### Algorithmic Game Theory Algorithmische Spieltheorie Pingo Wintersemester 2022/2023

#### Dozent: Prof. Dr. J. Rothe

# hhu.

Website

## https://pingo.coactum.de/

Pingo

# Access Number: 885317



© Titanic Verlag

In a 2-player normal-form game, you have marked in the table

- player 1's maximum gain in each column and
- player 2's maximum gain in each row.

Which of the following statements is true?

- A Every double-marked entry is a Pareto-optimal strategy profile.
- B Every double-marked entry corresponds to a Nash equilibrium in pure strategies.
- C Every double-unmarked entry is a Pareto-optimal strategy profile.
- D Every double-unmarked entry corresponds to a Nash equilibrium in pure strategies.

In a 2-player normal-form game, you have marked in the table

- player 1's maximum gain in each column and
- player 2's maximum gain in each row.

Suppose the second components in one complete column have been marked. Does this mean that ...

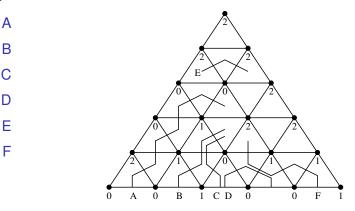
- A ... this strategy belongs to a Pareto-optimal strategy profile?
- B ... this corresponds to a dominating strategy of player 1?
- C ... this corresponds to a dominating strategy of player 2?
- D ... there cannot exist a Nash equilibrium in pure strategies?

|      |         | Belle   |         |
|------|---------|---------|---------|
|      |         | Nailing | Sailing |
| Anna | Nailing | (7,3)   | (1,1)   |
|      | Sailing | (4,2)   | (2,4)   |

- A Exactly one strategy profile is Pareto-optimal.
- B Exactly two strategy profiles are Pareto-optimal.
- C Exactly three strategy profiles are Pareto-optimal.
- D All four strategy profiles are Pareto-optimal.



Which of the following walks are correct according to the proof of Sperner's lemma?



Which of the following statements are true for finite, two-player, zero-sum games in normal form?

- A Every Nash equilibrium in mixed strategies is a profile of maxmin strategies.
- B The set of maxmin strategies can be different from the set of minmax strategies for some of the two players.
- C Every profile of maxmin strategies is a Nash equilibrium in mixed strategies.

#### **Question 6**

Let's play NIM by the following rules:

- Both players can take one or two plush bunnies (they have to take at least one).
- Whoever takes the last plush bunny loses.
- The other player wins.

Does player 1 have a winning strategy if we start with five plush bunnies?

A Yes.

B No.

Pingo

#### Question 7

Consider the game G = (P, v) with three players whose characteristic function is defined by

$$u(C) = \left\{ egin{array}{ll} 1 & ext{if } \|C\| ext{ is odd} \ 0 & ext{if } \|C\| ext{ is even.} \end{array} 
ight.$$

Which of the following statements are true?

- A G is anonymous.
- B G is simple.
- C G is superadditive.
- D G is convex.

Pingo

#### **Question 8**

Consider the game G = (P, v) with five players whose characteristic function is defined by

$$u(\mathcal{C}) = \left\{ egin{array}{cc} 1 & ext{if } \|\mathcal{C}\| \geq 2 \ 0 & ext{if } \|\mathcal{C}\| ext{ otherwise.} \end{array} 
ight.$$

Which of the following statements are true?

- A G is anonymous.
- B G is simple.
- C G is superadditive.
- D G is convex.

Which of the following statements are true for simple games?

- A A veto player is necessary (but not always sufficient) to form a winning coalition.
- B There always exists a veto player.
- C Veto players are unique.
- D It is possible that all players are veto players.
- E A superadditive simple game has an empty core exactly if it has a veto player.

Let G = (P, v) be a nonmonotonic cooperative game with *n* players. Consider the payoff vector ( $\varphi_1(G), \ldots, \varphi_n(G)$ ). Which of the following statements are true?

A 
$$\sum_{i=1}^{n} \varphi_i(G) = v(P).$$

B If  $\varphi_i(G) = 0$  then  $i \in P$  is a dummy player.

**C**  $\varphi_i(G) = \varphi_i(G)$  for symmetric players *i* and *j*.

 $\mathsf{D} \varphi_i(G+G) = 2\varphi_i(G).$ 

Consider the weighted voting game G = (4, 4, 1; q).

How would you choose the quota *q* to make sure that the weight-1 player has the same total power (in terms of the Shapley–Shubik index) as any of the weight-4 players?

A 
$$q = 4$$

- **B** *q* = 5.
- **C** q = 8.
- **D** *q* = 9.

Consider the weighted voting game G = (5, 10, 2; 12).

Which of the following weighted voting games are equivalent to G?

A (1,1,1;3) B (1,1,1;2) C (1,2,1;3) D (1,2,1;2)

### Question 13

To show that a cooperative game G = (P, v) is convex, we have to show that . . .

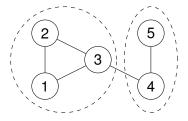
A ...  $v(C) \le v(D)$  for all coalitions *C* and *D* with  $C \subseteq D$ .

- B ...  $v(C \cup \{i\}) v(C) \le v(D \cup \{i\}) v(D)$  for all subsets  $C, D \subseteq P$  with  $C \subseteq D \subseteq P$  and all  $i \in P \setminus D$ .
- **C** ...  $v(C \cup D) \ge v(C) + v(D)$  for any two disjoint coalitions *C* and *D*.
- D ...  $v(C \cup D) + v(C \cap D) \ge v(C) + v(D)$  for all coalitions *C* and *D*.

Consider the weighted voting game G = (2, 2, 2; 6). In terms of the probabilistic Banzhaf index, is splitting the last player into two weight-1 players (yielding G' = (2, 2, 1, 1; 6))...

- A ... beneficial?
- B ... neutral?
- C ... disadvantageous?

Consider the enemy-oriented hedonic game



with a partition  $\Pi$  into cliques. Is  $\Pi$  ...

- A ... core stable?
- B ... strictly core stable?
- C ... wonderfully stable?