#### Algorithmic Game Theory Algorithmische Spieltheorie Pingo Wintersemester 2022/2023

#### Dozent: Prof. Dr. J. Rothe

# hhu.

Website

### https://pingo.coactum.de/

Pingo

## Access Number: 885317



© Titanic Verlag

J. Rothe (HHU Düsseldorf)

Pingo

|      |          | Belle    |          |
|------|----------|----------|----------|
|      |          | Shopping | Stopping |
| Anna | Shopping | (7,3)    | (2,4)    |
|      | Stopping | (4,2)    | (1,1)    |

- A There is a strict Nash equilibrium in pure strategies.
- B There are exactly two Nash equilibria in pure strategies.
- C There are exactly three Nash equilibria in pure strategies.
- D There are exactly four Nash equilibria in pure strategies.

Pingo

|      |          | Belle    |          |
|------|----------|----------|----------|
|      |          | Shopping | Stopping |
| Anna | Shopping | (7,3)    | (2,4)    |
|      | Stopping | (4,2)    | (1,1)    |

- A Anna has a dominant strategy.
- B Belle has a dominant strategy.
- C Anna has a strictly dominant strategy.
- D Belle has a strictly dominant strategy.

|      |          | Belle    |          |
|------|----------|----------|----------|
|      |          | Shopping | Stopping |
| ٨٥٥٥ | Shopping | (7,3)    | (2,4)    |
| Anna | Stopping | (4,2) (1 | (1,1)    |

- A Exactly one strategy profile is Pareto-optimal.
- B Exactly two strategy profiles are Pareto-optimal.
- C Exactly three strategy profiles are Pareto-optimal.
- D All four strategy profiles are Pareto-optimal.

Which of the following claims are true?

- A Every strict Nash equilibrium in pure strategies is a profile of strictly dominant strategies.
- B Every profile of strictly dominant strategies is a strict Nash equilibrium in pure strategies.
- C Every Pareto-optimal profile contains only dominant strategies.
- D There is a two-player normalform game with two strategies per player that has a strict Nash equilibrium in pure strategies but no dominant strategies.





This reminds me of ...

- A ... the prisoners' dilemma.
- B ... the battle of the sexes.
- C ... the chicken game.
- D ... the penalty game.

Pingo

|      |          | Belle        |          |
|------|----------|--------------|----------|
|      |          | Crossing     | Stopping |
| Anna | Crossing | (-100, -100) | (1,0)    |
|      | Stopping | (0,1)        | (0,0)    |

- A There is a strict Nash equilibrium in pure strategies.
- B There are exactly two Nash equilibria in pure strategies.
- C There are exactly three Nash equilibria in pure strategies.
- D There are exactly four Nash equilibria in pure strategies.



|           |       | Belle        |       |
|-----------|-------|--------------|-------|
|           |       | Cross        | Stop  |
| Anna Cros | Cross | (-100, -100) | (1,0) |
|           | Stop  | (0,1)        | (0,0) |

Which of the following claims are true?

In addition to the two Nash equilibria in pure strategies, ...

- A ... there is no Nash equilibrium in mixed strategies.
- B ... there is exactly one Nash equilibrium in mixed strategies.
- C ... there are exactly two Nash equilibria in mixed strategies.
- D ... there are exactly four Nash equilibria in mixed strategies.



Which of the following walks are correct according to the proof of Sperner's lemma?

