Übung zur Vorlesung **Algorithmische Spieltheorie**

(Lösungsvorschläge)

Blatt 4

Besprechung: 09. bis 11.11.2022 Verantwortlich: Anna Kerkmann

Aufgabe 1: Eigenschaften der Polynomialzeit-many-one-Reduktion

Seien $A, B \subseteq \Sigma^*$ zwei Sprachen über einem gegebenen Alphabet Σ . Zeigen Sie die folgenden Aussagen aus der Vorlesung.

(a) Aus $A \leq_{\mathrm{m}}^{\mathrm{p}} B$ folgt $\bar{A} \leq_{\mathrm{m}}^{\mathrm{p}} \bar{B}$.

Hinweis: $\bar{A} = \Sigma^* \setminus A$ ist das Komplement der Sprache A.

Lösungsvorschlag: Aus $A \leq_{\mathrm{m}}^{\mathrm{p}} B$ folgt, dass es eine Funktion $f: \Sigma^* \to \Sigma^*$ in FP gibt mit

$$x \in A \iff f(x) \in B \qquad \forall x \in \Sigma^*.$$

Dies ist äquivalent zu:

$$x \notin A \iff f(x) \notin B \qquad \forall x \in \Sigma^*.$$

Das ist wiederum gleichbedeutend mit

$$x \in \bar{A} \iff f(x) \in \bar{B} \qquad \forall x \in \Sigma^*.$$

Also folgt nach Definition, dass $\bar{A} \leq_{\mathbf{m}}^{\mathbf{p}} \bar{B}$.

(b) Die Relation \leq_m^p ist transitiv.

Lösungsvorschlag: Zu zeigen ist: Für $A,B,C\subseteq \Sigma^*$ mit $A\leq^{\rm p}_{\rm m} B$ und $B\leq^{\rm p}_{\rm m} C$ gilt $A\leq^{\rm p}_{\rm m} C$.

Aus $A \leq_{\mathrm{m}}^{\mathrm{p}} B$ folgt, dass es eine Funktion $f \in \mathrm{FP}$ gibt mit $x \in A \iff f(x) \in B$ für alle $x \in \Sigma^*$.

Aus $B \leq_{\mathrm{m}}^{\mathrm{p}} C$ folgt, dass es eine Funktion $g \in \mathrm{FP}$ gibt mit $x \in B \iff g(x) \in C$ für alle $x \in \Sigma^*$.

Also gilt für alle $x \in \Sigma^*$, dass $x \in A \iff g(f(x)) \in C$. Da die Verkettung der Funktionen g und f (also die Funktion $g \circ f$) ebenfalls in FP liegt, gilt $A \leq_{\mathrm{m}}^{\mathrm{p}} C$.

(c) Ist A ein $\leq_{\mathrm{m}}^{\mathrm{p}}$ -schweres (engl.: $\leq_{\mathrm{m}}^{\mathrm{p}}$ -hard) Problem für eine Komplexitätsklasse $\mathscr C$ und gilt $A \leq_{\mathrm{m}}^{\mathrm{p}} B$, dann ist B ebenfalls $\leq_{\mathrm{m}}^{\mathrm{p}}$ -schwer für $\mathscr C$.

Lösungsvorschlag: Angenommen A ist \mathscr{C} -schwer und es gilt $A \leq_{\mathrm{m}}^{\mathrm{p}} B$. (Wir schreiben auch " \mathscr{C} -schwer" statt " $\leq_{\mathrm{m}}^{\mathrm{p}}$ -schwer für \mathscr{C} ".)

Da A \mathscr{C} -schwer ist, gilt für alle Sprachen $X \in \mathscr{C}$, dass $X \leq_{\mathrm{m}}^{\mathrm{p}} A$ gilt.

Außerdem wissen wir aus Aufgabenteil (b), dass Transitivität gilt, d.h., aus $X \leq_{\mathrm{m}}^{\mathrm{p}} A$ und $A \leq_{\mathrm{m}}^{\mathrm{p}} B$, folgt $X \leq_{\mathrm{m}}^{\mathrm{p}} B$.

Also gilt für alle Sprachen $X \in \mathcal{C}$, dass $X \leq_{\mathrm{m}}^{\mathrm{p}} B$ gilt. Somit ist B \mathcal{C} -schwer.

Bemerkung: Diese Eigenschaft nutzen wir beispielsweise um NP-Härte oder PSPACE-Härte von Problemen zu beweisen.

Aufgabe 2: GEOGRAPHY

Vollziehen Sie den PSPACE-Härte-Beweis für GEOGRAPHY, der in der Vorlesung an einem Beispiel illustriert wurde, an einem weiteren Beispiel nach. Betrachten Sie dazu die folgende quantifizierte Boolesche Formel:

$$H = (\exists x_1)(\forall y_1)(\exists x_2)[(x_1 \vee \neg y_1 \vee x_2) \wedge (\neg x_1 \vee x_2) \wedge (y_1 \vee \neg x_2)]$$

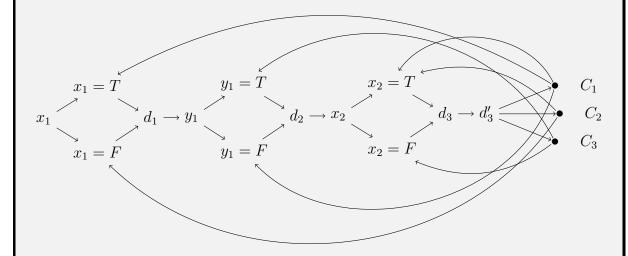
(a) Überlegen Sie zunächst, wie die Reduktion modifiziert werden muss, wenn der letzte Quantor der Formel existenziell ist.

Lösungsvorschlag: Wenn der letzte Quantor der Formel existenziell ist, es also eine ungerade Anzahl an Quantoren gibt, muss trotzdem der *universelle* Spieler (\forall -Spieler) den *existenziellen* Spieler (\exists -Spieler) herausfordern. Der universelle Spieler muss also den Pfad zu einem Knoten, der einer Klausel entspricht, wählen können. Füge daher einen weiteren Knoten d'_n ein und eine Kante von d_n zu d'_n . Die Kanten, die vorher von d_n ausgingen, gehen nun von d'_n aus.

(b) Geben Sie den gerichteten Graphen G an, der aus H konstruiert wird, und entscheiden Sie, ob H eine wahre quantifizierte Aussage ist und ob es in G eine Gewinnstrategie für Spieler 1 gibt.

Begründen Sie jeweils Ihre Antworten.

Lösungsvorschlag: $H = (\exists x_1)(\forall y_1)(\exists x_2)[(x_1 \lor \neg y_1 \lor x_2) \land (\neg x_1 \lor x_2) \land (y_1 \lor \neg x_2)]$ wird auf den folgenden Graphen G abgebildet:



Die Formel ist erfüllt für $x_1 = F$ und $y_1 = x_2$. Somit ist H eine wahre quantifizierte Aussage.

Entsprechend hat Spieler 1 die Gewinnstrategie zunächst zu $x_1 = T$ zu laufen und später in Abhängigkeit von der Wahl des zweiten Spielers,

- $\bullet\,$ zu $x_2=T$ zu laufen, falls Spieler 2 zu $y_1=T$ gelaufen ist, oder
- $\bullet\,$ zu $x_2=F$ zu laufen, falls Spieler 2 zu $y_1=F$ gelaufen ist,

so dass unabhängig von der Wahl von C_1 , C_2 oder C_3 immer noch ein Zug für Spieler 1 übrig bleibt (und er somit gewinnt).

Aufgabe 3: Geography II

Betrachten Sie das folgende Entscheidungsproblem.

	Geography II
Gegeben:	Ein gerichteter Graph $G = (V, E)$ mit einem Startknoten $s \in V$.
Frage:	Gibt es eine Gewinnstrategie für den zweiten Spieler im Spiel geogra-
	phy, das auf G basiert und bei s beginnt?

Zeigen Sie durch Angabe einer geeigneten \leq_m^p -Reduktion, dass GEOGRAPHY II \leq_m^p -schwer für PSPACE ist.

Hinweis: Bekannte Aussagen aus der Vorlesung können Sie natürlich verwenden.

Lösungsvorschlag: Betrachte folgende Polynomialzeit-Many-One-Reduktion von GEO-GRAPHY. Aus der Vorlesung ist bekannt, dass GEOGRAPHY PSPACE-vollständig ist. Wir nutzen also die Aussage aus der Vorlesung, dass \leq_m^p -Schwere sich "nach oben vererbt" (siehe auch Aufgabe 1(c)). Somit folgt aus der Reduktion, dass GEOGRAPHY II \leq_m^p -schwer für PSPACE ist.

Reduktion: Gegeben sei eine GEOGRAPHY-Instanz, bestehend aus einem gerichteten Graphen

$$G = (V, E)$$

und einem ausgezeichneten Knoten $s \in V$. Wir konstruieren daraus eine Instanz von Geography II, bestehend aus dem Graphen

$$G' = (V \cup \{s'\}, E \cup \{(s', s)\})$$

mit einem zusätzlichen Knoten $s' \notin V$. Sei s' der ausgezeichnete Knoten dieser Instanz.

Diese Konstruktion lässt sich offentsichtlich in polynomieller Zeit in der Anzahl der Knoten (und Kanten) des Ursprungsgraphen durchführen.

Es bleibt noch zu zeigen: Es gibt genau dann eine Gewinnstrategie für Spieler 1 für das Spiel geography auf G, wenn es für Spieler 2 eine Gewinnstrategie für geography auf G' gibt.

Auf G' hat Spieler 1 im ersten Zug keine Wahl und kann nur nach s ziehen. Somit startet Spieler 2 auf dem ursprünglichen Startknoten s.

Angenommen, es gibt eine Gewinnstrategie für Spieler 1 auf G. Dann hat nach obiger Beobachtung Spieler 2 in G' genau dieselbe Gewinnstrategie ausgehend von s.

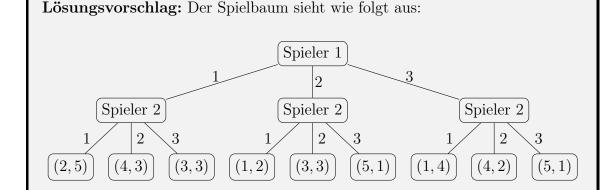
Umgekehrt gilt ebenso: Falls Spieler 1 auf G keine Gewinnstrategie hat, dann hat Spieler 2 auf G' auch keine Gewinnstrategie von s aus.

Aufgabe 4: Teilspiel-perfekte Nash-Gleichgewichte

Betrachten Sie das folgende, von Blatt 1 bekannte Zwei-Personen Spiel:

		Spieler 2		
		1	2	3
	1	(2,5)	(4,3)	(3,3)
Spieler 1	2	(1,2)	(3,3)	(5,1)
	3	(1,4)	(4,2)	(5,1)

(a) Fassen Sie das Spiel als sequenzielles Spiel auf, bei dem zuerst Spieler 1 und danach Spieler 2 die eigene Strategie wählt. Insbesondere weiß hier also Spieler 2 vor der eigenen Entscheidung, was Spieler 1 gewählt hat. Zeichnen Sie den zugehörigen Spielbaum und ermitteln Sie mithilfe von Rückwärtsinduktion alle teilspiel-perfekten Nash-Gleichgewichte (engl.: subgame-perfect equilibria) für dieses Spiel.



Zunächst betrachten wir Spieler 2: Für ihn ist

- im linken Teilbaum 1 eine beste Antwort (mit Gewinnen (2,5)),
- im mittleren Teilbaum 2 eine beste Antwort (mit Gewinnen (3,3)), und
- im rechten Teilbaum 1 eine beste Antwort (mit Gewinnen (1,4)).

Ausgehend davon, ist für Spieler 1 Strategie 2 die beste Wahl, denn über den mittleren Teilbaum bekommt er den meisten Gewinn.

Also (2, 2) das einzige teilspiel-perfekte Nash-Gleichgewicht.

(b) Wie lauten die teilspiel-perfekten Nash-Gleichgewichte für das sequenzielle Spiel, bei dem Spieler 2 beginnt?

