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Definition (Dréze & Greenberg (1980))
@ A hedonic game is a pair (N, >) with

o a finite set of players N={1,...,n} and
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@ A preference profile = = (+1,...,>,) contains

a preference relation >; for every player i € N.

@ A preference relation =; is an order over A; = {C C N‘ ieC}
the set of all coalitions (subsets of N) that contain player i € N.

@ ; is reflexive, transitive, and complete, but not necessarily antisymmetric

(i.e., we will also use ~; and ~;).

@ A coalition structure T ={Cy,...,Cx} is a partition of N into k > 1 disjoint
and nonempty coalitions Cy,..., C.

@ (/) denotes the coalition of I that contains player i € N.
J. Rothe (HHU Diisseldorf) Algorithmic Game Theory 3/29



Hedonic Games Foundations

Example of a Hedonic Game

@
@ ©

C)

J. Rothe (HHU Diisseldorf) Algorithmic Game Theory 4/29



Hedonic Games Foundations

Example of a Hedonic Game

@)
%)

preferences: {1,3} 1 {1.2} 1 {1} 1 -

J. Rothe (HHU Diisseldorf) Algorithmic Game Theory

4/29



Compact Representations of Hedonic Games

@ Individually rational hedonic games (Ballester, GEB 2004):

Players list their individually rational coalitions only; those that they weakly

prefer to being alone.

@ Anonymous hedonic games (Ballester, GEB 2004):

Players are indifferent about coalitions of equal size.

@ Singleton encoding of hedonic games (Cechlarovd & Romero-Medina, IJGT
2001):
Every player ranks single players only rather than coalitions of players.

@ Hedonic coalition nets (Elkind & Wooldridge, AAMAS 2009):

a rule-based representation for hedonic games that is universally expressive.
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Compact Representations of Hedonic Games

@ Additive hedonic games (Aziz, Brandt, & Seedig, AlJ 2013):
Each player i has a preference function v; : N — R such that for all coalitions
C,D C N, we have C =; D if and only if

Y i) = Y vi(i):

jec jeb
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@ Fractional hedonic games (Aziz, Brandt, & Harrenstein, AAMAS 2014):
Every player assigns some value to each other player and 0 to herself; player
i's utility of a coalition is her average value assigned to the members of this

coalition; and for all coalitions C,D C N, we have C =; D if and only if i's
utility of C is at least as high as her utility of D.

@ Friend-oriented and enemy-oriented encoding (Dimitrov, Borm,
Hendrickx, & Sung, SCW 2006).
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Friends and Enemies

Definition (Dimitrov, Borm, Hendrickx, & Sung (SCW 2006))
Let (N,>) be a hedonic game. For each i € N, partition N\ {i} into

o the set F; C N\ {i} of friends of player i, and

@ the set £E; = N\ (F;U{i}) of enemies of i.
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Let (N,>) be a hedonic game. For each i € N, partition N\ {i} into

o the set F; C N\ {i} of friends of player i, and
@ the set £E; = N\ (F;U{i}) of enemies of i.

A preference relation >=; is called friend-oriented if it holds that
C» D —

ICAR] > [DNF] or 1)
(ICAFill = [[DNFi and [[COE[| < [DNE]), ’
for all i € N and all coalitions C,D C N with @ @
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Friend- and Enemy-Oriented Preferences Are Additive
Definition

A hedonic game (N, =) is said to be additive if every player i € N has a
preference function v; : N — R such that

Ct,‘ D «— Z V,'(_j) > Z V,(J)

jeC jebD
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Foundations
Friend- and Enemy-Oriented Preferences Are Additive

Definition
A hedonic game (N, =) is said to be additive if every player i € N has a
preference function v; : N — R such that

Ct,‘ D «— Z V,'(_j) > Z V,(J)

jeC jebD

In particular, enemy-oriented preferences are additive:
@ Set v;(j) =1 if i considers j a friend.

@ Set v;(j) = —||NJ| if i considers j an enemy.
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A hedonic game (N, =) is said to be additive if every player i € N has a
preference function v; : N — R such that

Ct,’ D «— Z V,'(_j) > Z V,(J)

jeC jebD

In particular, enemy-oriented preferences are additive:
@ Set v;(j) =1 if i considers j a friend.
@ Set v;(j) = —||NJ| if i considers j an enemy.
Similarly, friend-oriented preferences are additive:
@ Set v;(j) = ||N|| if i considers j a friend.

@ Set v;(j) = —1 if i considers j an enemy.
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Core Stabity
Core Stability

Definition (Dréze & Greenberg (1980))
Let (N, =) be a hedonic game.
A nonempty coalition C C N
@ blocks a coalition structure I if C >; (i)
for all i € C;
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Core Stability

Definition (Dréze & Greenberg (1980))
Let (N, =) be a hedonic game.
A nonempty coalition C C N
@ blocks a coalition structure I if C >; (i)
for all i € C;

@ weakly blocks a coalition structure I if

o C>;I(i)forallieC, and
o C>;I(j) for at least one j € C.

A coalition structure is called

@ core stable if there is no blocking
coalition;

@ strictly core stable if there is no weakly

blocking coalition.
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Core Stabity
Core Stability

Example
Five players 0,1,2,3,4 are sitting (in this order) around a round table.
Every player i (modulo 5 throughout) assigns

@ avalue v;(i+1) =1 to the player to his right,
@ a value v;(i —1) =2 to the player to his left, and

@ a value —4 to the remaining two players.
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Example

Five players 0,1,2,3,4 are sitting (in this order) around a round table.
Every player i (modulo 5 throughout) assigns

@ avalue v;(i+1) =1 to the player to his right,
@ a value v;(i —1) =2 to the player to his left, and
@ a value —4 to the remaining two players.

This additive hedonic game does not allow a core stable partition: Any coalition
of size three or more contains an unhappy player who rather would stay alone.
If a partition contains two single-player coalitions {/} and {i+1}, then it would
be blocked by {i,i+1}.

In the only remaining case for a potentially core stable partition, there is one
single-player coalition {i} and two two-player coalitions {i+1,i+2} and
{i+3,i+4}; this partition is blocked by {i,i+1}.
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Wonderful Stabilty
Wonderful Stability

Definition (Woeginger (SOFSEM 2013))
Let G =(V,E) be an undirected graph.
@ The clique number wg(v) of v in G is

the size of a largest clique in G that

contains v.
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[ICINITNEET O \Wonderful Stability

Wonderful Stability

Example

The partition I into cliques indicated by the dashed lines is wonderfully stable

since every vertex is in a clique of maximum size.
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Wonderful Stabilty
Wonderful Stability vs Strict Core Stability
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Wonderful Stabilty
Wonderful Stability vs Strict Core Stability

Lemma

Let G =(V,E) be the graph representation of the enemy-oriented hedonic game
@ =(N,=). Let N be a partition of V and T the corresponding coalition

structure in 4.

@ /fT1 is a wonderfully stable partition for G, then I is a strictly core stable

coalition structure for 9.

@ If there is an integer ¢ € N such that wg(v) = ¢ for all vertices v € V and T
is a strictly core stable coalition structure for 4, then I is a wonderfully

stable partition for G.

4
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Challenge: Wonderful Stability

Open Problem (Woeginger (SOFSEM 2013))

Pinpoint the computational complexity of deciding whether a given undirected
graph has a wonderfully stable partition.
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Complexty Theory
Complexity Classes beyond P and NP

Definition

e DP={A\B|A,BcNP}.
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Complexity Classes beyond P and NP

Definition
e DP={A\B|A,BcNP}.
(3DPOTM M) (3B € NP)
o PNPllog] — ©F —PNP =< A| [A=L(MB) and all queries to

the oracle B are asked in parallel]

o Y5 =NP"" = {A|(3NPOTM N)(3B € NP) [A= L(NB)]}.

By definition, P C NP C DP C PNPlloel C 3.

PNP['Og]—completeness is known, e.g., for the winner problems in
@ Dodgson (Hemaspaandra, Hemaspaandra, & Rothe, JACM 1997),
@ Young (Rothe, Spakowski, & Vogel, TOCS 2003), and

@ Kemeny elections (Hemaspaandra, Spakowski, & Vogel, TCS 2005).
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Complexty Theory
Core Stability Problems

CORE STABLE PARTITION EXISTENCE (CSPE)

Given: A hedonic game (N, ).

Question: Does there exist a core stable partition of N?
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Complexty Theory
Core Stability Problems

CORE STABLE PARTITION EXISTENCE (CSPE)

Given: A hedonic game (N, ).

Question: Does there exist a core stable partition of N?

CORE STABLE PARTITION VERIFICATION (CSPV)

Given: A hedonic game (N, >) and a partition 1 of N.

Question: Does there exist a blocking coalition for partition 17

J. Rothe (HHU Diisseldorf) Algorithmic Game Theory 17 /29



Complexty Theory
Core Stability Problems

Remark (Woeginger (SOFSEM 2013))

Suppose the preferences can be evaluated in polynomial time, i.e.,
{(i,C,D)|i€ N and C,DC N and C =; D} €P.
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Complexty Theory
Core Stability Problems

Remark (Woeginger (SOFSEM 2013))

Suppose the preferences can be evaluated in polynomial time, i.e.,
{(i,C,D)|i€ N and C,DC N and C =; D} €P. Then,

@ CSPV e NP, as we can check in P whether a given C C N blocks I1;
@ CUSPE € XP, as (N,=) € CSPE <= (3M)(VC C N)[~(C blocks N)].

Observation (Woeginger (SOFSEM 2013))
@ CSPV e P= CSPE € NP.

@ However, hardness of CSPV does not necessarily imply hardness of CSPE.
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Core Stability under Enemy-Oriented Preferences:

Theorem (Dimitrov, Borm, Hendrickx, & Sung (SCW 2006))

Under enemy-oriented preferences, there always exists a core stable partition;
hence CSPE €P.
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Core Stability under Enemy-Oriented Preferences:

Challenge

Theorem (Dimitrov, Borm, Hendrickx, & Sung (SCW 2006))

Under enemy-oriented preferences, there always exists a core stable partition;
hence CSPE €P.

Theorem (Sung & Dimitrov (ORL 2007))
Under enemy-oriented preferences, CSPV is NP-complete.

Open Problem (Woeginger (SOFSEM 2013))

Pinpoint the computational complexity of deciding whether a given hedonic game
with enemy-oriented preferences has a strictly core stable partition.
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Complexty Theory
Core Stability under Additive Preferences

Corollary (Sung & Dimitrov (ORL 2007 and EJOR 2010))

For additive preferences, CSPV is NP-complete and CSPE is NP-hard.
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Core Stability under Additive Preferences

Corollary (Sung & Dimitrov (ORL 2007 and EJOR 2010))
For additive preferences, CSPV is NP-complete and CSPE is NP-hard.

Theorem (Aziz, Brandt, & Seedig (AlJ 2013))
Under symmetric additive preferences, CSPE is NP-hard.
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Core Stability under Additive Preferences

Corollary (Sung & Dimitrov (ORL 2007 and EJOR 2010))
For additive preferences, CSPV is NP-complete and CSPE is NP-hard.

Theorem (Aziz, Brandt, & Seedig (AlJ 2013))
Under symmetric additive preferences, CSPE is NP-hard.

Theorem (Woeginger (MSS 2013))
In additive hedonic games, CSPE is Zg -complete. }
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Results
Wonderfully Stable Partition Problems

WONDERFULLY STABLE PARTITION EXISTENCE (WSPE)

Given: An undirected graph G = (V,E).

Question: Does there exist a wonderfully stable partition for G?
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Given: A graph G = (V,E) and a partition I of V into cliques.

Question: Does there exist a clique C C V that blocks I1?

Again, WSPV and WSPE are closely related:

@ (G,M) e WSPV <= (3 clique C)[C blocks IM];

® G € WSPE <« (3N)(V cliques C)[~(C blocks MM)].
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Wonderfully Stable Partition Problems

Theorem
WSPYV is NP-complete. J

Proof: is inspired by the proof of Sung & Dimitrov (ORL 2007) that CSPV is
NP-complete under enemy-oriented preferences.

NP-hardness is shown via a reduction from the NP-complete problem

CLIQUE

Given: An undirected graph G = (V/,E) and a positive integer k.

Question: Does G have a clique of size at least k7
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Given an instance (G = (V/,E), k) of CLIQUE, we construct the following graph
G' =(V',E):

@ The vertex set V' is obtained from V by adding, for each ve V, k-2
vertices.

@ We connect each of the kK —2 new vertices and v to form a clique of size
k—1, for each v € V.

@ The edge set E’ consists of these new edges and all edges in E.
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G = (V' E:

@ The vertex set V' is obtained from V by adding, for each ve V, k-2
vertices.

@ We connect each of the kK —2 new vertices and v to form a clique of size
k—1, for each v € V.

@ The edge set E’ consists of these new edges and all edges in E.

Let M be the partition into ||V cliques such that each (k —1)-clique as
constructed above forms one part.

This can obviously be achieved in polynomial time.
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We claim that there is a clique of size k in G if and only if there exists a clique
C C V' that blocks M in G'.
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We claim that there is a clique of size k in G if and only if there exists a clique
C C V' that blocks M in G'.

Only if: If there is a size-k clique C in G, the same clique can be found in G'.
The vertices v € C thus have a clique number wg/(v) of at least k.

Since the size of all cliques in 1 is k — 1, there exists a vertex v in the clique C
with @g/(v) > ||[M(v)]]; therefore, C blocks M in G'.

If: If there is no clique of size k in G, there is no clique of size k in G’, either,
and wg/(v) = k—1 holds for each v € V'.

Furthermore, ||M(v)|| =k —1, for each v € V. Thus, there is no blocking clique
for Min G'. a
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Results
Strictly Core Stable Coalition Structures

STRICTLY CORE STABLE COALITION STRUCTURE (SCSCS)

Given: A hedonic game (N, ) with enemy-oriented preferences.

Question: s there a strictly core stable coalition structure for (N, >)?
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Given: A hedonic game (N, ) with enemy-oriented preferences.

Question: s there a strictly core stable coalition structure for (N, >)?

CAN WE DO BETTER?
Fact (Rey et al. (AMAI 2015))

SCSCS belongs to ¥5.

Theorem (Rey et al. (AMAI 2015))
SCSCS is coNP-hard.

Theorem (Rey et al. (AMAI 2015)) Theorem (Rey et al. (AMAI 2015))
SCSCS is NP-hard. } SCSCS is DP-hard. J
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Results
A Restricted Case: k-WSPE and k-SCSCS

@ Consider the class of graphs G = (V/, E) where all vertices have the same
fixed clique number: wg(v) =k for all ve V.
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Results
A Restricted Case: k-WSPE and k-SCSCS

@ Consider the class of graphs G = (V/, E) where all vertices have the same

fixed clique number: wg(v) =k for all ve V.

@ Let k-WSPE and k-SCSCS denote the restrictions of WSPE and SCSCS

to this special graph class.

Remark
k-WSPE and k-SCSCS are the same problem by

Theorem
For k >3, k-WSPE (and thus k-SCSCS) is NP-complete.
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Challenge: Are WSPE and SCSCS ©5-Hard?

Open Problem (Woeginger (SOFSEM 2013))

© Pinpoint the computational complexity of deciding whether a given
enemy-oriented hedonic game has a strictly core stable partition.
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Open Problem (Woeginger (SOFSEM 2013))

© Pinpoint the computational complexity of deciding whether a given
enemy-oriented hedonic game has a strictly core stable partition.

@ Pinpoint the computational complexity of deciding whether a given

undirected graph has a wonderfully stable partition.

@ One approach of showing ©5-hardness of WSPE is to generalize the
construction for showing DP-hardness.

@ coDP-hardness of WSPE also implies ©5-hardness of WSPE, and the
same argument works for SCSCS as well.

@ It is also possible that both problems belong to DP (and so would be
DP-complete) or are complete for another class.
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