Algorithmic Game Theory

Algorithmische Spieltheorie
Pingo
Wintersemester 2022/2023

Dozent: Prof. Dr. J. Rothe

hhu.

Website

https://pingo.coactum.de/

Access Number: 885317

© Titanic Verlag

Question 1

Consider the weighted voting game $G=(2,2,2 ; 4)$. In terms of the normalized Banzhaf index, is splitting into two players of equal weight for, say, the third player ...

A ... beneficial?
B ... neutral?
C ... disadvantageous?

Question 2

Consider the weighted voting game $G=(2,2,2 ; 5)$. In terms of the normalized Banzhaf index, is splitting into two players of equal weight for, say, the third player ...

A ... beneficial?
B ... neutral?
C ... disadvantageous?

Question 3

Consider the weighted voting game $G=(2,2,2 ; 6)$. In terms of the normalized Banzhaf index, is splitting into two players of equal weight for, say, the third player ...

A ... beneficial?
B ... neutral?
C ... disadvantageous?

Question 4

In all examples presented so far, weight-splitting had the same effect on the Shapley-Shubik index and the normalized Banzhaf index of the manipulator.
Is this is always the case?
A Yes
B No
C - _(ö)_/

Answer 4

In all examples presented so far, weight-splitting had the same effect on the Shapley-Shubik index and the normalized Banzhaf index of the manipulator.
Is this is always the case?
A Yes
B No
C - _(ö)_/

Explanation of Answer 4

Example (Aziz, Bachrach, Elkind, Paterson, 2011)
Consider the WVG $G=(2,1,1,1,1 ; 5)$.

Explanation of Answer 4

Example (Aziz, Bachrach, Elkind, Paterson, 2011)
Consider the WVG $G=(2,1,1,1,1 ; 5)$.
In this game, the first player is pivotal for a permutation if he appears in the last or second-to-last position, but not in earlier positions.

Explanation of Answer 4

Example (Aziz, Bachrach, Elkind, Paterson, 2011)
Consider the WVG $G=(2,1,1,1,1 ; 5)$.
In this game, the first player is pivotal for a permutation if he appears in the last or second-to-last position, but not in earlier positions.
Thus, his Shapley-Shubik index is $\frac{2}{5}$.

Explanation of Answer 4

Example (Aziz, Bachrach, Elkind, Paterson, 2011)
Consider the WVG $G=(2,1,1,1,1 ; 5)$.
In this game, the first player is pivotal for a permutation if he appears in the last or second-to-last position, but not in earlier positions.
Thus, his Shapley-Shubik index is $\frac{2}{5}$.
Further, this player is pivotal for any coalition that contains three or four players of weight 1, i.e., for 5 coalitions.

Explanation of Answer 4

Example (Aziz, Bachrach, Elkind, Paterson, 2011)
Consider the WVG $G=(2,1,1,1,1 ; 5)$.
In this game, the first player is pivotal for a permutation if he appears in the last or second-to-last position, but not in earlier positions.
Thus, his Shapley-Shubik index is $\frac{2}{5}$.
Further, this player is pivotal for any coalition that contains three or four players of weight 1, i.e., for 5 coalitions.

On the other hand, any player of weight 1 is pivotal for any coalition that contains the player of weight 2 as well as any two other players of weight 1, i.e., for 3 coalitions.

Explanation of Answer 4

Example (Aziz, Bachrach, Elkind, Paterson, 2011; continued)
Thus the normalized Banzhaf index of the first player is given by

$$
\frac{5}{5+4 \cdot 3}=\frac{5}{17} .
$$

Explanation of Answer 4

Example (Aziz, Bachrach, Elkind, Paterson, 2011; continued)
Thus the normalized Banzhaf index of the first player is given by

$$
\frac{5}{5+4 \cdot 3}=\frac{5}{17}
$$

It remains to observe that, after splitting the first player into two new players, we have for $G^{\prime}=(1,1,1,1,1,1 ; 5)$:

$$
\begin{aligned}
\frac{2}{5} & >\frac{1}{3}=\operatorname{SSI}\left(G^{\prime}, 1\right)+\operatorname{SSI}\left(G^{\prime}, 2\right) \quad \text { but } \\
\frac{5}{17} & <\frac{1}{3}=\overline{\mathrm{BI}}\left(G^{\prime}, 1\right)+\overline{\mathrm{BI}}\left(G^{\prime}, 2\right)
\end{aligned}
$$

Question 5

Consider the weighted voting game $G=(2,2,1,1 ; 4)$. In terms of the probabilistic Banzhaf index, is merging the last two players into one third player (yielding $\left.G^{\prime}=(2,2,2 ; 4)\right) \ldots$
A ... beneficial?
B ... neutral?
C ... disadvantageous?

Question 6

Consider the weighted voting game $G=(2,2,1,1 ; 5)$. In terms of the probabilistic Banzhaf index, is merging the last two players into one third player (yielding $\left.G^{\prime}=(2,2,2 ; 5)\right) \ldots$
A ... beneficial?
B ... neutral?
C ... disadvantageous?

Question 7

Consider the weighted voting game $G=(2,2,1,1 ; 6)$. In terms of the probabilistic Banzhaf index, is merging the last two players into one third player (yielding $G^{\prime}=(2,2,2 ; 6)$) \ldots

A ... beneficial?
B ... neutral?
C ... disadvantageous?

Question 8

Is merging two players always neutral in terms of the probabilistic Banzhaf index?

A Yes
B No
C _(ö)_/

