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Hedonic Games Foundations

Hedonic Games

Definition (Drèze & Greenberg (1980))

A hedonic game is a pair (N,�) with

a finite set of players N = {1, . . . ,n} and

a preference profile � .

A preference profile � = (�1, . . . ,�n) contains

a preference relation �i for every player i ∈ N.

A preference relation �i is an order over Ni = {C ⊆ N
∣∣ i ∈ C},

the set of all coalitions (subsets of N) that contain player i ∈ N.

�i is reflexive, transitive, and complete, but not necessarily antisymmetric

(i.e., we will also use �i and ∼i ).

A coalition structure Γ = {C1, . . . ,Ck} is a partition of N into k ≥ 1 disjoint

and nonempty coalitions C1, . . . ,Ck .

Γ(i) denotes the coalition of Γ that contains player i ∈ N.
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Hedonic Games Foundations

Example of a Hedonic Game

preferences: {1,3} �1 {1,2} �1 {1} �1 · · ·
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Hedonic Games Foundations

Compact Representations of Hedonic Games

Individually rational hedonic games (Ballester, GEB 2004):

Players list their individually rational coalitions only; those that they weakly

prefer to being alone.

Anonymous hedonic games (Ballester, GEB 2004):

Players are indifferent about coalitions of equal size.

Singleton encoding of hedonic games (Cechlárová & Romero-Medina, IJGT

2001):

Every player ranks single players only rather than coalitions of players.

Hedonic coalition nets (Elkind & Wooldridge, AAMAS 2009):

a rule-based representation for hedonic games that is universally expressive.
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Hedonic Games Foundations

Compact Representations of Hedonic Games

Additive hedonic games (Aziz, Brandt, & Seedig, AIJ 2013):

Each player i has a preference function vi : N→R such that for all coalitions

C ,D ⊆ N, we have C �i D if and only if

∑
j∈C

vi (j)≥ ∑
j∈D

vi (j).

Fractional hedonic games (Aziz, Brandt, & Harrenstein, AAMAS 2014):

Every player assigns some value to each other player and 0 to herself; player

i ’s utility of a coalition is her average value assigned to the members of this

coalition; and for all coalitions C ,D ⊆ N, we have C �i D if and only if i ’s

utility of C is at least as high as her utility of D.

Friend-oriented and enemy-oriented encoding (Dimitrov, Borm,

Hendrickx, & Sung, SCW 2006).
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Hedonic Games Foundations

Friends and Enemies

Definition (Dimitrov, Borm, Hendrickx, & Sung (SCW 2006))

Let (N,�) be a hedonic game. For each i ∈ N, partition N \{i} into

the set Fi ⊆ N \{i} of friends of player i , and

the set Ei = N \ (Fi ∪{i}) of enemies of i .

A preference relation �i is called enemy-oriented if it holds that

C �i D ⇐⇒
‖C ∩Ei‖< ‖D ∩Ei‖ or

(‖C ∩Ei‖= ‖D ∩Ei‖ and ‖C ∩Fi‖ ≥ ‖D ∩Fi‖),
for all i ∈ N and all coalitions C ,D ⊆ N with

i ∈ C ∩D.

Here, only symmetric friendship relations

matter.
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Hedonic Games Foundations

Friend- and Enemy-Oriented Preferences Are Additive

Definition

A hedonic game (N,�) is said to be additive if every player i ∈ N has a

preference function vi : N → R such that

C �i D ⇐⇒ ∑
j∈C

vi (j)≥ ∑
j∈D

vi (j).

In particular, enemy-oriented preferences are additive:

Set vi (j) = 1 if i considers j a friend.

Set vi (j) =−‖N‖ if i considers j an enemy.

Similarly, friend-oriented preferences are additive:

Set vi (j) = ‖N‖ if i considers j a friend.

Set vi (j) =−1 if i considers j an enemy.
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Hedonic Games Core Stability

Core Stability

Definition (Drèze & Greenberg (1980))

Let (N,�) be a hedonic game.

A nonempty coalition C ⊆ N

blocks a coalition structure Γ if C �i Γ(i)

for all i ∈ C ;

weakly blocks a coalition structure Γ if

C �i Γ(i) for all i ∈ C , and

C �j Γ(j) for at least one j ∈ C .

A coalition structure is called

core stable if there is no blocking

coalition;

strictly core stable if there is no weakly

blocking coalition.
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Hedonic Games Core Stability

Core Stability

Example

Five players 0,1,2,3,4 are sitting (in this order) around a round table.

Every player i (modulo 5 throughout) assigns

a value vi (i + 1) = 1 to the player to his right,

a value vi (i −1) = 2 to the player to his left, and

a value −4 to the remaining two players.

This additive hedonic game does not allow a core stable partition: Any coalition

of size three or more contains an unhappy player who rather would stay alone.

If a partition contains two single-player coalitions {i} and {i + 1}, then it would

be blocked by {i , i + 1}.
In the only remaining case for a potentially core stable partition, there is one

single-player coalition {i} and two two-player coalitions {i + 1, i + 2} and

{i + 3, i + 4}; this partition is blocked by {i , i + 1}.
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Hedonic Games Wonderful Stability

Wonderful Stability

Definition (Woeginger (SOFSEM 2013))

Let G = (V ,E ) be an undirected graph.

The clique number ωG (v) of v in G is

the size of a largest clique in G that

contains v .

A clique C ⊆ V blocks a partition Π of

G into cliques if ωG (v) > ‖Π(v)‖ for

some vertex v ∈ C .

A partition Π of G into cliques is said

to be wonderfully stable if there is no

blocking clique.
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Hedonic Games Wonderful Stability

Wonderful Stability

Example

1

2 5

4

3

The partition Π into cliques indicated by the dashed lines is wonderfully stable

since every vertex is in a clique of maximum size.
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Hedonic Games Wonderful Stability

Wonderful Stability vs Strict Core Stability

Lemma

Let G = (V ,E ) be the graph representation of the enemy-oriented hedonic game

G = (N,�). Let Π be a partition of V and Γ the corresponding coalition

structure in G .

1 If Π is a wonderfully stable partition for G, then Γ is a strictly core stable

coalition structure for G .

2 If there is an integer c ∈ N such that ωG (v) = c for all vertices v ∈ V and Γ

is a strictly core stable coalition structure for G , then Π is a wonderfully

stable partition for G.
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Hedonic Games Wonderful Stability

Challenge: Wonderful Stability

Open Problem (Woeginger (SOFSEM 2013))

Pinpoint the computational complexity of deciding whether a given undirected

graph has a wonderfully stable partition.
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Hedonic Games Complexity Theory

Complexity Classes beyond P and NP

Definition

DP = {A\B
∣∣A,B ∈ NP}.

PNP[log] = Θp
2 = PNP

‖ =

A

(∃DPOTM M)(∃B ∈ NP)

[A = L(MB) and all queries to

the oracle B are asked in parallel]

.

Σp
2 = NPNP =

{
A
∣∣ (∃NPOTM N)(∃B ∈ NP)

[
A = L(NB)

]}
.

By definition, P⊆ NP⊆ DP⊆ PNP[log] ⊆ Σp
2 .

PNP[log]-completeness is known, e.g., for the winner problems in

Dodgson (Hemaspaandra, Hemaspaandra, & Rothe, JACM 1997),

Young (Rothe, Spakowski, & Vogel, TOCS 2003), and

Kemeny elections (Hemaspaandra, Spakowski, & Vogel, TCS 2005).
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Hedonic Games Complexity Theory

Core Stability Problems

Core Stable Partition Existence (CSPE)

Given: A hedonic game (N,�).

Question: Does there exist a core stable partition of N?

Core Stable Partition Verification (CSPV)

Given: A hedonic game (N,�) and a partition Π of N.

Question: Does there exist a blocking coalition for partition Π?
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Hedonic Games Complexity Theory

Core Stability Problems

Remark (Woeginger (SOFSEM 2013))

Suppose the preferences can be evaluated in polynomial time, i.e.,

{(i ,C ,D)
∣∣ i ∈ N and C ,D ⊆ N and C �i D} ∈ P.

Then,

CSPV ∈ NP, as we can check in P whether a given C ⊆ N blocks Π;

CSPE ∈ Σp
2 , as (N,�) ∈CSPE ⇐⇒ (∃Π)(∀C ⊆ N) [¬(C blocks Π)].

Observation (Woeginger (SOFSEM 2013))

CSPV ∈ P⇒CSPE ∈ NP.

However, hardness of CSPV does not necessarily imply hardness of CSPE.
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Hedonic Games Complexity Theory

Core Stability under Enemy-Oriented Preferences:

Challenge

Theorem (Dimitrov, Borm, Hendrickx, & Sung (SCW 2006))

Under enemy-oriented preferences, there always exists a core stable partition;

hence CSPE ∈ P.

Theorem (Sung & Dimitrov (ORL 2007))

Under enemy-oriented preferences, CSPV is NP-complete.

Open Problem (Woeginger (SOFSEM 2013))

Pinpoint the computational complexity of deciding whether a given hedonic game

with enemy-oriented preferences has a strictly core stable partition.
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Hedonic Games Complexity Theory

Core Stability under Additive Preferences

Corollary (Sung & Dimitrov (ORL 2007 and EJOR 2010))

For additive preferences, CSPV is NP-complete and CSPE is NP-hard.

Theorem (Aziz, Brandt, & Seedig (AIJ 2013))

Under symmetric additive preferences, CSPE is NP-hard.

Theorem (Woeginger (MSS 2013))

In additive hedonic games, CSPE is Σp
2 -complete.
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Hedonic Games Results

Wonderfully Stable Partition Problems

Wonderfully Stable Partition Existence (WSPE)

Given: An undirected graph G = (V ,E ).

Question: Does there exist a wonderfully stable partition for G?

Wonderfully Stable Partition Verification (WSPV)

Given: A graph G = (V ,E ) and a partition Π of V into cliques.

Question: Does there exist a clique C ⊆ V that blocks Π?

Again, WSPV and WSPE are closely related:

(G ,Π) ∈WSPV ⇐⇒ (∃ clique C )[C blocks Π];

G ∈WSPE ⇐⇒ (∃Π)(∀ cliques C )[¬(C blocks Π)].

So WSPV ∈ NP and WSPE ∈ Σp
2 .
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Hedonic Games Results

Wonderfully Stable Partition Problems

Theorem

WSPV is NP-complete.

Theorem (Woeginger (SOFSEM 2013))

WSPE is NP-hard, and belongs to Θp
2 .

Theorem (Rey et al. (AMAI 2015))

WSPE is coNP-hard.

Theorem (Rey et al. (AMAI 2015))

WSPE is DP-hard.

Can we also get

coNP-hardness?

CAN WE DO BETTER?
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Hedonic Games Results

Wonderfully Stable Partition Problems

Theorem

WSPV is NP-complete.

Proof: is inspired by the proof of Sung & Dimitrov (ORL 2007) that CSPV is

NP-complete under enemy-oriented preferences.

NP-hardness is shown via a reduction from the NP-complete problem

Clique

Given: An undirected graph G = (V ,E ) and a positive integer k .

Question: Does G have a clique of size at least k?
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Hedonic Games Results

Wonderfully Stable Partition Problems

Given an instance (G = (V ,E ),k) of Clique, we construct the following graph

G ′ = (V ′,E ′):

The vertex set V ′ is obtained from V by adding, for each v ∈ V , k−2

vertices.

We connect each of the k−2 new vertices and v to form a clique of size

k−1, for each v ∈ V .

The edge set E ′ consists of these new edges and all edges in E .

Let Π be the partition into ‖V ‖ cliques such that each (k−1)-clique as

constructed above forms one part.

This can obviously be achieved in polynomial time.
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Hedonic Games Results

Wonderfully Stable Partition Problems

We claim that there is a clique of size k in G if and only if there exists a clique

C ⊆ V ′ that blocks Π in G ′.

Only if: If there is a size-k clique C in G , the same clique can be found in G ′.

The vertices v ∈ C thus have a clique number ωG ′(v) of at least k.

Since the size of all cliques in Π is k−1, there exists a vertex v in the clique C

with ωG ′(v) > ‖Π(v)‖; therefore, C blocks Π in G ′.

If: If there is no clique of size k in G , there is no clique of size k in G ′, either,

and ωG ′(v) = k−1 holds for each v ∈ V ′.

Furthermore, ‖Π(v)‖= k−1, for each v ∈ V ′. Thus, there is no blocking clique

for Π in G ′. q
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Furthermore, ‖Π(v)‖= k−1, for each v ∈ V ′. Thus, there is no blocking clique

for Π in G ′. q
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Hedonic Games Results

Strictly Core Stable Coalition Structures

Strictly Core Stable Coalition Structure (SCSCS)

Given: A hedonic game (N,�) with enemy-oriented preferences.

Question: Is there a strictly core stable coalition structure for (N,�)?

Fact (Rey et al. (AMAI 2015))

SCSCS belongs to Σp
2 .

Theorem (Rey et al. (AMAI 2015))

SCSCS is coNP-hard.

Theorem (Rey et al. (AMAI 2015))

SCSCS is NP-hard.

CAN WE DO BETTER?

Theorem (Rey et al. (AMAI 2015))

SCSCS is DP-hard.
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Hedonic Games Results

A Restricted Case: k-WSPE and k-SCSCS

Consider the class of graphs G = (V ,E ) where all vertices have the same

fixed clique number: ωG (v) = k for all v ∈ V .

Let k-WSPE and k-SCSCS denote the restrictions of WSPE and SCSCS

to this special graph class.

Remark

k-WSPE and k-SCSCS are the same problem by

Theorem

For k ≥ 3, k-WSPE (and thus k-SCSCS) is NP-complete.
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Hedonic Games Future Work

Challenge: Are WSPE and SCSCS Θp
2-Hard?

Open Problem (Woeginger (SOFSEM 2013))

1 Pinpoint the computational complexity of deciding whether a given

enemy-oriented hedonic game has a strictly core stable partition.

2 Pinpoint the computational complexity of deciding whether a given

undirected graph has a wonderfully stable partition.

One approach of showing Θp
2 -hardness of WSPE is to generalize the

construction for showing DP-hardness.

coDP-hardness of WSPE also implies Θp
2 -hardness of WSPE, and the

same argument works for SCSCS as well.

It is also possible that both problems belong to DP (and so would be

DP-complete) or are complete for another class.
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