Algorithmic Game Theory

Algorithmische Spieltheorie
Pingo
Wintersemester 2022/2023

Dozent: Prof. Dr. J. Rothe

hhu.

Website

https://pingo.coactum.de/

Access Number: 885317

(C) Titanic Verlag

Question 1

		Belle	
		Shopping	Stopping
Anna	Shopping	$(7,3)$	$(2,4)$
	Stopping	$(4,2)$	$(1,1)$

A There is a strict Nash equilibrium in pure strategies.
B There are exactly two Nash equilibria in pure strategies.
C There are exactly three Nash equilibria in pure strategies.
D There are exactly four Nash equilibria in pure strategies.

Question 2

		Belle	
		Shopping	Stopping
Anna	Shopping	$(7,3)$	$(2,4)$
	Stopping	$(4,2)$	$(1,1)$

A Anna has a dominant strategy.
B Belle has a dominant strategy.
C Anna has a strictly dominant strategy.
D Belle has a strictly dominant strategy.

Question 3

		Belle	
		Shopping	Stopping
Anna	Shopping	$(7,3)$	$(2,4)$
	Stopping	$(4,2)$	$(1,1)$

A Exactly one strategy profile is Pareto-optimal.
B Exactly two strategy profiles are Pareto-optimal.
C Exactly three strategy profiles are Pareto-optimal.
D All four strategy profiles are Pareto-optimal.

Question 4

Which of the following claims are true?
A Every strict Nash equilibrium in pure strategies is a profile of strictly dominant strategies.

B Every profile of strictly dominant strategies is a strict Nash equilibrium in pure strategies.

C Every Pareto-optimal profile contains only dominant strategies.
D There is a two-player normalform game with two strategies per player that has a strict Nash equilibrium in pure strategies but no dominant strategies.

Question 5

This reminds me of ...
A ... the prisoners' dilemma.
B ... the battle of the sexes.
C ... the chicken game.
D ... the penalty game.

Question 6

		Belle	
		Crossing	Stopping
Anna	Crossing	$(-100,-100)$	$(1,0)$
	Stopping	$(0,1)$	$(0,0)$

A There is a strict Nash equilibrium in pure strategies.
B There are exactly two Nash equilibria in pure strategies.
C There are exactly three Nash equilibria in pure strategies.
D There are exactly four Nash equilibria in pure strategies.

Question 7

		Belle	
		Cross	Stop
Anna	Cross	$(-100,-100)$	$(\mathbf{1}, \mathbf{0})$
	Stop	$(\mathbf{0}, \mathbf{1})$	$(0,0)$

Which of the following claims are true?
In addition to the two Nash equilibria in pure strategies, ...
A ... there is no Nash equilibrium in mixed strategies.
B ... there is exactly one Nash equilibrium in mixed strategies.
C ... there are exactly two Nash equilibria in mixed strategies.
D ... there are exactly four Nash equilibria in mixed strategies.

Question 8

Which of the following walks are correct according to the proof of Sperner's lemma?

A
B
C
D
E
F

