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Abstract. Holzer and Holzer [7] proved that the TantrixTM rotation puzzle prob-
lem with four colors is NP-complete, and they showed that the infinite variant of
this problem is undecidable. In this paper, we study the three-color and two-color
TantrixTM rotation puzzle problems (3-TRP and 2-TRP) and their variants. Re-
stricting the number of allowed colors to three (respectively, to two) reduces the
set of available TantrixTM tiles from 56 to 14 (respectively, to 8). We prove that
3-TRP and 2-TRP are NP-complete, which answers a question raised by Holzer
and Holzer [7] in the affirmative. Since our reductions are parsimonious, it fol-
lows that the problems Unique-3-TRP and Unique-2-TRP are DP-complete under
randomized reductions. Finally, we prove that the infinite variants of 3-TRP and
2-TRP are undecidable.

1 Introduction

The puzzle game TantrixTM, invented by Mike McManaway in 1991, is a domino-like
strategy game played with hexagonal tiles in the plane. Each tile contains three col-
ored lines in different patterns (see Figure 1). We are here interested in the variant of
the TantrixTM rotation puzzle game whose aim it is to match the line colors of the
joint edges for each pair of adjacent tiles, just by rotating the tiles around their axes
while their locations remain fixed. This paper continues the complexity-theoretic study
of such problems that was initiated by Holzer and Holzer [7]. Other results on the
complexity of domino-like strategy games can be found, e.g., in Grädel’s work [6].
TantrixTM puzzles have also been studied with regard to evolutionary computation [4].

Holzer and Holzer [7] defined two decision problems associated with four-color
TantrixTM rotation puzzles. The first problem’s instances are restricted to a finite num-
ber of tiles, and the second problem’s instances are allowed to have infinitely many
tiles. They proved that the finite variant of this problem is NP-complete and that the in-
finite problem variant is undecidable. The constructions in [7] use tiles with four colors,
just as the original TantrixTM tile set. Holzer and Holzer posed the question of whether
the TantrixTM rotation puzzle problem remains NP-complete if restricted to only three
colors, or if restricted to otherwise reduced tile sets.
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Table 1. Overview of complexity and decidability results for k-TRP and its variants

k k-TRP is Parsimonious? Unique-k-TRP is Inf-k-TRP is

1 in P (trivial) in P (trivial) decidable (trivial)
2 NP-compl., Cor. 3 yes, Thm. 2 DP-≤p

ran-compl., Cor. 4 undecidable, Thm. 3
3 NP-compl., Cor. 1 yes, Thm. 1 DP-≤p

ran-compl., Cor. 4 undecidable, Thm. 3
4 NP-compl., see [7] yes, see [1] DP-≤p

ran-compl., see [1] undecidable, see [7]

In this paper, we answer this question in the affirmative for the three-color and the
two-color version of this problem. For 1 ≤ k ≤ 4, Table 1 summarizes the results for
k-TRP, the k-color TantrixTM rotation puzzle problem, and its variants. (All problems
are formally defined in Section 2.)

Since the four-color TantrixTM tile set contains the three-color TantrixTM tile set,
our new complexity results for 3-TRP imply the previous results for 4-TRP (both its
NP-completeness [7] and that satisfiability parsimoniously reduces to 4-TRP [1]). In
contrast, the three-color TantrixTM tile set does not contain the two-color TantrixTM

tile set (see Figure 2 in Section 2). Thus, 3-TRP does not straightforwardly inherit its
hardness results from those of 2-TRP, which is why both reductions, the one to 3-TRP
and the one to 2-TRP, have to be presented. Note that they each substantially differ—
both regarding the subpuzzles constructed and regarding the arguments showing that
the constructions are correct—from the previously known reductions [7,1], and we will
explicitly illustrate the differences between our new and the original subpuzzles.

Since we provide parsimonious reductions from the satisfiability problem to 3-TRP
and to 2-TRP, our reductions preserve the uniqueness of the solution. Thus, the unique
variants of both 3-TRP and 2-TRP are DP-complete under polynomial-time random-
ized reductions, where DP is the class of differences of NP sets. We also prove that the
infinite variants of 3-TRP and 2-TRP are undecidable, via a circuit construction sim-
ilar to the one Holzer and Holzer [7] used to show that the infinite 4-TRP problem is
undecidable.

2 Definitions and Notation

Complexity-Theoretic Notions and Notation: We assume that the reader is familiar
with the standard notions of complexity theory, such as the complexity classes P (deter-
ministic polynomial time) and NP (nondeterministic polynomial time). DP denotes the
class of differences of any two NP sets [9].

Let Σ∗ denote the set of strings over the alphabet Σ = {0,1}. Given any language L⊆
Σ∗, ‖L‖ denotes the number of elements in L. We consider both decision problems and
function problems. The former are formalized as languages whose elements are those
strings in Σ∗ that encode the yes-instances of the problem at hand. Regarding the latter,
we focus on the counting problems related to sets in NP. The counting version #A of an
NP set A maps each instance x of A to the number of solutions of x. That is, counting
problems are functions from Σ∗ to N. As an example, the counting version #SAT of
SAT, the NP-complete satisfiability problem, asks how many satisfying assignments a
given boolean formula has. Solutions of NP sets can be viewed as accepting paths of
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(a) Sint (b) Brid (c) Chin (d) Rond

(e) red (f) yellow (g) blue (h) green

Fig. 1. TantrixTM tile types and the encoding of TantrixTM line colors

NP machines. Valiant [10] defined the function class #P to contain the functions that
give the number of accepting paths of some NP machine. In particular, #SAT is in #P.

The complexity of two decision problems, A and B, will here be compared via the
polynomial-time many-one reducibility: A ≤p

m B if there is a polynomial-time com-
putable function f such that for each x ∈ Σ∗, x ∈ A if and only if f (x) ∈ B. A set B
is said to be NP-complete if B is in NP and every NP set ≤p

m-reduces to B.
Many-one reductions do not always preserve the number of solutions. A reduction

that does preserve the number of solutions is said to be parsimonious. Formally, if A
and B are any two sets in NP, we say A parsimoniously reduces to B if there exists a
polynomial-time computable function f such that for each x ∈ Σ∗, #A(x) = #B( f (x)).

Valiant and Vazirani [11] introduced the following type of randomized polynomial-
time many-one reducibility: A ≤p

ran B if there exists a polynomial-time randomized al-
gorithm F and a polynomial p such that for each x ∈ Σ∗, if x ∈ A then F(x) ∈ B with
probability at least 1/p(|x|), and if x �∈ A then F(x) �∈ B with certainty. In particular,
they proved that the unique version of the satisfiability problem, Unique-SAT, is DP-
complete under randomized reductions.

Tile Sets, Color Sequences, and Orientations: The TantrixTM rotation puzzle consists
of four different kinds of hexagonal tiles, named Sint, Brid, Chin, and Rond. Each tile
has three lines colored differently, where the three colors of a tile are chosen among four
possible colors, see Figures 1(a)–(d). The original TantrixTM colors are red, yellow, blue,
and green, which we encode here as shown in Figures 1(e)–(h). The combination of four
kinds of tiles having three out of four colors each gives a total of 56 different tiles.

Let C be the set that contains the four colors red, yellow, blue, and green. For
each i ∈ {1,2,3,4}, let Ci ⊆ C be some fixed subset of size i, and let Ti denote the
set of TantrixTM tiles available when the line colors for each tile are restricted to Ci.
For example, T4 is the original TantrixTM tile set containing 56 tiles, and if C3 contains,
say, the three colors red, yellow, and blue, then tile set T3 contains the 14 tiles shown in
Figure 2(b).
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(a) TantrixTM tile set T2
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(b) TantrixTM tile set T3

Fig. 2. TantrixTM tile sets T2 (for red and blue) and T3 (for red, yellow, and blue)
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For T3 and T4, we require the three lines on each tile to have distinct colors, as in
the original TantrixTM tile set. For T1 and T2, however, this is not possible, so we allow
the same color being used for more than one of the three lines of any tile. Note that we
care only about the sequence of colors on a tile, where we always use the clockwise
direction to represent color sequences. However, since different types of tiles can yield
the same color sequence, we will use just one such tile to represent the corresponding
color sequence. For example, if C2 contains, say, the two colors red and blue, then the
color sequence red-red-blue-blue-blue-blue (which we abbreviate as rrbbbb) can be
represented by a Sint, a Brid, or a Rond each having one short red arc and two blue
additional lines, and we add only one such tile (say, the Rond) to the tile set T2. That is,
though there is some freedom in choosing a particular set of tiles, to be specific we fix
the tile set T2 shown in Figure 2(a). Thus, we have ‖T1‖ = 1, ‖T2‖ = 8, ‖T3‖ = 14, and
‖T4‖ = 56, regardless of which colors are chosen to be in Ci, 1 ≤ i ≤ 4.

The six possible orientations for each tile in T2 and in T3, respectively, can be de-
scribed by permuting the color sequences cyclically, and we omit the repetitions of
color sequences (see the full version [2] for more details). For example, tile t7 from T2

has the same color sequence (namely, bbbbbb) in each of its six orientations. In Sec-
tion 3, we will consider the counting versions of TantrixTM rotation puzzle problems
and will construct parsimonious reductions. When counting the solutions of TantrixTM

rotation puzzles, we will focus on color sequences only. That is, whenever some tile
(such as t7 from T2) has distinct orientations with identical color sequences, we will
count this as just one solution (and disregard such repetitions). In this sense, our re-
duction in the proof of Theorem 2 (which is presented in the full version [2]) will be
parsimonious.

Definition of the Problems: We now recall some useful notation that Holzer and
Holzer [7] introduced in order to formalize problems related to the TantrixTM rota-
tion puzzle. The instances of such problems are TantrixTM tiles firmly arranged in the
plane. To represent their positions, we use a two-dimensional hexagonal coordinate sys-
tem, see [7] and also [2]. Let T ∈ {T1,T2,T3,T4} be some tile set as defined above. Let
A : Z

2 → T be a function mapping points in Z
2 to tiles in T , i.e., A (x) is the type of

the tile located at position x. Note that A is a partial function; throughout this paper
(except in Theorem 3 and its proof), we restrict our problem instances to finitely many
given tiles, and the regions of Z

2 they cover may have holes (which is a difference to
the original TantrixTM game).

Define shape(A ) to be the set of points x ∈ Z
2 for which A (x) is defined. For any

two distinct points x = (a,b) and y = (c,d) in Z
2, x and y are neighbors if and only

if (a = c and |b− d| = 1) or (|a− c| = 1 and b = d) or (a− c = 1 and b− d = 1) or
(a−c =−1 and b−d =−1). For any two points x and y in shape(A ), A (x) and A (y)
are said to be neighbors exactly if x and y are neighbors. For k chosen from {1,2,3,4},
define the following problem:

Name: k-Color TantrixTM Rotation Puzzle (k-TRP, for short).
Instance: A finite shape function A : Z

2 → Tk, encoded as a string in Σ∗.
Question: Is there a solution to the rotation puzzle defined by A , i.e., does there exist

a rotation of the given tiles in shape(A ) such that the colors of the lines of any two
adjacent tiles match at their joint edge?
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Clearly, 1-TRP can be solved trivially, so 1-TRP is in P. On the other hand, Holzer
and Holzer [7] showed that 4-TRP is NP-complete and that the infinite variant of 4-TRP
is undecidable. Baumeister and Rothe [1] investigated the counting and the unique vari-
ant of 4-TRP and, in particular, provided a parsimonious reduction from SAT to 4-TRP.
In this paper, we study the three-color and two-color versions of this problem, 3-TRP
and 2-TRP, and their counting, unique, and infinite variants.

Definition 1. A solution to a k-TRP instance A specifies an orientation of each
tile in shape(A ) such that the colors of the lines of any two adjacent tiles match
at their joint edge. Let SOLk-TRP(A ) denote the set of solutions of A . Define
the counting version of k-TRP to be the function #k-TRP mapping from Σ∗ to N

such that #k-TRP(A ) = ‖SOLk-TRP(A )‖. Define the unique version of k-TRP as
Unique-k-TRP = {A |#k-TRP(A ) = 1}.

The above problems are defined for the case of finite problem instances. The infinite
TantrixTM rotation puzzle problem with k colors (Inf-k-TRP, for short) is defined ex-
actly as k-TRP, the only difference being that the shape function A is not required to be
finite and is represented by the encoding of a Turing machine computing A : Z

2 → Tk.

3 Results

3.1 Parsimonious Reduction from SAT to 3-TRP

Theorem 1 below is the main result of this section. Notwithstanding that our proof
follows the general approach of Holzer and Holzer [7], our specific construction and
our proof of correctness will differ substantially from theirs. We will give a parsimo-
nious reduction from SAT to 3-TRP. Let Circuit∧,¬-SAT denote the problem of decid-
ing, given a boolean circuit c with AND and NOT gates only, whether or not there
is a satisfying truth assignment to the input variables of c. The NP-completeness of
Circuit∧,¬-SAT was shown by Cook [3], and it is easy to see that SAT parsimoniously
reduces to Circuit∧,¬-SAT (see, e.g., [1]).

Theorem 1. SAT parsimoniously reduces to 3-TRP.

It is enough to show that Circuit∧,¬-SAT parsimoniously reduces to 3-TRP. The
resulting 3-TRP instance simulates a boolean circuit with AND and NOT gates such
that the number of solutions of the rotation puzzle equals the number of satisfying truth
assignments to the variables of the circuit.

General remarks on our proof approach: The rotation puzzle to be constructed from
a given circuit consists of different subpuzzles each using only three colors. The color
green was employed by Holzer and Holzer [7] only to exclude certain rotations, so
we choose to eliminate this color in our three-color rotation puzzle. Thus, letting C3

contain the colors blue, red, and yellow, we have the tile set T3 = {t1, t2, . . . ,t14}, where
the enumeration of tiles corresponds to Figure 2(b). Furthermore, our construction will
be parsimonious, i.e., there will be a one-to-one correspondence between the solutions
of the given Circuit∧,¬-SAT instance and the solutions of the resulting rotation puzzle
instance. Note that part of our work is already done, since some subpuzzles constructed
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in [1] use only three colors and they each have unique solutions. However, the remain-
ing subpuzzles have to be either modified substantially or to be constructed completely
differently, and the arguments of why our modified construction is correct differs con-
siderably from previous work [7,1].

Since it is not so easy to exclude undesired rotations without having the color green
available, it is useful to first analyze the 14 tiles in T3. In the remainder of this proof,
when showing that our construction is correct, our arguments will often be based on
which substrings do or do not occur in the color sequences of certain tiles from T3.
(Note that the full version of this paper [2] has a table that shows which substrings of
the form uv, where u,v ∈C3, occur in the color sequence of ti in T3, and this table may
be looked up for convenience.)

Holzer and Holzer [7] consider a boolean circuit c on input variables x1,x2, . . . ,xn

as a sequence (α1,α2, . . . ,αm) of computation steps (or “instructions”), and we adopt
this approach here. For the ith instruction, αi, we have αi = xi if 1 ≤ i ≤ n, and if
n + 1 ≤ i ≤ m then we have either αi = NOT( j) or αi = AND( j,k), where j ≤ k < i.
Circuits are evaluated in the standard way. We will represent the truth value true by the
color blue and the truth value false by the color red in our rotation puzzle. A technical
difficulty in the construction results from the wire crossings that circuits can have. To
construct rotation puzzles from planar circuits, Holzer and Holzer use McColl’s planar
“cross-over” circuit with AND and NOT gates to simulate such wire crossings [8],
and in particular they employ Goldschlager’s log-space transformation from general to
planar circuits [5]. For the details of this transformation, we refer to [7].

Holzer and Holzer’s original subpuzzles [7] should be compared with those in our
construction. To illustrate the differences between our new and these original subpuz-
zles, modified or inserted tiles in our new subpuzzles presented in this section will
always be highlighted by having a grey background.

Wire subpuzzles: Wires of the circuit are simulated by the subpuzzles WIRE, MOVE,
and COPY. We present only the WIRE here; see [2] for MOVE and COPY.

A vertical wire is represented by a WIRE subpuzzle, which is shown in Figure 3. The
original WIRE subpuzzle from [7] does not contain green but it does not have a unique
solution, while the WIRE subpuzzle from [1] ensures the uniqueness of the solution but
is using a tile with a green line. In the original WIRE subpuzzle, both tiles, a and b,
have two possible orientations for each input color. Inserting two new tiles at positions
x and y (see Figure 3) makes the solution unique. If the input color is blue, tile x must
contain one of the following color-sequence substrings for the edges joint with tiles b
and a: ry, rr, yy, or yr. If the input color is red, x must contain one of these substrings:
bb, yb, yy, or by. Tile t12 satisfies the conditions yy and ry for the input color blue, and
the conditions yb and yy for the input color red.

The solution must now be fixed with tile y. The possible color-sequence substrings
of y at the edges joint with a and b are rr and ry for the input color blue, and yb and bb
for the input color red. Tile t13 has exactly one of these sequences for each input color.
Thus, the solution for this subpuzzle contains only three colors and is unique.

Gate subpuzzles: The boolean gates AND and NOT are represented by the AND and
NOT subpuzzles. Both the original four-color NOT subpuzzle from [7] and the mod-
ified four-color NOT subpuzzle from [1] use tiles with green lines to exclude certain
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Fig. 3. Three-color WIRE subpuzzle

rotations. Our three-color NOT subpuzzle is shown in Figure 4. Tiles a, b, c, and d
from the original NOT subpuzzle [7] remain unchanged. Tiles e, f , and g in this origi-
nal NOT subpuzzle ensure that the output color will be correct, since the joint edge of
e and b is always red. So for our new NOT subpuzzle in Figure 4, we have to show that
the edge between tiles x and b is always red, and that we have unique solutions for both
input colors.

First, let the input color be blue and suppose for a contradiction that the joint edge
of tiles b and x were blue. Then the joint edge of tiles b and c would be yellow. Since
x is a tile of type t13 and so does not contain the color-sequence substring bb, the edge
between tiles c and x must be yellow. But then the edges of tile w joint with tiles c and x
must both be blue. This is not possible, however, because w (which is of type t10) does
not contain the color-sequence substring bb. So if the input color is blue, the orientation
of tile b is fixed with yellow at the edge of b joint with tile y, and with red at the edges of
b joint with tiles c and x. This already ensures that the output color will be red, because
tiles c and d behave like a WIRE subpuzzle. Tile x does not contain the color-sequence
substring br, so the orientation of tile c is also fixed with blue at the joint edge of tiles
c and w. As a consequence, the joint edge of tiles w and d is yellow, and due to the fact
that the joint edge of tiles w and x is also yellow, the orientation of w and d is fixed
as well. Regarding tile a, the edge joint with tile y can be yellow or red, but tile x has
blue at the edge joint with tile y, so the joint edge of tiles y and a is yellow, and the
orientation of all tiles is fixed for the input color blue. The case of red being the input
color can be handled analogously.

The most complicated figure is the AND subpuzzle. The original four-color version
from [7] uses four tiles with green lines and the modified four-color AND subpuzzle
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Fig. 4. Three-color NOT subpuzzle
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Fig. 5. Three-color AND subpuzzle

from [1] uses seven tiles with green lines. Figure 5 shows our new AND subpuzzle using
only three colors and having unique solutions for all four possible combinations of input
colors. To analyze this subpuzzle, we subdivide it into a lower and an upper part. The
lower part ends with tile c and has four possible solutions (one for each combination
of input colors), while the upper part, which begins with tile j, has only two possible
solutions (one for each possible output color). The lower part can again be subdivided
into three different parts.

The lower left part contains the tiles a, b, x, and h. If the input color to this part is blue
(see Figures 5(a) and 5(b)), the joint edge of tiles b and x is always red, and since tile x
(which is of type t11) does not contain the color-sequence substring rr, the orientation
of tiles a and x is fixed. The orientation of tiles b and h is also fixed, since h (which
is of type t2) does not contain the color-sequence substring by but the color-sequence
substring yy for the edges joint with tiles b and x. By similar arguments we obtain a
unique solution for these tiles if the left input color is red (see Figures 5(c) and 5(d)).
The connecting edge to the rest of the subpuzzle is the joint edge between tiles b and c,
and tile b will have the same color at this edge as the left input color.

Tiles d, e, i, w, and y form the lower right part. If the input color to this part is blue
(see Figures 5(a) and 5(c)), the joint edge of tiles d and y must be yellow, since tile y
(which is of type t9) does not contain the color-sequence substrings rr nor ry for the
edges joint with tiles d and e. Thus the joint edge of tiles y and e must be yellow, since i
(which is of type t6) does not contain the color-sequence substring bb for the edges joint
with tiles y and e. This implies that the tiles i and w also have a fixed orientation. If the
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input color to the lower right part is red (see Figures 5(b) and 5(d)), a unique solution is
obtained by similar arguments. The connection of the lower right part to the rest of the
subpuzzle is the edge between tiles w and g. If the right input color is blue, this edge
will also be blue, and if the right input color is red, this edge will be yellow.

The heart of the AND subpuzzle is its lower middle part, formed by the tiles c and g.
The colors at the joint edge between tiles b and c and at the joint edge between tiles
w and g determine the orientation of the tiles c and g uniquely for all four possible
combinations of input colors. The output of this part is the color at the edge between c
and j. If both input colors are blue, this edge will also be blue, and otherwise this edge
will always be yellow.

The output of the whole AND subpuzzle will be red if the edge between c and j
is yellow, and if this edge is blue then the output of the whole subpuzzle will also be
blue. If the input color for the upper part is blue (see Figure 5(a)), each of the tiles j,
k, l, m, and n has a vertical blue line. Note that since the colors red and yellow are
symmetrical in these tiles, we would have several possible solutions without tiles o, u,
and v. However, tile v (which is of type t9) contains neither rr nor ry for the edges
joint with tiles k and j, so the orientation of the tiles j through n is fixed, except that
tile n without tiles o and u would still have two possible orientations. Tile u (which is
of type t2) is fixed because of its color-sequence substring yy at the edges joint with l
and m, so due to tiles o and u the only color possible at the edge between n and o is
yellow, and we have a unique solution. If the input color for the upper part is yellow
(see Figures 5(b)–(d)), we obtain unique solutions by similar arguments. Hence, this
new AND subpuzzle uses only three colors and has unique solutions for each of the
four possible combinations of input colors.

Input and output subpuzzles: The input variables of the boolean circuit are repre-
sented by the subpuzzle BOOL. Our new three-color BOOL subpuzzle is presented in
Figure 6, and since it is completely different from the original four-color BOOL subpuz-
zle from [7], no tiles are marked here. The subpuzzle in Figure 6 has only two possible
solutions, one with the output color blue (if the corresponding variable is true), and one
with the output color red (if the corresponding variable is false). The original four-color
BOOL subpuzzle from [7] contains tiles with green lines to exclude certain rotations.
Our three-color BOOL subpuzzle does not contain any green lines, but it might not be
that obvious that there are only two possible solutions, one for each output color. The
proof can be found in the full version [2].
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Fig. 6. Three-color BOOL subpuzzle
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Fig. 7. Three-color TEST subpuzzle

Finally, a subpuzzle is needed to check whether or not the circuit evaluates to true.
This is achieved by the subpuzzle TEST-true shown in Figure 7(a). It has only one valid
solution, namely that its input color is blue. Just like the subpuzzle BOOL, the original
four-color TEST-true subpuzzle from [7], which was not modified in [1], uses green
lines to exclude certain rotations. Again, since the new TEST-true subpuzzle is com-
pletely different from the original subpuzzle, no tiles are marked here. Our argument of
why this subpuzzle is correct can be found in the full version [2].

The shapes of the subpuzzles constructed above have changed slightly. However, by
Holzer and Holzer’s argument [7] about the minimal horizontal distance between two
wires and/or gates being at least four, unintended interactions between the subpuzzles
do not occur. This concludes the proof of Theorem 1. ❑

Corollary 1. 3-TRP is NP-complete.

Since the tile set T3 is a subset of the tileset T4, we have 3-TRP ≤p
m 4-TRP. Thus, the

hardness results for 3-TRP and its variants proven in this paper immediately are inher-
ited by 4-TRP and its variants, which provides an alternative proof of these hardness
results for 4-TRP and its variants established in [7,1]. In particular, Corollary 2 follows
from Theorem 1 and Corollary 1.

Corollary 2 ([7,1]). 4-TRP is NP-complete, via a parsimonious reduction from SAT.

3.2 Parsimonious Reduction from SAT to 2-TRP

In contrast to the above-mentioned fact that 3-TRP ≤p
m 4-TRP holds trivially, the re-

duction 2-TRP ≤p
m 3-TRP (which we will show to hold due to both problems being

NP-complete, see Corollaries 1 and 3) is not immediatedly straightforward, since the
tile set T2 is not a subset of the tile set T3 (recall Figure 2 in Section 2). In this section,
we study 2-TRP and its variants. Our main result here is Theorem 2 below the proof of
which can be found in the full version [2].

Theorem 2. SAT parsimoniously reduces to 2-TRP.

Corollary 3. 2-TRP is NP-complete.

3.3 Unique and Infinite Variants of 3-TRP and 2-TRP

Parsimonious reductions preserve the number of solutions and, in particular, the unique-
ness of solutions. Thus, Theorems 1 and 2 imply Corollary 4 below that also employs
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Valiant and Vazirani’s results on the DP-hardness of Unique-SAT under≤p
ran-reductions

(which were defined in Section 2). The proof of Corollary 4 follows the lines of the
proof of [1, Theorem 6], which states the analogous result for Unique-4-TRP in place
of Unique-3-TRP and Unique-2-TRP.

Corollary 4

1. Unique-SAT parsimoniously reduces to Unique-3-TRP and Unique-2-TRP.
2. Unique-3-TRP and Unique-2-TRP are DP-complete under ≤p

ran-reductions.

Holzer and Holzer [7] proved that Inf-4-TRP, the infinite TantrixTM rotation puzzle
problem with four colors, is undecidable, via a reduction from (the complement of) the
empty-word problem for Turing machines. The proof of Theorem 3 below, which can
be found in the full version [2], uses essentially the same argument but is based on our
modified three-color and two-color constructions.

Theorem 3. Both Inf-2-TRP and Inf-3-TRP are undecidable.

4 Conclusions

This paper studied the three-color and two-color TantrixTM rotation puzzle problems,
3-TRP and 2-TRP, and their unique and infinite variants. Our main contribution is
that both 3-TRP and 2-TRP are NP-complete via a parsimonious reduction from SAT,
which in particular solves a question raised by Holzer and Holzer [7]. Since restricting
the number of colors to three and two, respectively, drastically reduces the number of
TantrixTM tiles available, our constructions as well as our correctness arguments sub-
stantially differ from those in [7,1]. Table 1 in Section 1 shows that our results give a
complete picture of the complexity of k-TRP, 1 ≤ k ≤ 4. An interesting question still
remaining open is whether the analogs of k-TRP without holes still are NP-complete.
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