Algorithmic Game Theory

Algorithmische Spieltheorie
Pingo
Wintersemester 2022/2023

Dozent: Prof. Dr. J. Rothe

hhu.

Website

https://pingo.coactum.de/

Access Number: 885317

(C) Titanic Verlag

Question 1

Suppose you have won \$ 1,000, 000 because you were able to prove $\mathrm{P} \neq \mathrm{NP}$. Which of the following claims can be true?
A Partition $\leq \mathrm{p}$ Dummy
B Partition $\leq{ }_{\mathrm{m}}^{\mathrm{p}} \overline{\mathrm{DUMMY}}$
C PARTITION $\leq \mathrm{p}$ DUMmy
D PARTITION $\leq \mathrm{p}$ DUMMY

Question 2

Which of the following are Yes-instances of Partition?
A (1, 2, 3, 4, 5)
B (1,2, 3, 4, 5, 6, 7)
C $(1,5,5,7)$
D (1,3,5,7)
E (11, 15, 23, 51)

Question 3

Which of the following claims is/are true?
A In the proof that DUMmy is coNP-complete, given the instance
$(1,3,5,7)$ of Partition, we construct a weighted voting game $G=(2,6,10,14,1 ; 17)$ in which player 5 is pivotal for $\{1,4\}$.

B In the proof that Dummy is coNP-complete, given the instance $(1,5,5,7)$ of PARTITION, we construct a weighted voting game $G=(2,10,10,14,1 ; 19)$ in which player 5 is pivotal for $\{1,4\}$.

C If coNP $\subseteq \mathrm{NP}$ then coNP $=\mathrm{NP}$.
D If $\mathrm{NP}=\mathrm{P}$ then $\operatorname{coNP}=\mathrm{P}$.

Question 4

Consider the weighted voting game $G=(2,2,2 ; 4)$. In terms of the Shapley-Shubik index, is splitting into two players of equal weight for, say, the third player ...

A ... beneficial?
B ... neutral?
C ... disadvantageous?

Question 5

Consider the weighted voting game $G=(2,2,2 ; 5)$. In terms of the Shapley-Shubik index, is splitting into two players of equal weight for, say, the third player ...

A ... beneficial?
B ... neutral?
C ... disadvantageous?

Question 6

Consider the weighted voting game $G=(2,2,2 ; 6)$. In terms of the Shapley-Shubik index, is splitting into two players of equal weight for, say, the third player ...

A ... beneficial?
B ... neutral?
C ... disadvantageous?

