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Nash Equilibria in Mixed Strategies Definition

Pure and Mixed Strategies

In all games so far, all players had to choose exactly one strategy:

Smith and Wesson had to either confess or remain silent in the

prisoners’ dilemma;

George and Helena had to go either to the soccer match or the

concert in the battle of the sexes;

David and Edgar could only either swerve or go on driving in the

chicken game;

in the penalty game, the kicker and the goalkeeper had each to

choose one side of the goal, left or right;

in the paper-rock-scissors game, David and Edgar would form upon

pon either paper, rock, or scissors with their hands; and

each player had to choose exactly one number in the guessing

numbers game.
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Nash Equilibria in Mixed Strategies Definition

Pure and Mixed Strategies

All players play pure strategies in these games.

However, if one such game is played several times in a row, the

players might change their minds and choose different strategies.

It would be pretty dull in certain games to always decide for the same

strategy. For example, a goalkeeper who always jumps to the left side

will be very predictable; instead he should choose randomly where to

jump, sometimes to the left, sometimes to the right.

If the players make their decisions on which strategy to choose

randomly under some probability distribution, we say they use a

mixed strategy.

In many games, especially so in those with mixed strategies, one does

not win by intelligence only, one has also to be lucky.
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Nash Equilibria in Mixed Strategies Definition

Nash Equilibrium in Mixed Strategies

Definition (Nash equilibrium in mixed strategies)

Let S = S1×S2×·· ·×Sn be the set of strategy profiles of the n players in

a noncooperative game in normal form and let gi be the gain function of

player i , 1≤ i ≤ n. For simplicity, let us assume that all sets Si are finite.

1 A mixed strategy for player i is a probability distribution πi on Si ,

where πi (sj) is the probability of the event that i chooses the strategy

sj ∈ Si . Let Πi be the set of all probability distributions on Si (so

πi ∈ Πi ). Let Π = Π1×Π2×·· ·×Πn.

2 The expected utility of a mixed-strategy profile ~π = (π1,π2, . . . ,πn) for

player i is

Gi(~π) = ∑
~s=(s1,...,sn)∈S

gi (~s)
n

∏
j=1

πj(sj).
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Nash Equilibria in Mixed Strategies Definition

Nash Equilibrium in Mixed Strategies

Remark

Intuitively, to compute the expected utility of Gi(~π) for player i ,

we first calculate the probability of reaching each outcome given ~π, and

we then calculate the average of the gains of the outcomes weighted by

the probabilities of each outcome.

We assume players to be risk-neutral, i.e., they seek to maximize their

expected utility.

The support of a mixed strategy πi for player i is the set of pure

strategies {sj
∣

∣πi (sj)> 0}.

A pure strategy is the special case of a mixed strategy whose support is

a singleton.

A strategy πi is fully mixed if it has full support, i.e., every pure

strategy sj ∈ Si occurs in it with nonzero probability.
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Nash Equilibria in Mixed Strategies Definition

Nash Equilibrium in Mixed Strategies

Definition (Nash equilibrium in mixed strategies—continued)

3 A mixed strategy πi ∈ Πi is player i ’s best response to the

mixed-strategy profile ~π−i = (π1, . . . ,πi−1,πi+1, . . . ,πn) ∈ Π−i of the

other players if for all mixed strategies π ′
i ∈ Πi ,

Gi(π1, . . . ,πi−1,πi ,πi+1, . . . ,πn) ≥ Gi(π1, . . . ,πi−1,π
′
i ,πi+1, . . . ,πn). (1)

4 A profile ~π = (π1,π2, . . . ,πn) of mixed strategies is in a Nash

equilibrium in mixed strategies if πi is a best response to ~π−i for all

players i .

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 6 / 73



Nash Equilibria in Mixed Strategies Properties

Nash Equilibrium in Mixed Strategies

Remark

That is, a profile ~π = (π1,π2, . . . ,πn) of mixed strategies is in a Nash

equilibrium in mixed strategies

if and only if

no player i has a mixed strategy π ′
i ∈ Πi that would give her a higher

profit than her mixed strategy πi on Si in response to the mixed

strategies she expects the other players to choose.

For each player, one-sided deviation from their mixed strategies would

thus be not beneficial (and might even be punished), assuming that

the other players stick to their mixed strategies of the Nash

equilibrium.
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Nash Equilibria in Mixed Strategies Properties

Nash Equilibrium in Mixed Strategies

Remark (continued)

Consequently, for a Nash equilibrium in mixed strategies, every player

is indifferent to each strategy she chooses with positive probability in

her mixed strategy (i.e., to each strategy in her support).

Also, the players’ probability distributions in the profile of their mixed

strategies are independent. (Compare: “correlated equilibrium.”)

Theorem

1 Let ~π = (π1,π2, . . . ,πn) be a profile of mixed strategies in a

noncooperative game in normal form. A mixed strategy πi is

a best response to the mixed-strategy profile ~π−i if and only if

all pure strategies in its support are best responses.

2 Every pure Nash equilibrium is also a mixed Nash equilibrium.
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Nash Equilibria in Mixed Strategies Properties

Nash Equilibrium in Mixed Strategies

1 Why?

For a contradiction, suppose that a best response mixed strategy

contains in its support a pure strategy that itself is not a best response.

Then the player’s expected utility would be improved by decreasing the

probability of the worst such pure strategy (increasing proportionally

the remaining nonzero probabilities to fill the gap).

This contradicts that the given mixed strategy was a best response.

The converse is immediate.

2 Exercise.
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Nash Equilibria in Mixed Strategies Properties

Nash Equilibrium in Mixed Strategies

Remark

As the following examples demonstrate, the converse is not necessarily

true: The existence of a Nash equilibrium in mixed strategies does not

imply the existence of a Nash equilibrium in pure strategies.

That is, there can exist Nash equilibria in mixed strategies in addition

to those in pure strategies.

In particular, Nash equilibria in mixed strategies may exist in games

that have no Nash equilibrium in pure strategies at all.
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Nash Equilibria in Mixed Strategies Examples

Penalty Game: Mixed-Strategy Nash Equilibrium

Table: The penalty game

Goalkeeper

Left Right

Kicker
Left (−1,1) (1,−1)

Right (1,−1) (−1,1)

There is no Nash equilibrium in pure strategies.

However, there is a Nash equilibrium in mixed strategies if the kicker

K and the goalkeeper G both randomize uniformly:

πK = (πK (L),πK (R)) = (1/2,1/2) = (πG (L),πG (R)) = πG .
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Nash Equilibria in Mixed Strategies Examples

Modified Penalty Game: Mixed-Strategy Nash Equilibrium

Table: The penalty game with a goalkeeper acting awkwardly on the left

Goalkeeper

Left Right

Kicker
Left (0,0) (1,−1)

Right (1,−1) (−1,1)

Again, there is no Nash equilibrium in pure strategies.

However, there is a Nash equilibrium in mixed strategies:

(πK ,πG ) = ((2/3,1/3),(2/3,1/3)).

Why?
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Nash Equilibria in Mixed Strategies Examples

Modified Penalty Game: Mixed-Strategy Nash Equilibrium

For a mixed strategy profile to be in Nash equilibrium,

the kicker has to find a mixed strategy πK that makes the goalkeeper

indifferent against each support strategy in πG , and

conversely the goalkeeper has to find a mixed strategy πG that makes

the kicker indifferent against each support strategy in πK .

If the kicker chooses the left side, his gain is

0 ·πG (L)+πG (R) = πG (R).

If he chooses the right side, however, his gain is πG (L)−πG (R).

Thus, the kicker is made indifferent against a shot on goal to the left or

to the right if the goalkeeper mixes his strategies such that

πG (R) = πG (L)−πG (R).
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Nash Equilibria in Mixed Strategies Examples

Modified Penalty Game: Mixed-Strategy Nash Equilibrium

Since πG is a probability distribution, we in addition have

πG (L)+πG (R) = 1,

so the goalkeeper achieves the kicker’s desired indifference by choosing

πG (L) =
2

3
and πG (R) =

1

3
.

This can be interpreted as the goalkeeper trying to make up for this deficit

on the left side by jumping there more often.

He thus anticipates the fact that the kicker is more likely to try to catch

him wrongfooted on his weak side.
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Nash Equilibria in Mixed Strategies Examples

Modified Penalty Game: Mixed-Strategy Nash Equilibrium

Conversely, the goalkeeper’s gain for a jump to the left is

0 ·πK (L)−πK (R) =−πK (R).

If he jumps to the right, however, his gain is −πK (L)+πK (R).

Thus, the goalkeeper is made indifferent against a jump to the left or to

the right if the kicker mixes his strategies such that

−πK (R) =−πK (L)+πK (R),

which together with

πK (L)+πK (R) = 1

gives the solution of

πK (L) =
2

3
and πK (R) =

1

3

for the kicker as well.
J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 15 / 73



Nash Equilibria in Mixed Strategies Examples

Modified Penalty Game: Mixed-Strategy Nash Equilibrium

This mixed strategy reflects the above-mentioned fact that the kicker is

more likely to challenge the goalkeeper’s weak left side.

According to inequality (1),

(πK ,πG ) = ((2/3,1/3),(2/3,1/3))

is a Nash equilibrium in mixed strategies, and it is the only one.
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Nash Equilibria in Mixed Strategies Examples

Paper-Rock-Scissors: Mixed-Strategy Nash Equilibrium

Table: The paper-rock-scissors game

Edgar

Rock Scissors Paper

David

Rock (0,0) (1,−1) (−1,1)

Scissors (−1,1) (0,0) (1,−1)

Paper (1,−1) (−1,1) (0,0)

Again, there is no Nash equilibrium in pure strategies.

However, there is a Nash equilibrium in mixed strategies:

(πD ,πE ) = ((1/3,1/3,1/3),(1/3,1/3,1/3)).
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Nash Equilibria in Mixed Strategies Examples

Battle of the Sexes: Mixed-Strategy Nash Equilibria

Table: The battle of the sexes

Helena

Soccer Concert

George
Soccer (10,1) (0,0)

Concert (0,0) (1,10)

Nash equilibria in pure strategies:

(Soccer,Soccer) and (Concert,Concert).

In addition, there is also a third Nash equilibrium in mixed strategies:

(πG ,πH) = ((10/11,1/11),(1/11,10/11)).
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Nash Equilibria in Mixed Strategies Examples

Battle of the Sexes: Mixed-Strategy Nash Equilibria

To determine this third Nash equilibrium, it is again enough

for George to find a mixed strategy πG that makes Helena indifferent

against her two strategies, while

conversely Helena mixes her pure strategies in a way that also George

is indifferent against his possible actions.

If George chooses the soccer match (denoted by S) instead of the

concert (denoted by C ), his gain is 10 ·πH(S)+0 ·πH (C ) = 10 ·πH (S).

If he chooses the concert, however, then he gains

0 ·πH(S)+πH(C ) = πH(C ).

To make him indifferent against these two actions, Helena must mix her

strategies such that

10 ·πH(S) = πH(C ).
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Nash Equilibria in Mixed Strategies Examples

Battle of the Sexes: Mixed-Strategy Nash Equilibria

Due to πH(S)+πH(C ) = 1, we have

πH(S) = 1/11 and πH(C ) = 10/11.

Since the gain vectors are symmetric for George and Helena, it follows that

George’s mixed strategy is analogously calculated to be

πG (S) = 10/11 and πG (C ) = 1/11.

For this symmetric Nash equilibrium in mixed strategies,

(πG ,πH) = ((10/11,1/11),(1/11,10/11)),

George and Helena would both stick to their own favorite ten times and

give in only at the eleventh evening to finally fulfill their beloved one’s

desire.
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Nash Equilibria in Mixed Strategies Examples

Battle of the Sexes: Mixed-Strategy Nash Equilibria

This, however, obviously causes trouble.

In each round of the game, both have to commit themselves to one

option, either the soccer game or the concert.

If both are stubborn on ten out of eleven of their anniversaries and are

gentle only once, they will spend only two of these special days together

(assuming they choose different anniversaries to give in), and there is

nothing in it for either of them.

The reason for this lies in the intensity they each prefer their own favorite

strategy over their partner’s favorite strategy: Both valuate their own

favorite ten times as much than their partner’s!
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Nash Equilibria in Mixed Strategies Examples

Battle of the Sexes: Mixed-Strategy Nash Equilibria

How would one have to change the gain vectors of George and Helena to

obtain a Nash equilibrium in mixed strategies having the form

(π ′
G ,π

′
H) = ((1/2,1/2),(1/2,1/2))?

This Nash equilibrium would enable them to take turns in following his or

her desire, and their relationship would have been saved.

As one can see, for a relation to work it is important that both partners

are not too selfishly focused on their own preferences, but are open also

for their partner’s suggestions.
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Nash Equilibria in Mixed Strategies Examples

Chicken Game: Mixed-Strategy Nash Equilibria

Table: The chicken game

Edgar

Swerve Drive on

David
Swerve (2,2) (1,3)

Drive on (3,1) (0,0)

Nash equilibria in pure strategies:

(Drive on,Swerve) and (Swerve,Drive on).

Again, there is a third Nash equilibrium in mixed strategies:

(πD ,πE ) = ((1/2,1/2),(1/2,1/2)).
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Nash Equilibria in Mixed Strategies Examples

Chicken Game: Mixed-Strategy Nash Equilibria

Interpreting the three Nash equilibria in this game as recommendations for

action, one could advice the players to do the following (and wish them

good luck in evaluating their opponents well!):

1 If you expect your opponent to be a chicken, then you should definitely go

all out and win heroically.

This corresponds to one of the two Nash equilibria in pure strategies.

2 If you expect your opponent to be undaunted by death and risk it all, then

you should be wise and swerve. You won’t win, but you’ll survive at least.

This corresponds to the other one of the two pure Nash equilibria.

3 If you can’t judge your opponent well and just have no idea of what he is up

to do, then you should toss a coin and go all out with heads, but cautiously

swerve with tails. Maybe you win; if not, maybe you survive—good luck!

This corresponds to the additional Nash equilibrium in mixed strategies.
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Nash Equilibria in Mixed Strategies Examples

Prisoners’ Dilemma: More Mixed-Strategy Nash Equilibria?

Table: The prisoners’ dilemma

Wesson

Confession Silence

Smith
Confession (−4,−4) (0,−10)

Silence (−10,0) (−2,−2)

Nash equilibrium in pure strategies:

(Confession,Confession).

There exists no additional Nash equilibrium in mixed strategies.
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Nash Equilibria in Mixed Strategies Examples

Different Interpretations of Mixed-Strategy Nash Equilibria

What does it mean to play a mixed strategy?

Randomize to confuse your opponent:

Penalty game

Paper-Rock-Scissors game

Randomize when you are uncertain about the other players’ actions:

Battle of the sexes

Chicken game

Mixed strategies describe what might happen in repeated play:

Number/frequency of pure strategies in the limit

Mixed strategies describe population dynamics:

Some players chosen from a population of players, each with

deterministic (i.e., pure) strategies

A mixed strategy is the probability of picking a player who will play one

pure strategy or another
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Nash Equilibria in Mixed Strategies Examples

Properties of Some Two-Player Games

Table: Properties of some two-player games

Prisoners’ Battle of Chicken Penalty Paper-Rock-

dilemma the sexes game game Scissors game

Dominant strategies? yes no no no no

Strictly dominant strategies? yes no no no no

Number of NE in pure str. 1 2 2 0 0

Number of NE in mixed str. 1 3 3 1 1

Number of PO 3 2 3 4 9

PO = NE? no yes no no no
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Nash’s Theorem

Theorem (Nash (1950; 1951))

For each noncooperative game in normal form with a finite number of

players each having a finite set of strategies, there exists a Nash

equilibrium in mixed strategies.

Nash provided two proofs of his celebrated result.

We sketch the first and give a more detailed outline of the second.
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Sketch of First Proof of Nash’s Theorem

Let S = S1×S2×·· ·×Sn be the set of strategy profiles of the n

players in a noncooperative game in normal form.

All sets Si are here assumed to be finite.

How can the abstract notion of “strategy” (in pure and in mixed

form) be made accessible to mathematical or, specifically, topological

arguments?

How can, for example, the very concrete strategy Drive on in the

chicken game be compared with another concrete strategy from a

different game, such as Confession in the prisoners’ dilemma or Left in

the penalty game?

Nash views pure strategies as the unit vectors in an appropriate real

vector space; every strategy from Si is thus in R
mi .
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Sketch of First Proof of Nash’s Theorem

Strategies can then be mixed using the common operations in vector

spaces:

Every mixed strategy is the linear combination of pure strategies, each

weighted by a certain probability, and

since a mixed strategy corresponds to a probability distribution on Si ,

these probabilities sum up to 1.

Mathematically speaking, mixed strategies over Si are the points of a

simplex, which can be viewed as a convex subset of Rmi .

Such a subset is said to be convex if the direct connection between

any two points of this subset completely lies within this subset.
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Sketch of First Proof of Nash’s Theorem

0 1 2 3 4

1
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4

(a) a convex set

0 1 2 3 4

1

2

3

4

(b) a nonconvex set

Figure: A convex and a nonconvex set
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Sketch of First Proof of Nash’s Theorem

In addition, the strategy sets are required to be compact (which is

defined using the mathematical terms of closure and boundedness).

Also the gain functions gi , 1≤ i ≤ n, mapping each strategy profile

~s = (s1,s2, . . . ,sn) ∈ S to a real number, must satisfy certain

conditions so that known fixed point theorems from topology can be

applied to them.

To wit, it is required that the (multilinear) extensions of the functions

gi to the set of mixed strategies over S be continuous and

quasi-concave in sj for all j , 1≤ j ≤ n.

Continuity means that if there are only very small changes in the

profiles of mixed strategies, then also the corresponding gains change

only very little, i.e., there are no “jumps” (technically speaking, no

points of discontinuity) in these gain functions.
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Sketch of First Proof of Nash’s Theorem

A function g : R→ R is said to be quasi-convex if all sets of the form

Mc = {x ∈ R
∣

∣g(x)≤ c}

are convex, and

a function f : R→ R is said to be quasi-concave if its negation, −f , is

quasi-convex. For example,

every monotonic function is both quasi-convex and quasi-concave, and

every function monotonically increasing up to a certain point and then

monotonically decreasing is quasi-concave.
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Sketch of First Proof of Nash’s Theorem

For concreteness, suppose that Anna and Belle play a two-player

noncooperative game in normal form with

Anna having the pure strategies a1, a2, and a3 and

Belle having the pure strategies b1 and b2.

Table: Anna’s gain (left) and Belle’s gain (right)

Belle

Strategy b1 Strategy b2

Anna

Strategy a1 (1,2) (1,2)

Strategy a2 (4,1) (2,0)

Strategy a3 (3,0) (4,3)
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Sketch of First Proof of Nash’s Theorem

a1

a2

a3

gain at b1

Anna’s
gain at b2
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Anna’s

(a) Anna’s gains

gain at a1
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Belle’s
gain at a3

Belle’sb1

b2

(b) Belle’s gains

Figure: Convex gain sets for pure and mixed strategy sets
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Sketch of First Proof of Nash’s Theorem

Since finite sets cannot be convex, the existence of a Nash equilibrium

in pure strategies cannot be guaranteed by the proof of Nash’s

Theorem.

The set of mixed strategies over S (including the pure strategies as

special cases), however, is compact and convex and the extensions of

the gain functions on these sets satisfy all required conditions, which

makes certain fixed point theorems of topology applicable.

It is then possible to define suitable transformations whose fixed

points correspond to the Nash equilibria in mixed strategies.
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Sketch of First Proof of Nash’s Theorem

For ~π = (π1,π2, . . . ,πn) ∈ Π and every player i , a best response

correspondence bi(~π−i ) is defined as a relation from the set of

probability distributions Π−i over the other players’ strategies.

Setting

b(~π) = b1(~π−1)×b2(~π−2)×·· ·×bn(~π−n)

and using the fixed point theorem of Kakutani, one can prove that b

must have a fixed point under the hypotheses mentioned.

That is, there exists a strategy profile ~π∗ with ~π∗ ∈ b(~π∗).
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Sketch of First Proof of Nash’s Theorem

However, since b(~π) contains the best response strategies of all

players to ~π by definition, this fixed point

~π∗ ∈ b(~π∗)

shows that the mixed strategies of all players in ~π∗ are simultaneously

in a Nash equilibrium in mixed strategies.

No player has an incentive to deviate from her mixed strategy in ~π∗,

assuming that all other players stick to their strategies in ~π∗ as well.

This is the idea of the original proof of Nash’s Theorem.
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Nash’s Second Proof: Some Basic Definitions

Definition

1 A set X ⊆ R
m is convex if for all ~x ,~y ∈ X and for all real numbers

λ ∈ [0,1],

λ ·~x+(1−λ ) ·~y ∈ X .

2 For vectors ~x0,~x1, . . . ,~xn ∈ R
m and nonnegative scalars λ0,λ1, . . . ,λn

satisfying ∑n
i=0λi = 1, the vector

n

∑
i=0

λi ·~xi

is a convex combination of ~x0,~x1, . . . ,~xn.

3 A finite set {~x0,~x1, . . . ,~xn} of vectors in R
m is said to be affinely

independent if
(

n

∑
i=0

λi ·~xi =~0 and
n

∑
i=0

λi = 0

)

⇒ λ0 = λ1 = · · ·= λn = 0.
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Nash’s Second Proof: Simplex

Definition

1 An n-simplex is the set of all convex combinations of the affinely

independent set {~x0,~x1, . . . ,~xn} of vectors:

~x0 · · ·~xn =

{

n

∑
i=0

λi ·~xi
∣

∣λi ≥ 0 for each i , 0≤ i ≤ n, and
n

∑
i=0

λi = 1

}

.

(a) Every ~xi is a vertex of the n-simplex ~x0 · · ·~xn.

(b) Every k-simplex ~xi0 · · ·~xik , i0, . . . ik ∈ {0,1, . . . ,n}, is a k-face of ~x0 · · ·~xn.

2 The standard n-simplex ∆n is defined as

∆n =

{

~y = (y0,y1, . . . ,yn) ∈ R
n+1
∣

∣ yi ≥ 0,0≤ i ≤ n, and
n

∑
i=0

yi = 1

}

.

That is, ∆n = ~u0 · · ·~un, where ~ui denotes the i -th unit vector in R
n+1.
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Nash’s Second Proof: Simplex

~x0

(a) 0-simplex

~x0 ~x1

(b) 1-simplex

~x2

~x0 ~x1

(c) 2-simplex

~x2

~x0 ~x1

~x3

(d) 3-simplex

Figure: n-simplexes for 0≤ n≤ 3
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Nash Equilibria in Mixed Strategies Existence of Nash Equilibria

Nash’s Second Proof: Simplicial Subdivision & Labeling

Definition

1 A simplicial subdivision of an n-simplex T is a finite set of simplexes

{Ti

∣

∣1≤ i ≤ k} such that

(a)
⋃

Ti∈T

Ti = T and

(b) for each Ti ,Tj ∈ T , Ti ∩Tj is either empty or equal to a common face.

2 Let T =~x0 · · ·~xn be a simplicial subdivided n-simplex, and let V denote

the set of all distinct vertices of all the subsimplexes.

For a point ~y ∈ T , ~y = ∑n
i=0 λi ·~xi , let σ(~y) = {i

∣

∣λi > 0} be the set of

vertices “involved” in ~y .

A function L : V →{0,1, . . . ,n} is a proper labeling of a subdivision

of T if L (~v) ∈ σ(~v).

3 A subsimplex of T is completely labeled by L if L takes on all the

values 0,1, . . . ,n on its set of vertices.
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Nash’s Second Proof: Simplicial Subdivision & Labeling

~x0

~x2

~x1
0 1 0 1 1

2

1

0 0 1 21

0 1 1 1

2 0 1

0 2

Figure: A properly labeled simplicial subdivision of a 2-simplex
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Nash’s Second Proof: Sperner’s Lemma

Lemma (Sperner’s Lemma)

Let T =~x0 · · ·~xn be a simplicially subdivided n-simplex and let L be a

proper labeling of the subdivision of T . There are an odd number of

subsimplexes that are completely labeled by L in this subdivision of T .

Proof: The proof is by induction on n.

The base case, n= 0, holds trivially.

Indeed, the only simplicial subdivision of T0 =~x0 is {~x0}, which can be

labeled only by L (~x0) = 0, a proper labeling, so there is exactly one

completely labeled 0-subsimplex of T0, T0 itself.
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Nash’s Second Proof: Sperner’s Lemma

Suppose the claim holds true for n−1. We show that it also holds for n.

The given simplicial subdivision of the n-simplex Tn =~x0 · · ·~xn induces a

simplicial subdivision of its (n−1)-face

Tn−1 =~x0 · · ·~xn−1,

which is an (n−1)-simplex.

Furthermore, the labeling function L restricted to Tn−1 is still proper.

By induction hypothesis, there are an odd number of (n−1)-subsimplexes

in Tn−1 with labels 0,1, . . . ,n−1.
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Nash’s Second Proof: Sperner’s Lemma

Indeed, the 1-simplex T1 =~x0~x1 has three 1-subsimplexes with labels 0

and 1 (and two 1-subsimplexes with labels 1 only):

~x0

~x2

~x1
0 1 0 1 1

2

1

0 0 1 21

0 1 1 1

2 0 1

0 2
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Nash’s Second Proof: Sperner’s Lemma

We now describe certain walks on Tn some of which will end in a

completely labeled n-subsimplex of Tn.

The first type of walk we consider starts from Tn−1:

1 Start from any (n−1)-subsimplex in Tn−1 with labels 0,1, . . . ,n−1.

Call this (n−1)-subsimplex T ′
n−1.

2 There is a unique n-subsimplex of Tn with (n−1)-face T ′
n−1. Call

this n-subsimplex T ′
n. Walk into T ′

n. Note that T ′
n has the same

vertices as T ′
n−1, plus one additional vertex, say ~z.

Distinguish the following two cases.

(2a) If L (~z) = n, we have found a completely labeled n-subsimplex of Tn,

namely T ′
n, and the walk ends.
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Nash’s Second Proof: Sperner’s Lemma

(2b) If L (~z) = j 6= n, the n+1 vertices of T ′
n have the labels 0,1, . . . ,n− 1,

so label j occurs twice and all other of these labels once.

We claim that in this case, T ′
n has exactly one additional (n− 1)-face,

T ′′
n−1 6= T ′

n−1, which is an (n−1)-subsimplex with labels 0,1, . . . ,n−1.

But this follows immediately from the fact that every (n− 1)-face of

T ′
n has all vertices of T ′

n except one.

Since only label j occurs twice, an (n− 1)-face of T ′
n has the labels

0,1, . . . ,n− 1 if and only if one of the two vertices labeled by j is

missing in it.

T ′
n−1 is one such (n− 1)-face of T ′

n, so there must be exactly another

one, T ′′
n−1.

Continue the walk via T ′′
n−1. Again, distinguish the following two cases.
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Nash’s Second Proof: Sperner’s Lemma

(2b.i) If T ′′
n−1 belongs to an (n−1)-face of Tn, the walk ends.

(2b.ii) Otherwise, walk into the unique n-subsimplex of Tn having (n−1)-face

T
′′
n−1 with labels 0,1, . . . ,n−1.

Call this n-subsimplex T
′′
n and proceed as in the beginning of step 2,

with T
′′
n and T

′′
n−1 playing the roles of T ′

n and T
′
n−1, respectively.

The second type of walk we consider does not start from an

(n−1)-subsimplex of Tn−1 but from any completely labeled n-subsimplex

of Tn, but otherwise follows the same rules, so only step 1 is skipped.

Walks of both types are uniquely and completely determined by their

starting points:

either on (n−1)-subsimplexes of Tn−1 with labels 0,1, . . . ,n−1

or on completely labeled n-subsimplexes of Tn.
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Nash’s Second Proof: Illustrating Sperner’s Lemma

Two walks of the first type:

~x1

2

0 2

102

0 1 1 1

0 1 0 21

110110
~x0

~x2

The walks end

either in completely labeled

n-subsimplexes of Tn: step (2a),

or in (n−1)-subsimplexes of

Tn’s (n−1)-face Tn−1:

step (2b.i).

They cannot end at another (n−1)-face of Tn because L is a proper

labeling.

Each such walk can be reversed by essentially the same rules.
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Nash’s Second Proof: Illustrating Sperner’s Lemma

~x1

2

0 2

102

0 1 1 1

0 1 0 21

110110
~x0

~x2

(a) Two walks of the first type

~x1

2

0 2

102

0 1 1 1

0 1 0 21

110110
~x0

~x2

(b) The same two walks reversed

Figure: Walking through the 2-simplex T2 =~x0~x1~x2
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Nash’s Second Proof: Sperner’s Lemma

This implies that if a walk starts from an (n−1)-subsimplex T ′
n−1 on Tn−1

and ends in an (n−1)-subsimplex T ′′
n−1 on Tn−1, then T ′

n−1 6= T ′′
n−1, for

otherwise we could reverse this walk and would have two distinct walks

with the same starting point, contradicting the uniqueness of walks.

Since the number of (n−1)-subsimplexes with labels 0,1, . . . ,n−1 on

Tn−1 is odd by the induction hypothesis, there are an odd number of walks

starting from Tn−1 and ending in a completely labeled n-subsimplex of Tn.

All these walks must end in distinct completely labeled n-subsimplexes

of Tn, since otherwise they could be reversed, leading to distinct walks

with the same starting point, again contradicting the uniqueness of walks.
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Nash’s Second Proof: Sperner’s Lemma

Not all completely labeled n-subsimplexes of Tn can be reached by walks of

the first type (i.e., by walks starting from an (n−1)-subsimplex of Tn−1).

However, such n-subsimplexes of Tn are connected by walks of the second

type.

That is, all such completely labeled n-subsimplexes of Tn form pairs again,

since (again by the reversal argument) they can neither be the starting

points of walks leading to Tn−1 (or any other (n−1)-face of Tn), nor the

starting points of walks that return to themselves (forming cycles).
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Nash’s Second Proof: Illustrating Sperner’s Lemma

~x1

2

0 2

102

0 1 1 1

0 1 0 21

110110
~x0

~x2

(a) Three walks, one of the second type

~x1

2

0 2

102

0 1 1 1

0 1 0 21

110110
~x0

~x2

(b) The same three walks reversed

Figure: All walks through the 2-simplex T2 =~x0~x1~x2

Summing up, we have shown that there are an odd number of completely

labeled n-subsimplexes of Tn. ❑
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Nash’s Second Proof: Compact Set & Centroid

Definition (compact set)

A subset of Rm is compact if it is closed and bounded.

Remark

∆m is compact.

A compact set has the property that every infinite sequence has a

convergent subsequence.

Definition (centroid)

The centroid of an n-simplex ~x0 · · ·~xn is the “average” of its vertices:

1

n+1

n

∑
i=0

~xi .

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 55 / 73



Nash Equilibria in Mixed Strategies Additional Material: Proof of Existence of Nash Equilibria

Nash’s Second Proof: Brouwer’s Fixed Point Theorem

Theorem (Brouwer’s Fixed Point Theorem)

Every continuous function f : ∆m →∆m has a fixed point, i.e., there exists

some ~z ∈∆m such that

f (~z) =~z.

Proof: The proof proceeds in two parts:

1 We construct a simplicial subdivision with a proper labeling function

L for ∆m so that Sperner’s lemma can be applied, yielding at least

one completely labeled m-subsimplex in this subdivision.

2 Making such subdivisions finer and finer, we show that this

m-subsimplex contracts to a fixed point of f .
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Nash’s Second Proof: Brouwer’s Fixed Point Theorem

For the first part:

Fix an ε > 0.

Subdivide ∆m simplicially such that the Euclidean distance between

any two points ~x = (x0, . . . ,xm) and ~y = (y0, . . . ,ym) in R
m+1 in the

same m-subsimplex of this subdivision is at most ε :

√

(x0− y0)2+ · · ·+(xm− ym)2 ≤ ε .

We here assume that it is always possible to find such a simplicial

subdivision of ∆m, regardless of the dimension m, which is true, but

not trivial to show.
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Nash’s Second Proof: Brouwer’s Fixed Point Theorem

Now define a labeling function L : V →{0,1, . . . ,m} as follows.

For each vertex ~v ∈ V of the m-subsimplexes in this subdivision, we

choose a label L (~v) from the set

σ(~v)∩{i
∣

∣ fi (~v)≤ vi},

where

~v = (v0,v1, . . . ,vm) and f (~v) = (f0(~v), f1(~v ), . . . , fm(~v )) are points

in ∆m,

σ(~v) = {i
∣

∣vi > 0} for ~v = ∑m
i=0 vi ·~ui , since ~ui is the ith unit vector in

R
m+1.

That is, L (~v) = i means that vi > 0 and fi(~v)≤ vi .

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 58 / 73



Nash Equilibria in Mixed Strategies Additional Material: Proof of Existence of Nash Equilibria

Nash’s Second Proof: Brouwer’s Fixed Point Theorem

We have to show that this labeling function is well-defined, i.e., that

σ(~v)∩{i
∣

∣ fi(~v)≤ vi} 6= /0.

Intuitively, this is true because

~v and f (~v ) are points in ∆m, so their components each add up to one

by definition of ∆m.

Thus there exists an i such that fi (~v )≤ vi , and this holds true even

when restricted to σ(~v ), so vi > 0.
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Nash’s Second Proof: Brouwer’s Fixed Point Theorem

Formally, for a contradiction suppose that σ(~v)∩{i
∣

∣ fi(~v)≤ vi}= /0.

Since ~v is a point in ∆m (i.e., ∑m
i=0 vi = 1) and vj > 0 exactly if

j ∈ σ(~v), we have

∑
j∈σ(~v)

vj =
m

∑
i=0

vi = 1.

From our assumption we know that fj(~v)> vj for each j ∈ σ(~v),

which implies

∑
j∈σ(~v )

fj(~v)> ∑
j∈σ(~v)

vj = 1. (2)

However, since f (~v) is a point in ∆m as well, we have

∑
j∈σ(~v )

fj(~v)≤
m

∑
i=0

fi(~v) = 1,

contradicting (2). Thus L is well-defined.
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Nash’s Second Proof: Brouwer’s Fixed Point Theorem

By construction,

L (~v) ∈ σ(~v)

for each ~v ∈ V .

Thus L is also proper.

By Sperner’s lemma, in this simplicial subdivision of ∆m there exists

at least one m-subsimplex T ε
m that depends on ε and is completely

labeled by L .
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Nash’s Second Proof: Brouwer’s Fixed Point Theorem

In the second part of the proof:

We will show that when ε goes to zero, the resulting m-subsimplex

T ε
m =~t0 · · ·~tm

contracts to a fixed point of f .

T ε
m is completely labeled; without loss of generality, we may assume

that L (~ti) = i . (Otherwise, we simply rename the labels accordingly.)

Furthermore, by construction of L , we have

fi(~ti )≤ (~ti )i (3)

for each i , 0≤ i ≤m, where (~ti )i denotes the ith component of ~ti .
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Nash’s Second Proof: Brouwer’s Fixed Point Theorem

For ε going to zero, we consider the infinite sequence of centroids in

these completely labeled m-subsimplexes T ε
m.

Since ∆m is compact, there exists a convergent subsequence with

limit ~z .

The vertices of these m-subsimplexes T ε
m then move toward ~z with ε

going to zero, that is, ~ti −→
ε→0

~z for each i , 0≤ i ≤m.
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Nash’s Second Proof: Brouwer’s Fixed Point Theorem

Since f is continuous, it follows from (3) that

fi(~z)≤~zi

for each i , 0≤ i ≤m.

This implies that f (~z) =~z, as desired, since otherwise, by the same

argument as used in the first part of this proof, we would have

1 =
m

∑
i=0

fi (~z)<
m

∑
i=0

~zi = 1,

a contradiction. ❑
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Nash’s Second Proof: Brouwer’s Fixed Point Theorem

Reminder: What we have shown is

Theorem (Brouwer’s Fixed Point Theorem)

Every continuous function f : ∆m →∆m has a fixed point, i.e., there exists

some ~z ∈∆m such that

f (~z) =~z.

Corollary (Brouwer’s Fixed Point Theorem, applied to simplotopes)

Let K =
k

∏
j=1

∆mj
be a simplotope (i.e., a Cartesian product of simplexes).

Every continuous function f : K → K has a fixed point. without proof
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Nash’s Second Proof

Theorem (Nash (1950; 1951))

For each noncooperative game in normal form with a finite number of

players each having a finite set of strategies, there exists a Nash

equilibrium in mixed strategies.

“A proof of this existence theorem based on Kakutani’s general-

ized fixed point theorem was published in Proc. Nat. Acad. Sci.

U.S.A., 36, pp. 48–49. The proof given here is a considerable

improvement over that earlier version and is based directly on the

Brouwer theorem.”

John F. Nash (1951)
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Nash’s Second Proof

Proof:

Let ~π = (π1,π2, . . . ,πn) ∈ Π be a profile of mixed strategies with the

expected gain functions Gi(~π).

Let S = S1×S2×·· ·×Sn be the underlying set of pure strategy

profiles, where each Si is finite.

For each pure strategy sj of each player i , let Gi(~π−i ,sj) be i ’s gain

when switching one-sidedly from πi to sj .

Define the functions

ϕij(~π) = max(0,Gi (~π−i ,sj)−Gi(~π))

for each i and j with 1≤ i ≤ n and 1≤ j ≤ ‖Si‖.
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Nash’s Second Proof

Since the expected gain functions are continuous, so is each

function ϕij .

Now, define the function f : Π→ Π by f (~π) = ~π ′ = (π ′
1,π

′
2, . . . ,π

′
n),

where the modifications π ′
i of πi are defined by

π ′
i (sj) =

πi (sj)+ϕij(~π)

∑
sk∈Si

(πi (sk)+ϕik(~π))
=

πi(sj )+ϕij(~π)

1+ ∑
sk∈Si

ϕik(~π)
. (4)

Intuitively, ~π ′ puts more probability weight π ′
i on those pure strategies

of each player i that are “better” responses to the other players’

mixed strategies ~π ′
−i .
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Nash’s Second Proof

Since every function ϕij is continuous, so is f .

Since Π, as a simplotope, is convex and compact and since f : Π→ Π

is continuous, f has at least one fixed point by Brouwer’s fixed point

theorem for simplotopes.

It remains to show that ~π is a Nash equilibrium in mixed strategies if

and only if f (~π) = ~π .

From left to right, if ~π is a Nash equilibrium in mixed strategies, we

have ϕij(~π) = 0 for all i and j .

Hence, f (~π) = ~π ′ = ~π , so ~π is a fixed point.
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Nash’s Second Proof

From right to left, suppose f (~π) = ~π.

Consider player i .

Since Gi is linear in its ith component, there exists at least one pure

strategy sj in the support of πi (i.e., πi(sj )> 0) such that

Gi(~π−i ,sj)≤ Gi(~π).

In other words, by linearity of Gi in its ith component, we see that

the situation where for each pure strategy sk (in the support of πi) it

holds that Gi(~π−i ,sk)> Gi(~π) is impossible.
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Nash’s Second Proof

By definition of ϕij , it follows that ϕij(~π−i ,sj) = 0.

Since f (~π) = ~π, this enforces that

π ′
i (sj) = πi(sj ).

That is, the enumerator in (4) simplifies to πi (sj) (due to

ϕij(~π−i ,sj) = 0) and it is positive because sj is in the support of πi .

This implies, by simple arithmetic, that the denominator in (4) must

be one. Consequently,

∑
sk∈Si

ϕik(~π) = 0.
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Nash’s Second Proof

This holds true for each player i and, in effect, for all i and k , we

have ϕik(~π) = 0.

That is, no player i can increase her gain by moving one-sidedly from

her mixed strategy πi to some pure strategy.

However, since we know that

max
π ′
i∈Πi

Gi(~π−1,π
′
i ) = max

sj∈Πi

Gi(~π−1,sj)

from the theorem on slide 8, this means that ~π is a Nash equilibrium

in mixed strategies. ❑
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Nash’s Theorem

Nash has won numerous prizes and awards and has been loaded with the

highest academic honors for his superb insights and pathbreaking ideas,

such as

the 1978 John von Neumann Theory Prize for inventing the equilibria

in noncooperative games named after him and

the 1994 Nobel Prize in Economics (jointly with the game

theoreticians Reinhard Selten and John Harsanyi).

“That’s trivial, you know.

That’s just a fixed point theorem.”

John von Neumann (1950)
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