oz

Chris

12 oz

David

12 oz

a small one (24 oz) for $ 8

a large one (30 oz) for $ 10

Belle has $ 5

Chris has $ 4

David has $ 4
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Cost of Stability for Superadditive Games: Ice Story

Two types of ice cream tubs:

Belle

10 oz

David

10 oz

Chris

10 oz

Belle

12 oz

David

12 oz

Chris

Belle

Belle

12 oz

DavidChris

12 oz

Belle

14 oz

David

14 oz

Chris

14 oz
+ 12 oz

Chris

12 oz

David

12 oz

a small one (24 oz) for $ 8

a large one (30 oz) for $ 10

Belle has $ 5

Chris has $ 4

David has $ 4

Chris’s mother supplements it with

12 oz of ice cream from the freezer

David: “10 oz extra would do

the trick, or maybe even less?”
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Cost of Stability for Superadditive Games: X-Ray Story

Suppose three private hospitals in the same community want to

purchase an X-ray machine:

The standard X-ray machine costs $5 million, but can comply with

the requirements of only two hospitals.

A more advanced machine, which is capable of fulfilling the needs of

all three hospitals, costs $9 million.

If all three hospitals join their forces and buy the more advanced,

though more expensive, X-ray machine, this will cost them less than

buying two standard X-ray machines.

However, the three hospital managers cannot settle on how to

distribute the cost for this more expensive machine among each other:

If each hospital pays one third of the $9 million, every pair of hospitals

would be better off by leaving the grand coalition and to be content

with the cheaper machine for themselves.
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Cost of Stability for Superadditive Games: X-Ray Story

Luckily for the three, the municipal council decides to solve this issue

by subsidizing the more advanced X-ray machine with a supplement

payment of $3 million, so each hospital needs to add only $2 million.

This means that every pair of hospitals now pays only $4 million

together, and so has no longer an incentive to leave the grand

coalition and to buy the less efficient, cheaper X-ray machine.

But wait! Isn’t that an incredible waste of tax money?

Indeed, the positive effect of subsidizing the more advanced X-ray

machine so as to stabilizing the grand coalition could have been

achieved as well at a lower cost:

A subsidy of $1.5 million would have been enough to ensure that

no hospital manager has an incentive to leave the grand coalition.
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Cost of Stability for Superadditive Games

Questions:

What is the minimum external supplement payment needed to stabilize

the grand coalition?

How hard is it to determine these cost of stability?

Bachrach, Elkind, Meir, Pasechnik, Zuckerman, Rothe, and

Rosenschein (2009) study such questions as follows:

Suppose an external party is interested in stabilizing the grand coalition

in a game with an empty core, and is willing to pay for that.

The payment is done only if the players do not deviate from the grand

coalition.

This amount plus the actual gains of the grand coalition will then be

distributed among the players to ensure stability.

The cost of stability for G are defined to be the amount of the smallest

supplement payment stabilizing G .
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Cost of Stability for Superadditive Games

Definition (cost of stability)

For a superadditive game G = (P,v) and a supplement payment of ∆≥ 0,

the adjusted game G∆ = (P,v∆) is given by

v∆(C ) = v(C ) for C 6= P and

v∆(P) = v(P) + ∆.

The cost of stability for G is defined by

CoS(G ) = inf{∆
∣∣∆≥ 0 and Core(G∆) 6= /0}.

An imputation ~a for G∆ is not an imputation for G since a(P) > v(P) is

possible. Therefore, we call it a super-imputation for G .
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Cost of Stability for Superadditive Games

Remark

What is the relationship between the value of the least core

and the cost of stability?

Both of these quantities are strictly positive if and only if the core is

empty. That is, ε̃ > 0 if and only if CoS(G ) > 0.

However, they capture two very different approaches to dealing with

coalitional instability:

The least core corresponds to punishing undesirable behavior (i.e.,

making deviations more costly).

The cost of stability corresponds to encouraging desirable behavior

(i.e., making staying in the grand coalition more attractive).
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Cost of Stability for Superadditive Games

Fact

In general, CoS(G )≤ n · ε̃(G ), and there are examples where this bound is

tight.

Proof: Clearly, if ε̃(G ) = 0, we have CoS(G ) = 0.

Now, assume ε̃(G ) > 0.

Let ~a be an imputation in the least core of G .

For any C ⊆ P, we have a(C )≥ v(C )− ε̃(G ).

Consider a super-imputation ~a∗ given by a∗i = ai + ε̃(G ).

Clearly, we have a∗(C )≥ v(C ) for any C ⊆ P such that C 6= /0.

Further, it is easy to see that a∗(P) = v(P) +nε̃(G ), so CoS(G )≤ nε̃(G ).
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Cost of Stability for Superadditive Games

To see that this bound is tight, consider the game G = (P,v) with

‖P‖= n and

v(C ) =

 0 if C = /0

1 if C 6= /0.

It is easy to see that

(a) ε̃(G ) = n−1
n , since the imputation ( 1

n , . . . ,
1
n ) is in the least core of G .

(b) On the other hand, CoS(G ) = n−1 = nε̃(G ). q
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Cost of Stability for Superadditive Games

Remark (continued)

This notion can be extended to games that are not superadditive:

either aiming at stabilizing the grand coalition as well,

or looking for a coalition structure that is a cheapest to stabilize.

The cost of stability can be bounded as follows:

0≤ CoS(G )≤ n ·max
C⊆P

v(C )

and more generally:

max
C∈C S P

(v(C)−v(P))≤ CoS(G )≤ n ·max
C⊆P

v(C ),

where v(C) = ∑
Cj∈C

v(Cj) for C = {C1,C2, . . . ,Cm}.
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Cost of Stability for Superadditive Games

Remark (continued)

Just as the least core, the cost of stability can be computed by

solving a linear program that has a constraint for each coalition:

min ∆

∆ ≥ 0

ai ≥ 0 for all i ∈ P

∑i∈P ai = v(P) + ∆

∑i∈C ai ≥ v(C ) for all C ⊆ P.
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Cost of Stability for Superadditive Games

Remark (continued)

We have to impose the constraint ∆≥ 0: Without it, if the game has

a nonempty core, the value of this LP may be negative, which would

correspond to imposing a fine on the grand coalition.

This LP implicitly shows that the cost of stability for G, CoS(G ), is

well-defined because the set {∆
∣∣∆≥ 0 and Core(G∆) 6= /0} contains

its greatest lower bound CoS(G ), i.e., the game GCoS(G) has a

nonempty core:

The optimal value of this LP is exactly CoS(G ).

Every optimal solution of this LP corresponds to an imputation in the

core of GCoS(G ).
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Cost of Stability for Superadditive Games

Theorem

For each superadditive game G = (P,v) with n = ‖P‖ players, we have

CoS(G )≤ (
√
n−1)v(P),

and this bound is asymptotically tight. without proof

Definition (anonymous game)

A cooperative game G = (P,v) is anonymous if v(C ) = v(C ′) for all

C ,C ′ ⊆ P with ‖C‖= ‖C ′‖.
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Cost of Stability for Superadditive Games

Theorem

For each anonymous, superadditive game G = (P,v), we have

CoS(G )≤ v(P), and this bound is asymptotically tight.

Proof: Fix an anonymous, superadditive game G = (P,v) with ‖P‖= n.

Consider a super-imputation ~a = (a1, . . . ,an) given by ai = 2v(P)
n .

Clearly, we have a(P) = 2v(P).

It remains to show that ~a is in the core of the adjusted game Gv(P).

For any coalition C ⊂ P, there exists an integer k , 1≤ k ≤ n−1, such that

n

k + 1
≤ ‖C‖< n

k
.
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Cost of Stability for Superadditive Games

For this value of k, one can construct k pairwise disjoint coalitions

C1, . . . ,Ck with C1 = C and ‖C1‖= · · ·= ‖Ck‖.

Superadditivity then implies that v(C )≤ v(P)
k .

On the other hand, we have

a(C ) = ‖C‖2v(P)

n
≥ n

k + 1
· 2v(P)

n
=

2v(P)

k + 1
.

Since 2v(P)
k+1 ≥

v(P)
k for any k ≥ 1, it follows that a(C )≥ v(C ) for all

C ⊂ P, so ~a is stable.

To see that this bound is tight, consider a game G = (P,v) with

‖P‖= n = 2k + 1 given by v(C ) = 0 if ‖C‖ ≤ k, and v(C ) = 1 if

‖C‖ ≥ k + 1.

Clearly, this game is anonymous.
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Cost of Stability for Superadditive Games

Moreover, as any two winning coalitions intersect, this game is also

superadditive.

Consider any stable super-imputation ~a for this game.

For any C with ‖C‖= k + 1, we have ∑i∈C ai ≥ 1.

There are exactly
( n
k+1

)
coalitions of this size, and each agent participates

in exactly
(n−1

k

)
such coalitions.

Thus, summing all these inequalities, we obtain
(n−1

k

)
a(P)≥

( n
k+1

)
, or,

canceling,

a(P)≥ n

k + 1
= 2− 1

k + 1
. q
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Stable Sets in a Cooperative Game

Another stability concept—and the first one ever—has been

introduced by von Neumann and Morgenstern (1944).

Definition (dominance)

If G = (P,v) is a superadditive game with more than two players and

if ~a = (a1,a2, . . . ,an) and ~b = (b1,b2, . . . ,bn) are in I (G ), we say

~a dominates ~b via a coalition C 6= /0 (denoted by ~a�C
~b) if

ai > bi for all i ∈ C and

a(C )≤ v(C ).

We say that ~a dominates ~b (and write ~a�~b) if ~a�C
~b for some nonempty

set C ⊆ P.
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Stable Sets in a Cooperative Game

Here, ai > bi for all i ∈ C means that the players in C would prefer ~a

to ~b as their payoff vector, since each of them would strictly benefit

from that, and

a(C )≤ v(C ) means that the players in C can plausibly threaten to

leave the grand coalition.

This notion is reminiscent of that of dominant strategy in a

noncooperative game.

The dominance relation is not necessarily antisymmetric:

It may be the case that ~a�C1
~b and ~b �C2 ~a for distinct payoff vectors

~a and ~b, as long as C1 and C2 are disjoint.
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Stable Sets in a Cooperative Game

Mr. & Mrs. Smith – Shooting Scene c© 2005 Twentieth Century Fox
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Stable Sets in a Cooperative Game

Definition (stable sets)

A stable set of a superadditive game G is a subset S ⊆I (G ) satisfying

the following two conditions:

1 Internal stability: No vector ~a ∈ S is dominated by a vector ~b ∈ S .

2 External stability: For all ~b ∈I (G )rS , there is a vector ~a ∈ S such

that ~b is dominated by ~a.

Interpretation:

Due to internal stability of S , there is no reason to remove a payoff

vector from S .

Due to external stability of S , there is no reason to add another

payoff vector to S .
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Stable Sets in a Cooperative Game

This interpretation is explained by von Neumann and Morgenstern (1944)

as follows:

A stable set can be seen as a list of “acceptable behaviors” in a society.

No behavior within this list is strictly superior to another behavior in

the list.

However, for each inacceptable behavior there is an acceptable

behavior that is preferrable.

Remark

Stable sets exist in some, yet not in all cooperative games.

If they exist, they usually are not unique, and also hard to find.
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Stable Sets in a Cooperative Game

Remark (continued)

These are some of the reasons why also other stability or solution

concepts, such as the core, have been proposed.

How is the core related to stable sets?

Theorem

1 If the core of G is nonempty, it is contained in all stable sets of G .

2 However, the core itself is not necessarily a stable set.

Remark

In fact, if the core of a game G is a stable set, then it is its only stable set.
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Stable Sets in a Cooperative Game

Proof:

1 Suppose that ~a is an imputation in the core of G .

Then it cannot be dominated by any other imputation:

Suppose that it is dominated by some imputation ~b, i.e., there

exists a coalition C with bi > ai for all i ∈ C and b(C )≤ v(C ).

Then we have a(C ) = ∑i∈C ai < ∑i∈C bi = b(C )≤ v(C ),

a contradiction with ~a being in the core of G .

This implies that ~a belongs to every stable set of G .

2 While the argument above implies that the core satisfies the

condition of internal stability, it may fail external stability.
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Stable Sets in a Cooperative Game

A simple example is a game G 1 = (P,v) with P = {1,2,3} and

v(C ) =

1 if 1 ∈ C and ‖C‖ ≥ 2

0 otherwise.

It can be shown that the only imputation in the core of this game is

~a = (1,0,0).

Now, consider the imputation ~b = (0,1/2,1/2).

It is easy to see that ~a does not dominate ~b:

The only coalition C such that ai > bi for all i ∈ C is {1}, and

a({1}) = ∑
i∈{1}

ai = a1 = 1 > 0 = v({1}). q
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Some Other Stability/Solution Concepts

Remark

We have seen the following important stability/solution concepts:

the core,

the ε-core,

the least core,

the cost of stability, and

von Neumann and Morgenstern’s stable sets.

Some other stability/solution concepts (most of which will not be

considered here) include:

the nucleolus,

the kernel,

the bargaining set, and

the Shapley value (to be introduced later on).
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