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Preliminary Remarks Websites
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Vorlesungswebsite:
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Preliminary Remarks Literature

Literature: Email from Prof. Michael Wooldridge, Oxford

Dear Joerg,

I just received a copy of “Economics and Computation”.

It looks FANTASTIC! I already started reading some

of it, and I think we will use it on a course

we are giving here next year.

It was tremendously kind of you to think about

sending me a copy – I’m very grateful!

Congratulations, and thanks again!

Mike

–

Professor Michael Wooldridge mailto:mjw@cs.ox.ac.uk

Department of Computer Science, University of Oxford.

http://www.cs.ox.ac.uk/people/michael.wooldridge/
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Preliminary Remarks Literature

Literature (Recommended for Additional Reading)

G. Chalkiadakis, E. Elkind, and M. Wooldridge: Computational

Aspects of Cooperative Game Theory. Morgan and Claypool

Publishers, 2011

N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani:

Algorithmic Game Theory. Cambridge University Press, 2007

B. Peleg and P. Sudhölter: Introduction to the Theory of

Cooperative Games. Kluwer Academic Publishers, 2003

M. Osborne and A. Rubinstein: A Course in Game Theory.

MIT Press, 1994

J. von Neumann and O. Morgenstern: Theory of Games and

Economic Behavior. Princeton University Press, 1944
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Foundations of Noncooperative Game Theory

Two Quotes

“Der Mensch spielt nur, wo er in voller Bedeutung des Wortes

Mensch ist, und er ist nur da ganz Mensch, wo er spielt.”

Friedrich Schiller

Briefe über die ästhetische Erziehung des Menschen (1795)

“Blödem Volke unverständlich treiben wir des Lebens Spiel.”

Christian Morgenstern

Galgenlieder (1905)
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Foundations of Noncooperative Game Theory

Foundations of Noncooperative Game Theory: Players

Consider a set P = {1,2, . . . ,n} of players; occasionally, they will have

names instead of numbers.

Who these players are and how many of them there are depends on

the game being played.

Players can be

individual persons as well as

groups of individuals (as in a team sport),

they can be computer programs,

states (or their governments),

companies,

ethnic groups,

organizations,

etc.
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Foundations of Noncooperative Game Theory

Foundations of Noncooperative Game Theory: Rules

A game is defined by its rules, which describe how the game is to be

played and what each player is allowed or not allowed to do in which

situation.

It must also be always clear

what the single players can know about the current situation of the

game,

when a game is over, and

who has won why and how much.

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 8 / 55



Foundations of Noncooperative Game Theory

Foundations of Noncooperative Game Theory: Strategies

Unlike the rules of a game, the players’ strategies constitute complete

and precise policies of how to act in each possible situation they

might encounter during the game.

Depending on the current game situation, a player can have several

options for how to proceed, and so can have a choice between

alternative actions, which all must be rule-consistent, of course.

If a player has no further alternatives to choose from, this often

(although not always) means that the game is over and ends with this

player’s defeat (as, for example, in the case of a “checkmate” in

chess).
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

The Prisoners’ Dilemma: Story

Two most wanted criminals, in the underground milieu only known as

“Smith & Wesson,” have been arrested.

They are being accused of a joint bank robbery, but incriminatory

evidence is too thin to meet court standards, unfortunately.

The detective superintendent responsible for this investigation

interrogates both criminals separately, one after the other, and Smith

is brought before him first.

Despite intensive interrogation, Smith perseveringly remains silent, so

the detective superintendent offers him a deal.
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

The Prisoners’ Dilemma: Story

“You do know the maximum penalty for bank robbery, Smith,”

he points out, “ten years behind bars!

However, if you confess that you and Wesson have mugged the bank

together, then I can guarantee you that the judge will

suspend your sentence on probation for good collaboration with the

authorities, and

Wesson has to serve his ten years alone, if he goes on to be stubborn.”

Smith remains silent.

“Think about it by tomorrow,” the detective superintendent adds.

“I will now offer Wesson the same deal.”

When Smith is led away, he turns around once more and asks:

“What if Wesson makes a confession and incriminates me?”
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

The Prisoners’ Dilemma: Story

“It depends,” the detective superintendent replies.

“If only he confesses and you do not, then

his sentence will be suspended on probation and

you’ll go to jail for ten years.

If you both confess, then you both will have to serve four years,

despite your collaboration with us, because the other confession is less

valuable for us, as the first one would have been enough, and that

applies to each of you.”

“And if none of us don’t say nothing?”

“You mean if you both remain silent?” the detective superintendent

asks.
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

The Prisoners’ Dilemma: Story

“Let me be honest with you. Incriminatory evidence is too thin to

meet court standards, so we won’t be able to make you serve the

maximum penalty.

If you both refuse to confess, we’ll get you only for possession of

unregistered weapons and for obstructing our police officers in the

course of their duty—one of them is still in hospital.

That would then make two years of prison for each of you.”
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

The Prisoners’ Dilemma: Normal Form

Table: The prisoners’ dilemma

Wesson

Confession Silence

Smith
Confession (−4,−4) (0,−10)

Silence (−10,0) (−2,−2)

An entry (−k,−`) means that Smith is sentenced to serve k years in

prison and Wesson is sentenced to serve ` years in prison.

The players thus maximize their gains if they get away with a

sentence of as few years as possible.
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

The Prisoners’ Dilemma: Normal Form

If one wants to avoid negative gains, one could scale all gains in equal

measure, without causing the strategic aspects of the game to

change.

For example, dividing all entries by 2 and adding 5, one obtains the

values in the table below, which strategically are equivalent.

Table: The prisoners’ dilemma without negative entries

Wesson

Confession Silence

Smith
Confession (3,3) (5,0)

Silence (0,5) (4,4)
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Normal Form

Noncooperative games with any number of players can be given in

this normal form (a.k.a. the strategic form), which is attributed to

Borel (1921) and von Neumann (1928). For more than two players,

however, the gain vectors for all tuples of the players’ strategies

cannot be represented as a simple two-dimensional table as above.

The normal form is best suitable for one-move games where all

players make their moves simultaneously and without knowing the

other players’ moves and where randomness is not involved.

Sequential games (with players taking turns) can better be

represented by the so-called extended form.

Games with one or more moves in which randomness plays a role are

called Bayesian games.
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Normal Form

Definition (normal form)

A game with n players is in normal form if for all i , 1≤ i ≤ n, it holds that:

1 Player i can choose from a (finite or infinite) set Si of (pure)

strategies (or actions). The set of profiles of (pure) strategies (or

actions) of all n players is represented as the Cartesian product

S = S1×S2×·· ·×Sn.

2 The gain function gi : S → R gives the gain gi (~s) of player i for the

strategy profile ~s = (s1,s2, . . . ,sn) ∈S . Here, R denotes the set of

real numbers and sj , 1≤ j ≤ n, is the strategy chosen by player j .
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Dominant Strategy

Definition (dominant strategy)

Let S = S1×S2×·· ·×Sn be the set of strategy profiles of the n players

in a noncooperative game in normal form and let gi be the gain function

of player i , 1≤ i ≤ n.

A strategy si ∈ Si of player i is said to be dominant (or weakly dominant) if

gi (s1, . . . ,si−1,si ,si+1, . . . ,sn)≥ gi (s1, . . . ,si−1,s
′
i ,si+1, . . . ,sn) (1)

for all strategies s ′i ∈ Si and all strategies sj ∈ Sj with 1≤ j ≤ n and j 6= i .

If inequality (1) is strict for all s ′i ∈ Si with s ′i 6= si and all sj ∈ Sj with

1≤ j ≤ n and j 6= i , then si is a strictly dominant strategy for player i .
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Strictly Dominant Strategies in the Prisoners’ Dilemma

Fact

Making a confession is a strictly dominant strategy for both Smith and

Wesson.

Remark

Having a (strictly) dominant strategy is of course very beneficial for a

player: No matter what the other players do, this player has a “best”

strategy independently of them.

However, from a global point of view, it would be better if both

players in the prisoners’ dilemma deviated from their strictly dominant

strategies, i.e., if they remained silent. Why?
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Pareto Dominance and Pareto Optimality

Definition (Pareto dominance and Pareto optimality)

Let S = S1×S2×·· ·×Sn be the set of strategy profiles of the n players

in a noncooperative game in normal form.

Let ~s and ~t be two strategy profiles from S .

1 We say ~s weakly Pareto-dominates ~t if for all i , 1≤ i ≤ n:

gi (~s)≥ gi (~t). (2)

2 If inequality (2) holds true for all i , 1≤ i ≤ n, and is strict for at least

one j , 1≤ j ≤ n, we say ~s Pareto-dominates ~t.

3 If inequality (2) is strict for all i , 1≤ i ≤ n, we say ~t is strictly

Pareto-dominated by ~s.
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Pareto Dominance and Pareto Optimality

Definition (Pareto dominance and Pareto optimality—continued)

4 We say ~t ∈S is Pareto-optimal if for all ~s ∈S : If ~t is weakly

Pareto-dominated by ~s, then gi (~s) = gi (~t) for all i , 1≤ i ≤ n.

That is, ~t ∈S is Pareto-optimal if there is no ~s ∈S that

Pareto-dominates ~t, i.e., if there is no ~s such that

(a) gi (~s)≥ gi (~t) for all i , 1≤ i ≤ n, and

(b) gj (~s) > gj (~t) for at least one j , 1≤ j ≤ n.

5 We say ~t ∈S is weakly Pareto-optimal if there is no ~s ∈S that

strictly Pareto-dominates ~t.
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Pareto-Optimal Strategies in the Prisoners’ Dilemma

Intuitively, Pareto optimality of a strategy profile ~t = (t1, t2, . . . , tn)

means that no other strategy profile gives all players at least as much

profit as ~t and in addition at least one player a strictly larger profit.

A Pareto optimum exists if and only if no player can increase her gains

without making another player getting off worse at the same time.

On the other hand, ~t is weakly Pareto-optimal if no other strategy

profile gives all players a strictly larger profit.

Thus, every Pareto optimum is also a weak Pareto optimum;

conversely, weak Pareto optima are not necessarily Pareto-optimal.

Fact

The strategy profiles (Silence,Silence), (Confession,Silence), and

(Silence,Confession) are the Pareto optima in the prisoners’ dilemma.
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Stability of Solutions

So far we have got to know two distinct concepts that can help to

predict the outcome of a game:
1 dominant strategies, such as the strategy profile

(Confession,Confession) in the prisoners’ dilemma,

2 Pareto optima, such as (Silence,Silence), (Confession,Silence), and

(Silence,Confession) in the prisoners’ dilemma.

A third concept that can help to predict the outcome of a game is the

criterium of stability of a solution. Informally put, a solution (i.e., a

profile of all players’ strategies) is stable if no player has an incentive

to deviate from her strategy in this profile, provided that also all other

players choose their strategies according to this profile.

Intuitively, this means that the strategies of this solution are in

equilibrium.
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Stability of Solutions: Nash Equilibria

Definition (Nash equilibrium in pure strategies)

Let S = S1×S2×·· ·×Sn be the set of strategy profiles of the n players

in a noncooperative game in normal form and let gi be the gain function

of player i , 1≤ i ≤ n.

1 A strategy si ∈ Si of player i is said to be a best response strategy to

the profile ~s−i = (s1, . . . ,si−1,si+1, . . . ,sn) in

S−i = S1×·· ·×Si−1×Si+1×·· ·×Sn of the other players’ strategies

if for all strategies s ′i ∈ Si ,

gi (s1, . . . ,si−1,si ,si+1, . . . ,sn)≥ gi (s1, . . . ,si−1,s
′
i ,si+1, . . . ,sn). (3)
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Stability of Solutions: Nash Equilibria

Definition (Nash equilibrium in pure strategies—continued)

2 If there is exactly one such strategy si ∈ Si of player i , then this is her

strictly best response strategy to the other players’ strategy profile

~s−i .

3 A strategy profile ~s = (s1,s2, . . . ,sn) ∈S is in a Nash equilibrium in

pure strategies if for all i , 1≤ i ≤ n, si ∈ Si is a best response strategy

of player i to the other players’ strategy profile ~s−i .

4 If there is exactly one such strategy profile ~s, then ~s is in a strict Nash

equilibrium in pure strategies.
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Stability of Solutions: Nash Equilibria

Remark

There exists a Nash equilibrium in pure strategies if every player

chooses a best response strategy to the strategies she expects her

opponents to choose (and all opponents meet that expectation).

Thus, no player has an incentive to deviate from her chosen best

response strategy, and the solution is stable.

Since the inequalities (1) and (3) are identical, one might be tempted

to think that a best response strategy were the same as a dominant

strategy. However, there is a subtle, but decisive distinction: In the

definition of best response strategy, (3) is true merely for all

strategies s ′i ∈ Si of player i , while the context—the profile ~s−i =

(s1, . . . ,si−1,si+1, . . . ,sn) of the other players’ strategies—is fixed.
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Stability of Solutions: Nash Equilibria

Remark (continued)

By contrast, in the definition of dominant strategy, (1) holds true for

all strategies s ′i ∈ Si of player i and for all of the other players’

strategy profiles ~s−i = (s1, . . . ,si−1,si+1, . . . ,sn).

Hence, this is a sharper requirement: If a player has a dominant

strategy, then this is also her best response strategy for every strategy

profile of the other players.

It follows that a profile of dominant strategies for all players,

if it exists, is always in a Nash equilibrium in pure strategies;

the converse, however, does not hold in general.
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Nash Equilibria in the Prisoners’ Dilemma

Remark (continued)

Since (Confession,Confession) is a profile of dominant strategies of

both players in the prisoners’ dilemma, it is also a Nash equilibrium in

pure strategies:

Neither Smith nor Wesson can improve his situation by “one-sided

deviation” (that is, by deviating, assuming that the other player does

not deviate from his strategy).

Therefore, they both can be expected (or predicted) to “stably keep

to making a confession.”

This strategy profile even forms a strict Nash equilibrium, because

there is no other one.
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Nash Equilibria in the Prisoners’ Dilemma

Remark (continued)

This is due to the fact that both players even have strictly dominant

strategies.

That is generally true for every game in normal form:

If all players have strictly dominant strategies, then these form a strict

Nash equilibrium in pure strategies.

Weakly dominant strategies, however, can occur in several Nash

equilibria.

Can you come up with a game in normal form that has no dominant

strategies, even though there is a strict Nash equilibrium in pure

strategies?
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Dominant Strategies, Pareto Optimality & Nash Equilibria

Pareto−optimal

strategies

strict Nash equilibrium

in pure strategies

optimal strategies
Nash equilibrium

in pure strategies

strictly dominant strategies

dominant strategies

weakly Pareto−

Figure: Solution concepts for noncooperative games in normal form: Relations
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Foundations of Noncooperative Game Theory Normal Form, Dominant Strategies, and Equilibria

Dominant Strategies, Pareto Optimality & Nash Equilibria
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Foundations of Noncooperative Game Theory Further Two-Player Games

Battle of the Sexes: Story

To celebrate their first anniversary, George and Helena are going to go

out together. Unsurprisingly, they make quite different suggestions.

“Let’s just go to the stadium,” George suggests. “By chance I got

hold of two tickets for the soccer game tonight!” He proudly presents

them to her.

“Too bad!” Helena replies disappointedly and lifts a pair of tickets as

well. “I was going to surprise you with those! Tori Amos is

performing tonight, and so I figured . . . ”

“I’m really sorry!” George shouts. “Well, maybe you can sell them to

somebody on the way to the stadium. But this is England against

Germany, the classic! I surely can’t miss that game!”

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 32 / 55



Foundations of Noncooperative Game Theory Further Two-Player Games

Battle of the Sexes: Story

“Really not?” Helena snaps at him. “Then you just go to your

classic! I’ll certainly find someone who is interested in getting your

Tori Amos ticket!”

“I didn’t mean it like this!” George wisely gives in. “That I want to

spend this evening together with you, that is for sure, and for all I care

we can also go to your concert. The main thing is we do something

together! It’s just that I would prefer going with you together to the

soccer game ten times as much as going with you to the concert.”
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Foundations of Noncooperative Game Theory Further Two-Player Games

Battle of the Sexes: Normal Form

Table: The battle of the sexes

Helena

Soccer Concert

George
Soccer (10,1) (0,0)

Concert (0,0) (1,10)

George’s gain is the left entry and Helena’s gain is the right entry.

Spending the night at different events is for none of them beneficial:

The strategy profiles (Soccer,Concert) and (Concert,Soccer) are both

rewarded by (0,0), since a separation from their partner kills all joy

for both of them, even at their favorite events.
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Foundations of Noncooperative Game Theory Further Two-Player Games

Battle of the Sexes: Equilibria and (Pareto) Dominance

Fact

In the battle of the sexes,

1 the strategy profiles (Soccer,Soccer) and (Concert,Concert) with the

boldfaced gain vectors (10,1) and (1,10)

(a) form two Nash equilibria in pure strategies and

(b) are Pareto-optimal, and

2 there are no dominant strategies.

Remark

The battle of the sexes is different from the prisoners’ dilemma because:

it does not have a strict Nash equilibrium (but two);

these coincide with the Pareto optima;

it does not have dominant strategies.
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Foundations of Noncooperative Game Theory Further Two-Player Games

Chicken Game: Story

Figure: The chicken game

(The reader is strongly discouraged from playing this game.)

David and Edgar, two ten year old boys, play the chicken game in

their admittedly sexed up, but rather underperforming toy cars.

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 36 / 55



Foundations of Noncooperative Game Theory Further Two-Player Games

Chicken Game: Story

By the rules of the game, they “race” with a maximum speed of 5

miles per hour, approaching each other, and whoever cowardly

weasels out of driving on or swerves is the chicken and has lost.

However, since he at least has been wise and has survived, he gets

one gummy bear as a consolation prize, while the heroic winner rakes

in the top prize of three gummy bears.

If they both are wise and swerve just in time, then each of them gets

a prize of two gummy bears.

However, if both are boldly driving on to the bitter end, they are

declared “dead” (only in play) after the inevitable crash and win no

gummy bears.
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Foundations of Noncooperative Game Theory Further Two-Player Games

Chicken Game: Normal Form

Table: The chicken game

Edgar

Swerve Drive on

David
Swerve (2,2) (1,3)

Drive on (3,1) (0,0)

The left entry gives David’s gain, the right entry gives Edgar’s gain.

Chicken games are also referred to as hawk-dove games:

The hawk strategy corresponds to “Drive on,”

the dove strategy corresponds to “Swerve.”
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Foundations of Noncooperative Game Theory Further Two-Player Games

Chicken Game: Equilibria and (Pareto) Dominance

Fact

In the chicken game,

1 the strategy profiles (Drive on,Swerve) and (Swerve,Drive on) with

the boldfaced gain vectors (3,1) and (1,3)

(a) form two Nash equilibria in pure strategies and

(b) are Pareto-optimal, and

2 in addition, also the strategy profile (Swerve,Swerve) with the gain

vector (2,2) is Pareto-optimal.

Question: Does any one of the two players, or perhaps each of them due

to symmetry, have a dominant strategy?

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 39 / 55



Foundations of Noncooperative Game Theory Further Two-Player Games

Penalty Game: Story

“Football is a simple game; 22 men chase a ball for 90 minutes,

and at the end the Germans always win.”

Gary Lineker

FIFA World Cup, July 4, 1990
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Penalty Game: Story

Figure: David as the kicker and Edgar as the goalkeeper at the penalty shoot-out
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Penalty Game

For simplification, we reduce the multitude of actually occurring

strategies to only two for each player:

The kicker can kick the ball to the left or to the right of the goal, and

the goalkeeper can jump to the left or to the right to make a save.

“Left” and “Right” are here meant always from the goalkeeper’s

point of view, even if it is the kicker’s turn.

Abstracting from reality, we also assume that

the goalkeeper is guaranteed to hold on to the ball when he jumps to

the same side where the ball is being kicked, and

that the kicker never misses the goal.

That is, if he kicks to the left (or to the right) and if the goalkeeper

also jumps to the left (or to the right), the goalkeeper has definitely

thwarted a goal; but if the goalkeeper jumps to the wrong side, the

kicker has definitely converted his penalty.
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Penalty Game: Normal Form

Table: The penalty game

Goalkeeper

Left Right

Kicker
Left (−1,1) (1,−1)

Right (1,−1) (−1,1)

The left entry refers to the kicker’s gain and the right entry refers to

the goalkeeper’s gain.
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Penalty Game: Equilibria and (Pareto) Dominance

Fact

In the penalty game,

1 there is no Nash equilibrium in pure strategies and

2 thus there can be no profile containing a dominant strategy for both

the kicker and the goalkeeper.

3 In fact, no player can have a dominant strategy at all.

4 On the other hand, all four strategy profiles of this game are

Pareto-optimal.
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Paper-Rock-Scissors Game: Story?

Rock defeats scissors, because the rock can blunt the blades of the

scissors.

Scissors defeats paper, because the scissors can cut a sheet of paper.

Paper defeats rock, because the paper can wrap the rock.

If both players form distinct symbols, then the player whose symbol

defeats the other player’s symbol receives one point, and the other

player loses one point.

If both players form the same symbol, then none of them wins; so

nobody receives a point.
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Paper-Rock-Scissors Game: Story?

(a) Symbols for the strategies (b) Cycle of dominance relations

Figure: Strategies in the paper-rock-scissors game

J. Rothe (HHU Düsseldorf) Algorithmic Game Theory 46 / 55



Foundations of Noncooperative Game Theory Further Two-Player Games

Paper-Rock-Scissors Game: Normal Form

Table: The paper-rock-scissors game

Edgar

Rock Scissors Paper

David

Rock (0,0) (1,−1) (−1,1)

Scissors (−1,1) (0,0) (1,−1)

Paper (1,−1) (−1,1) (0,0)

The left entry is David’s gain and the right entry is Edgar’s gain.
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Paper-Rock-Scissors Game: Equilibria

Fact

In the paper-rock-scissors game, there does not exist a Nash equilibrium in

pure strategies.

Questions:

What about dominant strategies?

What about Pareto optimality?
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Paper-Rock-Scissors-Lizard-Spock Game
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Figure: Strategies in the paper-rock-scissors-lizard-spock game
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The Guessing Numbers Game: Rules

1 Any number of players can play this game.

2 Each of them guesses a real number between 0 and 100 (including

these two values).

3 Take the average (i.e., the arithmetic mean) of the numbers chosen

and let Z be exactly two thirds of this average.

4 Whoever comes closest to this number Z wins.

Remark

Thus, every player has infinitely many strategies to choose from, since

there are infinitely (even uncountably) many real numbers in the interval

[0,100].
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The Guessing Numbers Game: Who Wins in 2022?

Your numbers:

0 0 0.003 0.0008 1 6.6 7

7.5 9 12.34 13.37 21 24 27

27.462 31 35 35 37 41.1 42

42 42.3141592653 42.5 53.17 59 66

⇒ The average is: 682.359959265
27 = 25.2725910839.

⇒ Z = 2
3 ·25.2725910839 = 16.8483940559.

⇒ The winner is . . . Eduard Bopp with 13.37!

CONGRATULATIONS!!!
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The Guessing Numbers Game: A First Thought

If all players were to choose the largest possible number, 100, then

Zmax = 66.666 · · · ,

and no Z can be larger than Zmax.

It would therefore be dull to choose a number greater than Zmax.

In other words, the strategy (or number) Zmax dominates all

strategies (or numbers) exceeding it.

These can thus be safely eliminated.
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The Guessing Numbers Game: A Second Thought

How will my opponents behave?

Suppose that all players randomly choose a number from [0,100]

under the uniform distribution.

The average would then be 50 and two thirds of this is 33.333 · · · .

But wait a minute! Actually, why should all players choose an

arbitrary number from [0,100]?

If one assumes all players to behave rationally, they can be expected

to already have eliminated all numbers above Zmax = 66.666 · · · as

well; but then the average of the remaining numbers (assuming the

uniform distribution) would be Zrat = 33.333 · · · and two thirds of that

would be 22.222 · · · .
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The Guessing Numbers Game: A Third Thought

Every player behaves rationally and

every player knows that everybody behaves rationally, and

everybody knows that all players know that everybody behaves

rationally, which again everybody is aware of, and so on.

That is, also the number Zrat = 33.333 · · · dominates all numbers

exceeding it, which causes further numbers to be eliminated.

Likewise, 22.222 · · · dominates all greater numbers, which implies

their elimination as well, and so on.

Why should one stop at any point with that argument?

If you think this third thought consequently to the very end, only one

number will remain that you should choose as your strategy:

the ZERO.
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The Guessing Numbers Game: A Fourth Thought

Will all players in fact behave rationally?

This game—or variants thereof—has frequently been played in public,

often with several thousands of players.

In these games it has never been the case that all players have chosen

their strategies according to the Nash equilibrium.

However, as soon as some players deviate from the Nash equilibrium,

the other players are no longer guaranteed to win when playing their

Nash equilibrium strategy.

Selten and Nagel (1998) give an overview of such game-theoretic

experiments.
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